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The detection of gravitational waves from compact binary mergers by the LIGO/Virgo Collaboration
has, for the first time, allowed for tests of relativistic gravity in the strong, dynamical, and nonlinear regime.
Outside Einstein’s relativity, spinning black holes may be different from their general relativistic
counterparts, and their merger may then lead to a modified ringdown. We study the latter and, for the
first time, derive a modified Teukolsky equation, i.e., a set of linear, decoupled differential equations that
describe dynamical perturbations of non-Kerr black holes for the radiative Newman-Penrose scalarsΨ0 and
Ψ4. We first focus on non-Ricci-flat, Petrov type-D black hole backgrounds in modified gravity and derive
the modified Teukolsky equation through direct decoupling and through a new approach, proposed by
Chandrasekhar, that uses certain gauge conditions. We then extend this analysis to non-Ricci-flat, Petrov
type-I black hole backgrounds in modified gravity, assuming they can be treated as a linear perturbation of
Petrov type-D, black hole backgrounds in general relativity by generalizing Chandrasekhar’s approach, and
derive the decoupled modified Teukolsky equation. We further show that our formalism can be extended
beyond linear order in both modified gravity corrections and gravitational wave perturbations. Our work
lays the foundation to study the gravitational waves emitted in the ringdown phase of black hole
coalescence in modified gravity for black holes of any spin. Our work can also be extended to compute
gravitational waves emitted by extreme mass-ratio binary inspirals in modified gravity.
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I. INTRODUCTION

General relativity (GR) has passed a plethora of exper-
imental tests in the Solar System [1] and in binary pulsars
systems [2,3],making it themost successful theory of gravity
to date. With the detection of gravitational waves (GWs) by
the LIGO/Virgo/KAGRA (LVK) Collaboration [4], tests in
the extreme gravity regime, where gravity is simultaneously
strong, dynamical, and nonlinear, have gained prominence
in the past decade [1,5–8]. Such tests will become only
stronger with the next generation of ground-based [9,10]
and space-based detectors [11], allowing for even more
stringent constraints on modifications to GR (see, e.g.,
Refs. [8,12–17]).

Einstein’s theory, although very successful, can be
interpreted as having difficulties explaining certain theo-
retical and observational anomalies, which has motivated
the study of modified theories of gravity. For example, the
incompatibility between GR and quantum mechanics has
motivated efforts in a variety of unified theories, such as
loop quantum gravity [18–20] and string theory [21,22].
Observational anomalies could include the late-time accel-
eration of the Universe [23,24] (without the inclusion of an
“unnaturally” small cosmological constant [25,26]), the
anomalous galaxy rotation curves [27,28] (without the
inclusion of dark matter [29]), and the matter-antimatter
asymmetry of the Universe [30] (without the inclusion of
additional sources of parity violation required by the
Sakharov conditions [29,31,32]). All of these perceived
anomalies have resulted in a zoo of modifications to GR,
which can both be consistent with all current tests while
still yielding deviations in the extreme gravity regime. For
this class of theories, GWsmay be excellent probes to study
and possibly constrain deviations from Einstein’s theory.
An important source of GWs is the coalescence of

compact objects: the inspiral, merger, and ringdown of a
binary system composed of black holes (BHs) and/or
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neutron stars (NSs). All of these coalescence phases can be
used to test GR and constrain deviations. For instance, the
presence of extra (scalar or vector) radiative degrees of
freedom can be constrained with the inspiral phase of GWs
emitted in binary BH coalescence. These fields can increase
the rate at which orbital energy is radiated away from the
system, thus affecting the orbital dynamics [7,33–37],
which can be modeled with post-Newtonian methods.
The GW observations made by the LVK Collaboration
in the inspiral regime can then be used to determine
whether binary BHs spiral in at the expected GR rate or
not, thus allowing for constraints on the existence of these
additional radiative fields [12–14].
On the other hand, modifications to the exterior BH

geometry as well as the dynamics of these modified gravity
theories may be constrained with ringdown GWs, emitted
as the BH remnant settles to its final, stationary configu-
ration. These waves can be characterized as a sum of
quasinormal modes (QNMs), whose complex frequency
contains information about the remnant BH back-
ground [38–46]. The LVK observation of ringdown
GWs and the measurement of the complex frequencies
of a set of QNMs can then be used to probe the exterior
geometry of the remnant [47]. In particular, these obser-
vations can yield tests of the Kerr hypothesis (i.e., that all
astrophysical BHs can be described by the Kerr met-
ric) [48,49]. The GWs emitted during ringdown can be
studied by considering gravitational perturbations of a
background BH spacetime, obtaining their evolution equa-
tions, and then solving the latter to find the spectrum of
perturbations. Additionally, depending on the theory, there
might be additional degrees of freedom present, leading to
additional or coupled evolution equations that can be
solved to obtain the QNM frequency spectra [50–57].
This forms the basis of BH perturbation theory, which
has been used to study QNMs of nonrotating BHs in
GR [38,39,41–43] and modified gravity [50–53,58]. When
the background spacetime is that of a nonrotating BH, the
background metric is static and spherically symmetric, so
the time and angular dependence of the evolution equations
of the perturbations can be easily separated. In GR, the
resulting coupled radial equations can then be further
reduced to two decoupled equations, one for odd parity
perturbations and another for even parity perturba-
tions [41,42]. In modified gravity, however, one may not
be able to decouple all the radial equations, so there can be
more than one equation in each parity besides the equations
of extra nonmetric fields [50–57].
When considering background spacetimes that represent

spinning BHs, however, the situation is much more
complicated. This is because such BHs are mathematically
represented through a background metric that is stationary
and axisymmetric. The lack of spherical symmetry renders
the evolution equations for the metric perturbations non-
separable. Fortunately, an alternate method, prescribed by

Teukolsky in 1973 [44], allows for the separation of the
perturbation equations when one works with curvature
quantities (instead of metric quantities), characterized in the
Newman-Penrose (NP) formalism [59]. The latter arises
naturally from the introduction of spinor calculus into GR
and is a special type of tetrad calculus. Using the NP
formalism, the perturbations of a Schwarzschild BH in GR
were studied by Price [60] and extended later in Ref. [61].
Combining these results with Teukolsky’s [44], a separable
decoupled equation for each of the two components of the
perturbed Weyl tensor (Ψ0 and Ψ4) can be obtained. These
decoupled equations paved the way for QNM studies in
GR, allowing for the accurate computation of the QNM
frequencies of Kerr BHs [62,63].
The Teukolsky formalism [44], however, is not generally

applicable in modified theories of gravity. In particular,
this formalism applies only when the Einstein equations
hold and when the background spacetime is of Petrov
typeD [40,64], i.e., when all Weyl scalars exceptΨ2 vanish
on the background spacetime. However, modified theories
of gravity do not necessarily satisfy the Einstein equations,
and the background BH solutions in these theories need not
be of Petrov type D, in general. This is the case, for
instance, in quadratic theories of gravity (such as dynamical
Chern-Simons (dCS) gravity [65,66] or scalar-Gauss-
Bonnet (sGB) gravity [67,68]), where a dynamical field
is nonminimally coupled to a quadratic curvature invariant.
In these theories, the field equations are not Einstein’s, and
isolated, rotating BHs are of the algebraically general
Petrov type I [69]; i.e., only the Ψ0 and Ψ4 background
Weyl scalars vanish. Therefore, the Teukolsky formalism
cannot be used directly to prescribe master equations for
the evolution of curvature perturbations in such beyond-GR
BH backgrounds.
The study of BH perturbations and their QNMs in

modified gravity has gained prominence in the recent
decade. However, for the most part, these calculations
have been limited to the nonrotating and the slowly rotating
case. In the spherically symmetric, nonrotating case,
QNMs have been calculated using metric perturbation
theory, e.g., in dCS gravity [50,51,58], Einstein-dilaton-
Gauss-Bonnet (EdGB) gravity [52,53], Einstein-aether
theory [70–74], higher-derivative gravity (quadratic [75],
cubic [76], and more generically [77,78]), and Horndeski
gravity [79]. In the axisymmetric, rotating case, reducing
all the metric perturbations into a single perturbation
function (e.g., Regge Wheeler function or a Zerilli-
Moncrief function) is difficult, so studies have resorted
to the slow-rotation approximation at leading order, e.g., in
EdGB gravity [56,57], dCS gravity [54,55], and higher-
derivative gravity [80,81]. Purely numerical studies of
perturbed spinning BHs, resulting from the merger of
two other BHs, have also been done in dCS gravity, but
they typically suffer from secularly growing uncontrolled
remainders [82,83].
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One can, in principle, extend the slow-rotation approxi-
mation to the QNM spectrum of rotating BHs in modified
gravity to higher order in rotation, but this can be a daunting
task. This is because the GWs emitted during ringdown are
producedbyBH remnants that typically spin at about 65%of
their maximum or higher [84]. The accurate calculation of
the QNM spectrum of such BHs then requires one to go to at
least fifth order in a slow-rotation expansion or higher [85].
Nonetheless, it has been shown in Ref. [57] (see also
Refs. [86,87]) that one can improve the convergence of
the slow-rotation expansion using the Padé approximation.
In EdGB, one may then consider only up to second order in
the slow-rotation expansion to deal with BHs spinning at
about 70% of their maximum. Additionally, going to higher
order in spin leads to mode coupling between the l modes,
the l! 1 modes, and higher modes [54,88,89], where l is
the orbital number of the spherical harmonic decomposition.
Therefore, instead of extending the slow-rotation approxi-
mation, we here focus on developing a new formalism,
motivated from the work of Teukolsky and Chandrasekhar,
to understand the evolution of curvature perturbations and,
therefore, the QNM spectrum of rotating BHs of arbitrary
spin in modified gravity.

A. Executive summary

We here develop and apply a method to find the evolution
equations of gravitational perturbations around non-Ricci-
flat and Petrov type-I BH backgrounds in modified gravity,
where the BH background can be treated as linear perturba-
tions of a Petrov type-D background in GR. We begin by
focusing on backgrounds that are still Petrov type D but are
not described by the Kerr metric because they satisfy field
equations that are not Einstein’s; i.e., the background
spacetime is not Ricci flat. In this context, we extend the
usual Teukolsky formalism and also develop a new approach
to find the curvature perturbation equations in a particular
gauge, following Chandrasekhar [40]. We show that these
two approaches yield the same perturbation equations.
Let us describe both of these approaches in more detail,

beginning first with a brief refresher of how these approaches
are applied inGR. In the traditional Teukolsky approach, one
begins by considering two Bianchi identities and one Ricci
identity in the NP formalism. Using these equations along
with the GR vacuum field equations and imposing the
requirement that the background is Ricci flat (i.e., the
Ricci tensor vanishes on the background) and Petrov type
D, one can, in principle, generate a commutator relation that
eliminates the coupling between the perturbed Weyl scalars
Ψð1Þ

0 and Ψð1Þ
1 and between Ψð1Þ

4 and Ψð1Þ
3 . However, in the

process of obtaining the commutation relation, one has to
make use of additional Bianchi identities. This procedure is
not tedious in GR, because many NP scalars and spin
coefficients vanish identically, but it can be nontrivial in
modified gravity.

In Chandrasekhar’s approach [40], one makes use of
suitable gauge conditions to simplify the perturbed equa-
tions without the need to use additional Bianchi identities.
In this special gauge, the background and perturbed Weyl
scalar Ψ1 and Ψ3 vanish, so the two Bianchi identities and
the Ricci identity mentioned above simplify and depend
now only on three unknown quantities. Decoupling these
equations, one then obtains a master equation for the
perturbed Weyl scalars Ψð1Þ

i of the form

HGR
i Ψð1Þ

i ¼ 0; i ∈ f0; 4g; ð1Þ

where HGR
i are the Teukolsky differential operators [44].

As mentioned earlier, we begin our analysis by modi-
fying both of these approaches so that they are applicable in
modified gravity for curvature perturbations of non-Ricci-
flat BHs that are still Petrov type D. In the traditional
Teukolsky approach, we first develop a commutator rela-
tion by using additional Bianchi identities. Because of the
complicated nature of the field equations in modified
gravity, there are more nonvanishing NP quantities, thereby
leading to more terms in the perturbation equations. To
leading order in the perturbation and in deformations from
GR, however, only the Bianchi identities and the commu-
tator relations of GR are required, since all additional terms
vanish. In the Chandrasekhar’s approach, we first show
that, even in modified gravity, a gauge still exists in which
the perturbed Ψð1Þ

1 and Ψð1Þ
3 vanish. Using this gauge, the

curvature perturbations can be easily decoupled.
To derive the master equation, we find a two-parameter

expansion useful. We use ϵ to denote the size of the GW
perturbations and ζ the strength of the modified gravity
correction. With this at hand, we show that any NP
quantities Ψ can be expanded as

Ψ ¼ Ψð0;0Þ þ ζΨð1;0Þ þ ϵΨð0;1Þ þ ζϵΨð1;1Þ: ð2Þ

We then show that both approaches lead to a modified
evolution equation for the curvature perturbations of the
form

HGR
0 Ψð1;1Þ

0 ¼ Sð1;1Þ
geo ðΨð0;1Þ

0 Þ þ Sð1;1Þðϑð1;1Þ; hð0;1ÞÞ;

HGR
4 Ψð1;1Þ

4 ¼ T ð1;1Þ
geo ðΨð0;1Þ

4 Þ þ T ð1;1Þðϑð1;1Þ; hð0;1ÞÞ; ð3Þ

where the HGR
i differential operators are the same as the

Teukolsky ones in GR [44]. Here, we list the dynamical
quantities [i.e., OðϵÞ terms] inside the parentheses. The
source terms Sð1;1Þ and T ð1;1Þ arise from the perturbed and
modified field equations, and they are functionals of any
additional dynamical scalar, vector, or tensor field in the
theory (denoted as ϑð1;1Þ above) and the GW metric
perturbation (denoted as hð0;1Þ). The source terms Sð1;1Þ

geo

and T ð1;1Þ
geo arise from the homogeneous part of the two
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Bianchi identities due to the correction to the background
spacetime in modified gravity, and they are functionals of
the dynamical Ψð0;1Þ

0;4 in GR.
The evaluation of the source terms, which is required to

evaluate the curvature perturbation evolution equations,
requires knowledge of hð0;1Þ and ϑð1;1Þ. The source terms
Sð1;1Þ and T ð1;1Þ depend on hð0;1Þ, so the evaluation of the
right-hand side of Eq. (3) requires the reconstruction
of the GW metric perturbation in GR hð0;1Þ. This can be
accomplished with the well-developed methods of
Chrzanowski [90] and others [40,91,92]. Moreover, the
source terms Sð1;1Þ and T ð1;1Þ also depend on the evolution
of the perturbed scalar, vector, or tensor degrees of freedom
that the theory may admit ϑ. The evolution of these degrees
of freedom has to be solved simultaneously with the
solution to the curvature perturbations.
With this at hand, we then apply Chandrasekhar’s

approach to modified gravity theories for non-Ricci-flat
and Petrov type-I BH backgrounds. In such spacetimes, the
biggest challenge is that many background NP quantities
are nonvanishing. Working perturbatively (i.e., treating the
BH background as a deformation of the Petrov type-D
background in GR), one can eliminate the perturbedΨ1 and
Ψ3 from the evolution equations and obtain a separated and
decoupled equation for Ψ0 and Ψ4. Schematically, these
equations look a lot like the decoupled equations when
dealing with non-Ricci-flat and Petrov type-D back-
grounds, except that now the source terms Sð1;1Þ

geo and
T ð1;1Þ

geo can also be functionals of the GW metric perturba-
tion, namely,

HGR
0 Ψð1;1Þ

0 ¼Sð1;1Þ
geo ðΨð0;1Þ

0 ;hð0;1ÞÞþSð1;1Þðϑð1;1Þ;hð0;1ÞÞ;

HGR
4 Ψð1;1Þ

4 ¼T ð1;1Þ
geo ðΨð0;1Þ

4 ;hð0;1ÞÞþT ð1;1Þðϑð1;1Þ;hð0;1ÞÞ: ð4Þ

This time we see that both source terms to the curvature
perturbation evolution equations require the reconstruction
of the GW metric perturbation in GR. As in the Petrov
type-D case, we also see that the source terms Sð1;1Þ and
T ð1;1Þ require knowledge of the evolution of the perturbed
scalar, vector, or tensor degrees of freedom that the
modified theory may admit ϑ. Figure 1 shows schemati-
cally the structure of the master equations for Ψ0 and Ψ4.
In the rest of the paper, we derive and present the results

summarized above in detail. In Sec. II, we present a brief
review of the NP formalism and relevant NP equations. We
also review the analysis presented by Teukolsky (i.e., the
Teukolsky formalism) and by Chandrasekhar (using a
gauge choice) for Petrov type-D spacetimes in GR. In
Sec. III, we discuss a subset of modified gravity theories
that our work can be applied to and prescribe a perturbation
scheme for them. We then extend both Teukolsky’s and
Chandrasekhar’s approaches to Petrov type-D spacetimes
in these modified gravity theories in Sec. IV. In Sec. V, we
prescribe and discuss in detail the formalism to study
perturbations of an algebraically general: Petrov type-I
spacetime in modified gravity theories which can be treated
as a linear perturbation of a Petrov type-D spacetimes in
GR. In Sec. VI, we discuss the connection of the formalism
developed in Sec. V to the second-order Teukolsky
formalism in GR. We further show that our formalism
can be generalized to higher order in both ζ and ϵ, which is
thus a beyond-GR extension of the higher-order Teukolsky
formalism in GR developed in Ref. [93]. Finally, in
Sec. VII, we summarize our work and discuss some
avenues for future work. Henceforth, we adopt the follow-
ing conventions unless stated otherwise: We work in four
dimensions with metric signature ð−;þ;þ;þÞ as in
Ref. [94]. For all NP quantities except the metric signature,
we use the notation adapted by Chandrasekhar in Ref. [40].

FIG. 1. Schematic flow chart of the different possible terms that may arise in the modified Teukolsky equation for any Petrov type-I
spacetime in modified gravity, where the background can be treated as a linear perturbation of a Petrov type-D spacetime in GR. The
origin of these correction terms and the strategies to evaluate them are outlined here and discussed in detail in Sec. V C. For comparison,
the corresponding procedures for any Petrov type-D spacetime in modified gravity theory is also shown.
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II. NP FORMALISM AND PERTURBATIONS
OF BHs IN GR

With the study of GWs using tetrad and spinor calculus
gaining prominence in the 1960s, Newman and Penrose
presented a formalism that combines these two techniques
to derive a very compact and useful set of equations that are
equivalent to the field equations [95]. This set of equations
consists of a linear combination of equations for the
Riemann tensor in terms of the Ricci rotation coefficients
or spinor affine connections [95]. The different possible
components of the Riemann tensor or the Weyl tensor in a
null tetrad or a null basis were then associated with certain
quantities, called the NP coefficients or NP scalars. This
formalism provided a new tool to understand GW proper-
ties, such as polarizations and ringdown modes, in more
detail [44,96–99]. Using the NP framework, Teukolsky
presented a formalism to study the ringdown phase of
spinning BHs in GR [44,99,100] and to study the dynami-
cal perturbations of Kerr BHs or, more generally, Petrov
type-D spacetimes in GR.
In this section, we provide a quick refresher of the NP

formalism and discuss the necessary equations for devel-
oping a formalism to obtain master equations for GW
perturbations in GR. Using these equations, we present in
brief the approach prescribed by Teukolsky [44] and by
Chandrasekhar [40] to obtain separable decoupled differ-
ential equations for perturbations of BHs in GR. For a
reader familiar with these topics, we recommend starting
from Sec. III, where we extend the aforementioned for-
malism to BHs in modified gravity.

