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The detection of gravitational waves from compact binary mergers by the LIGO/Virgo Collaboration
has, for the first time, allowed for tests of relativistic gravity in the strong, dynamical, and nonlinear regime.
Outside FEinstein’s relativity, spinning black holes may be different from their general relativistic
counterparts, and their merger may then lead to a modified ringdown. We study the latter and, for the
first time, derive a modified Teukolsky equation, i.e., a set of linear, decoupled differential equations that
describe dynamical perturbations of non-Kerr black holes for the radiative Newman-Penrose scalars ¥, and
W,. We first focus on non-Ricci-flat, Petrov type-D black hole backgrounds in modified gravity and derive
the modified Teukolsky equation through direct decoupling and through a new approach, proposed by
Chandrasekhar, that uses certain gauge conditions. We then extend this analysis to non-Ricci-flat, Petrov
type-I black hole backgrounds in modified gravity, assuming they can be treated as a linear perturbation of
Petrov type-D, black hole backgrounds in general relativity by generalizing Chandrasekhar’s approach, and
derive the decoupled modified Teukolsky equation. We further show that our formalism can be extended
beyond linear order in both modified gravity corrections and gravitational wave perturbations. Our work
lays the foundation to study the gravitational waves emitted in the ringdown phase of black hole
coalescence in modified gravity for black holes of any spin. Our work can also be extended to compute

gravitational waves emitted by extreme mass-ratio binary inspirals in modified gravity.

DOI: 10.1103/PhysRevX.13.021029

I. INTRODUCTION

General relativity (GR) has passed a plethora of exper-
imental tests in the Solar System [1] and in binary pulsars
systems [2,3], making it the most successful theory of gravity
to date. With the detection of gravitational waves (GWs) by
the LIGO/Virgo/KAGRA (LVK) Collaboration [4], tests in
the extreme gravity regime, where gravity is simultaneously
strong, dynamical, and nonlinear, have gained prominence
in the past decade [1,5-8]. Such tests will become only
stronger with the next generation of ground-based [9,10]
and space-based detectors [11], allowing for even more
stringent constraints on modifications to GR (see, e.g.,
Refs. [8,12-17]).
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Einstein’s theory, although very successful, can be
interpreted as having difficulties explaining certain theo-
retical and observational anomalies, which has motivated
the study of modified theories of gravity. For example, the
incompatibility between GR and quantum mechanics has
motivated efforts in a variety of unified theories, such as
loop quantum gravity [18-20] and string theory [21,22].
Observational anomalies could include the late-time accel-
eration of the Universe [23,24] (without the inclusion of an
“unnaturally” small cosmological constant [25,26]), the
anomalous galaxy rotation curves [27,28] (without the
inclusion of dark matter [29]), and the matter-antimatter
asymmetry of the Universe [30] (without the inclusion of
additional sources of parity violation required by the
Sakharov conditions [29,31,32]). All of these perceived
anomalies have resulted in a zoo of modifications to GR,
which can both be consistent with all current tests while
still yielding deviations in the extreme gravity regime. For
this class of theories, GWs may be excellent probes to study
and possibly constrain deviations from Einstein’s theory.

An important source of GWs is the coalescence of
compact objects: the inspiral, merger, and ringdown of a
binary system composed of black holes (BHs) and/or
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neutron stars (NSs). All of these coalescence phases can be
used to test GR and constrain deviations. For instance, the
presence of extra (scalar or vector) radiative degrees of
freedom can be constrained with the inspiral phase of GWs
emitted in binary BH coalescence. These fields can increase
the rate at which orbital energy is radiated away from the
system, thus affecting the orbital dynamics [7,33-37],
which can be modeled with post-Newtonian methods.
The GW observations made by the LVK Collaboration
in the inspiral regime can then be used to determine
whether binary BHs spiral in at the expected GR rate or
not, thus allowing for constraints on the existence of these
additional radiative fields [12—-14].

On the other hand, modifications to the exterior BH
geometry as well as the dynamics of these modified gravity
theories may be constrained with ringdown GWs, emitted
as the BH remnant settles to its final, stationary configu-
ration. These waves can be characterized as a sum of
quasinormal modes (QNMs), whose complex frequency
contains information about the remnant BH back-
ground [38-46]. The LVK observation of ringdown
GWs and the measurement of the complex frequencies
of a set of QNMs can then be used to probe the exterior
geometry of the remnant [47]. In particular, these obser-
vations can yield tests of the Kerr hypothesis (i.e., that all
astrophysical BHs can be described by the Kerr met-
ric) [48,49]. The GWs emitted during ringdown can be
studied by considering gravitational perturbations of a
background BH spacetime, obtaining their evolution equa-
tions, and then solving the latter to find the spectrum of
perturbations. Additionally, depending on the theory, there
might be additional degrees of freedom present, leading to
additional or coupled evolution equations that can be
solved to obtain the QNM frequency spectra [50-57].
This forms the basis of BH perturbation theory, which
has been used to study QNMs of nonrotating BHs in
GR [38,39,41-43] and modified gravity [50-53,58]. When
the background spacetime is that of a nonrotating BH, the
background metric is static and spherically symmetric, so
the time and angular dependence of the evolution equations
of the perturbations can be easily separated. In GR, the
resulting coupled radial equations can then be further
reduced to two decoupled equations, one for odd parity
perturbations and another for even parity perturba-
tions [41,42]. In modified gravity, however, one may not
be able to decouple all the radial equations, so there can be
more than one equation in each parity besides the equations
of extra nonmetric fields [5S0-57].

When considering background spacetimes that represent
spinning BHs, however, the situation is much more
complicated. This is because such BHs are mathematically
represented through a background metric that is stationary
and axisymmetric. The lack of spherical symmetry renders
the evolution equations for the metric perturbations non-
separable. Fortunately, an alternate method, prescribed by

Teukolsky in 1973 [44], allows for the separation of the
perturbation equations when one works with curvature
quantities (instead of metric quantities), characterized in the
Newman-Penrose (NP) formalism [59]. The latter arises
naturally from the introduction of spinor calculus into GR
and is a special type of tetrad calculus. Using the NP
formalism, the perturbations of a Schwarzschild BH in GR
were studied by Price [60] and extended later in Ref. [61].
Combining these results with Teukolsky’s [44], a separable
decoupled equation for each of the two components of the
perturbed Weyl tensor (‘¥ and W) can be obtained. These
decoupled equations paved the way for QNM studies in
GR, allowing for the accurate computation of the QNM
frequencies of Kerr BHs [62,63].

The Teukolsky formalism [44], however, is not generally
applicable in modified theories of gravity. In particular,
this formalism applies only when the Einstein equations
hold and when the background spacetime is of Petrov
type D [40,64], i.e., when all Weyl scalars except ¥, vanish
on the background spacetime. However, modified theories
of gravity do not necessarily satisfy the Einstein equations,
and the background BH solutions in these theories need not
be of Petrov type D, in general. This is the case, for
instance, in quadratic theories of gravity (such as dynamical
Chern-Simons (dCS) gravity [65,66] or scalar-Gauss-
Bonnet (sGB) gravity [67,68]), where a dynamical field
is nonminimally coupled to a quadratic curvature invariant.
In these theories, the field equations are not Einstein’s, and
isolated, rotating BHs are of the algebraically general
Petrov type 1 [69]; i.e., only the ¥, and ¥, background
Weyl scalars vanish. Therefore, the Teukolsky formalism
cannot be used directly to prescribe master equations for
the evolution of curvature perturbations in such beyond-GR
BH backgrounds.

The study of BH perturbations and their QNMs in
modified gravity has gained prominence in the recent
decade. However, for the most part, these calculations
have been limited to the nonrotating and the slowly rotating
case. In the spherically symmetric, nonrotating case,
QNMs have been calculated using metric perturbation
theory, e.g., in dCS gravity [50,51,58], Einstein-dilaton-
Gauss-Bonnet (EAGB) gravity [52,53], Einstein-aether
theory [70-74], higher-derivative gravity (quadratic [75],
cubic [76], and more generically [77,78]), and Horndeski
gravity [79]. In the axisymmetric, rotating case, reducing
all the metric perturbations into a single perturbation
function (e.g., Regge Wheeler function or a Zerilli-
Moncrief function) is difficult, so studies have resorted
to the slow-rotation approximation at leading order, e.g., in
EdGB gravity [56,57], dCS gravity [54,55], and higher-
derivative gravity [80,81]. Purely numerical studies of
perturbed spinning BHs, resulting from the merger of
two other BHs, have also been done in dCS gravity, but
they typically suffer from secularly growing uncontrolled
remainders [82,83].
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One can, in principle, extend the slow-rotation approxi-
mation to the QNM spectrum of rotating BHs in modified
gravity to higher order in rotation, but this can be a daunting
task. This is because the GWs emitted during ringdown are
produced by BH remnants that typically spin at about 65% of
their maximum or higher [84]. The accurate calculation of
the QNM spectrum of such BHs then requires one to go to at
least fifth order in a slow-rotation expansion or higher [85].
Nonetheless, it has been shown in Ref. [57] (see also
Refs. [86,87]) that one can improve the convergence of
the slow-rotation expansion using the Padé approximation.
In EdGB, one may then consider only up to second order in
the slow-rotation expansion to deal with BHs spinning at
about 70% of their maximum. Additionally, going to higher
order in spin leads to mode coupling between the £ modes,
the £ 4+ 1 modes, and higher modes [54,88,89], where ¢ is
the orbital number of the spherical harmonic decomposition.
Therefore, instead of extending the slow-rotation approxi-
mation, we here focus on developing a new formalism,
motivated from the work of Teukolsky and Chandrasekhar,
to understand the evolution of curvature perturbations and,
therefore, the QNM spectrum of rotating BHs of arbitrary
spin in modified gravity.

A. Executive summary

We here develop and apply a method to find the evolution
equations of gravitational perturbations around non-Ricci-
flat and Petrov type-I BH backgrounds in modified gravity,
where the BH background can be treated as linear perturba-
tions of a Petrov type-D background in GR. We begin by
focusing on backgrounds that are still Petrov type D but are
not described by the Kerr metric because they satisfy field
equations that are not FEinstein’s; i.e., the background
spacetime is not Ricci flat. In this context, we extend the
usual Teukolsky formalism and also develop a new approach
to find the curvature perturbation equations in a particular
gauge, following Chandrasekhar [40]. We show that these
two approaches yield the same perturbation equations.

Let us describe both of these approaches in more detail,
beginning first with a brief refresher of how these approaches
are applied in GR. In the traditional Teukolsky approach, one
begins by considering two Bianchi identities and one Ricci
identity in the NP formalism. Using these equations along
with the GR vacuum field equations and imposing the
requirement that the background is Ricci flat (i.e., the
Ricci tensor vanishes on the background) and Petrov type
D, one can, in principle, generate a commutator relation that
eliminates the coupling between the perturbed Weyl scalars

‘P((,l) and ‘I’(ll) and between ‘I‘il) and ‘I‘;U. However, in the
process of obtaining the commutation relation, one has to
make use of additional Bianchi identities. This procedure is
not tedious in GR, because many NP scalars and spin
coefficients vanish identically, but it can be nontrivial in
modified gravity.