A. NP formalism: A quick review

In this subsection, we present a quick overview of the
relevant equations under the NP formalism required for our
work. For an in-depth overview, we provide further details
of the NP formalism [40,95] in Appendix A. In the NP
formalism, a null tetrad ðlμ; nμ; mμ; m̄μÞ is introduced at
every point of a four-dimensional pseudo-Riemannian
manifold of signature þ2 and metric gμν. The vectors lμ

and nμ are real, whereas mμ and m̄μ are complex, with
an overbar denoting complex conjugation. The tetrad
4-vectors must also satisfy the following orthogonality
properties:

lμlμ ¼ nμnμ ¼ mμmμ ¼ m̄μm̄μ ¼ 0;

lμnμ ¼ −mμm̄μ ¼ −1;

lμmμ ¼ lμm̄μ ¼ nμmμ ¼ nμm̄μ ¼ 0: ð5Þ

Given such a null tetrad, the metric can be expressed as

gμν ¼ −lμnν − nμlν þmμm̄ν þ m̄μmν: ð6Þ

Intrinsic derivatives in the NP formalism are defined as

Dϕ≡ ϕ;μlμ; Δϕ≡ ϕ;μnμ;

δϕ≡ ϕ;μmμ; δ&ϕ≡ ϕ;μm̄μ: ð7Þ

For any tetrad, we can also perform Lorentz transforma-
tions on it, i.e., three rotations and three boosts. These
transformations can be mapped to three types of tetrad
rotations, which are characterized by six real variables on
the tetrad basis vectors, such that the orthogonality proper-
ties in Eq. (5) are preserved [40]. These three types of tetrad
rotations are discussed in detail in Appendix A.
In the NP formalism, the fundamental variables are five

Weyl scalars (Ψ1;Ψ2;…), 12 spin coefficients (κ; π; ε;…),
and ten NP Ricci scalars (Φ00;Φ01;…;Λ), which are
generally complex quantities. The mathematical form of
all these quantities is presented in Appendix A. These
quantities allow one to construct certain fundamental
relations of the NP formalism: 18 complex Ricci identities
[Eq. (A12)] and nine complex plus two real Bianchi
identities [Eqs. (A13)] [40]. The Ricci identities are derived
from appropriate linear combinations of Eq. (A6) and (A7),
while the Bianchi identities come from Eq. (A8). Some
Ricci identities relevant for this work are

ðD − ρ − ρ& − 3εþ ε&Þσ
− ðδ − τ þ π& − α& − 3βÞκ −Ψ0 ¼ 0; ð8aÞ

ðΔþ μþ μ& þ 3γ − γ&Þλ
− ðδ& þ 3αþ β& þ π − τ&Þνþ Ψ4 ¼ 0; ð8bÞ

ðD − εþ ε& − ρÞτ − ðΔ − 3γ þ γ&Þκ
− π&ρ − ðτ& þ πÞσ −Ψ1 −Φ01 ¼ 0; ð8cÞ

ðD − ρ& þ ε&Þβ − ðδþ α& − π&Þε
− ðαþ πÞσ − ðμþ γÞκ − Ψ1 ¼ 0; ð8dÞ

ðD − ρ& þ ε&Þβ − ðδþ α& − π&Þε
− ðαþ πÞσ − ðμþ γÞκ − Ψ1 ¼ 0; ð8eÞ

while the Bianchi identities useful for this work are

ðδ& − 4αþ πÞΨ0 − ðD − 2ε − 4ρÞΨ1 − 3κΨ2 ¼ S1; ð9aÞ

ðΔ − 4γ þ μÞΨ0 − ðδ − 4τ − 2βÞΨ1 − 3σΨ2 ¼ S2; ð9bÞ

ðδþ 4β − τÞΨ4 − ðΔþ 2γ þ 4μÞΨ3 þ 3νΨ2 ¼ S3; ð9cÞ

ðDþ 4ε − ρÞΨ4 − ðδ& þ 4π þ 2αÞΨ3 þ 3λΨ2 ¼ S4; ð9dÞ

where we define
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S1 ≡ ðδþ π& − 2α& − 2βÞΦ00 − ðD − 2ε − 2ρ&ÞΦ01

þ 2σΦ10 − 2κΦ11 − κ&Φ02; ð10aÞ

S2 ≡ ðδþ 2π& − 2βÞΦ01 − ðD − 2εþ 2ε& − ρ&ÞΦ02

− λ&Φ00 þ 2σΦ11 − 2κΦ12; ð10bÞ

S3 ≡ −ðΔþ 2μ& þ 2γÞΦ21 þ ðδ& − τ& þ 2αþ 2β&ÞΦ22

þ 2νΦ11 þ ν&Φ20 − 2λΦ12; ð10cÞ

S4 ≡ −ðΔþ μ& þ 2γ − 2γ&ÞΦ20 þ ðδ& þ 2α − 2τ&ÞΦ21

þ 2νΦ10 − 2λΦ11 þ σ&Φ22: ð10dÞ

The remaining equations are presented in Appendix A.
The above equations can be recast in a simpler form if we

define the following operators:

F1 ≡ δ& − 4αþ π; F2 ≡ Δ − 4γ þ μ;

J1 ≡D − 2ε − 4ρ; J2 ≡ δ − 4τ − 2β;

E1 ≡ δ − τ þ π& − α& − 3β;

E2 ≡D − ρ − ρ& − 3εþ ε&; ð11Þ

F3 ≡ δþ 4β − τ; F4 ≡Dþ 4ε − ρ;

J3 ≡ Δþ 2γ þ 4μ; J4 ≡ δ& þ 4π þ 2α;

E3 ≡ δ& þ 3αþ β& þ π − τ&;

E4 ≡ Δþ μþ μ& þ 3γ − γ&; ð12Þ

so we can rewrite Eqs. (9a), (9b), and (8a) as, respectively,

F1Ψ0 − J1Ψ1 − 3κΨ2 ¼ S1; ð13aÞ

F2Ψ0 − J2Ψ1 − 3σΨ2 ¼ S2; ð13bÞ

E2σ − E1κ −Ψ0 ¼ 0; ð13cÞ

while Eqs. (9c), (9d), and (8b) can bewritten as, respectively,

F3Ψ4 − J3Ψ3 þ 3νΨ2 ¼ S3; ð14aÞ

F4Ψ4 − J4Ψ3 þ 3λΨ2 ¼ S4; ð14bÞ

E4λ − E3νþΨ4 ¼ 0: ð14cÞ

For this work, we also need a commutator of the intrinsic
derivatives introduced in Eq. (7), namely,

½δ; D( ¼ ðα& þ β − π&ÞDþ κΔ − ðρ& þ ε − ε&Þδ
− σδ&: ð15Þ

The other commutators of intrinsic derivatives can be found
in Appendix A.

Let us conclude with a brief discussion of the Petrov
classification [40,64]. The Petrov classification is an
organizational scheme based on the examination of the
algebraic structure of the Weyl curvature tensor. Since the
Weyl scalars in the NP formalism depend on the Weyl
tensor [see, e.g., Eq. (A10)], one can classify solutions in a
given theory based on the vanishing of the Weyl scalars for
the given solution. The classification is as follows.
(1) Type I.—Ψ0 ¼ Ψ4 ¼ 0.
(2) Type II.—Ψ0 ¼ Ψ1 ¼ Ψ4 ¼ 0.
(3) Type D.—Ψ0 ¼ Ψ1 ¼ Ψ3 ¼ Ψ4 ¼ 0.
(4) Type III.—Ψ0 ¼ Ψ1 ¼ Ψ2 ¼ Ψ4 ¼ 0.
(5) Type N.—Ψ0 ¼ Ψ1 ¼ Ψ2 ¼ Ψ3 ¼ 0.

Isolated stationary BHs in GR are of Petrov type D, while
these BHs in modified gravity theories, such as in dCS
gravity or EdGB gravity, are of Petrov type I [66,69]. Since
Petrov type-I spacetimes are the most general type of
spacetime in the Petrov classification, they are also called
algebraically general. The rest of the spacetimes in the
Petrov classification, including Petrov typeD, are classified
as algebraically special.

B. Teukolsky formalism for Petrov type-D
spacetimes in GR

In this subsection, we present the formalism first
prescribed by Teukolsky in 1972 [44], where, using the
NP formalism, he obtained a set of separable, decoupled
gravitational perturbation equations for Kerr BHs in GR.
More specifically, Teukolsky expanded all curvature quan-
tities into a background plus a perturbation; for example,
the Weyl scalars are expanded into

Ψi ¼ Ψð0Þ
i þ ϵΨð1Þ

i ð16Þ

for i ∈ ð0; 1; 2; 3; 4Þ, where the superscript (0) means that
these quantities are computed from the background metric
while the superscript (1) stands for a perturbation from this
background with ϵ an order-counting parameter. With this
in hand, Teukolsky was then able to derive separable and
decoupled equations for the curvature perturbations Ψð1Þ

0

and Ψð1Þ
4 of a Kerr BH.

The following derivation, which follows closely that of
Ref. [44], applies to any Petrov type-D vacuum background
metric in GR, which includes the Schwarzschild and Kerr
metrics. Let us then choose the lμ and nμ vectors of the
unperturbed tetrad along the repeated principal null direc-
tions of the Weyl tensor. Thus, for a Petrov type-D vacuum
GR spacetime, we have

Ψð0Þ
0 ¼ Ψð0Þ

1 ¼ Ψð0Þ
3 ¼ Ψð0Þ

4 ¼ 0;

κð0Þ ¼ σð0Þ ¼ νð0Þ ¼ λð0Þ ¼ 0: ð17Þ

The result on the second line of Eq. (17) can also be seen to
come from the Bianchi identities in Eq. (A13).
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The GR field equations in trace-reversed form can be
expressed as

Rμν ¼ 8π

!
Tμν −

1

2
Tgμν

"
; ð18Þ

where Tμν is the stress-energy tensor and T is its trace.
Since we are working with vacuum spacetimes, Tμν ¼ 0,
and, thus, Rμν ¼ 0. Using this in Eq. (A11), we can see that
all background and perturbed values of Φij for i; j ∈
f0; 1; 2g vanish. For instance,

Φ00 ≡ −
1

2
R11 ¼ −

1

2
Rμνlμlν ¼ 4πTll ¼ 0: ð19Þ

Thus, using Eq. (10), we see that S1, S2, S3, and S4 vanish
identically for vacuum GR spacetimes.
To study the perturbations of BHs, we require differential

equations for Ψð1Þ
0 and Ψð1Þ

4 , since these represent curvature
perturbations associated with propagating metric perturba-
tions. We first present the formalism to obtain a differential
equation for Ψð1Þ

0 , and, later, we apply the same to Ψð1Þ
4 .

Consider then the vacuum Ricci identity in Eq. (13c) and
the Bianchi identities in Eqs. (13a) and (13b). As men-
tioned previously, in vacuum GR spacetimes, the right-
hand side of these equations vanish. Furthermore, using
Eq. (17), the corresponding perturbation equations to
leading order in the perturbation take the form

Fð0Þ
1 Ψð1Þ

0 − Jð0Þ1 Ψð1Þ
1 − 3κð1ÞΨð0Þ

2 ¼ 0; ð20aÞ

Fð0Þ
2 Ψð1Þ

0 − Jð0Þ2 Ψð1Þ
1 − 3σð1ÞΨð0Þ

2 ¼ 0; ð20bÞ

Eð0Þ
2 σð1Þ − Eð0Þ

1 κð1Þ −Ψð1Þ
0 ¼ 0: ð20cÞ

In order to simplify the notation, we drop the superscript (0)
for all background quantities for the remainder of this
section. Multiplying Eq. (20c) by the background Ψ2 Weyl
scalar and plugging in for E1 and E2 using Eq. (11),
one finds

ðD − 4ρ − ρ& − 3εþ ε&ÞðΨ2σð1ÞÞ − ðδ − 4τ þ π&

− α& − 3βÞðΨ2κð1ÞÞ −Ψ2Ψ
ð1Þ
0 ¼ 0; ð21Þ

where we use Eqs. (A13h) and (A13g), which for the
background Ψ2 reduce to

DΨ2 ¼ 3ρΨ2; δΨ2 ¼ 3τΨ2: ð22Þ

In order to be consistent with the simplified notation, we
introduce

EGR
1 ¼ δ − 4τ þ π& − α& − 3β; ð23aÞ

EGR
2 ¼ D − 4ρ − ρ& − 3εþ ε&; ð23bÞ

so Eq. (21) can be written more compactly as

EGR
2 ðΨ2σð1ÞÞ − EGR

1 ðΨ2κð1ÞÞ ¼ Ψ2Ψ
ð1Þ
0 : ð24Þ

To obtain a differential equation for Ψð1Þ
0 , we need to

eliminate Ψð1Þ
1 from Eqs. (20a) and (20b). This can be done

by making use of the following commutation relation:

EGR
2 J2 − EGR

1 J1 ¼ 0: ð25Þ

This relation can be shown to hold for any Petrov type-D
spacetime in GR by using Eqs. (8c)–(8e) and (15).
On operating EGR

2 on Eq. (20b), EGR
1 on Eq. (20a), and

subtracting one equation from the other, Ψð1Þ
1 vanishes

identically. Using Eq. (21), we finally have

ðEGR
2 F2 − EGR

1 F1 − 3Ψ2ÞΨ
ð1Þ
0 ¼ 0: ð26Þ

This is the decoupled equation for Ψð1Þ
0 for any Petrov

type-D vacuum spacetime in GR. As shown by Geroch,
Held, and Penrose (GHP) [101], the NP equations are
invariant under the exchange lμ ↔ nμ and mμ ↔ m̄μ,
where the choice of lμ and nμ has no effect on this
symmetry. Applying this transformation to Eq. (26), one
finds the decoupled differential equation for Ψð1Þ

4 for a
Petrov type-D vacuum spacetime in GR, namely,

ðEGR
4 F4 − EGR

3 F3 − 3Ψ2ÞΨ
ð1Þ
4 ¼ 0; ð27Þ

where we introduce

EGR
3 ≡ δ& þ 3αþ β& þ 4π − τ&;

EGR
4 ≡ Δþ 4μþ μ& þ 3γ − γ&: ð28Þ

An alternate derivation using the GHP formalism is
provided by Stewart [102]. However, for the purpose of
this section, we stick with the formalism laid down by
Teukolsky.

C. Chandrasekhar’s approach for Petrov type-D
spacetimes in GR

Chandrasekhar introduced another way to derive the
Teukolsky equation in Ref. [40] by utilizing the gauge
freedom of the tetrad. As briefly mentioned in Sec. II A and
discussed in detail in Appendix A, one is free to rotate the
tetrad following Eq. (A16) such that all the normalization
and orthogonality conditions in Eq. (5) are preserved.
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Let us then consider a type-II rotation, which is given by

n → n; m → mþ bn; m̄ → m̄þ b&n;

l → lþ b&mþ bm̄þ bb&n ð29Þ

[see also Eq. (A16b)], and set the rotation parameter b to be
of leading order in the perturbation, i.e., b ¼ bð1Þ. Ignoring
all higher-order terms, the perturbedWeyl scalars transform
into [see, e.g., Eq. (A17b)]

Ψð1Þ
0 → Ψð1Þ

0 þ 4bð1ÞΨð0Þ
1 ; Ψð1Þ

1 → Ψð1Þ
1 þ 3bð1ÞΨð0Þ

2 ;

Ψð1Þ
2 → Ψð1Þ

2 þ 2bð1ÞΨð0Þ
3 ; Ψð1Þ

3 → Ψð1Þ
3 þ bð1ÞΨð0Þ

4 ;

Ψð1Þ
4 → Ψð1Þ

4 : ð30Þ

Since for a Petrov type-D spacetime Ψð0Þ
i≠2 ¼ 0, all the Ψð1Þ

i≠1
remain invariant under such a rotation. By choosing
bð1Þ ¼ −Ψð1Þ

1 =ð3Ψð0Þ
2 Þ, the perturbed Weyl scalar Ψð1Þ

1 can
be removed directly without the use of any additional
Bianchi identities and commutation relations used in
Sec. II B. Another way to understand this gauge choice is
that we have three equations for four unknowns in Eqs. (20),
so there is one arbitrary function to be determined.
Using this gauge freedom to set Ψð1Þ

1 ¼ 0 through a
tetrad rotation, one can now easily derive the Teukolsky
equation. First, use this gauge freedom to set Ψð1Þ

1 ¼ 0 in
Eqs. (20a) and (20b) and then solve for κð1Þ and σð1Þ. Now
insert these solutions back into Eq. (20c) to find

ðE2F2 − E1F1 − 3Ψ2ÞΨ
ð1Þ
0 ¼ 0; ð31Þ

where we define

Ei ≡Ψ2EiΨ−1
2 : ð32Þ

Here, we drop the superscript (0) for all unperturbed
quantities. Applying the GHP transformation explained
below Eq. (26), one finds an equation for Ψð1Þ

4 , namely,

ðE4F4 − E3F3 − 3Ψ2ÞΨ
ð1Þ
4 ¼ 0: ð33Þ

The Ei operators can be simplified using the product rule.
Doing so, one finds

E1 ¼ δ − τ þ π& − α& − 3β −
1

Ψ2

δΨ2; ð34aÞ

E2 ¼ D − ρ − ρ& − 3εþ ε& −
1

Ψ2

DΨ2; ð34bÞ

E3 ¼ δ& þ 3αþ β& þ π − τ& −
1

Ψ2

δ&Ψ2; ð34cÞ

E4 ¼ Δþ μþ μ& þ 3γ − γ& −
1

Ψ2

ΔΨ2: ð34dÞ

In deriving Eqs. (31)–(33), we also multiply the whole
equation by 3Ψ2. We see in Sec. IV B that this makes
Eqs. (31)–(33) exactly the same as Eqs. (26) and (27), so
Ei ¼ EGR

i . Note that one can also derive the equation forΨ4

in the same way we derive an equation for Ψ0 (i.e., without
the GHP transformation), using the fact that a type-I
rotation at OðϵÞ can be used to set Ψð1Þ

3 to zero.
It should not be surprising that one obtains the same

equation following the traditional Teukolsky approach and
Chandrasekhar’s approach. From Eq. (30) and other tetrad
rotations discussed in Appendix A that one can perform in
Eqs. (A16), one can see that Ψð1Þ

0 and Ψð1Þ
4 are gauge-

invariant quantities under linear perturbations. In
Chandrasekhar’s approach, since one does not need to
use any additional Bianchi identities and commutation
relations to cancel off Ψð1Þ

1 , there are fewer equations
one needs to worry about, and this is helpful when dealing
with the more complicated non-Petrov-type-D spacetime
backgrounds of modified gravity theories. However, to
convince ourselves that the equivalence between these two
approaches is not broken when considering beyond GR
theories, in Sec. IV we find a modified master equation
using both approaches and show that the two methods are
equivalent in modified gravity theories.

III. FRAMEWORK OF PERTURBATION
IN MODIFIED GRAVITY THEORIES

In this section, we discuss a subset of modified gravity
theories that the formalism developed in this work can be
applied to. We classify these theories into two classes based
on the presence of additional nonmetric fields in the action
that define these theories. For both classes, we provide
some examples by explicitly writing down the Lagrangian,
the equations of motion for all the fields, and the properties
of BH spacetimes, which serve as the background to our
perturbation analysis. We then prescribe a perturbation
scheme using a two-parameter expansion for both classes
of modified gravity theories.