In Chandrasekhar’s approach [40], one makes use of
suitable gauge conditions to simplify the perturbed equa-
tions without the need to use additional Bianchi identities.
In this special gauge, the background and perturbed Weyl
scalar ¥; and W5 vanish, so the two Bianchi identities and
the Ricci identity mentioned above simplify and depend
now only on three unknown quantities. Decoupling these
equations, one then obtains a master equation for the

perturbed Weyl scalars ¥V of the form

1

HORWY —0,  ie{0.4}, (1)
where HSR are the Teukolsky differential operators [44].
As mentioned earlier, we begin our analysis by modi-
fying both of these approaches so that they are applicable in
modified gravity for curvature perturbations of non-Ricci-
flat BHs that are still Petrov type D. In the traditional
Teukolsky approach, we first develop a commutator rela-
tion by using additional Bianchi identities. Because of the
complicated nature of the field equations in modified
gravity, there are more nonvanishing NP quantities, thereby
leading to more terms in the perturbation equations. To
leading order in the perturbation and in deformations from
GR, however, only the Bianchi identities and the commu-
tator relations of GR are required, since all additional terms
vanish. In the Chandrasekhar’s approach, we first show
that, even in modified gravity, a gauge still exists in which
the perturbed ‘P(ll) and ‘{‘gl) vanish. Using this gauge, the
curvature perturbations can be easily decoupled.

To derive the master equation, we find a two-parameter
expansion useful. We use € to denote the size of the GW
perturbations and ¢ the strength of the modified gravity
correction. With this at hand, we show that any NP
quantities ¥ can be expanded as

¥ = P00 4 pp0) 1 Ol 4 reph) (2)

We then show that both approaches lead to a modified
evolution equation for the curvature perturbations of the
form

HgR\P(()Ll) _ SQLQ)(‘P(()O‘”) _‘_3(1.1)(19(1,1)’}1(0,1))’
1.1 11 0.1
HE’R‘PE; ) _ Téeo)(‘l’ﬁ )) + 7—(1,1)(19(1,1)’ h(O.l))’ (3)

where the HER differential operators are the same as the
Teukolsky ones in GR [44]. Here, we list the dynamical
quantities [i.e., O(e) terms] inside the parentheses. The
source terms S(''") and 7 (1) arise from the perturbed and
modified field equations, and they are functionals of any
additional dynamical scalar, vector, or tensor field in the
theory (denoted as (') above) and the GW metric

perturbation (denoted as A(>!)). The source terms S(g:;o] )

and 7 fgl;ow arise from the homogeneous part of the two
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Bianchi identities due to the correction to the background
spacetime in modified gravity, and they are functionals of
the dynamical ‘szl) in GR.

The evaluation of the source terms, which is required to
evaluate the curvature perturbation evolution equations,
requires knowledge of 4(*") and (') The source terms
S0 and 71 depend on 2%V, so the evaluation of the
right-hand side of Eq. (3) requires the reconstruction
of the GW metric perturbation in GR 4(*!). This can be
accomplished with the well-developed methods of
Chrzanowski [90] and others [40,91,92]. Moreover, the
source terms S("'Y) and 7)) also depend on the evolution
of the perturbed scalar, vector, or tensor degrees of freedom
that the theory may admit 8. The evolution of these degrees
of freedom has to be solved simultaneously with the
solution to the curvature perturbations.

With this at hand, we then apply Chandrasekhar’s
approach to modified gravity theories for non-Ricci-flat
and Petrov type-1 BH backgrounds. In such spacetimes, the
biggest challenge is that many background NP quantities
are nonvanishing. Working perturbatively (i.e., treating the
BH background as a deformation of the Petrov type-D
background in GR), one can eliminate the perturbed ¥, and
Y5 from the evolution equations and obtain a separated and
decoupled equation for ¥, and ¥,. Schematically, these
equations look a lot like the decoupled equations when

dealing with non-Ricci-flat and Petrov type-D back-

)

grounds, except that now the source terms Sg;ol and

T gc’ol) can also be functionals of the GW metric perturba-
tion, namely,

H(?R\P(()l»l) :Sge},l)(‘l’éo’l),h(o’l))+S(1’1)(19(1'1),h(0'1>),
HER‘PEI’I):Téé;,l)(‘{’go’l),h(o"))+’T(“)(19(1’1>,h(0")).

H§*® or HE™:
Teukolsky operators
in GR

FIG. 1.

This time we see that both source terms to the curvature
perturbation evolution equations require the reconstruction
of the GW metric perturbation in GR. As in the Petrov
type-D case, we also see that the source terms S('')) and
T require knowledge of the evolution of the perturbed
scalar, vector, or tensor degrees of freedom that the
modified theory may admit 9. Figure 1 shows schemati-
cally the structure of the master equations for ¥, and ¥,,.

In the rest of the paper, we derive and present the results
summarized above in detail. In Sec. II, we present a brief
review of the NP formalism and relevant NP equations. We
also review the analysis presented by Teukolsky (i.e., the
Teukolsky formalism) and by Chandrasekhar (using a
gauge choice) for Petrov type-D spacetimes in GR. In
Sec. III, we discuss a subset of modified gravity theories
that our work can be applied to and prescribe a perturbation
scheme for them. We then extend both Teukolsky’s and
Chandrasekhar’s approaches to Petrov type-D spacetimes
in these modified gravity theories in Sec. IV. In Sec. V, we
prescribe and discuss in detail the formalism to study
perturbations of an algebraically general: Petrov type-I
spacetime in modified gravity theories which can be treated
as a linear perturbation of a Petrov type-D spacetimes in
GR. In Sec. VI, we discuss the connection of the formalism
developed in Sec. V to the second-order Teukolsky
formalism in GR. We further show that our formalism
can be generalized to higher order in both ¢ and €, which is
thus a beyond-GR extension of the higher-order Teukolsky
formalism in GR developed in Ref. [93]. Finally, in
Sec. VII, we summarize our work and discuss some
avenues for future work. Henceforth, we adopt the follow-
ing conventions unless stated otherwise: We work in four
dimensions with metric signature (—,+,+,+) as in
Ref. [94]. For all NP quantities except the metric signature,
we use the notation adapted by Chandrasekhar in Ref. [40].

No need for
metric reconstruction
at this step

S (91 p0.1))
or T (YLD p0.1))y;
9D 5 Need to solve for other
nongravitational fields
R(©1) — Need metric reconstruction

Metric reconstruction S CVAICR)

(only for GWs in GR): /
Hertz potential
and other approaches

Schematic flow chart of the different possible terms that may arise in the modified Teukolsky equation for any Petrov type-I

spacetime in modified gravity, where the background can be treated as a linear perturbation of a Petrov type-D spacetime in GR. The
origin of these correction terms and the strategies to evaluate them are outlined here and discussed in detail in Sec. V C. For comparison,
the corresponding procedures for any Petrov type-D spacetime in modified gravity theory is also shown.
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II. NP FORMALISM AND PERTURBATIONS
OF BHs IN GR

With the study of GWs using tetrad and spinor calculus
gaining prominence in the 1960s, Newman and Penrose
presented a formalism that combines these two techniques
to derive a very compact and useful set of equations that are
equivalent to the field equations [95]. This set of equations
consists of a linear combination of equations for the
Riemann tensor in terms of the Ricci rotation coefficients
or spinor affine connections [95]. The different possible
components of the Riemann tensor or the Weyl tensor in a
null tetrad or a null basis were then associated with certain
quantities, called the NP coefficients or NP scalars. This
formalism provided a new tool to understand GW proper-
ties, such as polarizations and ringdown modes, in more
detail [44,96-99]. Using the NP framework, Teukolsky
presented a formalism to study the ringdown phase of
spinning BHs in GR [44,99,100] and to study the dynami-
cal perturbations of Kerr BHs or, more generally, Petrov
type-D spacetimes in GR.

In this section, we provide a quick refresher of the NP
formalism and discuss the necessary equations for devel-
oping a formalism to obtain master equations for GW
perturbations in GR. Using these equations, we present in
brief the approach prescribed by Teukolsky [44] and by
Chandrasekhar [40] to obtain separable decoupled differ-
ential equations for perturbations of BHs in GR. For a
reader familiar with these topics, we recommend starting
from Sec. III, where we extend the aforementioned for-
malism to BHs in modified gravity.

A. NP formalism: A quick review

In this subsection, we present a quick overview of the
relevant equations under the NP formalism required for our
work. For an in-depth overview, we provide further details
of the NP formalism [40,95] in Appendix A. In the NP
formalism, a null tetrad (#,n*, m*,m*) is introduced at
every point of a four-dimensional pseudo-Riemannian
manifold of signature +2 and metric g,,. The vectors /#
and n* are real, whereas m* and m* are complex, with
an overbar denoting complex conjugation. The tetrad
4-vectors must also satisfy the following orthogonality
properties:

LW =n,n* =mm" =m,m" =0,

] u p p
b— —momh = —

lﬂn =-m,m' = 1,
Ho— | h = B— ot =

Lmt = I,m" = n,m" = n,m" = 0. (5)

Given such a null tetrad, the metric can be expressed as
G = —Ln, —n,l, + m,m, + m,m,. (6)

Intrinsic derivatives in the NP formalism are defined as

D¢ = ¢, l%,
o = ¢ m*,

Ap = ¢, n*,
5'p = ¢, m". (7)

For any tetrad, we can also perform Lorentz transforma-
tions on it, i.e., three rotations and three boosts. These
transformations can be mapped to three types of tetrad
rotations, which are characterized by six real variables on
the tetrad basis vectors, such that the orthogonality proper-
ties in Eq. (5) are preserved [40]. These three types of tetrad
rotations are discussed in detail in Appendix A.