A. Theories of gravity beyond GR

In this subsection, we provide a quick overview of
certain modified theories of gravity relevant for this work
and discuss the BH spacetimes in these theories, which
serve as a background for our perturbation scheme.
Consider then a class of theories defined through the
following beyond-GR (bGR) Lagrangian:

L ¼ LGR þ lpLbGR þ Lmatter þ Lfield; ð35Þ

where LGR is the Einstein-Hilbert Lagrangian, Lmatter is the
matter Lagrangian, Lfield is the Lagrangian for all other
(nonmetric) dynamical fields (including all kinetic and
potential terms of these fields) that the theory may permit,
and LbGR is a Lagrangian that contains non-Einstein-Hilbert
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curvature terms and can, in principle, include nonminimal
couplings to the nonmetric dynamical fields of the theory.
The quantity l in Eq. (35) is a dimensionful scale that
characterizes the strength of the GR correction, and p is a
number to ensure that lpLbGR has the right dimensions. We
can classify the beyond-GR theories described by the
Lagrangian in Eq. (35) based on the presence or absence
of additional nonmetric dynamical fields, i.e., based on
whether Lfield vanishes. Note that we here do not consider
theories with nondynamical, prior, or “fixed” fields that
couple to the metric tensor. In this work then, we define this
classification as

(i) Lfield ≠ 0 ⇒ class A,
(ii) Lfield ¼ 0 ⇒ class B.
An example of beyond-GR theories of class A that we

consider is dCS gravity. This theory is defined by the
Lagrangian in Eq. (35) with the choices

LGR ¼ ð16πÞ−1R;

LdCS
bGR ¼ 1

4
ϑ&Rμ

ν
κδRν

μκδ;

LdCS
field ¼ −

1

2
gμνð∇μϑÞð∇νϑÞ; ð36Þ

and l ¼ ldCS is the dCS coupling constant with p ¼ 2. R is
the Ricci scalar, gμν is the metric, and ϑ is a massless,
pseudoscalar, axionlike field that nonminimally couples to
the Pontryagin curvature invariant &Rμ

ν
κδRν

μκδ, where

&Rμ
ν
κδ ¼ 1

2
ϵμναβRαβκδ ð37Þ

is the dual of the Riemann tensor. The field equations in
dCS gravity are

Rμν ¼ 8π

#!
TM
μν −

1

2
gμνTM

"
þ ð∇μϑÞð∇νϑÞ

− 2αdCS½ð∇σϑÞϵσδαðμ∇αRνÞδ þ ð∇σ∇δϑÞ&Rδ
ðμνÞ

σ(
$
;

ð38Þ

□ϑ ¼ −
αdCS
4

&Rμ
ν
κδRν

μκδ; ð39Þ

where Eq. (38) is the trace-reversed metric field equation
and Eq. (39) is the scalar field equation. The dCS coupling
constant αdCS ≡ l2

dCS determines the strength of the
Chern-Simons (CS) modification and has dimensions of
½Length(2. Stationary and vacuum BH solutions in this
theory are not Ricci flat, so they are obviously not
represented by the Kerr metric [103–105]. Instead, spinning
BHs in dCS gravity have a corrected event horizon
location, ergosphere, and different exterior multipole
moments [103] to name a few corrected quantities.

Moreover, dCS BHs are of non-Ricci-flat Petrov type-I
spacetimes in the Petrov classification given in Sec. II A. To
leading order in spin, however, the BHs in this theory
remain non-Ricci-flat and of Petrov type D [69,103,106].
Another example of a class-A beyond-GR theory is

EdGB gravity [107], which is a special case of sGB
gravity [108]. Using Eq. (35) and the conventions in
Refs. [56,108], EdGB theory is defined via

LGR ¼ ð16πÞ−1R;
LEdGB
bGR ¼ ð64πÞ−1eθG;

LEdGB
field ¼ −ð32πÞ−1gμνð∇μθÞð∇νθÞ; ð40Þ

where

G ¼ RμνρσRμνρσ − 4RμνRμν þ R2 ð41Þ

is the Gauss-Bonnet curvature invariant and l ¼ lEdGB is
the EdGB coupling constant with p ¼ 2. The quantity θ is a
massless dilatonlike scalar field that nonminimally couples
to the Gauss-Bonnet invariant G. The metric field equation
for EdGB gravity in trace-reversed form is then given
by [56]

Rμν ¼ 8π

!
TM
μν −

1

2
gμνTM

"
þ 1

2
ð∇μθÞð∇νθÞ

− αEdGB

!
Kμν −

1

2
gμνK

"
;

Kμν ¼
1

8
ðgμρgνσ þ gμσgνρÞϵδσγα∇βð&Rρβ

γαeθ∇δθÞ;

K ¼ gμνKμν; ð42Þ

whereas the scalar field equation is

□θ ¼ −
αEdGB
4

eθG: ð43Þ

The quantity αEdGB ≡ l2EdGB is the coupling constant of
EdGB theory and has dimensions of ½Length(2. Stationary
and vacuum BH solutions in this theory, just like in dCS
gravity, are non-Ricci flat and are not represented by the
Kerr metric [109–113]. Rotating BHs in EdGB theory are
described by non-Ricci-flat Petrov type-I spacetimes, in
general, but to leading order in spin they are described by
non-Ricci-flat Petrov type-D spacetimes [69].
An example of class-B beyond-GR theories is higher-

derivative gravity [81], because this theory contains no
nonmetric dynamical fields. Following Eq. (35), the
Lagrangian of this theory can be represented by
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LGR ¼ ð16πÞ−1R;
LHD
bGR ¼ ð16πÞ−1ðλevenRμν

ρσRρσ
δγRδγ

μν

þ λoddRμν
ρσRρσ

δγ&Rδγ
μνÞ;

LHD
field ¼ 0; ð44Þ

where we keep only terms with up to six derivatives of the
metric (a more general discussion can be found in
Ref. [81]). l ¼ lHD is the higher-derivative gravity cou-
pling constant with p ¼ 4. The quantities λeven and λodd are
dimensionless coupling constants that are introduced to
distinguish terms that preserve or break parity. The field
equation in trace-reversed form is [81]

Rμν ¼ 8π

!
TM
μν −

1

2
gμνTM

"
− Eð6Þ

μν ;

EðnÞ
μν ¼ PðnÞ

ðμ
ρσγRνÞρσγ −

1

2
gμνLðnÞ þ 2∇σ∇ρPðnÞ

ðμjσjνÞρ;

Pð6Þ
μνρσ ¼ 3αevenHD Rαβ

μρRαβρσ

þ 3αoddHD

2
ðRαβ

μρ
&Rαβρσ þ Rαβ

μρ
&RρσαβÞ; ð45Þ

where αevenHD ≡ l4
HDλeven and αoddHD ≡ l4

HDλodd are coupling
constants that determine the strength of the parity-preserving
and the parity-breaking higher-derivative gravity corrections.
The quantityLðnÞ refers to the Lagrangian with n derivatives
of the metric in higher-derivative gravity, so Lð6Þ ¼ LHD

bGR.
Rotating BHs in higher-derivative gravity are non-Ricci
flat [81], but their Petrov type has not yet been studied in
detail.
Theories described by the Lagrangian given in Eq. (35)

form only a subset of all possible theories. This subset does
not just include dCS gravity [65,66], EdGB grav-
ity [107,111,114–116], and higher-derivative theories of
gravity [80,81,117–120], but it also includes, for example,
sGB gravity, in general [121], quadratic gravity theories
without additionally coupled fields [122,123], and higher-
dimensional gravity theories [124,125] to name a few. These
theories can also be classified based on whether their
stationary and vacuum (i.e., no matter) BH solutions are
Ricci flat or non-Ricci flat. For a beyond-GR theory that
admits Ricci-flat, Petrov type-D BH spacetimes, perturba-
tions can be studiedwithin the standardTeukolsky formalism
presented in Sec. II B, so we do not focus on these theories
here. In this work, instead, we focus on the dynamical
perturbations of BHs that are non-Ricci flat and either Petrov
type D or Petrov type I. Therefore, our work applies to dCS
gravity [65,66,69,106], EdGB and sGB gravity [69], and
higher-derivative gravity [80,81,117–120].

B. Perturbation scheme

In this subsection, we discuss the perturbation scheme that
is applicable to the modified gravity theories discussed in

Sec. III A. To solve for the dynamical gravitational pertur-
bations of a BH background in any such modified gravity
theory perturbatively, we need a multivariable expansion of
all NP quantities. Generalizing the discussion in Ref. [82] for
dCS gravity to any modified gravity theory that can be
studied perturbatively (in an effective field theory approach),
we need at least two expansion parameters [126]:

(i) ζ, a dimensionless parameter that characterizes the
strength of the correction to GR (which typically
depends on the ratio of the scale l to the BH
mass), and

(ii) ϵ, a dimensionless parameter that describes the size
of the GW perturbations, which also appears in GR.

In this work, we additionally impose that ζ is the leading
order at which beyond-GR corrections to the metric field
hbGRμν appear, while the leading-order correction to other
nonmetric fields may enter with other (possibly lower)
powers of ζ.
In order to understand the coupling constant ζ better,

let us first relate it to the coupling constants of the different
modified gravity theories we use as examples in Sec. III A.
For class-A beyond-GR theories with nonminimal coupling,
the extra nonmetric fieldsϑbGR, e.g.,ϑ in dCSgravity and θ in
EdGB gravity, are sourced by the metric field and are
proportional to terms ofOðαbGRÞ, whereαbGR is the coupling
constant associated with LbGR in Eq. (35), e.g., αdCS in dCS
gravity and αEdGB in EdGB gravity. The field ϑbGR then
backreacts onto the metric and sources the metric perturba-
tions hbGRμν , which are also multiplied by a factor of αbGR.
Thus, to leading order, ϑbGR ∼ αbGR and hbGRμν ∼ αbGRϑbGR,
so ζ ∼ α2bGR. This is evident from Eqs. (38) and (42), where
ζ ∼ α2dCS for dCS gravity and ζ ∼ α2EdGB for EdGB gravity.
For class-B beyond-GR theories, themetric perturbations are
driven by themetric fields at lower order and are proportional
toαbGR, so ζ ∼ αbGR. For example, fromEq. (45), one can see
that ζ ∼ αeven;oddHD .
By requiring that hbGRμν enters at OðζÞ, Rμν must also

enter at OðζÞ, since we are focusing on background
spacetimes that are perturbed from the vacuum solutions
in GR. This can be seen in Eqs. (38), (42), and (45). In
addition, for both classes of beyond-GR theories, since
metric perturbations in modified gravity are sourced by the
metric field in GR either indirectly via extra nonmetric
fields (class A) or directly (class B), the leading-order terms
of the metric field in Rμν must be of Oðζ0Þ. Thus, when
computing Rμν, we need only the metric at Oðζ0; ϵ0Þ or
Oðζ0; ϵ1Þ. The perturbative order of Rμν and the metric field
in it are important when we discuss the decoupling of the
modified Teukolsky equation in Secs. IVA and V C.
Besides the metric field, we also have the NP quantities

(i.e., tetrad basis vectors, Weyl scalars, spin coefficients,
and NP Ricci scalars) generated from it. Although the
beyond-GR correction to the metric field enters atOðζÞ, the
beyond-GR correction to the NP quantities does not
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necessarily enter at OðζÞ if we make certain gauge choices
on some NP quantities, which are discussed in detail in
Sec. VA. For simplicity, we want all the NP quantities to
have the same expansion pattern as the metric field, so here
we construct a NP tetrad which is corrected by beyond-GR
theories at OðζÞ to leading order. Thus, all the other NP
quantities are naturally corrected by modified gravity at
OðζÞ to leading order.
In order to ensure that all the NP quantities are corrected

at OðζÞ, we must find a tetrad that shared this same
property, namely,

eaμ ¼ eð0;0Þaμ þ ζδeð1;0Þaμ ; ð46Þ

where δeð1;0Þaμ is a perturbation of Oðζ1; ϵ0Þ of the
Kinnersley tetrad eð0;0Þaμ . Here, we use the superscript
ðn;mÞ to denote terms at Oðζn; ϵmÞ. The only constraint
on a NP tetrad is the orthogonality condition in Eq. (5). Let
us expand the correction to the Kinnersley tetrad δeð1;0Þaμ in
terms of the original tetrad eð0;0Þaμ in GR:

δeð1;0Þaμ ¼ Að1;0Þ
ab ebð0;0Þμ : ð47Þ

To satisfy Eq. (5), we need to have that

ðeð0;0Þaμ þ ζδeð1;0Þaμ Þðeð0;0Þbν þ ζδeð1;0Þbν Þðgμνð0;0Þ þ ζhμνð1;0ÞÞ
¼ ηab; ð48Þ

where ηab is the metric defined in Eq. (A1), gμνð0;0Þ is the
metric of the GR background, and hμνð1;0Þ represents the
modification to the metric due to deviation from GR. Up to
OðζÞ, we can equivalently require that

δeð1;0Þaμ eð0;0Þbν gμνð0;0Þ þ eð0;0Þaμ δeð1;0Þbν gμνð0;0Þ

¼ −eð0;0Þaμ eð0;0Þbν hμνð1;0Þ; ð49Þ

where we use the condition gμνð0;0Þeð0;0Þaμ eð0;0Þbν ¼ ηab.
Inserting the expansion of Eq. (47) in the above condition
and using the condition gμνð0;0Þeð0;0Þaμ eð0;0Þbν ¼ ηab again, one
finds

Að1;0Þ
ab þ Að1;0Þ

ba ¼ 2Að1;0Þ
ðabÞ ¼ −hð1;0Þab ; ð50Þ

where hð1;0Þab ¼eð0;0Þaμ eð0;0Þbν hμνð1;0Þ, and, thus, Að1;0Þ
ðabÞ ¼−1

2h
ð1;0Þ
ab .

In general, Að1;0Þ
ab can have 16 independent components,

which can be separated into a symmetric tensor Að1;0Þ
ðabÞ with

ten independent components and an antisymmetric tensor
Að1;0Þ
½ab( with six independent components. Since Eq. (50)

does not impose any constraints on Að1;0Þ
½ab( , the components

of Að1;0Þ
½ab( correspond to six degrees of gauge freedom to

further rotate the tetrad. We can choose Að1;0Þ
½ab( ¼ 0, so the

perturbed tetrad is

Að1;0Þ
ab ¼ −

1

2
hð1;0Þab ; δeð1;0Þaμ ¼ −

1

2
eð0;0Þaν hνð1;0Þμ : ð51Þ

Using the tetrad in Eqs. (46) and (51), we are able to
expand the metric field and all the NP quantities generated
from it with the same perturbative scheme. In this paper, we
are interested in linear dynamical perturbations of any
Petrov type-I stationary spacetime, which itself is a linear
deformation of the Kerr metric, so all terms beyond
Oðζ1; ϵ1Þ are ignored. Up to Oðζ1; ϵ1Þ, if we use the tetrad
in Eqs. (46) and (51), the Weyl scalars can be expanded as

Ψi ¼ Ψð0Þ
i þ ϵΨð1Þ

i

¼ Ψð0;0Þ
i þ ζΨð1;0Þ

i þ ϵΨð0;1Þ
i þ ζϵΨð1;1Þ

i ; ð52Þ

and the same expansion applies to the metric field and all
the other NP quantities. For the beyond-GR theories of
class A mentioned in Sec. III A, additional fields may be
present. For the examples presented, the pseudoscalar field
in dCS gravity can be perturbatively expanded as

ϑ ¼ ϑð0Þ þ ϵϑð1Þ ¼ ζϑð1;0Þ þ ζϵϑð1;1Þ: ð53Þ

A scalar field θ in EdGB gravity can also be expanded
perturbatively in a similar manner. For both ϑ and θ, the
background and perturbed GR pieces vanish. Notice that
other work sometimes chooses to expand extra fields
starting at ζ0 [82,83,127,128] or ζ1=2 [104], since these
extra fields usually enter at lower order than the metric field
as explained above. In our case, we choose to absorb the
coupling constant into the expansion of the extra fields for
convenience in the order counting, so our expansion starts
at ζ. In latter sections, we may also rotate the tetrad in
Eqs. (46) and (51) using Eqs. (A16) such that certain NP
quantities vanish on the background. If the expansion in
Eq. (52) is not broken, we use the rotated tetrad for the
convenience of calculations. In the case that Eq. (52) is
violated due to those rotations, we use Eqs. (46) and (51) as
our background tetrad.
Besides ζ and ϵ, one may have to deal with additional

expansion parameters, such as the dimensionless spin χ in
the slow-rotation expansion, but an expansion in ζ and ϵ is
necessary and sufficient to demonstrate how the Teukolsky
equation in modified gravity can be derived. Below, we
may write some quantities with only one superscript, e.g.,
ΨðnÞ, which represents the nth-order term in the expansion
of Ψ in ϵ, as shown in the first line in Eq. (52), so all the
other expansions are hidden for simplicity.
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IV. PERTURBATIONS OF PETROV TYPE-D
SPACETIMES IN THEORIES BEYOND GR

In this section, we present a method to extend the
formalism shown in Sec. II for obtaining the perturbation
equations for Petrov type-D BHs in modified theories of
gravity discussed in Sec. III A. We particularly focus on
spacetimes that are stationary and vacuum solutions to
modified gravity theories, and, although they may not be
Ricci flat, they remain of Petrov type D. As discussed in
Sec. III A, an example of such a spacetime is BH solutions
in dCS gravity, expanded to leading order in the dimen-
sionless spin parameter [66,69] and obtained in an effective
field theory approach. We use the perturbation scheme
introduced in Sec. III B. Extending the formalism devel-
oped for Petrov type-D spacetimes in GR (either the
traditional Teukolsky approach or the Chandrasekhar
approach) to include Petrov type-D spacetimes that are
non-Ricci flat in modified gravity is a stepping stone in
developing a formalism that is applicable to algebraically
general Petrov type-I spacetimes in beyond-GR theories.