In the NP formalism, the fundamental variables are five
Weyl scalars (¥, ¥, ...), 12 spin coefficients (x, 7, &, ...),
and ten NP Ricci scalars (®g, Pgy, ..., A), which are
generally complex quantities. The mathematical form of
all these quantities is presented in Appendix A. These
quantities allow one to construct certain fundamental
relations of the NP formalism: 18 complex Ricci identities
[Eq. (A12)] and nine complex plus two real Bianchi
identities [Egs. (A13)] [40]. The Ricci identities are derived
from appropriate linear combinations of Eq. (A6) and (A7),
while the Bianchi identities come from Eq. (A8). Some
Ricci identities relevant for this work are

(D—p—-p*=3e+e)o
—(b—t4+a —a -3p)k—-¥, =0, (8a)

(A+pu+u +3y—r)a
—(+3a+p +r—-tWw+¥,=0, (8b)

(D—e+e —p)r—(A=3r+7)k
—m'p— (" +m)o—¥ - Dy =0, (8¢)

(D=p*+e)fp—(6+a —n")e
—(a+mo—(u+y)k—¥ =0, (8d)

(D=p*+e)fp—(6+a —n)e
—(a+mo—(u+y)k—-¥ =0, (8e)

while the Bianchi identities useful for this work are

(6* —da+m)¥y— (D —2e—4p)¥, —3k¥, = S,, (9a)
(A—dy+u)¥y— (6—47-2P)¥, - 36¥, =S,, (9b)
(644 —1)¥s— (A+2y +4u)¥P;+ 3%, =83,  (9¢)
(D+4e—p)¥, — (6" + 4+ 2a)¥; + 32¥, = S, (94d)

where we define
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Sl = (5 + ﬂ'* —-2a* — Zﬂ)q)oo - (D —2¢e — Zp*>q)01

+ 2GCI)10 - 2K(I)11 bl K'*(I)()z, (IOa)

Sz = ((S + 27[* - 2ﬂ)q)01 - (D - 28 + 28* - p*)(DOZ

—_ /1*@00 + 26@11 - ZKCDlz, (10b)

Sy = —(A + 25" 4 2y) Dy + (6 — 7" + 2a 4 25°) Dy,
+2I/(I)11 +l/*q>20 —2),(1312, (IOC)

Sa=—(A+u +2y =27 )Py + (6" + 20 = 277) Dy
+ 21/(1)10 - 2/1@11 + O-*CI)ZZ- (10d)
The remaining equations are presented in Appendix A.
The above equations can be recast in a simpler form if we
define the following operators:
F,=6"—-4a+7, Fr=A—-4y 44,
Ji=D —-2e—4p, J,=0—-41-2p,
Ei=6—1+4+7n"—ao —-3p,
E, =D —p—p*—3e+ ¢, (11)
Fy=6+4p -1, Fy,=D+4e—p,
J3= A+ 2y + 4y, Jy=0"+4n 4+ 2a,
Ex=6"+3a+p+n—-1",
Ey=A+p+p +3y—vy, (12)

so we can rewrite Egs. (9a), (9b), and (8a) as, respectively,

F]‘PO—J]T]—:;K\PZZS], (133)
FQTO - leP] - 35‘1‘2 == SQ, (13b)
EzG—ElK—lPO :O, (130)

while Egs. (9¢), (9d), and (8b) can be written as, respectively,

F3\P4 — J3T3 + 3l/lP2 = S3, (143)
F4lP4 - J41P3 + 3/1\112 - S4, (14b)
E;M, - E3IJ + lP4 = 0 (140)

For this work, we also need a commutator of the intrinsic
derivatives introduced in Eq. (7), namely,

[6,D] = (" +p—7*)D+ kA - (p* +e—¢€")5
— 66", (15)

The other commutators of intrinsic derivatives can be found
in Appendix A.

Let us conclude with a brief discussion of the Petrov
classification [40,64]. The Petrov classification is an
organizational scheme based on the examination of the
algebraic structure of the Weyl curvature tensor. Since the
Weyl scalars in the NP formalism depend on the Weyl
tensor [see, e.g., Eq. (A10)], one can classify solutions in a
given theory based on the vanishing of the Weyl scalars for
the given solution. The classification is as follows.

(1) Type L—¥, =¥, = 0.

2) Type I.—Yy =Y, =¥, =0.

(3) Type D—LPO = lPI = ‘P3 = LP4 =0.

@) Type IL—Yy =¥, =¥, =¥, =0.

(5) Type N—“PO = lPl = ‘{"2 = "P3 =0.

Isolated stationary BHs in GR are of Petrov type D, while
these BHs in modified gravity theories, such as in dCS
gravity or EdAGB gravity, are of Petrov type I [66,69]. Since
Petrov type-1 spacetimes are the most general type of
spacetime in the Petrov classification, they are also called
algebraically general. The rest of the spacetimes in the
Petrov classification, including Petrov type D, are classified
as algebraically special.

B. Teukolsky formalism for Petrov type-D
spacetimes in GR

In this subsection, we present the formalism first
prescribed by Teukolsky in 1972 [44], where, using the
NP formalism, he obtained a set of separable, decoupled
gravitational perturbation equations for Kerr BHs in GR.
More specifically, Teukolsky expanded all curvature quan-
tities into a background plus a perturbation; for example,
the Weyl scalars are expanded into

v, =9l 4 gV (16)

for i € (0,1,2,3,4), where the superscript (0) means that
these quantities are computed from the background metric
while the superscript (1) stands for a perturbation from this
background with € an order-counting parameter. With this
in hand, Teukolsky was then able to derive separable and

decoupled equations for the curvature perturbations lI’(()l)

and ‘I‘A(Ll) of a Kerr BH.

The following derivation, which follows closely that of
Ref. [44], applies to any Petrov type-D vacuum background
metric in GR, which includes the Schwarzschild and Kerr
metrics. Let us then choose the [/ and n* vectors of the
unperturbed tetrad along the repeated principal null direc-
tions of the Weyl tensor. Thus, for a Petrov type-D vacuum
GR spacetime, we have

w) = ¢l = gl — gl —,
K0 = 50) — (0 — 40) — (17)

The result on the second line of Eq. (17) can also be seen to
come from the Bianchi identities in Eq. (A13).
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The GR field equations in trace-reversed form can be
expressed as

1
R™ = 8z (wa - 5Tg””>, (18)

where 7" is the stress-energy tensor and 7 is its trace.
Since we are working with vacuum spacetimes, 7 = 0,
and, thus, R* = 0. Using this in Eq. (A11), we can see that
all background and perturbed values of ®;; for i,;j €
{0, 1,2} vanish. For instance,

1 1
(I)OO = —ERH = _ER/U/Z”ZU = 477.'T” = O (19)

Thus, using Eq. (10), we see that Sy, S,, S3, and S4 vanish
identically for vacuum GR spacetimes.
To study the perturbations of BHs, we require differential

equations for ‘P(()l) and ‘Pgl), since these represent curvature
perturbations associated with propagating metric perturba-
tions. We first present the formalism to obtain a differential
equation for ‘I’él), and, later, we apply the same to ‘I‘gl).
Consider then the vacuum Ricci identity in Eq. (13c) and
the Bianchi identities in Eqgs. (13a) and (13b). As men-
tioned previously, in vacuum GR spacetimes, the right-
hand side of these equations vanish. Furthermore, using
Eq. (17), the corresponding perturbation equations to
leading order in the perturbation take the form

FOW — 10w — 3wl =0, (200)
FOWD _ 0wl _ 35090 _ o (20b)
EVs0 — EDx) gl — o, (20¢)

In order to simplify the notation, we drop the superscript (0)
for all background quantities for the remainder of this
section. Multiplying Eq. (20c) by the background ¥, Weyl
scalar and plugging in for E; and E, using Eq. (11),
one finds

(D —4p —p* —3e+&*)(Pr0')) — (6 — 4z + 7*

= (
—a =3p) () ) = 0 (21)
2 2Ty s

where we use Eqgs. (A13h) and (A13g), which for the
background ¥, reduce to
D\Pz = 3plP2, (quz = 37."‘1”2. (22)

In order to be consistent with the simplified notation, we
introduce

ER=6—4r+ 1" —a" - 38, (23a)
ESR =D —4p—p* —3e+ ¢, (23b)

so Eq. (21) can be written more compactly as
ESR(‘szf(])) - E(I}R(lPZK(l)) = lqu’(()l)- (24)

To obtain a differential equation for ‘I’f)l), we need to

eliminate ‘I‘gl) from Egs. (20a) and (20b). This can be done
by making use of the following commutation relation:

ESRJ, — ESRJ, = 0. (25)

This relation can be shown to hold for any Petrov type-D
spacetime in GR by using Egs. (8c)—(8e) and (15).
On operating ES® on Eq. (20b), ESR on Eq. (20a), and

subtracting one equation from the other, ‘Pgl) vanishes
identically. Using Eq. (21), we finally have

(ESRF, — ESRF| — 39,9 = 0. (26)
This is the decoupled equation for ‘P(()l) for any Petrov
type-D vacuum spacetime in GR. As shown by Geroch,
Held, and Penrose (GHP) [101], the NP equations are
invariant under the exchange [V <> n* and m" < mt,
where the choice of /¥ and n* has no effect on this

symmetry. Applying this transformation to Eq. (26), one
(1)

finds the decoupled differential equation for ¥, for a
Petrov type-D vacuum spacetime in GR, namely,
(ESRF, — ESRFy — 39,9 =0, (27)
where we introduce
ESR=6"+3a+p* +4n — 1",
ER=A+4u+p +3y—v". (28)

An alternate derivation using the GHP formalism is
provided by Stewart [102]. However, for the purpose of
this section, we stick with the formalism laid down by
Teukolsky.

C. Chandrasekhar’s approach for Petrov type-D
spacetimes in GR

Chandrasekhar introduced another way to derive the
Teukolsky equation in Ref. [40] by utilizing the gauge
freedom of the tetrad. As briefly mentioned in Sec. IT A and
discussed in detail in Appendix A, one is free to rotate the
tetrad following Eq. (A16) such that all the normalization
and orthogonality conditions in Eq. (5) are preserved.
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Let us then consider a type-II rotation, which is given by

m— m+ bn, m—m+ b*n,

I = 1+ b*m + bin + bb*n (29)

n-—n,

[see also Eq. (A16b)], and set the rotation parameter b to be
of leading order in the perturbation, i.e., b = b(!). Ignoring
all higher-order terms, the perturbed Weyl scalars transform
into [see, e.g., Eq. (A17b)]

wl) ol L apOpl® gl gl 3,

v wl) popwl? ol ) gl
gl ol (30)
Since for a Petrov type-D spacetime ‘I’fi)z =0, all the ‘I‘EQ,
remain invariant under such a rotation. By choosing
b = w39y the perturbed Weyl scalar W\ can
be removed directly without the use of any additional
Bianchi identities and commutation relations used in
Sec. II B. Another way to understand this gauge choice is
that we have three equations for four unknowns in Egs. (20),
so there is one arbitrary function to be determined.

Using this gauge freedom to set ‘P(ll) =0 through a
tetrad rotation, one can now easily derive the Teukolsky
equation. First, use this gauge freedom to set ‘I’gl) =0in

Eqs. (20a) and (20b) and then solve for (") and (). Now
insert these solutions back into Eq. (20c) to find

(EoF, — & F, = 39,9 =0, (31)
where we define
Ei = \PinlPEI. (32)

Here, we drop the superscript (0) for all unperturbed
quantities. Applying the GHP transformation explained

below Eq. (26), one finds an equation for ‘Pf‘l), namely,
(€4F4 - 53F3 - 3‘1’2)“1”21) — O (33)

The &; operators can be simplified using the product rule.
Doing so, one finds

1
Ei=6—1+7n" —a" -3 —-—59,, (34a)
¥,
1
52:D—p—p*—38+8*—lP—D‘I‘2, (34b)
2
1
& :5*+3a+ﬁ*+ﬂ—r*—‘P—5*‘P2, (34c¢)
2
1
54:A+u+ﬂ*+3y—y*—T—AT2. (34d)
2

In deriving Egs. (31)-(33), we also multiply the whole
equation by 3¥,. We see in Sec. IV B that this makes
Egs. (31)—(33) exactly the same as Eqgs. (26) and (27), so
&; = ESR. Note that one can also derive the equation for 'V,
in the same way we derive an equation for ¥, (i.e., without
the GHP transformation), using the fact that a type-I
rotation at O(e) can be used to set ‘I‘gl) to zero.