A. Extending the Teukolsky formalism beyond GR:
Non-Ricci-flat and Petrov type-D backgrounds

In this subsection, we present an extension to the
Teukolsky formalism presented in Sec. II B for non-GR
non-Ricci-flat Petrov type-D spacetimes. We follow a
procedure similar to that presented in Sec. II B with the
aim of developing a formalism to obtain the decoupled
differential equation describing the dynamical pieces of Ψ0

and Ψ4. This subsection along with the next one forms the
backbone of the development of a formalism for the
algebraically general Petrov type-I spacetimes in beyond-
GR theories.
We begin by considering modified theories of gravity

whose isolated (stationary and vacuum) BH solutions are
non-Ricci flat; i.e., the Ricci tensor obtained from trace-
reversed vacuum field equations (i.e., no matter present) no
longer vanish. For instance, in theories such as dCS or
EdGB, where a scalar field is nonminimally coupled to a
quadratic term in curvature [52,54,65,66], cubic, or higher-
order theories of gravity [80,81,117–120,129], the metric
field equations lead to a nonvanishing Ricci tensor and are,
therefore, non-Ricci flat. This can easily be seen in the dCS
gravity example with the trace-reversed field equation (38),
where the Ricci tensor clearly does not vanish even in
vacuum due to the nonvanishing of the Riemann tensor and
a nontrivial pseudoscalar field.
When the background is non-Ricci flat, the unperturbed

Bianchi identities acquire sources. In the NP language, the
nonvanishing of the Ricci tensor implies that NP Ricci
scalars Φij for i; j ∈ ð0; 1; 2Þ also do not vanish [see, e.g.,
Eq. (19)]. Consequently, the source terms of Eqs. (13a)
and (13b) are nonvanishing for a non-Ricci-flat, non-GR
BH background. But if we require that the non-Ricci-flat

background be of Petrov typeD, then the backgroundWeyl
scalars

Ψð0Þ
0 ¼ Ψð0Þ

1 ¼ Ψð0Þ
3 ¼ Ψð0Þ

4 ¼ 0: ð54Þ

Unlike in the GR case, however, the background spin
coefficients no longer vanish, in general, as one can verify
explicitly by inserting Eq. (54) in Eqs. (A13). Consequently,
we still have additional terms that are nonvanishing in the
equations presented in Sec. II B. More specifically, the full
Bianchi identities recast in the form of Eqs. (13) now take the
form

F1Ψ0 − J1Ψ1 − 3κΨ2 ¼ S1; ð55aÞ

F2Ψ0 − J2Ψ1 − 3σΨ2 ¼ S2; ð55bÞ

E2σ − E1κ −Ψ0 ¼ 0; ð55cÞ

where S1 and S2 are given in Eq. (10), ðE1;2; F1;2; J1;2Þ are
defined in Eq. (11), and ðκ; σÞ are spin coefficients presented
in Appendix A. Notice that we have not yet performed a
perturbative expansion to separate the background from the
perturbed Weyl scalars.
Adapting a method similar to that presented in Sec. II B

to obtain a differential equation for Ψ0, we need to
eliminate the Ψ1 dependence from the above equations
by developing an appropriate commutation relation for this
type of beyond-GR theories. While eliminating the Ψ1

dependence, we also naturally decouple Ψ0 from the κ and
σ dependence in the above equations, as shown below. To
decouple the equations, we prescribe the following steps.
(1) Multiply Eq. (55c) by Ψ2.
(2) Use the chain rule such that the intrinsic derivatives

act on the product of Ψ2 with either σ or κ. For
instance,

Ψ2ðDσÞ ¼ DðΨ2σÞ − σðDΨ2Þ: ð56Þ

For modified theories of gravity, the second term
above is different from Eq. (22), because it is
modified due to the nonvanishing of the NP Ricci
scalars. For instance, when looking at Eq. (A13h),

DΨ2 ¼ 3ρΨ2 − P1; ð57Þ

where P1 are all the nonvanishing terms from the
Bianchi identity in Eq. (A13h). However, when
working with this approach, we have more algebraic
complications involved in decoupling all curvature
perturbations. Therefore, for the purpose of this
subsection, we continue to work with Eq. (56).

(3) Using Eq. (56), we can rewrite the operators in
Eq. (55c) as E1 and E2, as defined in Eqs. (34).
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(4) The commutator acting on Ψ1 is then given by

ðE2J2 − E1J1ÞΨ1: ð58Þ

(5) Now expand Ψ1 as shown in Eq. (52), i.e.,

Ψ1 ¼ Ψð0;0Þ
1 þ ζΨð1;0Þ

1 þ ϵΨð0;1Þ
1 þ ζϵΨð1;1Þ

1 : ð59Þ

Since the BH background is Petrov type D, the
background Ψð0;0Þ

1 and Ψð1;0Þ
1 vanish. The quantity

Ψð0;1Þ
1 is generated by the perturbed (GW) metric in

GR, which can be set to zero through a convenient
choice of gauge, as we show in Sec. II C. Therefore,
to leading order in ζ and ϵ, the terms inside the
parentheses in Eq. (58) must be evaluated on the GR
BH background as in Eq. (25). Following these
arguments, the commutator given by Eq. (58) van-
ishes for non-Ricci-flat and Petrov type-D BH
backgrounds in the class of modified gravity theo-
ries we consider.

Multiplying Eqs. (55a) and (55b) by E1 and E2, respec-
tively, subtracting one from the other, and expanding to
leading order in ϵ, we find

Hð0Þ
0 Ψð1Þ

0 ¼ Sð1Þ; ð60Þ

where we define

H0 ¼ E2F2 − E1F1 − 3Ψ2; ð61aÞ

S ¼ E2S2 − E1S1: ð61bÞ

Expanding Eq. (60) using the two-parameter expansion in
Eq. (52), at leading orders in ζ and ϵ, we have

Hð0;0Þ
0 Ψð1;1Þ

0 þHð1;0Þ
0 Ψð0;1Þ

0 ¼ Sð1;1Þ: ð62Þ

Notice that, similar to the case in GR, the expansion in ϵ is
sufficient to derive Eq. (60), and an expansion in ζ is
imposed at the end to get the equation at Oðζ1; ϵ1Þ.
We can now use the GHP transformation to derive an

analogous modified Teukolsky equation for the perturbed
Ψ4. Let us then apply the exchange transformation
lμ ↔ nμ; mμ ↔ m̄μ to Eq. (60) and use the definitions
given in Eq. (11) to find

Hð0Þ
4 Ψð1Þ

4 ¼ T ð1Þ; ð63Þ

which, expanded in ζ, becomes

Hð0;0Þ
4 Ψð1;1Þ

4 þHð1;0Þ
4 Ψð0;1Þ

4 ¼ T ð1;1Þ; ð64Þ

where we define

H4 ¼ E4F4 − E3F3 − 3Ψ2; ð65aÞ

T ¼ E4S4 − E3S3: ð65bÞ

S3 and S4 are defined in Eq. (10), while E3 and E4 are
defined in Eq. (34).
Equations (60) and (63), therefore, represent a modified

Teukolsky equation. The differential operators acting on
Ψð1Þ

0;4 are similar in functional form to those of the standard
Teukolsky equation in GR. Notice, however, that these
operators are not the same as their GR counterparts [i.e.,
corrected by Hð1;0Þ

0;4 in Eqs. (62) and (64)], because the
Bianchi identities are modified. In the GR limit, one can, of
course, show that they are equivalent to each other, because
the Bianchi identities no longer depend on NP Ricci
scalars, so they reduce to Eq. (22). Note, importantly, that
the left-hand side of Eqs. (60) and (63) describes all GW
perturbations, since they are not expanded in power of ζ.
The modified Teukolsky equations (60) and (63) contain

source terms that are ofOðζÞ and, thus, absent in GR. After
an expansion in ζ in Eqs. (62) and (64), we notice that the
source terms Sð1Þ and T ð1Þ depend on dynamical NP
quantities at Oðζ1; ϵ1Þ [i.e., Sð1;1Þ and T ð1;1Þ]. These
sources terms depend on the Si terms in Eqs. (61b)
and (65b), which are products of differential operators
constructed from the tetrad and the NP Ricci scalarsΦij. As
discussed in Sec. III B, since Rμν is OðζÞ, Φij is always of
Oðζ1; ϵ0Þ or Oðζ1; ϵ1Þ, which then means the tetrad that is
needed to compute the differential operators must be of
Oðζ0; ϵ0Þ and Oðζ0; ϵ1Þ. In addition, all the metric fields in
Rμν must also be of Oðζ0; ϵ0Þ and Oðζ0; ϵ1Þ. We, therefore,
conclude that curvature perturbations of a non-Ricci-flat,
Petrov type-D BH background satisfy a decoupled
equation.
The tetrad at Oðζ0; ϵ0Þ is just the Kinnersley tetrad of

Eq. (26), but the tetrad at Oðζ0; ϵ1Þ must be reconstructed
from the metric perturbation atOðζ0; ϵ1Þ. That is, one needs
to first solve the Teukolsky equation in GR for the GRWeyl
scalars Ψð0;1Þ

0;4 and then reconstruct the GR GW metric
perturbation to build the perturbed tetrad at Oðζ0; ϵ1Þ.
This is in stark contrast to the GR case, since, for a
Ricci-flat Petrov type-D BH background in GR, metric
reconstruction is not required to study GW perturbations.
Metric reconstruction in GR has already been worked out in
the vacuum case by Chrzanowski [90] and Cohen and
Kegeles [91] (see, e.g., Refs. [130,131] for a short review)
using Hertz potential. There are also approaches that avoid
using Hertz potential by solving the remaining Bianchi
identities, Ricci identities, and commutation relations,
for example, in Refs. [40,92]. Clearly then, such metric
reconstruction in GR is possible, and we leave a further
analysis of their implementation in our decoupled equa-
tions to future work.
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B. Extending Chandrasekhar’s approach beyond GR:
Non-Ricci-flat and Petrov type-D backgrounds

Similar to the Petrov type-D vacuum GR case, we can
also follow Chandrasekhar’s approach to remove Ψð1Þ

1

directly. By doing the same type-II rotation in Sec. II C
with the rotation parameter bð1Þ ¼ −Ψð1Þ

1 =ð3Ψð0Þ
2 Þ, we can

set Ψð1Þ
1 ¼ 0. Then, from Eqs. (55a) and (55b), we again

solve for κ and σ first. Notice that the κ and σ we solve for
may also containOðϵ0Þ terms, since they do not necessarily
vanish in a non-Ricci-flat Petrov type-D background. We
then insert the solutions for κ and σ in terms ofΨð1Þ

0 and Sð1Þi

back into Eq. (55c) to obtain a single equation for Ψð1Þ
0 . We

verify explicitly that this equation is exactly the same as
Eq. (60). Applying the GHP transformation, one again
finds Eq. (63) for Ψð1Þ

4 .
As shown above, the final modified Teukolsky equation

obtained using the two approaches (i.e., the Teukolsky
approach and Chandrasekhar’s approach) are equivalent for
both Ricci-flat and non-Ricci-flat, Petrov type-D BH
backgrounds. A main difference between the two methods
is in how the equations for the curvature perturbations Ψ0

and Ψ4 are decoupled from Ψ1 and Ψ3, respectively.
Chandrasekhar’s approach has a significant algebraic ad-
vantage over Teukolsky’s original formalism, as the former
utilizes available gauge freedom to make convenient gauge
choices to eliminateΨ1 andΨ3 dependence. For non-Ricci-
flat, Petrov type-D backgrounds in modified gravity,
Teukolsky’s approach is not significantly more complicated
than in GR, but this is no longer true when considering non-
Ricci-flat, Petrov type-I backgrounds. In the latter case,
Teukolsky’s approach is more involved because of the
nonvanishing of additional NP quantities leading to more
nonvanishing terms in these equations. In Chandrasekhar’s
approach, however, one can continue to leverage gauge
freedom to eliminate certain NP quantities without the need
for developing a commutator relation like that of Eqs. (25)
and (58) or using additional Bianchi identities. Because
of this, we employ Chandrasekhar’s approach in what
follows to develop a formalism to study perturbations of
non-Ricci-flat, Petrov type- I spacetimes in modified
theories of gravity.

V. EXTENSION OF THE TEUKOLSKY
FORMALISM BEYOND GR: NON-RICCI-FLAT
AND NON-PETROV-TYPE-D BACKGROUNDS

In this section, we extend Chandrasekhar’s approach to
non-Ricci-flat backgrounds that are algebraically general.
As seen in Secs. II C and IV B, choosing a convenient
gauge for the background and for the perturbed NP
quantities, certain NP quantities can be eliminated from
the NP equations when deriving the (modified) Teukolsky
equation to obtain a single decoupled equation for Ψ0 and
Ψ4. In this section, we first explore these gauge choices for

background and perturbed NP quantities in more detail
while treating the Petrov type-I spacetime as a linear
perturbation of a Petrov type-D spacetime in GR. We then
derive the master equations for dynamical Weyl scalars Ψ0

and Ψ4, discuss the modifications introduced due to non-
GR effects, and provide a brief discussion on how to
evaluate this equation for beyond-GR theories.
Before proceeding with this section, it is important to

distinguish between two background concepts that we
introduce in this work. In general, the line element of a
BH background spacetime for theories beyond GR dis-
cussed in Sec. III A can be expressed as

ds2 ¼ ds2GR þ ζd̃s2bGR: ð66Þ

Here, we introduce the following symbols.
(i) ds2 is the line element of the background spacetime

or the background for short, which is the stationary
part of the full spacetime.

(ii) ds2GR is the line element of the original background,
which is the background all the perturbations,
including the stationary ones (e.g., d̃s2bGR), are built
on top of.

For instance, the line element of a slowly rotating BH in
dCS gravity to leading order in spin takes the form of
Eq. (66) with [103]

d̃s2dCS ¼
5M4

4

a
r4

!
1þ 12

7

M
r
þ 27

10

M2

r2

"
sin2θdtdϕ; ð67Þ

ds2GR ¼ −fðrÞdt2 − 4Ma sin2 θ
r

dtdϕþ fðrÞ−1dr2

þ r2dθ2 þ r2 sin2 θdϕ2: ð68Þ

Here, in our notation, the original background is given by
Eq. (68), whereas the background spacetime is given by the
sum of Eqs. (67) and (68). This is, of course, just a simple
example of our notation, which holds true for theories that
can be described using the Lagrangian given in Eq. (35). In
general, the background spacetime includes Oðζ0; ϵ0Þ and
Oðζ1; ϵ0Þ parts, while the original background is just of
Oðζ0; ϵ0Þ (i.e., it is the Kerr BH spacetime for arbitrarily
spinning BHs).
Although the concepts of a background and an original

background spacetime may sometimes correspond to the
same thing (e.g., to the Kerr BH spacetime in GR), these
concepts can sometimes be different in modified gravity
theories. For example, in the theories discussed in
Sec. III A, the Kerr metric is not a solution for all stationary
and axisymmetric BHs. Rather, these BHs are represented
by spacetimes that are non-Ricci flat and non-Petrov-
type-D when not expanded in spin. In such cases, the
background of the dynamical gravitational perturbation we
study would be such a non-Ricci-flat and non-Petrov-
type-D spacetime, but the original background would still
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be the Kerr spacetime. In Fig. 2, we present the relation
between these two different background concepts and the
terms in the expansion of NP quantities in Eq. (52).

A. Gauge choice for the background spacetime:
Oðζ0;ϵ0Þ and Oðζ1;ϵ0Þ

For a non-Petrov-type-D modified background space-
time, the gauge choice in Eq. (54) is not possible. For
example, as found in Ref. [104], the metric describing a
rotating BH in dCS gravity need not be of Petrov type D
once one incorporates second-order and higher in rotation
effects; in that case, the metric is now of Petrov type I,
which is the most general type in the Petrov classification.
However, we can still set Ψð0Þ

0 ¼ Ψð0Þ
4 ¼ 0 for a Petrov

type-I spacetime as discussed in Ref. [40] and shown for
dCS gravity in Ref. [69], so we could use a gauge such that

Ψð0;0Þ
0;1;3;4 ¼ 0; Ψð1;0Þ

0 ¼ Ψð1;0Þ
4 ¼ 0; ð69Þ

but we do not for the following reasons.
Although the gauge defined by requiring that Eq. (69)

holds simplifies Eqs. (13) and (14), it may spoil our
assumption that the leading correction to the tetrad enters
at Oðζ1Þ. As shown in Ref. [69], for dCS gravity in the
slow-rotation approximation, in order to impose that

Ψð1;0Þ
0 ¼ Ψð1;0Þ

4 ¼ 0 at Oðχ2Þ, we need to modify the tetrad
at Oðζ1=2; χ2Þ, and this induces a nonzero Ψð1=2;0Þ

1 and
Ψð1=2;0Þ

3 . These Oðζ1=2Þ terms are not covered by our
expansion strategy in Eq. (52), which contains only terms
of Oðζ0; ϵ0Þ, Oðζ1; ϵ0Þ, Oðζ0; ϵ1Þ, and Oðζ1; ϵ1Þ for all
quantities. For this reason, we impose only

Ψð0;0Þ
0;1;3;4 ¼ 0 ð70Þ

and leave allOðζ1; ϵ0Þ perturbations general. These proper-
ties are summarized in the left two columns in Table I. In
this case, we use the background tetrad in Eqs. (46) and
(51) such that Eq. (70) is satisfied, and the expansion in
Eq. (52) is not broken.

B. Gauge choice for the dynamical perturbations:
Oðζ0;ϵ1Þ and Oðζ1;ϵ1Þ

Different gauge choices can be made separately at
different perturbative orders. Section VA fixes the gauge
for the background spacetime at Oðζ0; ϵ0Þ and Oðζ1; ϵ0Þ,
but we still have gauge freedom at Oðζ0; ϵ1Þ andOðζ1; ϵ1Þ.
As in Secs. II C and IV B, we impose

Ψð0;1Þ
1 ¼ Ψð0;1Þ

3 ¼ Ψð1;1Þ
1 ¼ Ψð1;1Þ

3 ¼ 0: ð71Þ

FIG. 2. A diagram to illustrate the meaning of different terms in the expansion of NP quantities in Eq. (52).

TABLE I. Properties of Weyl scalars in the Chandrasekhar gauge for non-Petrov-type-D modified BH spacetimes
with GWs. Quantities on the stationary background columns are already known. For quantities on the dynamical
GWs columns, items labeled as (a) are scalars that need to be solved for, labeled as (b) are set to zero by gauge, and
labeled as (c) can be reconstructed from Ψð0;1Þ

0 or Ψð0;1Þ
4 , while labeled by (d) do not appear in the modified

Teukolsky equation.

Stationary background Dynamical GWs

Types of
terms

Original background
(GR)

Stationary modification
to original background

GWs on original
background GW corrections

Orders

Weyl scalar Oðζ0; ϵ0Þ Oðζ1; ϵ0Þ Oðζ0; ϵ1Þ Oðζ1; ϵ1Þ
Ψ0 0 ≠0 ≠0ðaÞ ≠0ðaÞ
Ψ1 0 ≠0 0ðbÞ 0ðbÞ

Ψ2 ≠0 ≠0 ≠0ðcÞ ≠0ðdÞ
Ψ3 0 ≠0 0ðbÞ 0ðbÞ

Ψ4 0 ≠0 ≠0ðaÞ ≠0ðaÞ
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In this gauge, Eqs. (13a) and (13b) for the dynamical part of
Ψ0 and Ψ1 decouple directly, and so do Eqs. (14a) and
(14b) for the dynamical part of Ψ3 and Ψ4.
As discussed in Ref. [40], in a Petrov type-D spacetime,

we can always make a gauge choice such that the linear
perturbations to Ψ1 andΨ3 vanish without affecting Ψ0 and
Ψ4, so only Ψ0 and Ψ4 are gauge invariant quantities in a
linear perturbation theory. Since at Oðζ0Þ the background
spacetime is the Petrov type-D spacetime of GR, it then
follows that we can always make the gauge choice in
Eq. (71) at Oðζ0; ϵ1Þ.
Next, we need to show that Eq. (71) holds atOðζ1; ϵ1Þ. If

we treat Ψð1;1Þ
1;3 as the Oðζ0; ϵ1Þ perturbation to Ψð1;0Þ

1;3 , it is
not clear that we can make a gauge choice in Eq. (71), since
the background spacetime at Oðζ1; ϵ0Þ is not necessarily
Petrov type D. However, we can also treat Ψð1;1Þ

1;3 as the

Oðζ1; ϵ1Þ perturbation to Ψð0;0Þ
1;3 in the original background.

Since the original background is the Petrov type-D space-
time in GR, Eq. (71) should still hold.
Let us show that, atOðζ1; ϵ1Þ,Ψð1;1Þ

1;3 can be eliminated by
a tetrad rotation at Oðζ1; ϵ1Þ. Let us consider Ψð1;1Þ

1

explicitly and apply a type-II rotation [cf. Eq. (A16b)],
with a parameter bð1;1Þ at Oðζ1; ϵ1Þ. This leads to, at
Oðζ1; ϵ1Þ,

Ψð1;1Þ
0 → Ψð1;1Þ

0 þ 4bð1;1ÞΨð0;0Þ
1 ;

Ψð1;1Þ
1 → Ψð1;1Þ

1 þ 3bð1;1ÞΨð0;0Þ
2 ;

Ψð1;1Þ
2 → Ψð1;1Þ

2 þ 2bð1;1ÞΨð0;0Þ
3 ;

Ψð1;1Þ
3 → Ψð1;1Þ

3 þ bð1;1ÞΨð0;0Þ
4 ;

Ψð1;1Þ
4 → Ψð1;1Þ

4 : ð72Þ

We are motivated to require that b ¼ Oðζ1; ϵ1Þ, since we
want to perturb about the original background. By letting
bð1;1Þ ¼ −Ψð1;1Þ

1 =ð3Ψð0;0Þ
2 Þ, we can set Ψð1;1Þ

1 ¼ 0. With the
background gauge choice that ensures Eq. (70) holds, we
can easily see from Eq. (72) that all the other Weyl scalars
at Oðζ1; ϵ1Þ are unaffected such that

Ψð1;1Þ
1 → 0; Ψð1;1Þ

0;2;3;4 → Ψð1;1Þ
0;2;3;4: ð73Þ

Similarly, by applying a type-I rotation [cf. Eq. (A16a)] and
choosing the rotation parameterað1;1Þ ¼½−Ψð1;1Þ

3 =ð3Ψð0;0Þ
2 Þ(&,

we can set

Ψð1;1Þ
3 → 0; Ψð1;1Þ

0;1;2;4 → Ψð1;1Þ
0;1;2;4: ð74Þ

Properties of theOðζ0; ϵ1Þ andOðζ1; ϵ1Þ contributions to the
Weyl scalars are summarized in the right half of Table I.

C. Modified Teukolsky equation in non-Ricci-flat
and algebraically general backgrounds

We can now derive the modified Teukolsky equation for
non-Ricci-flat and Petrov type-I spacetimes. Here, we show
how to obtain the equation for only the dynamical pertur-
bation to Ψ0, but the same procedure can be applied to Ψ4,
or one can perform the GHP transformation lμ ↔ nμ,
mμ ↔ m̄μ on the Ψ0 equation to find the equation
for Ψ4 [101].

1. Elimination of κ and σ

From Eqs. (13a) and (13b), we can solve for κ and σ in
terms of other NP quantities. Inserting κ and σ from
Eqs. (13a) and (13b) into Eq. (13c) and multiplying the
resulting equation by 3Ψ2 to match the form of the original
Teukolsky equation [44] when ζ ¼ 0, one finds

Ψ2E2½Ψ−1
2 ðF2Ψ0 − J2Ψ1 − S2Þ(

−Ψ2E1½Ψ−1
2 ðF1Ψ0 − J1Ψ1 − S1Þ( − 3Ψ2Ψ0 ¼ 0: ð75Þ

Reorganizing this equation to extract the operators that act
on Ψ0, Ψ1, S1, and S2, we find

H0Ψ0 −H1Ψ1 ¼ S; ð76Þ

where H0 and S are defined in Eq. (61) and we define

H1 ≡ E2J2 − E1J1; ð77Þ

with Ei defined in Eq. (34).

2. Gauge choice and general strategy

The derivation so far combines the three equations in
Eqs. (13a)–(13c) into a single equation (76). Our next goal
is to keep only Ψð1;1Þ

0 and no other Oðζ1; ϵ1Þ contributions
of Weyl scalars, spin connection coefficients, or intrinsic
derivatives. Note that Oðζ0; ϵ0Þ and Oðζ1; ϵ0Þ are known
background components, while Oðζ0; ϵ1Þ can be recon-
structed from linear perturbation of Kerr.
For terms on the left-hand side in Eq. (76), we find the

following pattern, where an operator O operates on a field
ψ , and we are interested in the Oðζ1; ϵ1Þ component, with

ðOψÞð1;1Þ ¼ Oð1;1Þψ ð0;0Þ þOð0;1Þψ ð1;0Þ

þOð1;0Þψ ð0;1Þ þOð0;0Þψ ð1;1Þ: ð78Þ

As we see in Sec. V C 3, because of our gauge choice in
Table I, the only nonvanishing Oðζ1; ϵ1Þ quantity we
encounter is Ψð1;1Þ

0 .
For terms on the right-hand side in Eq. (76), we argue in

Sec. V C 4 that they can all be obtained from the back-
ground geometry and the Oðζ0; ϵ1Þ metric perturbation
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hð0;1Þ, because GWs on the modified background hð1;1Þ do
not contribute to the source term.

3. Analysis of the general modified Teukolsky
equation: The H0Ψ0 and H1Ψ1 terms

For the first term on the left-hand side in Eq. (76),
expandingH0Ψ0 toOðζ1; ϵ1Þ, one finds the following three
types of terms:

ðH0Ψ0Þð1;1Þ ¼ Hð0;0Þ
0 Ψð1;1Þ

0 þHð1;0Þ
0 Ψð0;1Þ

0

þHð0;1Þ
0 Ψð1;0Þ

0 : ð79Þ

Since atOðζ0; ϵ0Þ Eq. (76) becomesHð0;0Þ
0 Ψð0;0Þ

0 ¼ 0,Hð0;0Þ
0

is the Teukolsky differential operator that acts onΨ0 in GR,
which discussed in Sec. IVA. Therefore, the first term in
Eq. (79) is just the Teukolsky equation in GR but for Ψð1;1Þ

0 .
The second term vanishes in GR but is generically nonzero
in modified gravity. This is because Ψð0;1Þ

0 is a solution to
the Teukolsky equation presented in Eq. (26). As discussed
in Sec. II, this is a gauge invariant quantity and, thus,
nonvanishing, in general. On the other hand, the operator
Hð1;0Þ

0 can be evaluated using the background metric for
the spacetime in the modified theory of gravity under
consideration.
The third term shows up only for non-Petrov-type-D

spacetime, since Ψð1;0Þ
0 ¼ 0 if the modified background

spacetime is Petrov type D. The operator Hð0;1Þ
0 contains

Weyl scalars, spin coefficients, and intrinsic derivatives at
Oðζ0; ϵ1Þ, so, as discussed at the end of Sec. IVA, we need
to reconstruct the metric of GW perturbations in GR. By
applying one of these metric reconstruction procedures and
rotating the reconstructed tetrad to the gauge in Eq. (71),
one is able to evaluate all the terms in Hð0;1Þ

0 .
The last two terms in Eq. (79) come from the homo-

geneous part of the Bianchi and Ricci identities. These terms
are purely geometrical, and we can interpret them as source
terms induced by stationary perturbations contained in the
background geometry. We can then rewrite Eq. (79) as

ðH0Ψ0Þð1;1Þ ¼ HGR
0 Ψð1;1Þ

0 − Sð1;1Þ
0;D − Sð1;1Þ

0;non-D; ð80Þ

where we define

HGR
0 ≡Hð0;0Þ

0 ; ð81Þ

Sð1;1Þ
0;D ≡ −Hð1;0Þ

0 Ψð0;1Þ
0 ; ð82Þ

Sð1;1Þ
0;non-D ≡ −Hð0;1Þ

0 Ψð1;0Þ
0 : ð83Þ

Moving on to the second term on the left-hand side in
Eq. (76) and using properties in Table I, we obtain

ðH1Ψ1Þð1;1Þ ¼ Hð0;1Þ
1 Ψð1;0Þ

1 : ð84Þ

Similar to Hð0;1Þ
0 , Hð0;1Þ

1 is also made up of Weyl scalars,
spin coefficients, and intrinsic derivatives at Oðζ0; ϵ1Þ, so
we need metric reconstruction for this term as well.
This term vanishes in any Petrov type-D spacetime, since
Ψ1 ¼ 0 with an appropriate choice of gauge at the back-
ground level. Similar to Hð0;1Þ

0 Ψð1;0Þ
0 , we can effectively

treat Hð0;1Þ
1 Ψð1;0Þ

1 as a source term involving Ψð1;0Þ
1 and

induced by the stationary perturbation of background
geometry. Let us then define

Sð1;1Þ
1;non-D ≡Hð0;1Þ

1 Ψð1;0Þ
1 : ð85Þ

The source term Sð1;1Þ
1;non-D along with the source terms

Sð1;1Þ
0;D and Sð1;1Þ

0;non-D given in Eqs. (82) and (83) comes from
the homogeneous part of the Bianchi and Ricci identities.
Grouping these source terms together, we define

Sð1;1Þ
geo ≡ Sð1;1Þ

0;D þ Sð1;1Þ
0;non-D þ Sð1;1Þ

1;non-D: ð86Þ

4. Analysis of the general modified Teukolsky
equation: The S term

Besides the source terms generated by the correction to
the background metric, we also have corrections to the
Einstein-Hilbert action due to modified gravity theory,
including extra fields not present in GR (i.e., class-A
beyond-GR theories) or higher-order terms in curvature
(i.e., class-B beyond-GR theories) as discussed in detail in
Sec. III A. In a perturbative treatment, all these corrections
manifest as some source terms on the right-hand side of the
Einstein equations, so we have a nonzero “effective” stress
tensor or, in the trace-reversed form, a nonzero Ricci tensor,
even in the case without ordinary matter (see, e.g., the
discussion of dCS gravity, EdGB gravity, and higher-
derivative gravity cases in Sec. III A).
Let us first look at class-A beyond-GR theories, where

there are additional fields introduced by modified gravity,
such as the pseudoscalar field coupled to the Pontryagin
density in dCS gravity. Let us focus on one of these extra
fields, which we represent generically as ϑ. Since this field
vanishes in GR, ϑð0;0Þ ¼ ϑð0;1Þ ¼ 0 also, in general. From
Eqs. (10a) and (10b), we see that the terms in Si couple Φij

with either the directional derivatives or the spin coeffi-
cients. According to Eq. (A11), the Φij are linear functions
of Rμν contracted with the tetrad basis:

Φij ∝ Rμνeiμejν; fi; jg ∈ f0; 1; 2g: ð87Þ

Since ϑð0;0Þ ¼ ϑð0;1Þ ¼ 0, Φð1;1Þ
ij ∼ ϑð1;0Þhð0;1Þ þ ϑð1;1Þgð0;0Þ,

where gð0;0Þ represents the terms only involving background
metric in GR. Then, Si in S can enter only at Oðζ1Þ, so
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Sð1;1Þ ¼ Eð0;0Þ
2 Sð1;1Þ2 − Eð0;0Þ

1 Sð1;1Þ1 þ Eð0;1Þ
2 Sð1;0Þ2 − Eð0;1Þ

1 Sð1;0Þ1

∼ ϑð1;0Þhð0;1Þ þ ϑð1;1Þgð0;0Þ: ð88Þ

The sourceS atOðζ1; ϵ1Þ,Sð1;1Þ, couples theGWs inGRand
the extra fieldϑ, sowe need to solve the equations ofmotions
of these nongravitational fields to find their contributions to
the stress tensor and Sð1;1Þ in the modified Teukolsky
equation. In our notation, the modified Teukolsky equation
describing the evolution of the GW perturbations due to the
modification to GR can then be expressed as

HGR
0 Ψð1;1Þ

0 ¼ Sð1;1Þ
0;D þ Sð1;1Þ

0;non-D þ Sð1;1Þ
1;non-D þ Sð1;1Þ; ð89Þ

where all the quantities are defined in Eqs. (82), (83), (85),
and (61b). Notice that the differential operator acting on
Ψð1;1Þ

0 is the same as the differential operator that appears in
the Teukolsky equation for GR BH spacetimes discussed
previously in Sec. II B.
One can find the solution to these extra fields in different

ways. One way is to solve the equations of motions of these
extra fields and the modified Teukolsky equation in
parallel. Another way is to use the order-reduction scheme
introduced in Ref. [127], in which one solves the equations
of motions of these extra fields first and then inserts them
into the modified Teukolsky equation. Notice here that we
absorb the coupling constant multiplying ϑ in Rμν into the
perturbative order of ϑ. For example, as discussed in
Sec. III B, ϑ itself is usually of OðαbGRÞ, where αbGR is
the coupling constant in front ofLbGR in Eq. (35). The same
coupling constant also shows up in front of these beyond-
GR corrections in Rμν, e.g., Eqs. (38) and (42), so the
contribution of ϑ to Rμν is of Oðα2bGRÞ or OðζÞ. Thus,
the equation of motion of ϑ is at lower order than the
gravitational field equation, which allows us to follow the
order-reduction scheme in Ref. [127], although this pro-
cedure is likely to introduce secularly growing uncontrolled
remainders. All these calculations depend on the details of
the target modified gravity theory, so we do not discuss
them in detail here and, instead, provide some examples in
Sec. V C 5 and leave the case-by-case study to future work.
Another way to generate these source terms is due to

corrections to the Einstein-Hilbert action that are made up
of only gravitational fields, e.g., higher-derivative grav-
ity [117–120], which we classify as class-B beyond-GR
theories in Sec. III A. In this case, by pure order counting,
the kind of terms that can appear are of the form hð1;0Þhð0;1Þ.
These terms are similar in form to Sð1;1Þ

geo , given in Eq. (86),
and so have that Sð1;1Þ

geo ¼ Oðhð1;0Þhð0;1ÞÞ. Therefore, Sð1;1Þ
geo

takes the form of a coupling between the GWs in GR and
the stationary modification to the background metric.
Though hð1;0Þ can be generated by ϑð1;0Þ, if we treat it as
an arbitrary stationary correction to the background metric,
the way it couples to GWs in GR is independent of the

gravity theory, as we discuss above. In contrast, the source
terms coming from the nonvanishing stress tensor and
made up of only gravitational fields depend on the details of
the modified gravity theory, so they cannot be treated
universally when knowing only the correction to the
background metric. On the other hand, like these Sð1;1Þ

geo

terms, we do not need to solve the equations of motion of
other nongravitational fields, so these terms can be evalu-
ated directly with the background metric and the recon-
structed metric for GWs in GR when knowing the stress
tensor in the target modified gravity theory.
One of the major successes of Teukolsky’s formalism in

GR, presented in Sec. II B, is the separation of the master
equation into a radial and an angular equation, when
written in a coordinate basis, such as in the Boyer-
Lindquist coordinates of the Kerr BH spacetime. Each of
these equations needs then to be solved independently as an
eigenvalue problem. Since the differential operator acting
on the beyond-GR, leading-order correction to GW per-
turbations remains unchanged from GR, the left-hand side
of the beyond-GR master equation in Eq. (89) is naturally
separable into a radial and an angular part. Furthermore,
one can separate the right-hand side of Eq. (89) by making
use of the orthogonality properties of the spin-weighted
spheroidal harmonics (which are the solution to the
angular master equation for GR BH Petrov type-D space-
times) to project the source terms onto the original angular
basis. Following this trick, the separability of the master
equations into a radial and an angular equation must
hold for beyond-GR, Petrov type-I, non-Ricci-flat space-
times as well. When looking at the example theories
presented in Sec. III A, one may also encounter a mode
coupling between different l modes (e.g., between l and
l! 1 modes at leading order in the slow rotation expan-
sion [54–56]). This is seen when coupling between differ-
ent perturbation functions exist, in both GR [88] and
beyond-GR theories [54–57].

5. Examples of equations of motion
of extra (nonmetric) fields

In the previous section, we show that, to evaluate Sð1;1Þ,
one needs to solve the equations of motion of these
nonmetric extra fields. In this section, we provide the
equations of motion of the pseudoscalar field ϑ in dCS
gravity and the scalar field θ in EdGB gravity as a
demonstration.
In dCS gravity, expanding the equation of motion of ϑ in

Eq. (39) using the perturbation scheme in Eq. (52), we find,
at Oðζ1; ϵ1Þ,

□

ð0;0Þϑð1;1Þ ¼ −π−1=2M2½R&R(ð0;1Þ −□

ð0;1Þϑð1;0Þ; ð90Þ

where R&R is a shorthand for &Rμ
ν
κσRν

μκσ and we follow
Ref. [54] to use ζdCS ≡ 16πα2dCS=M

4 as the dCS gravity
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expansion parameter. We also absorb a factor of ðζdCSÞ1=2
into the expansion of ϑ. To solve Eq. (90) in the Teukolsky
formalism, one first needs to project all quantities onto the
NP tetrad. For example, the Pontryagin density and the
wave operator decompose into

R&R ¼ 8iEð3Ψ2
2 − 4Ψ1Ψ3 þ Ψ0Ψ4 − c:c:Þ; ð91Þ

□ϑ ¼ ½fδ; δ&g − fD;Δgþ ðγ þ γ& − μ − μ&ÞD
þðρþ ρ& − ε − ε&ÞΔþ ðπ − τ& − αþ β&Þδ
þðπ& − τ − α& þ βÞδ&(ϑ; ð92Þ

where iE ¼ ϵμνρσlμnνmρm̄σ and E is a real function. These
NP projected quantities now need to be expanded in the
two-parameter scheme to properly evaluate Eq. (90) and
then to solve it.
Similarly, in EdGB gravity, using ζEdGB ≡ 16πα2EdGB=M

4

as the EdGB gravity expansion parameter and expanding
Eq. (43), we find

□

ð0;0Þθð1;1Þ ¼ −π−1=2M2Gð0;1Þ −□

ð0;1Þθð1;0Þ: ð93Þ

Now, thewave operator and theGauss-Bonnet invariantmust
be projected onto the NP tetrad to find once more that□θ is
given by Eq. (92) after replacing ϑ with θ, and the NP
projected G is

G ¼ 8ð3Ψ2
2 − 4Ψ1Ψ3 þ Ψ0Ψ4 þ c:c:Þ: ð94Þ

Here,we also absorb a factor of ðζEdGBÞ1=2 into the expansion
of θ. As before, to solve Eq. (93), onemust now expand these
NP projected quantities in our two-parameter scheme.
For both cases, we end up with a usual scalar field

equation with source terms that depend on NP quantities at
Oðζ0; ϵ1Þ. Thus, we can first reconstruct these NP quan-
tities and then use Eqs. (91), (92), and (94) to express the
source terms in terms of Ψð0;1Þ

0 or Ψð0;1Þ
4 . After this, one can

either solve the scalar field equation and the modified
Teukolsky equation concurrently [54–57] or use the order-
reduction scheme to solve for the scalar field first and plug
it into the modified Teukolsky equation.
In summary, we find the modified Teukolsky equation of

Ψ0 for any non-Ricci-flat and algebraically general back-
ground spacetime that can be treated as a linear perturbation
of a Petrov type-D spacetime, namely,

HGR
0 Ψð1;1Þ

0 ¼ Sð1;1Þ
geo þ Sð1;1Þ; ð95Þ

where we define

Sð1;1Þ
geo ¼ Sð1;1Þ

0;D þ Sð1;1Þ
0;non-D þ Sð1;1Þ

1;non-D;

Sð1;1Þ
0;D ¼ −Hð1;0Þ

0 Ψð0;1Þ
0 ;

Sð1;1Þ
0;non-D ¼ −Hð0;1Þ

0 Ψð1;0Þ
0 ;

Sð1;1Þ
1;non-D ¼ Hð0;1Þ

1 Ψð1;0Þ
1 ; ð96Þ

where H0 and H1 are defined in Eqs. (77) and S is defined
in Eq. (61b). The equation for Ψ4 can be derived by
performing a GHP transformation on Eq. (95):

HGR
4 Ψð1;1Þ

4 ¼ T ð1;1Þ
geo þ T ð1;1Þ; ð97Þ

where we define

T ð1;1Þ
geo ¼ T ð1;1Þ

4;D þ T ð1;1Þ
4;non-D þ T ð1;1Þ

3;non-D;

T ð1;1Þ
4;D ¼ −Hð1;0Þ

4 Ψð0;1Þ
4 ;

T ð1;1Þ
4;non-D ¼ −Hð0;1Þ

4 Ψð1;0Þ
4 ;

T ð1;1Þ
3;non-D ¼ Hð0;1Þ

3 Ψð1;0Þ
3 ; ð98Þ

where HGR
4 is the Teukolsky operator for Ψ4 in GR [see

Eq. (65a)] and

H3 ≡ E4J4 − E3J3: ð99Þ

For the source terms Sð1;1Þ
geo or T ð1;1Þ

geo , they can be computed
from the modified background metric, the solutions to the
Teukolsky equation in GR, and the reconstructed metric for
GWs in GR. For Sð1;1Þ or T ð1;1Þ, we may need to solve the
equations of motion of other nongravitational fields and
evaluate the stress tensor. We collect the full expressions of
all the terms in the modified Teukolsky equation above in
Appendix B. In addition, the equations above are presented
in an abstract form using NP symbols; they can be further
simplified when considering perturbations of specific back-
ground spacetimes in specific coordinates and tetrads, e.g.,
Kerr in Boyer-Lindquist coordinates and in the Kinnersley
tetrad.