It should not be surprising that one obtains the same
equation following the traditional Teukolsky approach and
Chandrasekhar’s approach. From Eq. (30) and other tetrad
rotations discussed in Appendix A that one can perform in

Egs. (A16), one can see that ‘P(()l) and ‘I’A(Ll) are gauge-
invariant quantities under linear perturbations. In
Chandrasekhar’s approach, since one does not need to
use any additional Bianchi identities and commutation
relations to cancel off ‘I’(ll) , there are fewer equations
one needs to worry about, and this is helpful when dealing
with the more complicated non-Petrov-type-D spacetime
backgrounds of modified gravity theories. However, to
convince ourselves that the equivalence between these two
approaches is not broken when considering beyond GR
theories, in Sec. IV we find a modified master equation
using both approaches and show that the two methods are
equivalent in modified gravity theories.

III. FRAMEWORK OF PERTURBATION
IN MODIFIED GRAVITY THEORIES

In this section, we discuss a subset of modified gravity
theories that the formalism developed in this work can be
applied to. We classify these theories into two classes based
on the presence of additional nonmetric fields in the action
that define these theories. For both classes, we provide
some examples by explicitly writing down the Lagrangian,
the equations of motion for all the fields, and the properties
of BH spacetimes, which serve as the background to our
perturbation analysis. We then prescribe a perturbation
scheme using a two-parameter expansion for both classes
of modified gravity theories.

A. Theories of gravity beyond GR

In this subsection, we provide a quick overview of
certain modified theories of gravity relevant for this work
and discuss the BH spacetimes in these theories, which
serve as a background for our perturbation scheme.
Consider then a class of theories defined through the
following beyond-GR (bGR) Lagrangian:

L = Lgr + 7 Lycr + Lonatter + Lrield» (35)

where Lgg is the Einstein-Hilbert Lagrangian, £ ., 1S the
matter Lagrangian, Lgq is the Lagrangian for all other
(nonmetric) dynamical fields (including all kinetic and
potential terms of these fields) that the theory may permit,
and Lygr is a Lagrangian that contains non-Einstein-Hilbert
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curvature terms and can, in principle, include nonminimal
couplings to the nonmetric dynamical fields of the theory.
The quantity # in Eq. (35) is a dimensionful scale that
characterizes the strength of the GR correction, and p is a
number to ensure that £” L, has the right dimensions. We
can classify the beyond-GR theories described by the
Lagrangian in Eq. (35) based on the presence or absence
of additional nonmetric dynamical fields, i.e., based on
whether Lgq vanishes. Note that we here do not consider
theories with nondynamical, prior, or “fixed” fields that
couple to the metric tensor. In this work then, we define this
classification as

(1) 'Cfield ?é 0 = class A,

(ll) 'Cfield =0 = class B.

An example of beyond-GR theories of class A that we
consider is dCS gravity. This theory is defined by the
Lagrangian in Eq. (35) with the choices

EGR == (167[)_1R,

1
ElGk = R

1
Liga = =59 (Vu9)(V.9), (36)

and £ = ¢ is the dCS coupling constant with p = 2. R is
the Ricci scalar, g, is the metric, and 9 is a massless,
pseudoscalar, axionlike field that nonminimally couples to
the Pontryagin curvature invariant *RﬂUK(SR’/W«s, where

1
*Rﬂyké — E €MyaﬂRaﬂK§ (37)

is the dual of the Riemann tensor. The field equations in
dCS gravity are

1
R, = 87[{ <T}fy -5 gﬂyTM> +(V,9)(V,9)

- zadCS[(val())eﬂﬁa(ﬂvaRu)é + (vavé’g)*Rﬁ(/u/)ﬁ]}’

(38)
09 = — 2458 «gu rogo (39)
- 4 v KO

where Eq. (38) is the trace-reversed metric field equation
and Eq. (39) is the scalar field equation. The dCS coupling
constant agcs = ¢ determines the strength of the
Chern-Simons (CS) modification and has dimensions of
[Length]?. Stationary and vacuum BH solutions in this
theory are not Ricci flat, so they are obviously not
represented by the Kerr metric [103—105]. Instead, spinning
BHs in dCS gravity have a corrected event horizon
location, ergosphere, and different exterior multipole
moments [103] to name a few corrected quantities.

Moreover, dCS BHs are of non-Ricci-flat Petrov type-I
spacetimes in the Petrov classification given in Sec. II A. To
leading order in spin, however, the BHs in this theory
remain non-Ricci-flat and of Petrov type D [69,103,106].

Another example of a class-A beyond-GR theory is
EdGB gravity [107], which is a special case of sGB
gravity [108]. Using Eq. (35) and the conventions in
Refs. [56,108], EdGB theory is defined via

‘CGR = (1677)_1R,
LEP = (647)" 0,
LEGP = —(322)"'g(V,0)(V.0), (40)
where
g= RMPPR,,,; —ARMR,, + R? (41)

is the Gauss-Bonnet curvature invariant and ¢ = £gygp 1S
the EAGB coupling constant with p = 2. The quantity #is a
massless dilatonlike scalar field that nonminimally couples
to the Gauss-Bonnet invariant G. The metric field equation
for EAGB gravity in trace-reversed form is then given
by [56]

1 1
le =8 <Tll:4y - EgleM> -+ 5 (V”H) (VVQ)

1
— QEJGB (’ny - EQWIC> s

1
IC/HJ = g (gﬂ/)gl/()' + gﬂﬂgy/))e&‘—yavﬁ(*R/)ﬂyaeevﬁe)’
K = g,K", (42)

whereas the scalar field equation is

00 = — “Ej‘ﬂ e%G. (43)

The quantity aggge = l3y6p is the coupling constant of
EdGB theory and has dimensions of [Length]?. Stationary
and vacuum BH solutions in this theory, just like in dCS
gravity, are non-Ricci flat and are not represented by the
Kerr metric [109—113]. Rotating BHs in EdGB theory are
described by non-Ricci-flat Petrov type-I spacetimes, in
general, but to leading order in spin they are described by
non-Ricci-flat Petrov type-D spacetimes [69].

An example of class-B beyond-GR theories is higher-
derivative gravity [81], because this theory contains no
nonmetric dynamical fields. Following Eq. (35), the
Lagrangian of this theory can be represented by
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Lgr = (167)7'R,
LIQ%DR = (16”)_1(/1eveanp ngaéyRéyM v
+ Zodd Ry R0 "Rs,M™).
Lia = 0. (44)

where we keep only terms with up to six derivatives of the
metric (a more general discussion can be found in
Ref. [81]). £ = ¢yp is the higher-derivative gravity cou-
pling constant with p = 4. The quantities A.,., and 4,44 are
dimensionless coupling constants that are introduced to
distinguish terms that preserve or break parity. The field
equation in trace-reversed form is [81]

1 6
R, =87 (T}fy -3 gWTM> —-&9.

n) n - o7p p(n)
Ew = P! )(#p "Ry)poy = Eg/w[’(") +2VoV/ Pluiohyp

6 p
wa)ﬂa = 3“?—;/I§HRZLR&/}/JJ
dd
3atip

8 (58 Ry + RS Ro) (43)

+

where a§fS" = ipAeven and A8 = fipAoqq are coupling

constants that determine the strength of the parity-preserving
and the parity-breaking higher-derivative gravity corrections.
The quantity E(,,) refers to the Lagrangian with n derivatives
of the metric in higher-derivative gravity, so L) = Li(x-
Rotating BHs in higher-derivative gravity are non-Ricci
flat [81], but their Petrov type has not yet been studied in
detail.

Theories described by the Lagrangian given in Eq. (35)
form only a subset of all possible theories. This subset does
not just include dCS gravity [65,66], EAGB grav-
ity [107,111,114-116], and higher-derivative theories of
gravity [80,81,117-120], but it also includes, for example,
sGB gravity, in general [121], quadratic gravity theories
without additionally coupled fields [122,123], and higher-
dimensional gravity theories [124,125] to name a few. These
theories can also be classified based on whether their
stationary and vacuum (i.e., no matter) BH solutions are
Ricci flat or non-Ricci flat. For a beyond-GR theory that
admits Ricci-flat, Petrov type-D BH spacetimes, perturba-
tions can be studied within the standard Teukolsky formalism
presented in Sec. II B, so we do not focus on these theories
here. In this work, instead, we focus on the dynamical
perturbations of BHs that are non-Ricci flat and either Petrov
type D or Petrov type 1. Therefore, our work applies to dCS
gravity [65,66,69,106], EdAGB and sGB gravity [69], and
higher-derivative gravity [80,81,117-120].

B. Perturbation scheme

In this subsection, we discuss the perturbation scheme that
is applicable to the modified gravity theories discussed in

Sec. IIT A. To solve for the dynamical gravitational pertur-
bations of a BH background in any such modified gravity
theory perturbatively, we need a multivariable expansion of
all NP quantities. Generalizing the discussion in Ref. [82] for
dCS gravity to any modified gravity theory that can be
studied perturbatively (in an effective field theory approach),
we need at least two expansion parameters [126]:

(1) ¢, a dimensionless parameter that characterizes the
strength of the correction to GR (which typically
depends on the ratio of the scale #Z to the BH
mass), and

(i1) €, a dimensionless parameter that describes the size
of the GW perturbations, which also appears in GR.

In this work, we additionally impose that ¢ is the leading
order at which beyond-GR corrections to the metric field
hSR appear, while the leading-order correction to other
nonmetric fields may enter with other (possibly lower)
powers of ¢.

In order to understand the coupling constant { better,
let us first relate it to the coupling constants of the different
modified gravity theories we use as examples in Sec. III A.
For class-A beyond-GR theories with nonminimal coupling,
the extra nonmetric fields d,gg, €.g., 9 indCS gravity and #in
EdGB gravity, are sourced by the metric field and are
proportional to terms of O(aygr ), Where apgr is the coupling
constant associated with Lygg in Eq. (35), e.g., agcs in dCS
gravity and agggg in EAGB gravity. The field Jygr then
backreacts onto the metric and sources the metric perturba-
tions AR, which are also multiplied by a factor of ay,gg.
Thus, to leading order, dycr ~ apgr and ALSR ~ ayGrIbGr.
S0 ~ aﬁGR. This is evident from Egs. (38) and (42), where
¢ ~ aicg for dCS gravity and ¢ ~ ag,qp for EdGB gravity.
For class-B beyond-GR theories, the metric perturbations are
driven by the metric fields at lower order and are proportional
to apgRr, SO ¢ ~ apgr- Forexample, from Eq. (45), one can see
that ¢ ~ afje%.