VI. EXTENSION OF FRAMEWORK TO HIGHER
ORDER IN THE COUPLING

One important observation about Eqs. (95) and (97) is
that they are in a very similar format to the second-order
Teukolsky equation in GR [93]. In this section, we discuss
the connection between the leading-order modified
Teukolsky formalism and the second-order Teukolsky
formalism in GR, which demonstrates that many tech-
niques well-developed (in different contexts) in GR can be
directly reused in modified gravity. Moreover, we show that
our formalism can be generalized to higher orders [i.e.,
Oðζm; ϵnÞ, m ≥ 0, n ≥ 1], which is then a beyond-GR
extension of the higher-order Teukolsky formalism
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developed in Ref. [93] for GR. For a general discussion of
nonlinear multiple-parameter perturbation theory in rela-
tivity, we refer the reader to Refs. [132–135].

A. Connection to the second-order Teukolsky
formalism in GR

Since Teukolsky presented the linear-order perturbation
equation in Ref. [44], higher-order Teukolsky equations
have been of great interest to the community. On the one
hand, the inability of the linear-order Teukolsky equation to
estimate the errors due to the use of a perturbative expansion
makes the study of higher-order Teukolsky equations
necessary [93]. On the other hand, higher-order perturba-
tions enable the study of certain physical systems that cannot
be studied sufficiently accurately within the linear-order
scheme, such as head-on collisions in the close-limit
approximation [93,136,137], self-force in extreme mass-
ratio binary inspirals (EMRIs) [92,138–144], etc. On the
observational side, recent studies of nonlinearities that show
up in numerical relativity suggest that second- and higher-
order perturbations may be important for the analysis of
gravitational wave data [145–147].
In Ref. [93], the Teukolsky equation is successfully

extended to second and higher order, so let us show now
that these higher-order equations are very similar to what
we obtain in this paper. Comparing our Eq. (97) to the
vacuum case (Tμν

matter ¼ 0) of Eqs. (7)–(10) in Ref. [93],
these equations take a very similar format if we replace all
the terms proportional to hð0;1Þhð1;0Þ with hð0;1Þhð0;1Þ and set
the source term due to LbGR in Eq. (35) to zero, T ð1;1Þ ¼ 0.
More precisely, if we follow the approach in this work to
derive the Teukolsky equation at Oðζ0; ϵ2Þ, we find

HGR
4 Ψð0;2Þ

4 ¼ T ð0;2Þ
geo ; T ð0;2Þ

geo ¼ −Hð0;1Þ
4 Ψð0;1Þ

4 : ð100Þ

These are the equations that ought to be compared to the
work in GR at second order in perturbation theory.
Equation (100) and Eqs. (7)–(10) from Ref. [93] are

similar in form, as expected in perturbation theory, where
the principal part of the equation remains unchanged at
each order and is driven by lower-order perturbations.
Nonetheless, our Eq. (100) is simpler. First, there are no
terms in Ψð0;1Þ

3 , since they are removed by our gauge choice
in Eq. (71). Second, there are no terms that depend on λð0;1Þ

and νð0;1Þ, since λ and ν, just like κ and σ, are eliminated
from the equations from the beginning, as shown in
Sec. V C 1. To compare Eq. (100) with Eqs. (7)–(10) from
Ref. [93], we choose the same gauge given in Eq. (71). In
this case, Ψð0;1Þ

3 ¼ 0, and one can solve for λð0;1Þ and νð0;1Þ

in terms of Ψð0;1Þ
4 [40], so all the λð0;1Þ and νð0;1Þ related

terms become additional operators acting on Ψð0;1Þ
4 in

Eq. (100). In Appendix C, we show this consistency
explicitly following this prescription.

Further, we notice that Eq. (100) and Eqs. (97) and (98)
are also similar. When studying Petrov type-I spacetimes in
modified gravity, we do not make any assumptions about
what NP quantities vanish at Oðζ1; ϵ0Þ to avoid sabotaging
our perturbation scheme, as discussed in Sec. VA. For the
second-order Teukolsky formalism in GR, the stationary
Petrov type-I background at Oðζ1; ϵ0Þ is replaced by the
“dynamical background,” driven by GW perturbations at
Oðζ0; ϵ1Þ, where most NP quantities also do not vanish.
Because of this connection, many challenges shared by
these two situations are solved in the second-order
Teukolsky formalism in GR, such as metric reconstruction
at Oðζ0; ϵ1Þ. The success of applying the second-order
Teukolsky formalism to the study of self-force in
Refs. [92,138–144] strongly suggests that our modified
Teukolsky formalism is feasible numerically.
Despite these similarities, there are also differences

between these two efforts. One major difference is the
presence of extra nonmetric fields in class-A beyond-GR
theories. Unlike in GR, even without matter, one needs to
evaluate the effective stress-energy tensor driven by these
intrinsic extra fields and, thus, solve their equations ofmotion
concurrently. Nonetheless, as discussed in Sec. V C 5, this
issue was already dealt with in the studies of slowly rotating
BHs using metric perturbations in dCS [54,55] and
EdGB [56,57]. Besides the issue of extra fields, one also
has to be careful when constructing the background tetrad in
these non-Ricci-flat backgrounds, as shown in Sec. III B.

B. Modified Teukolsky formalism beyond Oðζ1;ϵ1Þ
As illustrated in the previous section, second- and

higher-order BH perturbation theory in GR has been of
great interest due to its importance in constraining the first-
order perturbations and its need when dealing with certain
physical systems. In the case of modified gravity, one does
not just have to deal with nonlinear terms in ϵ, but also with
nonlinear terms in the dimensionless coupling constant ζ.
When the beyond-GR theory itself is known at higher
order, these higher-order corrections due to modified
gravity might be interesting, since there might be nonlinear
phenomena that is not described by the linear theory. For
these reasons, we follow Ref. [93] to extend our formalism
beyond Oðζ1; ϵ1Þ.
Let us consider some perturbations atOðζM; ϵNÞ,M ≥ 0,

N ≥ 1. First, we need to find a tetrad with terms up to
OðζM; ϵNÞ, such that the orthogonality condition in Eq. (5)
is satisfied while our perturbation scheme is preserved,
similar to what we do in Sec. III B. For 1 ≤ m ≤ M,
expanding the correction to the tetrad atOðζm; ϵ0Þ, we have

δeðm;0Þ
aμ ¼ Aðm;0Þ

ab δeð0;0Þbμ : ð101Þ

Through induction, one can easily show that we can solve
for all Aðm;0Þ

ab iteratively, where 1 ≤ m ≤ M. Let us assume
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δeð1;0Þbμ ;…; δeðM−1;0Þ
bμ are known, and the base case δeð1;0Þbμ is

shown in Sec. III B. We also assume that the corrections to
the background metric hð1;0Þμν ;…; hðM;0Þ

μν are known. Then, to
satisfy Eq. (5), we need

!
eð0;0Þaμ þ

XM

m¼1

ζmδeðm;0Þ
aμ

"!
eð0;0Þbν þ

XM

m¼1

ζmδeðm;0Þ
bν

"

!
gμνð0;0Þ þ

XM

m¼1

ζmhμνðm;0Þ
"

¼ ηab: ð102Þ

For convenience, let us introduce

UðM;0Þ ≡
X

iþjþk¼M;
M>i;j;k>0

δeði;0Þaμ δeðj;0Þbν hμνðk;0Þ; ð103Þ

where every term on the right-hand side is assumed to be
known and Uð0;0Þ ¼ 0 when M ¼ 1. Then, following the
same procedure as in Sec. III B, at OðζM; ϵ0Þ we have

2AðM;0Þ
ðabÞ ¼ −hðM;0Þ

ab − UðM;0Þ; ð104Þ

where UðM;0Þ contains Aðm;0Þ
ðabÞ , with 1 ≤ m < M solved in the

previous steps. If we pick the same gauge as in Sec. III B to
set AðM;0Þ

½ab( ¼ 0, then we find

AðM;0Þ
ab ¼ −

1

2
ðhðM;0Þ

ab þ UðM;0ÞÞ: ð105Þ

Thus, this proves that one can iteratively find higher-order
corrections to the background tetrad, such that the ortho-
gonality condition in Eq. (5) is preserved.
Next, let us consider tetrad rotations. Inspecting the

rotations we perform in Eqs. (30) and (72), one can
immediately notice that, under any type-II rotation
[cf. Eq. (A16b)] with rotation parameter bðm;nÞ at
Oðζm; ϵnÞ with m ≥ 0, n ≥ 1, the Weyl scalars at
Oðζm; ϵnÞ transform as

Ψðm;nÞ
0 → Ψðm;nÞ

0 þ 4bðm;nÞΨð0;0Þ
1 ;

Ψðm;nÞ
1 → Ψðm;nÞ

1 þ 3bðm;nÞΨð0;0Þ
2 ;

Ψðm;nÞ
2 → Ψðm;nÞ

2 þ 2bðm;nÞΨð0;0Þ
3 ;

Ψðm;nÞ
3 → Ψðm;nÞ

3 þ bðm;nÞΨð0;0Þ
4 ;

Ψðm;nÞ
4 → Ψðm;nÞ

4 ; ð106Þ

where any terms beyond Oðζm; ϵnÞ are dropped. Since
the background at Oðζ0; ϵ0Þ is Petrov type D, where
Ψð0;0Þ

0;1;3;4 ¼ 0, if we pick bðm;nÞ ¼ −Ψðm;nÞ
1 =ð3Ψð0;0Þ

2 Þ, then

Ψðm;nÞ
1 → 0; Ψðm;nÞ

0;2;3;4 → Ψðm;nÞ
0;2;3;4: ð107Þ

Similarly, by performing a type-I rotation with the rota-
tion parameter aðm;nÞ ¼ −½Ψðm;nÞ

3 =ð3Ψð0;0Þ
2 Þ(&, one can

remove Ψðm;nÞ
3 .

One may worry that a rotation at Oðζm1 ; ϵn1Þ will affect
the Weyl scalars at Oðζm2 ; ϵn2Þ, where m2 > m1; n2 > n1,
since many Weyl scalars at Oðζm2−m1 ; ϵn2−n1Þ might be
nonzero. However, this problem can be avoided if one
performs these rotations systematically from lower order to
higher order. For example, one may consider the following
procedures.
(1) Perform tetrad rotations step by step from Oðζ0; ϵ1Þ

to OðζM; ϵ1Þ to remove ðΨð0;1Þ
1;3 ;…;ΨðM;1Þ

1;3 Þ.
(2) Next, perform tetrad rotations step by step from

Oðζ0; ϵ2Þ toOðζM; ϵ2Þ to remove ðΨð0;2Þ
1;3 ;…;ΨðM;2Þ

1;3 Þ.
(3) ) ) )
(4) At the Nth step, perform tetrad rotations step by

step from Oðζ0; ϵNÞ to OðζM; ϵNÞ to remove
ðΨð0;NÞ

1;3 ;…;ΨðM;NÞ
1;3 Þ.

Following this sequence, any higher-order modifications to
Ψ1;3 due to lower-order rotations are removed at the
corresponding step, and higher-order rotations do not affect
the lower-order Ψ1;3, which are set to 0. Thus, for any
perturbation at OðζM; ϵNÞ with M ≥ 0, N ≥ 1, we can
consistently set

Ψðm;nÞ
1;3 ¼ 0; 0 ≤ m ≤ M; 1 ≤ n ≤ N: ð108Þ

Now, one can directly make an expansion of Eq. (76)
similar to what we do at Oðζ1; ϵ1Þ in Sec. V C. One direct
consequence of the tetrad rotations above is that we can
drop allΨðm;nÞ

1 , withm ≥ 0, n ≥ 1 [e.g., Eq. (108)], so there
is only the stationary part of Ψ1 contributing to Eq. (76).
Then, following the same procedures as in Sec. V C, for
perturbations at OðζM; ϵNÞ, we find

HGR
0 ΨðM;NÞ

0 ¼ SðM;NÞ
geo þ SðM;NÞ; ð109Þ

where

SðM;NÞ
geo ¼ SðM;NÞ

0;I þ SðM;NÞ
0;II þ SðM;NÞ

1 ;

SðM;NÞ
0;I ¼

Xðm;nÞ<ðM;NÞ

ðm;nÞ¼ð0;1Þ
−HðM−m;N−nÞ

0 Ψðm;nÞ
0 ;

SðM;NÞ
0;II ¼

XM

m¼1

−HðM−m;NÞ
0 Ψðm;0Þ

0 ;

SðM;NÞ
1 ¼

XM

m¼1

−HðM−m;NÞ
1 Ψðm;0Þ

1 ;

SðM;NÞ ¼
Xðm;nÞ≤ðM;NÞ

m¼1;n¼0

½EðM−m;N−nÞ
2 Sðm;nÞ

2

−EðM−m;N−nÞ
1 Sðm;nÞ

1 ( ð110Þ
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and where ðm; nÞ < ðM;NÞ means m ≤ M, n < N or
m < M, n ≤ N. The equation for Ψ4 can be found from
the GHP transformation of Eqs. (109) and (110). For the
case of higher-order perturbations in GR, ζ ¼ 0, so one can
simply set SðM;NÞ

0;II ¼ SðM;NÞ
1 ¼ SðM;NÞ ¼ 0, where the sum

starts from Oðζ1Þ. As discussed in Sec. VI A and shown in
detail in Appendix C, if one chooses the gauge in which
Ψð0;nÞ

1;3 ¼ 0, with 1 ≤ n ≤ N, then Eqs. (7)–(10) in Ref. [93]
are the same as the GHP transformation of Eqs. (109)
and (110). Thus, one can treat this higher-order extension
of our formalism as a modified-gravity generalization of the
higher-order Teukolsky formalism in Ref. [93].

C. Potential challenges

In the previous subsection, we successfully extend our
formalism to higher order in both ϵ and ζ. In this case, all
NP quantities are decoupled at each perturbative order, and
Weyl scalars Ψ0;4 can be solved, given their solutions at
lower orders. This shows that similar to any perturbation
theory problem (e.g., solving the hydrogen atom in
quantum mechanics), by working out the leading-order
perturbation theory, one can iterate it to solve for higher-
order perturbations. On the other hand, this procedure also
inherits the same challenges of any perturbation theory
solution. For example, the source terms made up of lower-
order perturbations become complicated at very high order.
However, developing a nonperturbative approach is outside
the scope of this work, and one may have to rely on
numerical relativity in the end. In this subsection, we
discuss other challenges and potential solutions when
applying this higher-order modified Teukolsky formalism
to the first few orders beyond Oðζ1; ϵ1Þ [e.g., Oðζ2; ϵ1Þ or
Oðζ1; ϵ2Þ], where perturbation theory is still tractable.
The major challenge of this higher-order modified

Teukolsky formalism is the need of metric reconstruction
in non-Ricci-flat backgrounds, since we need to evaluate
NP quantities at Oðζm; ϵnÞ with m > 0, n ≥ 1, in general.
For example, at Oðζ2; ϵ1Þ or Oðζ1; ϵ2Þ, one needs to
reconstruct the perturbed metric at Oðζ1; ϵ1Þ. At this order,
we take advantage of the fact that the metric reconstruction
procedure for Oðζ0; ϵ1Þ GW perturbations in GR is well
developed [40,90–92,130,131]. However, for general
perturbations at Oðζm; ϵnÞ, the metric reconstruction pro-
cedure is unknown. Moreover, when m > 0, the correction
to the Einstein-Hilbert action generates some effective
stress-energy tensor (see Sec. III A), so the traceless
condition gμνhμν ¼ 0 in the radiation gauge used in these
metric reconstruction procedures with a Hertz poten-
tial [90,91,130,131] is violated.
However, this issue is present not just in our modified

Teukolsky formalism, but also in the higher-order
Teukolsky formalism in GR, since lower-order perturba-
tions become effective sources in the higher-order version
of the Teukolsky equation. References [144,148,149] show

that one can extend the Hertz potential approach by adding
certain correction fields to the metric perturbation con-
structed from a usual Hertz potential. These correction
fields can be obtained from certain decoupled ordinary
differential equations, sourced by the effective stress-
energy tensor. These references prove that this procedure
works for any smooth, compactly supported source, which
is unfortunately not satisfied by sources driven by nonlinear
couplings of gravitational fields. Thus, to apply their
formalism to our nonlinear Teukolsky formalism, addi-
tional work would have to be done. Besides an extension of
the Hertz potential approach, there are also methods that do
not rely on the radiation gauge, such as the approach of
solving the remaining NP equations directly [40,92,150].
This approach has been implemented for vacuum Petrov
type-D spacetimes [92,150], and it is worth exploring
whether one can extend it to nonvacuum backgrounds.
Another challenge is the presence of extra fields. For the

class-A beyond-GR theories mentioned in Sec. III A, one
has to solve the coupled equations of metric fields and extra
fields at each perturbed order. In terms of solving the
coupled equation itself, this is not a huge challenge, since
similar problems have been solved in these approaches
using metric perturbations [54,55]. There might be numeri-
cal challenges when going to very high order, since the
source terms are complicated nonlinear couplings of
reconstructed NP quantities with extra fields at lower
orders, which need to be solved together with the modified
Teukolsky equation. Nonetheless, this is merely an
unavoidable consequence of perturbation theory.
In summary, the connection of our work to the second-

order Teukolsky formalism in GR demonstrates the fea-
sibility of the approach presented in this work. When
applying our formalism to specific modified gravity the-
ories, one should not expect more difficulties than when
solving the second-order Teukolsky equation in GR, which
has been widely studied. On the other hand, the formalism
developed in this work aims to incorporate corrections from
modified gravity, so it contains features unique to modified
gravity and cannot be directly obtained from the second-
order Teukolsky formalism in GR. The extension of our
formalism to higher order naturally generalizes the higher-
order Teukolsky formalism in Ref. [93] from GR to
modified gravity. As a consistency check, we study the
limiting case of ζ → 0, compared the results to those
obtained in Ref. [93], and present these concrete compar-
isons in Appendix C.