By requiring that AR enters at O(¢), R,, must also
enter at O((), since we are focusing on background
spacetimes that are perturbed from the vacuum solutions
in GR. This can be seen in Egs. (38), (42), and (45). In
addition, for both classes of beyond-GR theories, since
metric perturbations in modified gravity are sourced by the
metric field in GR either indirectly via extra nonmetric
fields (class A) or directly (class B), the leading-order terms
of the metric field in R,, must be of O(¢°). Thus, when
computing R,,, we need only the metric at O(¢%, €°) or
O(¢°, €'"). The perturbative order of R, and the metric field
in it are important when we discuss the decoupling of the
modified Teukolsky equation in Secs. IVA and V C.

Besides the metric field, we also have the NP quantities
(i.e., tetrad basis vectors, Weyl scalars, spin coefficients,
and NP Ricci scalars) generated from it. Although the
beyond-GR correction to the metric field enters at O({), the
beyond-GR correction to the NP quantities does not
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necessarily enter at O({) if we make certain gauge choices
on some NP quantities, which are discussed in detail in
Sec. VA. For simplicity, we want all the NP quantities to
have the same expansion pattern as the metric field, so here
we construct a NP tetrad which is corrected by beyond-GR
theories at O({) to leading order. Thus, all the other NP
quantities are naturally corrected by modified gravity at
O(¢) to leading order.

In order to ensure that all the NP quantities are corrected
at O(¢), we must find a tetrad that shared this same
property, namely,

' Loel”, (46)

etm = Hﬂ

where 56,(,1;0) is a perturbation of O(f',€%) of the

Kinnersley tetrad eg(,),'()). Here, we use the superscript

(n,m) to denote terms at O(¢", e™). The only constraint

on a NP tetrad is the orthogonality condition in Eq. (5). Let
(1,0)

us expand the correction to the Kinnersley tetrad de, ~ in
terms of the original tetrad e,(l(;;o) in GR:
sely”) = AULO) b 00), (47)
To satisfy Eq. (5), we need to have that
(el + ¢oel” (e + el ) (900 + chil10))
= Nab» (48)

where 7, is the metric defined in Eq. (A1), ¢(*0) is the
metric of the GR background, and ##*('9) represents the
modification to the metric due to deviation from GR. Up to
O(¢), we can equivalently require that

LO g/w 00) 4 ¢ rm (bL~0> g(0:0)

_ _eg,g-%g,y- ) pl10), (49)
where we use the condition g"”(o’o)efl(,)jo)egz’o) = Nap-
Inserting the expansion of Eq. (47) in the above condition
and using the condition g*(*0 e(?,o) egio) = 1,, again, one
finds

1,0 1,0 1,0 1,0
A<ab : +A§7a )= 2AEab)) - _h<ab )’ (50)

where hilh,0> = eﬁ,(,),’o)egi’o)h"”“*o), and, thus, AEL}?)) = —%hglh’m.
(1.0)

In general, A, can have 16 independent components,
which can be separated into a symmetric tensor AE;’bO)) with
ten independent components and an antiSymmetric tensor

AE;;])) with six independent components. Since Eq. (50)

does not impose any constraints on AE;Z;(])), the components

of AE b]) correspond to six degrees of gauge freedom to

further rotate the tetrad. We can choose AE b]) =0, so the

perturbed tetrad is

1 1
400 _ 1,00 se10 _ _ 1 00,0010

ab E ab > ap  — 2ea1/ i . (51)

Using the tetrad in Egs. (46) and (51), we are able to
expand the metric field and all the NP quantities generated
from it with the same perturbative scheme. In this paper, we
are interested in linear dynamical perturbations of any
Petrov type-I stationary spacetime, which itself is a linear
deformation of the Kerr metric, so all terms beyond
O(¢', €') are ignored. Up to O(¢!, €!), if we use the tetrad
in Egs. (46) and (51), the Weyl scalars can be expanded as

g, =9 4 eplV

(
e R R < SRR (7))
and the same expansion applies to the metric field and all
the other NP quantities. For the beyond-GR theories of
class A mentioned in Sec. III A, additional fields may be
present. For the examples presented, the pseudoscalar field

in dCS gravity can be perturbatively expanded as

9 =90 + 9 = 9010 4 geg(hl), (53)
A scalar field 6 in EAGB gravity can also be expanded
perturbatively in a similar manner. For both § and 6, the
background and perturbed GR pieces vanish. Notice that
other work sometimes chooses to expand extra fields
starting at (0 [82,83,127,128] or ¢!/ [104], since these
extra fields usually enter at lower order than the metric field
as explained above. In our case, we choose to absorb the
coupling constant into the expansion of the extra fields for
convenience in the order counting, so our expansion starts
at ¢. In latter sections, we may also rotate the tetrad in
Egs. (46) and (51) using Egs. (A16) such that certain NP
quantities vanish on the background. If the expansion in
Eq. (52) is not broken, we use the rotated tetrad for the
convenience of calculations. In the case that Eq. (52) is
violated due to those rotations, we use Egs. (46) and (51) as
our background tetrad.

Besides ¢ and €, one may have to deal with additional
expansion parameters, such as the dimensionless spin y in
the slow-rotation expansion, but an expansion in ¢ and € is
necessary and sufficient to demonstrate how the Teukolsky
equation in modified gravity can be derived. Below, we
may write some quantities with only one superscript, e.g.,
¥, which represents the nth-order term in the expansion
of ¥ in ¢, as shown in the first line in Eq. (52), so all the
other expansions are hidden for simplicity.
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IV. PERTURBATIONS OF PETROV TYPE-D
SPACETIMES IN THEORIES BEYOND GR

In this section, we present a method to extend the
formalism shown in Sec. II for obtaining the perturbation
equations for Petrov type-D BHs in modified theories of
gravity discussed in Sec. Il A. We particularly focus on
spacetimes that are stationary and vacuum solutions to
modified gravity theories, and, although they may not be
Ricci flat, they remain of Petrov type D. As discussed in
Sec. IIT A, an example of such a spacetime is BH solutions
in dCS gravity, expanded to leading order in the dimen-
sionless spin parameter [66,69] and obtained in an effective
field theory approach. We use the perturbation scheme
introduced in Sec. III B. Extending the formalism devel-
oped for Petrov type-D spacetimes in GR (either the
traditional Teukolsky approach or the Chandrasekhar
approach) to include Petrov type-D spacetimes that are
non-Ricci flat in modified gravity is a stepping stone in
developing a formalism that is applicable to algebraically
general Petrov type-I spacetimes in beyond-GR theories.

A. Extending the Teukolsky formalism beyond GR:
Non-Ricci-flat and Petrov type-D backgrounds

In this subsection, we present an extension to the
Teukolsky formalism presented in Sec. II B for non-GR
non-Ricci-flat Petrov type-D spacetimes. We follow a
procedure similar to that presented in Sec. II B with the
aim of developing a formalism to obtain the decoupled
differential equation describing the dynamical pieces of ¥,
and W,. This subsection along with the next one forms the
backbone of the development of a formalism for the
algebraically general Petrov type-I spacetimes in beyond-
GR theories.

We begin by considering modified theories of gravity
whose isolated (stationary and vacuum) BH solutions are
non-Ricci flat; i.e., the Ricci tensor obtained from trace-
reversed vacuum field equations (i.e., no matter present) no
longer vanish. For instance, in theories such as dCS or
EdGB, where a scalar field is nonminimally coupled to a
quadratic term in curvature [52,54,65,66], cubic, or higher-
order theories of gravity [80,81,117-120,129], the metric
field equations lead to a nonvanishing Ricci tensor and are,
therefore, non-Ricci flat. This can easily be seen in the dCS
gravity example with the trace-reversed field equation (38),
where the Ricci tensor clearly does not vanish even in
vacuum due to the nonvanishing of the Riemann tensor and
a nontrivial pseudoscalar field.

When the background is non-Ricci flat, the unperturbed
Bianchi identities acquire sources. In the NP language, the
nonvanishing of the Ricci tensor implies that NP Ricci
scalars @;; for i, j € (0,1,2) also do not vanish [see, e.g.,
Eq. (19)]. Consequently, the source terms of Egs. (13a)
and (13b) are nonvanishing for a non-Ricci-flat, non-GR
BH background. But if we require that the non-Ricci-flat

background be of Petrov type D, then the background Weyl
scalars

v =l =l = = 0. (54)

Unlike in the GR case, however, the background spin
coefficients no longer vanish, in general, as one can verify
explicitly by inserting Eq. (54) in Egs. (A13). Consequently,
we still have additional terms that are nonvanishing in the
equations presented in Sec. II B. More specifically, the full
Bianchi identities recast in the form of Egs. (13) now take the
form

FI‘“PO—JllP] —3K‘“P2:S1, (55a)
FZIPO - ‘]lel - 30‘1’2 = Sz, (55b)
E26 - EIK — ‘PO = O, (SSC)

where S| and S, are given in Eq. (10), (E|,, F1,J;,) are
defined in Eq. (11), and (k, o) are spin coefficients presented
in Appendix A. Notice that we have not yet performed a
perturbative expansion to separate the background from the
perturbed Weyl scalars.

Adapting a method similar to that presented in Sec. I[I B
to obtain a differential equation for ¥, we need to
eliminate the ¥, dependence from the above equations
by developing an appropriate commutation relation for this
type of beyond-GR theories. While eliminating the ¥,
dependence, we also naturally decouple ¥, from the x and
o dependence in the above equations, as shown below. To
decouple the equations, we prescribe the following steps.

(1) Multiply Eq. (55¢) by W,.

(2) Use the chain rule such that the intrinsic derivatives

act on the product of ¥, with either ¢ or x. For
instance,

¥,(Do) = D(¥,0) — 6(DY>). (56)

For modified theories of gravity, the second term
above is different from Eq. (22), because it is
modified due to the nonvanishing of the NP Ricci
scalars. For instance, when looking at Eq. (A13h),

DY, =3p¥, — Py, (57)

where P, are all the nonvanishing terms from the
Bianchi identity in Eq. (A13h). However, when
working with this approach, we have more algebraic
complications involved in decoupling all curvature
perturbations. Therefore, for the purpose of this
subsection, we continue to work with Eq. (56).

(3) Using Eq. (56), we can rewrite the operators in
Eq. (55¢) as &, and &,, as defined in Egs. (34).
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(4) The commutator acting on ¥, is then given by
(EaJy = EJ) Y. (58)
(5) Now expand ¥, as shown in Eq. (52), i.e.,
¥, =00 e e e (59)

Since the BH background is Petrov type D, the
background ‘PEO’O) and ‘Pgl'o) vanish. The quantity

‘Pgo‘l) is generated by the perturbed (GW) metric in
GR, which can be set to zero through a convenient
choice of gauge, as we show in Sec. II C. Therefore,
to leading order in ¢ and e, the terms inside the
parentheses in Eq. (58) must be evaluated on the GR
BH background as in Eq. (25). Following these
arguments, the commutator given by Eq. (58) van-
ishes for non-Ricci-flat and Petrov type-D BH
backgrounds in the class of modified gravity theo-
ries we consider.
Multiplying Egs. (55a) and (55b) by &, and &,, respec-
tively, subtracting one from the other, and expanding to
leading order in €, we find

HYW) = s, (60)

where we define
Hy=&EF, — & F) —3%,, (61a)
S§=868,-¢&S. (61b)

Expanding Eq. (60) using the two-parameter expansion in
Eq. (52), at leading orders in ¢ and €, we have

HPOW B OwP = s, (62)

Notice that, similar to the case in GR, the expansion in € is
sufficient to derive Eq. (60), and an expansion in ¢ is
imposed at the end to get the equation at O(¢!, e!).

We can now use the GHP transformation to derive an
analogous modified Teukolsky equation for the perturbed
W, Let us then apply the exchange transformation
F < n*, m" < m" to Eq. (60) and use the definitions
given in Eq. (11) to find

HOwW) =70, (63)
which, expanded in ¢, becomes
HEO,O)IP‘(ll,l) +H5‘1,0);{,£0,1) _ T<1'1), (64)

where we define

H4 = 54F4 - 53F3 - 3‘1‘2, (653)

T - 6454 - 5353. (65]3)
S; and S, are defined in Eq. (10), while &5 and &, are
defined in Eq. (34).

Equations (60) and (63), therefore, represent a modified
Teukolsky equation. The differential operators acting on

‘{‘((]2 are similar in functional form to those of the standard

Teukolsky equation in GR. Notice, however, that these
operators are not the same as their GR counterparts [i.e.,

corrected by Héi"o) in Egs. (62) and (64)], because the
Bianchi identities are modified. In the GR limit, one can, of
course, show that they are equivalent to each other, because
the Bianchi identities no longer depend on NP Ricci
scalars, so they reduce to Eq. (22). Note, importantly, that
the left-hand side of Egs. (60) and (63) describes all GW
perturbations, since they are not expanded in power of .

The modified Teukolsky equations (60) and (63) contain
source terms that are of O(() and, thus, absent in GR. After
an expansion in ¢ in Egs. (62) and (64), we notice that the
source terms S) and 7(") depend on dynamical NP
quantities at O(Z',e') [ie., SV and T(WD]. These
sources terms depend on the S; terms in Eqs. (61b)
and (65b), which are products of differential operators
constructed from the tetrad and the NP Ricci scalars @;;. As
discussed in Sec. III B, since R, is O(), @;; is always of
O(&', €% or O(¢', €'), which then means the tetrad that is
needed to compute the differential operators must be of
00 €%) and O(L°, €'). In addition, all the metric fields in
R,, must also be of O(£, €”) and O(L°, €'). We, therefore,
conclude that curvature perturbations of a non-Ricci-flat,
Petrov type-D BH background satisfy a decoupled
equation.

The tetrad at O(°, €%) is just the Kinnersley tetrad of
Eq. (26), but the tetrad at O(¢%, €!) must be reconstructed
from the metric perturbation at O(£?, !). That is, one needs
to first solve the Teukolsky equation in GR for the GR Weyl

scalars ‘I’&U and then reconstruct the GR GW metric

perturbation to build the perturbed tetrad at O(Z°, ).
This is in stark contrast to the GR case, since, for a
Ricci-flat Petrov type-D BH background in GR, metric
reconstruction is not required to study GW perturbations.
Metric reconstruction in GR has already been worked out in
the vacuum case by Chrzanowski [90] and Cohen and
Kegeles [91] (see, e.g., Refs. [130,131] for a short review)
using Hertz potential. There are also approaches that avoid
using Hertz potential by solving the remaining Bianchi
identities, Ricci identities, and commutation relations,
for example, in Refs. [40,92]. Clearly then, such metric
reconstruction in GR is possible, and we leave a further
analysis of their implementation in our decoupled equa-
tions to future work.
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B. Extending Chandrasekhar’s approach beyond GR:
Non-Ricci-flat and Petrov type-D backgrounds

Similar to the Petrov type-D vacuum GR case, we can

also follow Chandrasekhar’s approach to remove ‘I‘EU
directly. By doing the same type-II rotation in Sec. II C

with the rotation parameter b(!) = —‘Pgl) / (3‘Pgo)), we can

set ‘I’ﬁl) = 0. Then, from Egs. (55a) and (55b), we again
solve for k and o first. Notice that the x and o we solve for
may also contain O(e°) terms, since they do not necessarily

vanish in a non-Ricci-flat Petrov type-D background. We
(1)

then insert the solutions for x and ¢ in terms of ‘{’(()1) and §;
back into Eq. (55c¢) to obtain a single equation for ‘I‘é]). We
verify explicitly that this equation is exactly the same as

Eq. (60). Applying the GHP transformation, one again

finds Eq. (63) for W!".

As shown above, the final modified Teukolsky equation
obtained using the two approaches (i.e., the Teukolsky
approach and Chandrasekhar’s approach) are equivalent for
both Ricci-flat and non-Ricci-flat, Petrov type-D BH
backgrounds. A main difference between the two methods
is in how the equations for the curvature perturbations ¥,
and ¥, are decoupled from W, and W;, respectively.
Chandrasekhar’s approach has a significant algebraic ad-
vantage over Teukolsky’s original formalism, as the former
utilizes available gauge freedom to make convenient gauge
choices to eliminate ¥, and W5 dependence. For non-Ricci-
flat, Petrov type-D backgrounds in modified gravity,
Teukolsky’s approach is not significantly more complicated
than in GR, but this is no longer true when considering non-
Ricci-flat, Petrov type-I backgrounds. In the latter case,
Teukolsky’s approach is more involved because of the
nonvanishing of additional NP quantities leading to more
nonvanishing terms in these equations. In Chandrasekhar’s
approach, however, one can continue to leverage gauge
freedom to eliminate certain NP quantities without the need
for developing a commutator relation like that of Eqgs. (25)
and (58) or using additional Bianchi identities. Because
of this, we employ Chandrasekhar’s approach in what
follows to develop a formalism to study perturbations of
non-Ricci-flat, Petrov type- 1 spacetimes in modified
theories of gravity.

V. EXTENSION OF THE TEUKOLSKY
FORMALISM BEYOND GR: NON-RICCI-FLAT
AND NON-PETROV-TYPE-D BACKGROUNDS

In this section, we extend Chandrasekhar’s approach to
non-Ricci-flat backgrounds that are algebraically general.
As seen in Secs. IIC and IV B, choosing a convenient
gauge for the background and for the perturbed NP
quantities, certain NP quantities can be eliminated from
the NP equations when deriving the (modified) Teukolsky
equation to obtain a single decoupled equation for ¥, and
W,. In this section, we first explore these gauge choices for

background and perturbed NP quantities in more detail
while treating the Petrov type-l spacetime as a linear
perturbation of a Petrov type-D spacetime in GR. We then
derive the master equations for dynamical Weyl scalars ¥,
and ¥,, discuss the modifications introduced due to non-
GR effects, and provide a brief discussion on how to
evaluate this equation for beyond-GR theories.

Before proceeding with this section, it is important to
distinguish between two background concepts that we
introduce in this work. In general, the line element of a
BH background spacetime for theories beyond GR dis-
cussed in Sec. III A can be expressed as

ds® = dskg + (dsior- (66)

Here, we introduce the following symbols.

(i) ds? is the line element of the background spacetime
or the background for short, which is the stationary
part of the full spacetime.

(ii) dszGR is the line element of the original background,
which is the background all the perturbations,
including the stationary ones (e.g., dsZg), are built
on top of.

For instance, the line element of a slowly rotating BH in
dCS gravity to leading order in spin takes the form of
Eq. (66) with [103]

- 5M* a 12M 27 M?
2 et et PE)
dsics = 1 ( + + 072 )sm Odidp,  (67)
4Masin? 0
dsty = —f(r)de* = =207 gy + £(r) dr?
r
+ r2d6* + 12 sin? Odp>. (68)

Here, in our notation, the original background is given by
Eq. (68), whereas the background spacetime is given by the
sum of Eqs. (67) and (68). This is, of course, just a simple
example of our notation, which holds true for theories that
can be described using the Lagrangian given in Eq. (35). In
general, the background spacetime includes O(£?, €”) and
O(¢', €°) parts, while the original background is just of
0(&% €% (i.e., it is the Kerr BH spacetime for arbitrarily
spinning BHs).

Although the concepts of a background and an original
background spacetime may sometimes correspond to the
same thing (e.g., to the Kerr BH spacetime in GR), these
concepts can sometimes be different in modified gravity
theories. For example, in the theories discussed in
Sec. III A, the Kerr metric is not a solution for all stationary
and axisymmetric BHs. Rather, these BHs are represented
by spacetimes that are non-Ricci flat and non-Petrov-
type-D when not expanded in spin. In such cases, the
background of the dynamical gravitational perturbation we
study would be such a non-Ricci-flat and non-Petrov-
type-D spacetime, but the original background would still
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Original background: always type D

Vi = + O L e O eep Y

Leading bGR correction to GWs

FIG. 2. A diagram to illustrate the meaning of different terms in the expansion of NP quantities in Eq. (52).

be the Kerr spacetime. In Fig. 2, we present the relation
between these two different background concepts and the
terms in the expansion of NP quantities in Eq. (52).

A. Gauge choice for the background spacetime:
0" and O(E!€%)

For a non-Petrov-type-D modified background space-
time, the gauge choice in Eq. (54) is not possible. For
example, as found in Ref. [104], the metric describing a
rotating BH in dCS gravity need not be of Petrov type D
once one incorporates second-order and higher in rotation
effects; in that case, the metric is now of Petrov type I,
which is the most general type in the Petrov classification.

However, we can still set lI’(()0> = ‘I‘io) =0 for a Petrov
type-I spacetime as discussed in Ref. [40] and shown for
dCS gravity in Ref. [69], so we could use a gauge such that

g =l =0, (69)
but we do not for the following reasons.

Although the gauge defined by requiring that Eq. (69)
holds simplifies Eqs. (13) and (14), it may spoil our
assumption that the leading correction to the tetrad enters
at O({Y). As shown in Ref. [69], for dCS gravity in the

slow-rotation approximation, in order to impose that

TABLE L

‘I’(()I’O) = ‘I‘E‘I’O) = 0 at O(y?), we need to modify the tetrad

1/2.0)

at O(¢'2,4?), and this induces a nonzero lI‘<1 and

(/29 These O(£!/?) terms are not covered by our
expansion strategy in Eq. (52), which contains only terms
of O(&°,€%), O, €%), O, €"), and O, e') for all
quantities. For this reason, we impose only

W ia4 =0 (70)
and leave all O({!, €°) perturbations general. These proper-
ties are summarized in the left two columns in Table . In
this case, we use the background tetrad in Eqgs. (46) and
(51) such that Eq. (70) is satisfied, and the expansion in
Eq. (52) is not broken.