VII. DISCUSSIONS

In this work, we extended the Teukolsky formalism to
non-Ricci-flat, Petrov type-D BH backgrounds, as well as
to non-Ricci-flat, Petrov type-I BH backgrounds that can be
treated as a linear perturbation of a Petrov type-D back-
ground. We began by presenting a brief review of the
derivation of the Teukolsky equation for a Ricci-flat and
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Petrov type-D background in GR via the original approach
in Teukolsky’s paper [44], as well as using an approach
proposed by Chandrasekhar [40]. These two approaches
differ in the method adopted to eliminate the Ψ1 and Ψ3

dependence from the two Bianchi identities and one Ricci
identity [see, e.g., Eq. (13)]. Teukolsky’s approach makes
use of additional Bianchi identities to obtain a commutation
relation to eliminate Ψ1 and Ψ3. Chandrasekhar’s approach
uses the available gauge freedom to make a convenient
gauge choice that eliminates Ψ1 and Ψ3 directly. One can
then solve these equations to obtain a single decoupled
differential equation for the perturbed Weyl scalars Ψ0

and Ψ4.
We first extended both approaches to obtain the modified

Teukolsky equation in a generic modified gravity theory
that allows BH backgrounds to be non-Ricci-flat and Petrov
type-D backgrounds. Since the background is now non-
Ricci flat, we have additional nonvanishing background NP
quantities. We then used the two approaches described
above to obtain decoupled differential equations for the
perturbed Weyl scalars Ψ0 and Ψ4. We found that for non-
Ricci-flat, Petrov type-D BH backgrounds in modified
gravity, the master equations for curvature perturbations
acquire a source term [see, e.g., Eqs. (60) and (63)]. In
order to evaluate these source terms, we found that one
needs to perform metric reconstruction from the GR
curvature perturbations [40,90–92,130,131] [i.e., to
Oðζ0; ϵ1Þ, where ζ labels the order of the GR deformation
and ϵ labels the order of the dynamic GW perturbation from
the stationary background]. We showed that both the
Teukolsky approach and the Chandrasekhar approach lead
to the same modified Teukolsky equation, but the latter is
algebraically simpler and, thus, more convenient.
The algebraic simplicity of Chandrasekhar’s approach

makes this method ideal for the study of curvature
perturbations of BH backgrounds that are non-Ricci flat
and Petrov type I. We, thus, extended Chandrasekhar’s
approach to such BH backgrounds. The nonvanishing of
the background NP Ricci scalars, the background NP spin
coefficients, and the background Weyl scalars Ψ1, Ψ2, and
Ψ3 forces the NP equations [see, e.g., Eq. (13)] to have
additional nonvanishing NP quantities. However, when one
requires the BH background to be a perturbation of a non-
Ricci-flat, Petrov type-D BH background at leading order
in the GR deformation, the equations do decouple. This is
achieved by rotating the tetrad such that the perturbed Weyl
scalars Ψð1;1Þ

1 and Ψð1;1Þ
3 (at linear order in both the non-GR

expansion parameter and the GW expansion parameter)
vanish. With this, we then derived a single decoupled
differential equation for Ψð1;1Þ

0 and Ψð1;1Þ
4 .

The modified Teukolsky equation obtained in this way
has the structure of the traditional Teukolsky equation but
with certain source terms. The differential operator on the
left-hand side of the modified Teukolsky equation acts on
the perturbed Weyl scalar Ψ0;4, and it has a functional form

that is similar to the Teukolsky operators in GR [44]. The
source terms on the right-hand side of the modified
Teukolsky equation arise because of either (i) modifications
to the stationary BH background spacetime or (ii) additional
stress-tensor terms due to corrections to the Einstein-
Hilbert action.
The first type of source terms comes from the homo-

geneous part of certain Bianchi and Ricci identities [see,
e.g., Eqs. (13)]. Some of these source terms can be directly
evaluated using the modified background metric and the
solution to the Teukolsky equation in GR. The rest are
couplings of Oðζ1; ϵ0Þ corrections to the Weyl scalars with
the Oðζ0; ϵ1Þ corrections to the metric due to GWs in GR.
Thus, in order to evaluate these source terms, we need to
reconstruct the metric for the curvature perturbations in
GR [40,90–92,130,131], just as in the case of non-Ricci-
flat, Petrov type-D backgrounds.
The second type of source terms comes from the stress

tensor due to corrections to the Einstein-Hilbert action. We
have classified the modified gravity theories into two
classes based on the presence or absence of extra non-
gravitational dynamical fields. Class-A beyond-GR theo-
ries can have couplings to other dynamical scalar, vector,
or tensor fields [as is the case in dCS gravity [65,66],
EdGB gravity [107,114,115], Horndeski theory [151],
scalar-tensor theories [152], fðRÞ gravity [122,129],
Einstein-aether theory [153], and bigravity [154] ].
Class-B beyond-GR theories depend only on the gravita-
tional field, and there are no additional dynamical fields (as
is the case in certain effective field theory extensions of GR,
such as higher-derivative gravity [117–120]). For class-B
beyond-GR theories, these source terms can be directly
evaluated with the background metric and the reconstructed
metric. For class-A beyond-GR theories, one must solve the
equations of motion for these extra fields to evaluate the
stress tensor, and this can be done only on a theory-per-
theory basis. The case-by-case treatment of these extra field
equations is left to future work.
The major goal of this work was to simplify the

perturbed gravitational equations, in general, for modified
gravity theories that admit non-Ricci-flat and Petrov type-I
or Petrov type-D BH backgrounds such that all the
curvature perturbations are packed into two fundamental
variables Ψ0 and Ψ4. With this at hand, one can now, in
principle, evaluate all source terms and separate the
modified Teukolsky equation into radial and angular parts
to solve for the QNM frequencies of perturbed BHs in
modified gravity. It is important to realize that this was not
possible until this work due to the inherently complicated
nature of the perturbed field equations when working with
metric perturbations. Indeed, up until now, the QNM
spectrum of perturbed BHs in modified gravity had been
studied only for nonrotating BHs [e.g., in dCS grav-
ity [50,51,58], EdGB theory [52,53], Einstein-aether
theory [70–74], higher-derivative gravity (quadratic [75],
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cubic [76], and more generic [77,78]), and Horndeski
gravity [79] ] or for slowly rotating BHs (e.g., in EdGB
theory [56], dCS gravity [54,55], and higher-derivative
gravity [80,81]). The only study of QNM perturbations of
rotating BHs was carried out in dCS gravity from numerical
relativity simulations of BH mergers, but these suffer from
secularly growing uncontrolled remainders [82,83].
Our work creates a new path to directly calculate the

corrections to the QNM frequencies of perturbed BHs with
arbitrary spin in modified gravity and, more generally, any
background spacetime that can be treated as a linear
perturbation of a Petrov type-D spacetime. One of our
next major goals is to do a case-by-case study of all these
well-motivated modified theories, using the formalism
developed here, to then use GW observations to constrain
these theories. For dCS gravity, we would like to compare
the QNM frequencies obtained for arbitrarily rotating BHs
to those found in the slow-rotation approximation to
linear order in spin [54], as well as others that use
metric perturbations [50,51,54,55,58] and numerical
relativity [82,83,127,128].
By extending the Teukolsky formalism, we have also

laid the foundation for studying gravitational perturbations
other than QNMs around BHs in modified gravity. For
example, the Teukolsky formalism has been applied to
compute gravitational waveforms and energy and angular
momentum fluxes sourced by a point particle orbiting
around a BH in EMRIs [155–160]. The same procedure has
been applied to a few modified gravity theories, e.g., in
scalar-tensor theories [161] and for a spinning horizonless
compact object [162], where the Teukolsky formalism in
GR can be directly applied. With this extended Teukolsky
formalism, we are now able to study EMRIs in a much
wider class of modified gravity theories. These results can
also be compared with those obtained using post-
Newtonian studies of EMRIs in GR and modified grav-
ity [58,163–168].
Another example is the break of isospectrality (where

even and odd parity modes have the same QNM frequen-
cies) in certain modified gravity theories, e.g., dCS
gravity [50,51,54,55,58], EdGB gravity [52,53,56], and
higher-derivative gravity [81]. The study of isospectrality is
mostly done with metric perturbations, since the Zerilli-
Moncrief and the Regge-Wheeler functions naturally divide
the metric perturbations into even and odd parity sec-
tors [41,42]. For BHs with arbitrary spin, there are no
known extensions of the Zerilli-Moncrief and the Regge-
Wheeler functions, so we may have to use NP quantities in
this extended Teukolsky formalism to study parity break-
ing. Since the Teukolsky equation does not naturally
classify its solutions into different parities, we first need
to understand better what even and odd parity modes mean
in the Teukolsky formalism and their connections to the
Zerilli-Moncrief and Regge-Wheeler functions even in
GR. This, and much more, is now possible thanks to the

derivation of a master evolution equation for curvature
perturbations in modified gravity.
In this work, we have focused on the formalism up to

leading order in modified gravity corrections, i.e., at OðζÞ.
This is mainly because the theories we have discussed in
Sec. III A are presented only to leading order in corrections,
since these are treated in an effective field theory approach,
considering small deformations from GR. However, one
can consider a modified theory of gravity different from the
examples shown in Sec. III A, where one can look at
higher-order deformations from GR. As discussed in
Sec. VI, our leading-order formalism can be extended to
higher order [Oðζm; ϵnÞ, m ≥ 0, n ≥ 1] by iterating the
perturbation scheme in Sec. III B and the procedure of
finding the master equation in Sec. V. However, utmost care
needs to be taken when considering theories at higher than
leading-order corrections to GR, as such theory may admit
ghost modes [104]. Additionally, this formalism relies on
the approximation that the theories mentioned in Sec. III A
are an effective field theory of GR. Therefore, the space-
times we can probe using this formalism cannot deviate too
much from their GR counterparts.
To present the feasibility of our formalism extending the

Teukolsky equation to non-Ricci-flat Petrov type-D and
Petrov type-I spacetimes, our collaboration is already
working on a series of calculations. The first in this
planned series of works is the study of perturbations of
a non-Ricci-flat vacuum Petrov type-D BH spacetime
representing a slowly rotating BH to leading order in spin
in dCS gravity [169]. In Ref. [169], we will present the
calculation of the perturbed field equations. These field
equations, as expected from the results of this paper, are
sourced equations which we compute in the null basis. We
will then implement the necessary metric reconstruction
procedures and tetrad rotations. In the last step, we will
convert all NP quantities to a coordinate basis to separate
the master equation into radial and angular ordinary
differential equations with couplings between the gravita-
tional and scalar sectors. Then, in a follow-up work [170],
we will make use of the eigenvalue perturbation method to
calculate the QNM frequencies of these BH spacetimes and
verify our results with previously obtained frequencies
computed in the slow-rotation limit [54,55]. We will then
extend these calculations to arbitrarily spinning BHs in dCS
gravity, which are described by non-Ricci-flat, vacuum,
Petrov type-I BH metrics in Ref. [171]. This problem is
more challenging due to the presence of additional theory-
independent source terms (i.e., Sð1;1Þ

geo ), which need metric
reconstruction (e.g., Sð1;1Þ

0;non-D). However, it is much simpler
to evaluate these additional terms than the theory-depen-
dent source terms (i.e., Sð1;1Þ) coupled to the pseudoscalar
field, which we would have already computed in our
previous work [169] on Petrov type-D BHs in dCS gravity
mentioned above. We expect that, through these extensions,
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we will acquire a deep knowledge of QNMs in modified
gravity.
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Note added.—Recently, we became aware of an equivalent
and independent analysis of decoupled equations for
gravitational perturbations around BHs in modified grav-
ity [173]. Instead of using the NP formalism, Ref. [173]
focuses mostly on the Einstein equations and shows how to
partially decouple them, following the order-reduction
scheme in Ref. [127]. To make the equations of gravita-
tional perturbations separable, Ref. [173] uses Wald’s
formalism to project the Einstein equations onto a (modi-
fied) Teukolsky equation [174]. Although our work is
independent of that of Ref. [173], there are similarities in
the general format of the final master equation. For
example, both approaches require metric reconstruction
of GWs in GR. Reference [173] also presents a direct
derivation of the modified Teukolsky equation following
Teukolsky’s original approach [44]. Our work greatly
simplifies the NP approach through the use of gauge
freedom, following Chandrasekhar’s approach [40].
These two independent studies can be used to validate
results when computing the shift of QNM frequencies in
certain modified gravity theories.

APPENDIX A: NP FORMALISM (CONTINUED)

In Sec. II A, we present the orthogonality relations for the
tetrad basis vectors in NP formalism. One can further com-
pactly express the relation in Eq. (5) as gμν ¼ eaμebνηab, where

eμm ¼ ðlμ; nμ; mμ; m̄μÞ;

ηab ¼ ηab ¼

0

BBB@

0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

1

CCCA; ðA1Þ

where we use Latin indices to denote the null tetrad indices
whereas theGreek indices are the tensor indices. Furthermore,
using themetric and the null tetrad,we can define the quantity
known as Ricci rotation coefficients, which are similar to
Christoffel symbols. These are complex quantities in nature
and defined as

γcab ¼ eaμ;νe
μ
ceνb ðA2Þ

with the symmetry

γcab ¼ −γacb: ðA3Þ

The commutation relations of the intrinsic derivatives are
related to the Ricci rotation coefficients by

½eμa; eμb( ¼ ðγcba − γcabÞecμ: ðA4Þ

The tetrad components of the Riemann tensor can then
be defined by

Rabcd ¼ Rαβγδeαae
β
be

γ
ceδd: ðA5Þ

Using a form of Eq. (A2), the Riemann tensor can also be
expressed in terms of the Ricci rotation coefficients:

Rabcd ¼ −γabc;d þ γabd;c þ γabfðγfcd − γfdcÞ
þ γfacγbfd − γfadγbfc; ðA6Þ

where γabc;d ≡ γabc;μe
μ
d. The relationship among the

Riemann tensor, Weyl tensor Cαβγδ, and Ricci tensor Rαβ

remains unchanged in tetrad notation:

Rabcd ¼ Cabcd −
1

2
ðηacRbd − ηbcRad − ηadRbc þ ηbdRacÞ

þ 1

6
ðηacηbd − ηadηbcÞR: ðA7Þ

In tetrad notation, Bianchi identities (Rαβ½γδ;μ( ¼ 0) take the
form

Rab½cd;f( ¼
1

6

X

½cdf(
½Rabcd;f − ηnmðγnafRmbcd

þγnbfRamcd þ γncfRabmd þ γndfRabcmÞ(: ðA8Þ

1. NP quantities

With the formalism developed above, Newman and
Penrose defined 12 complex functions known as the spin
coefficients which can be defined in terms of the Ricci
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rotation coefficients (and, thus, the tetrad). The spin
coefficients are as follows:

κ ¼ γ131 ¼ lμ;νmμlν;

π ¼ −γ241 ¼ −nμ;νm̄μlν;

ε ¼ 1

2
ðγ121 − γ341Þ ¼

1

2
ðlμ;νnμlν −mμ;νm̄μlνÞ;

ρ ¼ γ134 ¼ lμ;νmμm̄ν;

λ ¼ −γ244 ¼ −nμ;νm̄μm̄ν;

α ¼ 1

2
ðγ124 − γ344Þ ¼

1

2
ðlμ;νnμm̄ν −mμ;νm̄μm̄νÞ;

σ ¼ γ133 ¼ lμ;νmμmν;

μ ¼ −γ243 ¼ −nμ;νm̄μmν;

β ¼ 1

2
ðγ123 − γ343Þ ¼

1

2
ðlμ;νnμmν −mμ;νm̄μmνÞ;

ν ¼ −γ242 ¼ −nμ;νm̄μnν;

γ ¼ 1

2
ðγ122 − γ342Þ ¼

1

2
ðlμ;νnμnν −mμ;νm̄μnνÞ;

τ ¼ γ132 ¼ lμ;νmμnν: ðA9Þ

Using Eq. (A7), one can decompose the Riemann tensor
into the Weyl tensor, completely determined by five
complex Weyl scalars:

Ψ0 ¼ C1313 ¼ Cαβγδlαmβlγmδ;

Ψ1 ¼ C1213 ¼ Cαβγδlαnβlγmδ;

Ψ2 ¼ C1342 ¼ Cαβγδlαmβm̄γnδ;

Ψ3 ¼ C1242 ¼ Cαβγδlαnβm̄γnδ;

Ψ4 ¼ C2424 ¼ Cαβγδnαm̄βnγm̄δ; ðA10Þ

the Ricci tensor, and the Ricci scalar, characterized by ten
NP Ricci scalars:

Φ00 ¼
1

2
R11 ¼

1

2
Rμνlμlν;

Φ01 ¼
1

2
R13 ¼

1

2
Rμνlμmν; Φ10 ¼

1

2
R14 ¼

1

2
Rμνlμm̄ν;

Φ11 ¼
1

4
ðR12 þ R34Þ ¼

1

2
Rμνðlμnν þmμm̄νÞ;

Φ02 ¼
1

2
R33 ¼

1

2
Rμνmμmν; Φ12 ¼

1

2
R23 ¼

1

2
Rμνnμmν;

Φ20 ¼
1

2
R44 ¼

1

2
Rμνm̄μm̄ν; Φ21 ¼

1

2
R24 ¼

1

2
Rμνnμm̄ν;

Φ22 ¼
1

2
R22 ¼

1

2
Rμνnμnν; Λ ¼ R=24: ðA11Þ

2. NP equations

Using the NP quantities defined above, one can consider
appropriate linear combinations of Eq. (A6) and rewrite the
equations in terms of the NP quantities. The resulting
equations are called Ricci identities in Ref. [40] and
given by

Dρ − δ&κ ¼ ðρ2 þ σσ&Þ þ ðεþ ε&Þρ − κ&τ

− κð3αþ β& − πÞ þΦ00; ðA12aÞ

Dσ − δκ ¼ ðρþ ρ&Þσ þ ð3ε − ε&Þσ
− ðτ − π& þ α& þ 3βÞκ þΨ0; ðA12bÞ

Dτ − Δκ ¼ ðτ þ π&Þρþ ðτ& þ πÞσ þ ðε − ε&Þτ
− ð3γ þ γ&Þκ þ Ψ1 þΦ01; ðA12cÞ

Dα − δ&ε ¼ ðρþ ε& − 2εÞαþ βσ& − β&ε

− κλ − κ&γ þ ðεþ ρÞπ þΦ10; ðA12dÞ

Dβ − δε ¼ ðαþ πÞσ þ ðρ& − ε&Þβ
− ðμþ γÞκ − ðα& − π&Þεþ Ψ1; ðA12eÞ

Dγ−Δε¼ðτþπ&Þαþðτ& þπÞβ− ðεþ ε&Þγ
− ðγþ γ&Þεþ τπ−νκþΨ2−ΛþΦ11; ðA12fÞ

Dλ − δ&π ¼ ðρλþ σ&μÞ þ π2 þ ðα − β&Þπ
− νκ& − ð3ε − ε&ÞλþΦ20; ðA12gÞ

Dμ − δπ ¼ ðρ&μþ σλÞ þ ππ& − ðεþ ε&Þμ
− πðα& − βÞ − νκ þ Ψ2 þ 2Λ; ðA12hÞ

Dν − Δπ ¼ ðπ þ τ&Þμþ ðπ& þ τÞλþ ðγ − γ&Þπ
− ð3εþ ε&Þνþ Ψ3 þΦ21; ðA12iÞ

Δλ − δ&ν ¼ −ðμþ μ&Þλ − ð3γ − γ&Þλ
þ ð3αþ β& þ π − τ&Þν − Ψ4; ðA12jÞ

δρ − δ&σ ¼ ρðα& þ βÞ − σð3α − β&Þ þ ðρ − ρ&Þτ
þ ðμ − μ&Þκ − Ψ1 þΦ01; ðA12kÞ

δα−δ&β¼ðμρ−λσÞþαα&þββ&−2αβ

þγðρ−ρ&Þþεðμ−μ&Þ−Ψ2þΛþΦ11; ðA12lÞ

δλ − δ&μ ¼ ðρ − ρ&Þνþ ðμ − μ&Þπ þ μðαþ β&Þ
þ λðα& − 3βÞ −Ψ3 þΦ21; ðA12mÞ
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δν − Δμ ¼ ðμ2 þ λλ&Þ þ ðγ þ γ&Þμ
− ν&π þ ðτ − 3β − α&ÞνþΦ22; ðA12nÞ