B. Gauge choice for the dynamical perturbations:
OE€') and O(El €'

Different gauge choices can be made separately at
different perturbative orders. Section VA fixes the gauge
for the background spacetime at (%, €%) and O(¢!, €°),
but we still have gauge freedom at O(¢%, €') and O(¢!, €!).
As in Secs. II C and IV B, we impose

ol =g it =g =0, (71)

Properties of Weyl scalars in the Chandrasekhar gauge for non-Petrov-type-D modified BH spacetimes

with GWs. Quantities on the stationary background columns are already known. For quantities on the dynamical
GWs columns, items labeled as («a) are scalars that need to be solved for, labeled as () are set to zero by gauge, and

labeled as (c) can be reconstructed from ‘I’éo'l) or ‘I’f‘o'l), while labeled by (d) do not appear in the modified

Teukolsky equation.

Stationary background

Dynamical GWs

Types of Original background Stationary modification GWs on original

terms (GR) to original background background GW corrections
Orders

Weyl scalar 0L, €% 0", €% 00 € Ol(4N

Y, 0 #0 #0(a) #0(@)

Y, 0 #0 o) o)

Y, #0 #0 £0() £0(d)

Y, 0 #0 o) o)

¥, 0 #0 #0(a) #0(@)
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In this gauge, Egs. (13a) and (13b) for the dynamical part of
Y, and ¥, decouple directly, and so do Egs. (14a) and
(14b) for the dynamical part of W5 and ¥,.

As discussed in Ref. [40], in a Petrov type-D spacetime,
we can always make a gauge choice such that the linear
perturbations to ¥, and W5 vanish without affecting ¥, and
¥,, so only ¥, and ¥, are gauge invariant quantities in a
linear perturbation theory. Since at O(¢°) the background
spacetime is the Petrov type-D spacetime of GR, it then
follows that we can always make the gauge choice in
Eq. (71) at O(Z%,€").

Next, we need to show that Eq. (71) holds at O(¢!, e!). If
we treat W3 as the O(L0, ') perturbation to W', it is
not clear that we can make a gauge choice in Eq. (71), since
the background spacetime at O(',€%) is not necessarily
Petrov type D. However, we can also treat ‘I’Efél)
O(¢', €') perturbation to ‘I’(l(_)éo) in the original background.
Since the original background is the Petrov type-D space-
time in GR, Eq. (71) should still hold.

Let us show that, at O(¢!, '), ‘I’E{él) can be eliminated by

a tetrad rotation at O((!,e!). Let us consider W\
explicitly and apply a type-II rotation [cf. Eq. (A16b)],
with a parameter b(1') at O(¢',e'). This leads to, at
o(¢' e,

as the

Tél,l) _)\P(()l,l) —|—4b(1’1)‘1‘(10’0),

P Lol g 3500 gl00)

— it opt g0,

N ‘Pgl'l) + b<1’1>‘1’g0'0),

— W, (72)

‘I‘gl’l)
Tgl.l)
q,i1,1)

We are motivated to require that b = O({', €'), since we
want to perturb about the original background. By letting
b)) = gl 3w e can set Wi = 0. With the
background gauge choice that ensures Eq. (70) holds, we
can easily see from Eq. (72) that all the other Weyl scalars
at O(¢', €') are unaffected such that

1,1 1,1
\P(().z.;,at - ‘P((),2,3),4~ (73)
Similarly, by applying a type-I rotation [cf. Eq. (A16a)] and

choosing the rotation parameter a(!!) = [—‘Pgl’l)/ (3‘1’;0‘0) )
we can set

, 1.1 11
lpg Té, 1 ,%,4 - lI'((), 1 ,%,4~ (74)

Properties of the O(¢%, €!) and O({!, €') contributions to the
Weyl scalars are summarized in the right half of Table I.

C. Modified Teukolsky equation in non-Ricci-flat
and algebraically general backgrounds

We can now derive the modified Teukolsky equation for
non-Ricci-flat and Petrov type-I spacetimes. Here, we show
how to obtain the equation for only the dynamical pertur-
bation to ¥, but the same procedure can be applied to ¥y,
or one can perform the GHP transformation /¥ < n*,
m* < m' on the ¥, equation to find the equation
for ¥, [101].

1. Elimination of x and ¢

From Egs. (13a) and (13b), we can solve for x and ¢ in
terms of other NP quantities. Inserting x and o from
Egs. (13a) and (13b) into Eq. (13c) and multiplying the
resulting equation by 3¥, to match the form of the original
Teukolsky equation [44] when { = 0, one finds

VB, (Y5 (Fy ¥y — oY) — S))]
—YL,E,| Y5 (F1 ¥ -\, — )] — 3%, %, = 0. (75)

Reorganizing this equation to extract the operators that act
on ¥y, ¥;, S;, and S,, we find

HOlPO—HllPI :8, (76)
where H, and S are defined in Eq. (61) and we define
Hy=&J,-&Jy, (77)

with &; defined in Eq. (34).

2. Gauge choice and general strategy

The derivation so far combines the three equations in
Egs. (13a)—(13c) into a single equation (76). Our next goal
is to keep only W\""") and no other O(¢', e!) contributions
of Weyl scalars, spin connection coefficients, or intrinsic
derivatives. Note that O(¢%,€%) and O(¢!, €) are known
background components, while (’)(Co,el) can be recon-
structed from linear perturbation of Kerr.

For terms on the left-hand side in Eq. (76), we find the
following pattern, where an operator O operates on a field
w, and we are interested in the O(¢!, €') component, with

(Oy) (1) = 0Dy (00) 1 O(0.1)y,(10)
+ 010y, (0.1) 4 9(0.0)y, (1), (78)

As we see in Sec. V C 3, because of our gauge choice in
Table 1, the only nonvanishing O(',e!) quantity we

encounter is ‘P(()l’l).

For terms on the right-hand side in Eq. (76), we argue in
Sec. V. C4 that they can all be obtained from the back-
ground geometry and the O(£° e') metric perturbation
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h(1) | because GWs on the modified background A" do
not contribute to the source term.

3. Analysis of the general modified Teukolsky
equation: The H)¥Y, and H,Y, terms

For the first term on the left-hand side in Eq. (76),
expanding H,¥, to O(¢!, '), one finds the following three
types of terms:

(HOlPO)(l’l) _ H(()O,O)lpél,l) _’_H(()I.O)qjéo,l)
0,1)\gy(1,0
+ HO V(0 (79)
Since at O(¢°, ¢°) Eq. (76) becomes H"w\"Y = 0, 5"
is the Teukolsky differential operator that acts on ¥, in GR,
which discussed in Sec. IV A. Therefore, the first term in

Eq. (79) is just the Teukolsky equation in GR but for ‘I‘é]’l).
The second term vanishes in GR but is generically nonzero

in modified gravity. This is because ‘I’(()O’l) is a solution to
the Teukolsky equation presented in Eq. (26). As discussed
in Sec. II, this is a gauge invariant quantity and, thus,
nonvanishing, in general. On the other hand, the operator

Hél’o) can be evaluated using the background metric for
the spacetime in the modified theory of gravity under
consideration.

The third term shows up only for non-Petrov-type-D

spacetime, since ‘I’él'o) = 0 if the modified background

spacetime is Petrov type D. The operator HE)O’I) contains

Weyl scalars, spin coefficients, and intrinsic derivatives at
O(L0 €', so, as discussed at the end of Sec. IV A, we need
to reconstruct the metric of GW perturbations in GR. By
applying one of these metric reconstruction procedures and

rotating the reconstructed tetrad to the gauge in Eq. (71),

one is able to evaluate all the terms in Héo’l).

The last two terms in Eq. (79) come from the homo-
geneous part of the Bianchi and Ricci identities. These terms
are purely geometrical, and we can interpret them as source
terms induced by stationary perturbations contained in the
background geometry. We can then rewrite Eq. (79) as

1,1 1.1 1.1
(HoWo)") = HRW") — SV — st 1. (80)

where we define

HE® = Hy", (81)
1,1 1,0 0,1
Sty = —Hy w5, (82)
1,1 0,1 1.0
S((),no)n—D = _H(<) )lP(() ) (83)

Moving on to the second term on the left-hand side in
Eq. (76) and using properties in Table I, we obtain

(Hw,) 1) = gODgito), (84)
- 0.1) 0.1 .
Similar to Hy"’, H,"" is also made up of Weyl scalars,
spin coefficients, and intrinsic derivatives at O({°, e!), so
we need metric reconstruction for this term as well.
This term vanishes in any Petrov type-D spacetime, since
Y, = 0 with an appropriate choice of gauge at the back-
ground level. Similar to H(()O'l)‘l‘(()l’o)

treat H(lo’l)‘Pgl’o) as a source term involving ‘I’(ll’o) and

induced by the stationary perturbation of background
geometry. Let us then define

, we can effectively

St = WO, (85)

1,non-D

The source term SST;&_D along with the source terms
S((f]';) and S(()?ﬁ?n.n given in Eqs. (82) and (83) comes from
the homogeneous part of the Bianchi and Ricci identities.
Grouping these source terms together, we define

Stea) =8 + 8+ St b (86)

4. Analysis of the general modified Teukolsky
equation: The S term

Besides the source terms generated by the correction to
the background metric, we also have corrections to the
Einstein-Hilbert action due to modified gravity theory,
including extra fields not present in GR (i.e., class-A
beyond-GR theories) or higher-order terms in curvature
(i.e., class-B beyond-GR theories) as discussed in detail in
Sec. IIT A. In a perturbative treatment, all these corrections
manifest as some source terms on the right-hand side of the
Einstein equations, so we have a nonzero “effective” stress
tensor or, in the trace-reversed form, a nonzero Ricci tensor,
even in the case without ordinary matter (see, e.g., the
discussion of dCS gravity, EdGB gravity, and higher-
derivative gravity cases in Sec. Il A).

Let us first look at class-A beyond-GR theories, where
there are additional fields introduced by modified gravity,
such as the pseudoscalar field coupled to the Pontryagin
density in dCS gravity. Let us focus on one of these extra
fields, which we represent generically as 9. Since this field
vanishes in GR, 900 = 9(®1) = 0 also, in general. From
Egs. (10a) and (10b), we see that the terms in S; couple ®;;
with either the directional derivatives or the spin coeffi-
cients. According to Eq. (A11), the ®;; are linear functions
of R, contracted with the tetrad basis:

®;; xR {i,j} €{0,1,2}. (87)

wei'ej”,
Since 900 = 900 =0, @) ~ 9IOLO 4 911 4l00),
where g0 represents the terms only involving background
metric in GR. Then, S; in S can enter only at O(¢!), so
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SO — 8<20,0)S(21,1) _ 550,0)551,1) n SéO,I)Sgl.O) _ 8(10,1)5(11,0)
~ 90 p0.1) 4 g(1.1) 4(0.0), (88)

The source Sat O(¢!, e'), SU-V, couples the GWs in GR and
the extra field 9, so we need to solve the equations of motions
of these nongravitational fields to find their contributions to
the stress tensor and S in the modified Teukolsky
equation. In our notation, the modified Teukolsky equation
describing the evolution of the GW perturbations due to the
modification to GR can then be expressed as

1,1 1,1 1,1 1,1
HOGRlP(() ) = S(,D) + S((),no)n-D + Sg,no)n—D + 8(1'1)7 (89)

where all the quantities are defined in Egs. (82), (83), (85),
and (61b). Notice that the differential operator acting on

‘P(()l 'V is the same as the differential operator that appears in
the Teukolsky equation for GR BH spacetimes discussed
previously in Sec. II B.