δγ − Δβ ¼ ðτ − α& − βÞγ þ μτ − σν − εν&

− βðγ − γ& − μÞ þ αλ& þΦ12; ðA12oÞ

δτ − Δσ ¼ ðμσ þ λ&ρÞ þ ðτ þ β − α&Þτ
− ð3γ − γ&Þσ − κν& þΦ02; ðA12pÞ

Δρ − δ&τ ¼ −ðρμ& þ σλÞ þ ðβ& − α − τ&Þτ
þ ðγ þ γ&Þρþ νκ − Ψ2 − 2Λ; ðA12qÞ

Δα − δ&γ ¼ ðρþ εÞν − ðτ þ βÞλ
þ ðγ& − μ&Þαþ ðβ& − τ&Þγ − Ψ3: ðA12rÞ

Similarly, rewriting Eq. (A8) in terms of the NP
quantities, one gets a set of equations called Bianchi
identities in Ref. [40]. These equations are given by

ðδ&−4αþπÞΨ0− ðD−4ρ−2εÞΨ1−3κΨ2 ¼ S1; ðA13aÞ

ðΔ−4γþμÞΨ0− ðδ−4τ−2βÞΨ1−3σΨ2¼ S2; ðA13bÞ

ðδþ4β− τÞΨ4− ðΔþ2γþ4μÞΨ3þ3νΨ2¼ S3; ðA13cÞ

ðDþ4ε−ρÞΨ4− ðδ& þ4πþ2αÞΨ3þ3λΨ2¼ S4; ðA13dÞ

ðδ&þ3πÞΨ2−ðDþ2ε−2ρÞΨ3−2λΨ1−κΨ4¼S5; ðA13eÞ

ðΔþ3μÞΨ2−ðδþ2β−2τÞΨ3−2νΨ1−σΨ4¼S6; ðA13fÞ

ðδ−3τÞΨ2−ðΔ−2γþ2μÞΨ1þνΨ0þ2σΨ3¼S7; ðA13gÞ

ðD−3ρÞΨ2−ðδ&þ2π−2αÞΨ1þλΨ0þ2κΨ3¼S8; ðA13hÞ

δ&Φ01þδΦ10−DðΦ11þ3ΛÞ−ΔΦ00

¼ κ&Φ12þ κΦ21þð2αþ2τ&−πÞΦ01

þð2α& þ2τ−π&ÞΦ10−2ðρþρ&ÞΦ11

−σ&Φ02−σΦ20þ½μþμ&−2ðγþ γ&Þ(Φ00; ðA13iÞ

δ&Φ12 þ δΦ21 − ΔðΦ11 þ 3ΛÞ −DΦ22

¼ −νΦ01 − v&Φ10 þ ðτ& − 2β& − 2πÞΦ12

þ ðτ − 2β − 2π&ÞΦ21 þ 2ðμþ μ&ÞΦ11

− ðρþ ρ& − 2ε − 2ε&ÞΦ22 þ λΦ02 þ λ&Φ20; ðA13jÞ

δðΦ11−3ΛÞ−DΦ12−ΔΦ01þδ&Φ02

¼Φ22−ν&Φ00þðτ&−πþ2α−2β&ÞΦ02

−σΦ21þλ&Φ10þ2ðτ−π&ÞΦ11

− ð2ρþρ&−2ε&ÞΦ12þð2μ& þμ−2γÞΦ01; ðA13kÞ

where Si are related to the Ricci tensor and defined to be

S1 ≡ ðδþ π& − 2α& − 2βÞΦ00 − ðD − 2ε − 2ρ&ÞΦ01

þ 2σΦ10 − 2κΦ11 − κ&Φ02; ðA14aÞ

S2 ≡ ðδþ 2π& − 2βÞΦ01 − ðD − 2εþ 2ε& − ρ&ÞΦ02

− λ&Φ00 þ 2σΦ11 − 2κΦ12; ðA14bÞ

S3≡ − ðΔþ 2μ& þ 2γÞΦ21 þ ðδ& − τ& þ 2αþ 2β&ÞΦ22

þ 2νΦ11 þ ν&Φ20 − 2λΦ12; ðA14cÞ

S4≡ − ðΔþ μ& þ 2γ − 2γ&ÞΦ20 þ ðδ& þ 2α − 2τ&ÞΦ21

þ 2νΦ10 − 2λΦ11 þ σ&Φ22; ðA14dÞ

S5 ≡ ðδ − 2α& þ 2β þ π&ÞΦ20 − ðD − 2ρ& þ 2εÞΦ21

− 2μΦ10 þ 2πΦ11 − κ&Φ22 − 2δ&Λ; ðA14eÞ

S6 ≡ ðδþ 2π& þ 2βÞΦ21 − ðD − ρ& þ 2εþ 2ε&ÞΦ22

− 2μΦ11 − λ&Φ20 þ 2πΦ12 − 2ΔΛ; ðA14fÞ

S7 ≡ −ðΔþ 2μ& − 2γÞΦ01 þ ðδ& − τ& þ 2β& − 2αÞΦ02

þ 2ρΦ12 þ ν&Φ00 − 2τΦ11 − 2δΛ; ðA14gÞ

S8 ≡ −ðΔþ μ& − 2γ − 2γ&ÞΦ00 þ ðδ& − 2α − 2τ&ÞΦ01

þ 2ρΦ11 þ σ&Φ02 − 2τΦ10 − 2DΛ: ðA14hÞ

For the Bianchi identities, we reorganize the terms and
shuffle the sequence of equations in comparison to the one
in Ref. [40], so our equations here are consistent with the
equations in Sec. II A.
Finally, the commutation relation in Eq. (A4) can be

written as

½Δ; D( ¼ ðγ þ γ&ÞDþ ðεþ ε&ÞΔ − ðτ& þ πÞδ
− ðτ þ π&Þδ&; ðA15aÞ

½δ; D( ¼ ðα& þ β − π&ÞDþ κΔ − ðρ& þ ε − ε&Þδ
− σδ&; ðA15bÞ

½δ;Δ( ¼ −ν&Dþ ðτ − α& − βÞΔþ ðμ − γ þ γ&Þδ
þ λ&δ&; ðA15cÞ
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½δ&; δ( ¼ ðμ& − μÞDþ ðρ& − ρÞΔþ ðα − β&Þδ
þ ðβ − α&Þδ&: ðA15dÞ

3. Tetrad rotations

In Sec. II A, we mention that the tetrad basis vectors can
be rotated in certain ways such that the orthogonality
conditions in Eq. (5) are still preserved. As discussed in
Ref. [40], all these tetrad rotations can be classified into
three types:

I∶ l → l; m → mþ al; m̄ → m̄þ a&l;

n → nþ a&mþ am̄þ aa&l: ðA16aÞ

II∶ n → n; m → mþ bn; m̄ → m̄þ b&n;

l → lþ b&mþ bm̄þ bb&n: ðA16bÞ

III∶ l → A−1l; n → An; m → eiθm;

m̄ → e−iθm̄: ðA16cÞ

Here, a and b are complex functions, and A and θ are real
functions. Under these rotations, the Weyl scalars transform
in the following way:

I∶

Ψ0 → Ψ0; Ψ1 → Ψ1 þ a&Ψ0;

Ψ2 → Ψ2 þ 2a&Ψ1 þ ða&Þ2Ψ0;

Ψ3 → Ψ3 þ 3a&Ψ2 þ 3ða&Þ2Ψ1 þ ða&Þ3Ψ0;

Ψ4 → Ψ4 þ 4a&Ψ3 þ 6ða&Þ2Ψ2 þ 4ða&Þ3Ψ1

þ ða&Þ4Ψ4;

ðA17aÞ

II∶

Ψ0→Ψ0þ4bΨ1þ6b2Ψ2þ4b3Ψ3þb4Ψ4;

Ψ1→Ψ1þ3bΨ2þ3b2Ψ3þb3Ψ4;

Ψ2→Ψ2þ2bΨ3þb2Ψ4; Ψ3→Ψ3þbΨ4;

Ψ4→Ψ4;

ðA17bÞ

III∶
Ψ0 → A−2e2iθΨ0; Ψ1 → A−1eiθΨ1;

Ψ2 → Ψ2; Ψ3 → Ae−iθΨ3;

Ψ4 → A2e−2iθΨ4:

ðA17cÞ

For the transformations of the spin coefficients under the
tetrad rotations, since we do not use them explicitly in our
calculations, we refer the readers to Ref. [40] for all the
details.

APPENDIX B: MODIFIED TEUKOLSKY
EQUATION IN ONE PLACE

For convenience of the reader, we organize the modified
Teukolsky equation in one place. For Ψ0, we have

Hð0;0Þ
0 Ψð1;1Þ

0 þHð1;0Þ
0 Ψð0;1Þ

0 þHð0;1Þ
0 Ψð1;0Þ

0 −Hð0;1Þ
1 Ψð1;0Þ

1 ¼ Eð0;0Þ
2 Sð1;1Þ2 þ Eð0;1Þ

2 Sð1;0Þ2 − Eð0;0Þ
1 Sð1;1Þ1 − Eð0;1Þ

1 Sð1;0Þ1 : ðB1Þ

Here, we have

H0 ¼ E2F2 − E1F1 − 3Ψ2; H1 ¼ E2J2 − E1J1; ðB2Þ

and

E1 ¼ δ − τ þ π& − α& − 3β −Ψ−1
2 δΨ2; F1 ≡ δ& − 4αþ π; J1 ≡D − 2ε − 4ρ;

E2 ¼ D − ρ − ρ& − 3εþ ε& −Ψ−1
2 DΨ2; F2 ≡ Δ − 4γ þ μ; J2 ≡ δ − 4τ − 2β; ðB3Þ

with

S1 ¼ ðδþ π& − 2α& − 2βÞΦ00 − ðD − 2ε − 2ρ&ÞΦ01 þ 2σΦ10 − 2κΦ11 − κ&Φ02;

S2 ¼ ðδþ 2π& − 2βÞΦ01 − ðD − 2εþ 2ε& − ρ&ÞΦ02 − λ&Φ00 þ 2σΦ11 − 2κΦ12: ðB4Þ

For Ψ4, we have

Hð0;0Þ
4 Ψð1;1Þ

4 þHð1;0Þ
4 Ψð0;1Þ

4 þHð0;1Þ
4 Ψð1;0Þ

4 −Hð0;1Þ
3 Ψð1;0Þ

3 ¼ Eð0;0Þ
4 Sð1;1Þ4 þ Eð0;1Þ

4 Sð1;0Þ4 − Eð0;0Þ
3 Sð1;1Þ3 − Eð0;1Þ

3 Sð1;0Þ3 : ðB5Þ

Here, we have

H4 ¼ E4F4 − E3F3 − 3Ψ2; H3 ¼ E4J4 − E3J3; ðB6Þ

and
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E3 ¼ δ& þ 3αþ β& þ π − τ& − Ψ−1
2 δ&Ψ2; F3 ≡ δþ 4β − τ; J3 ≡ Δþ 2γ þ 4μ;

E4 ¼ Δþ μþ μ& þ 3γ − γ& −Ψ−1
2 ΔΨ2; F4 ≡Dþ 4ε − ρ; J4 ≡ δ& þ 4π þ 2α; ðB7Þ

with

S3 ¼ −ðΔþ 2μ& þ 2γÞΦ21 þ ðδ& − τ& þ 2αþ 2β&ÞΦ22 þ 2νΦ11 þ ν&Φ20 − 2λΦ12;

S4 ¼ −ðΔþ μ& þ 2γ − 2γ&ÞΦ20 þ ðδ& þ 2α − 2τ&ÞΦ21 þ 2νΦ10 − 2λΦ11 þ σ&Φ22: ðB8Þ

APPENDIX C: CONSISTENCY CHECK
WITH PREVIOUS HIGHER-ORDER

TEUKOLSKY FORMALISM

In this appendix, we show that the GHP transformation
in Eqs. (109) and (110) when ζ ¼ 0 is consistent with
Eqs. (7)–(10) in Ref. [93] when we are in the same gauge as
in Eq. (108).
First, let us write down the GHP transformation of

Eqs. (109) and (110) when ζ ¼ 0:

HGR
4 ΨðNÞ

4 ¼ T ðNÞ
geo ;

T ðNÞ
geo ¼

XN−1

n¼1

−HðN−nÞ
4 ΨðnÞ

4 ; ðC1Þ

where we use the single superscript notation, since there is
only one expansion parameter, ϵ. In comparison, Ref. [93]
finds

HGR
4 ΨðNÞ

4 ¼ T 0ðNÞ
geo ;

T 0ðNÞ
geo ¼

XN−1

n¼1

½ðEð0Þ
3 FðN−nÞ

3 − Eð0Þ
4 FðN−nÞ

4 ÞΨðnÞ
4

þ 3Eð0Þ
3 ðΨðnÞ

2 νðN−nÞÞ − 3Eð0Þ
4 ðΨðnÞ

2 λðN−nÞÞ

− 3Ψð0Þ
2 ðEðN−nÞ

3 νðnÞ − EðN−nÞ
4 λðnÞÞ(; ðC2Þ

where we set all the terms containing Ψð0;nÞ
3 for n > 0 to

zero and replace the operators d̄3;4 in Ref. [93] with the
operators E3;4 by observing that

d̄3 ¼ E3 þ 3π; d̄4 ¼ E4 þ 3μ; ðC3Þ

d̄ð0Þ3 ¼ EGR
3 ¼ Eð0Þ

3 ; d̄ð0Þ4 ¼ EGR
4 ¼ Eð0Þ

4 : ðC4Þ

As discussed in Sec. VI A, to show that Eq. (C2) is the
same as Eq. (C1), one needs to use Bianchi identities to
express λ and ν in terms ofΨ4 or vice versa. Since Ψ

ð0Þ
3 ¼ 0

for Petrov type-D spacetimes, and we choose a gauge in
which ΨðnÞ

3 ¼ 0 for all n ≥ 1, we can set Ψ3 ¼ 0 in
Eq. (14), such that

F3Ψ4 ¼ −3Ψ2ν; F4Ψ4 ¼ −3Ψ2λ; ðC5Þ

where we also set S3 ¼ S4 ¼ 0 since we focus on vacuum
spacetimes. Notice that Eq. (C5) is true at all orders in ϵ.
Expressing Ψ4 in terms of λ and ν is easier when

comparing Eq. (C2) with Eq. (C1). Let us first perform
this transformation on Eq. (C1). From the definition in
Eqs. (12) and (34), we know that

E3 ¼ E3 −Ψ−1
2 δ&Ψ2; E4 ¼ E4 − Ψ−1

2 ΔΨ2: ðC6Þ

Inserting Eqs. (C5) and (C6) into Eq. (C1), we find

H4Ψ4¼ðE4F4−E3F3−3Ψ2ÞΨ4

¼−3½E4ðΨ2λÞ−ΔΨ2−E3ðΨ2νÞþδ&Ψ2þΨ2Ψ4(
¼−3Ψ2ðE4λ−E3νþΨ4Þ; ðC7Þ

which is simply −3Ψ2 times the Ricci identity in Eq. (14c).
Since Eq. (C1) is essentially the Nth-order expansion of
H4Ψ4, we find

½−3Ψ2ðE4λ − E3νþΨ4Þ(ðNÞ ¼ 0: ðC8Þ

Equation (C8) is consistent with our procedures to derive
the master equation in Secs. V C and VI B. The equation we
use is indeed 3Ψ2 multiplying the Ricci identity Eq. (14c)
with λ and ν replaced by the Bianchi identities Eqs. (14a)
and (14b). Since the Teukolsky equations have to be
consistent with all the Bianchi identities and Ricci iden-
tities, one also expects that, starting from a Teukolsky
equation and simplifying it using Bianchi identities, one
will get back the original Ricci identity.
Now, let us transform Eq. (C2). We first move the first

line of T 0ðNÞ
geo in Eq. (C2) to the left-hand side of the

equation, so it becomes

XN

n¼1

ðEð0Þ
4 FðN−nÞ

4 − Eð0Þ
3 FðN−nÞ

3 ÞΨðnÞ
4 − 3Ψð0Þ

2 ΨðNÞ
4

¼ Eð0Þ
4 ðF4Ψ4ÞðNÞ − Eð0Þ

3 ðF3Ψ4ÞðNÞ − 3Ψð0Þ
2 ΨðNÞ

4

¼ −3½Eð0Þ
4 ðΨ2λÞðNÞ − Eð0Þ

3 ðΨ2νÞðNÞ( − 3Ψð0Þ
2 ΨðNÞ

4 : ðC9Þ

Next, subtracting off the second line of T 0ðNÞ
geo in Eq. (C2)

from Eq. (C9), we find
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− 3½Eð0Þ
4 ðΨð0Þ

2 λðNÞÞ − Eð0Þ
3 ðΨð0Þ

2 νðNÞÞ( − 3Ψð0Þ
2 ΨðNÞ

4

¼ −3Ψð0Þ
2 ðEð0Þ

4 λðNÞ − Eð0Þ
3 νðNÞ þΨðNÞ

4 Þ; ðC10Þ

which, with the last line of T 0ðNÞ
geo in Eq. (C2), gives us

−3Ψð0Þ
2 ½ðE4λ − E3νþΨ4Þ(ðNÞ ¼ 0: ðC11Þ

As discussed above, Eq. (C11) is expected, since the
Teukolsky equations are consistent with the Ricci identities.
Comparing Eq. (C11) to Eq. (C8), one can notice that the

only difference is the overall normalization factor. In
Eq. (C11), this normalization factor is −3Ψð0Þ

2 , while in
Eq. (C8) a normalization factor of −3Ψ2 appears before the
expansion. Then, when expanding Eq. (C8), we also mix
lower-order Ricci identities in the equation. For example,
we can get the term −3Ψð1Þ

2 ðE4λ − E3νþ Ψ4ÞðN−1Þ.
Nonetheless, after inserting in all the lower-order NP
quantities into the equation, these lower-order Ricci iden-
tities vanish, since they are automatically satisfied by the
lower-order Teukolsky solutions in the previous steps. On
the other hand, before inserting lower-order Teukolsky
solutions, Eq. (C8) might be more complicated than
Eq. (C11) due to these lower-order equations.
One can easily remove this difference by replacing the

normalization factor 3Ψ2 in Eq. (76) with 3Ψð0;0Þ
2 . The

reason we inserted 3Ψ2 in Eq. (76) is that the Oðζ0; ϵ1Þ
expansion of the equation reproduces the original
Teukolsky equation in GR [44], which is also true if we
instead insert 3Ψð0;0Þ

2 . Moreover, we can absorb the factors
ofΨ2 andΨ−1

2 in Eq. (76) nicely into the operators Ei. If we
instead use 3Ψð0;0Þ

2 , we can alternatively define the oper-
ators Ei as

Ei ¼ Ψð0;0Þ
2 EiΨ−1

2 ðC12Þ

in comparison to the original definition in Eqs. (32) and
(34). For the goals of this paper, finding the Oðζ1; ϵ1Þ
corrections to the Teukolsky equation, both ways of
normalizing the equation are fine and make little difference.
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