One can find the solution to these extra fields in different
ways. One way is to solve the equations of motions of these
extra fields and the modified Teukolsky equation in
parallel. Another way is to use the order-reduction scheme
introduced in Ref. [127], in which one solves the equations
of motions of these extra fields first and then inserts them
into the modified Teukolsky equation. Notice here that we
absorb the coupling constant multiplying § in R, into the
perturbative order of 9. For example, as discussed in
Sec. III B, 9 itself is usually of O(aygr), Where apgr is
the coupling constant in front of Ly g in Eq. (35). The same
coupling constant also shows up in front of these beyond-
GR corrections in R,,, e.g., Egs. (38) and (42), so the
contribution of § to R, is of O(aggg) or O({). Thus,
the equation of motion of J is at lower order than the
gravitational field equation, which allows us to follow the
order-reduction scheme in Ref. [127], although this pro-
cedure is likely to introduce secularly growing uncontrolled
remainders. All these calculations depend on the details of
the target modified gravity theory, so we do not discuss
them in detail here and, instead, provide some examples in
Sec. V C5 and leave the case-by-case study to future work.

Another way to generate these source terms is due to
corrections to the Einstein-Hilbert action that are made up
of only gravitational fields, e.g., higher-derivative grav-
ity [117-120], which we classify as class-B beyond-GR
theories in Sec. III A. In this case, by pure order counting,
the kind of terms that can appear are of the form h(1-9 (01,

These terms are similar in form to Séle'o] >, given in Eq. (86),

and so have that Sge’on = O(h9)pO.D) | Therefore, S&’Ol)
takes the form of a coupling between the GWs in GR and
the stationary modification to the background metric.
Though A9 can be generated by 919, if we treat it as
an arbitrary stationary correction to the background metric,
the way it couples to GWs in GR is independent of the

gravity theory, as we discuss above. In contrast, the source
terms coming from the nonvanishing stress tensor and
made up of only gravitational fields depend on the details of
the modified gravity theory, so they cannot be treated
universally when knowing only the correction to the

background metric. On the other hand, like these Sgc’ol )
terms, we do not need to solve the equations of motion of
other nongravitational fields, so these terms can be evalu-
ated directly with the background metric and the recon-
structed metric for GWs in GR when knowing the stress
tensor in the target modified gravity theory.

One of the major successes of Teukolsky’s formalism in
GR, presented in Sec. II B, is the separation of the master
equation into a radial and an angular equation, when
written in a coordinate basis, such as in the Boyer-
Lindquist coordinates of the Kerr BH spacetime. Each of
these equations needs then to be solved independently as an
eigenvalue problem. Since the differential operator acting
on the beyond-GR, leading-order correction to GW per-
turbations remains unchanged from GR, the left-hand side
of the beyond-GR master equation in Eq. (89) is naturally
separable into a radial and an angular part. Furthermore,
one can separate the right-hand side of Eq. (89) by making
use of the orthogonality properties of the spin-weighted
spheroidal harmonics (which are the solution to the
angular master equation for GR BH Petrov type-D space-
times) to project the source terms onto the original angular
basis. Following this trick, the separability of the master
equations into a radial and an angular equation must
hold for beyond-GR, Petrov type-I, non-Ricci-flat space-
times as well. When looking at the example theories
presented in Sec. III A, one may also encounter a mode
coupling between different £ modes (e.g., between £ and
¢ £ 1 modes at leading order in the slow rotation expan-
sion [54-56]). This is seen when coupling between differ-
ent perturbation functions exist, in both GR [88] and
beyond-GR theories [54-57].

5. Examples of equations of motion
of extra (nonmetric) fields

In the previous section, we show that, to evaluate S 0,
one needs to solve the equations of motion of these
nonmetric extra fields. In this section, we provide the
equations of motion of the pseudoscalar field 9 in dCS
gravity and the scalar field ¢ in EdGB gravity as a
demonstration.

In dCS gravity, expanding the equation of motion of 9 in
Eq. (39) using the perturbation scheme in Eq. (52), we find,
at O(¢ e,

D(0’0>19(1’1) —_ —JZ_I/ZMZ[R*R}<O’1> _ D(O,l)&(l,o)’ (90)

where R*R is a shorthand for *R*,*°R” ., and we follow
Ref. [54] to use {ycs = 16ma3-g/M* as the dCS gravity
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expansion parameter. We also absorb a factor of ({ycg)!'/?
into the expansion of 9. To solve Eq. (90) in the Teukolsky
formalism, one first needs to project all quantities onto the
NP tetrad. For example, the Pontryagin density and the
wave operator decompose into

R'R = 8iE(3W} — 4V, ¥; + W)W, —cc), (91)

09 =[{8,6"} —{D,A} + (y + 7" —pu—u*)D
+Hptp —e—e)A+ (=" —a+ )5
(7 =1 —a + )59, (92)

where i€ = €,,,,l'n*m’m® and £ is a real function. These
NP projected quantities now need to be expanded in the
two-parameter scheme to properly evaluate Eq. (90) and
then to solve it.

Similarly, in EdGB gravity, using {gigs = 16mag,q5/M*
as the EdGB gravity expansion parameter and expanding
Eq. (43), we find

001 — _z=1/2p2G0.1) _ [(0.1)g(1.0) (93)

Now, the wave operator and the Gauss-Bonnet invariant must
be projected onto the NP tetrad to find once more that [10 is
given by Eq. (92) after replacing § with 6, and the NP
projected G is

G = 8(3W2 — 4V, W, + W, +c.c.). (94)

Here, we also absorb a factor of ({gggg ) '/ into the expansion

of 8. As before, to solve Eq. (93), one must now expand these
NP projected quantities in our two-parameter scheme.

For both cases, we end up with a usual scalar field
equation with source terms that depend on NP quantities at
O(L0, €'). Thus, we can first reconstruct these NP quan-
tities and then use Eqgs. (91), (92), and (94) to express the

source terms in terms of ‘Pf)o’l) or ‘Pfto'l). After this, one can
either solve the scalar field equation and the modified
Teukolsky equation concurrently [54—57] or use the order-
reduction scheme to solve for the scalar field first and plug
it into the modified Teukolsky equation.

In summary, we find the modified Teukolsky equation of
Y, for any non-Ricci-flat and algebraically general back-
ground spacetime that can be treated as a linear perturbation
of a Petrov type-D spacetime, namely,

HGRPY = S + S, (95)

where we define

1,1 1,1 1,1 1,1
S;(;eo) = ‘SE),D) + Sg),no)n-D + S(I.no)n-D’
1.1 1,0 0,1
S
1,1 0.1 1,0
S(().no)n—D = _H((J )lPE) )’

1,1 0.1)\qy(1.0
S(l,no)n—D = H(l >lP5 )’ (96)
where H, and H, are defined in Eqs. (77) and § is defined
in Eq. (61b). The equation for ¥, can be derived by
performing a GHP transformation on Eq. (95):

HERW) = Tl + 700, (97)
where we define

Teo' =T + T o + Torenn:
T\ = —H{ Ve,
T o = —Hy e
T o = HY W), (98)

where H$R is the Teukolsky operator for ¥, in GR [see
Eq. (65a)] and

H3ES4J4—53J3. (99)
For the source terms Sé,ls’ol) or T(gle’ol), they can be computed
from the modified background metric, the solutions to the
Teukolsky equation in GR, and the reconstructed metric for
GWs in GR. For S!"") or 7U'1)| we may need to solve the
equations of motion of other nongravitational fields and
evaluate the stress tensor. We collect the full expressions of
all the terms in the modified Teukolsky equation above in
Appendix B. In addition, the equations above are presented
in an abstract form using NP symbols; they can be further
simplified when considering perturbations of specific back-
ground spacetimes in specific coordinates and tetrads, e.g.,
Kerr in Boyer-Lindquist coordinates and in the Kinnersley
tetrad.

VI. EXTENSION OF FRAMEWORK TO HIGHER
ORDER IN THE COUPLING

One important observation about Egs. (95) and (97) is
that they are in a very similar format to the second-order
Teukolsky equation in GR [93]. In this section, we discuss
the connection between the leading-order modified
Teukolsky formalism and the second-order Teukolsky
formalism in GR, which demonstrates that many tech-
niques well-developed (in different contexts) in GR can be
directly reused in modified gravity. Moreover, we show that
our formalism can be generalized to higher orders [i.e.,
O™, e"), m>0, n>1], which is then a beyond-GR
extension of the higher-order Teukolsky formalism
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developed in Ref. [93] for GR. For a general discussion of
nonlinear multiple-parameter perturbation theory in rela-
tivity, we refer the reader to Refs. [132—135].

A. Connection to the second-order Teukolsky
formalism in GR

Since Teukolsky presented the linear-order perturbation
equation in Ref. [44], higher-order Teukolsky equations
have been of great interest to the community. On the one
hand, the inability of the linear-order Teukolsky equation to
estimate the errors due to the use of a perturbative expansion
makes the study of higher-order Teukolsky equations
necessary [93]. On the other hand, higher-order perturba-
tions enable the study of certain physical systems that cannot
be studied sufficiently accurately within the linear-order
scheme, such as head-on collisions in the close-limit
approximation [93,136,137], self-force in extreme mass-
ratio binary inspirals (EMRIs) [92,138-144], etc. On the
observational side, recent studies of nonlinearities that show
up in numerical relativity suggest that second- and higher-
order perturbations may be important for the analysis of
gravitational wave data [145-147].

In Ref. [93], the Teukolsky equation is successfully
extended to second and higher order, so let us show now
that these higher-order equations are very similar to what
we obtain in this paper. Comparing our Eq. (97) to the
vacuum case (Thuer = 0) of Egs. (7)—(10) in Ref. [93],
these equations take a very similar format if we replace all
the terms proportional to 20D h1-0) with 2O aO1) and set
the source term due to Lyg in Eq. (35) to zero, 7D = 0.
More precisely, if we follow the approach in this work to
derive the Teukolsky equation at O(¢°, €?), we find
HRYOY — 700 TOY = —EVeY . (100)
These are the equations that ought to be compared to the
work in GR at second order in perturbation theory.

Equation (100) and Egs. (7)—-(10) from Ref. [93] are
similar in form, as expected in perturbation theory, where
the principal part of the equation remains unchanged at
each order and is driven by lower-order perturbations.
Nonetheless, our Eq. (100) is simpler. First, there are no
), since they are removed by our gauge choice
in Eq. (71). Second, there are no terms that depend on A(*:!)
and 2*1 since A and v, just like « and o, are eliminated
from the equations from the beginning, as shown in
Sec. V C 1. To compare Eq. (100) with Egs. (7)—(10) from

Ref. [93], we choose the same gauge given in Eq. (71). In

this case, LP;O’I) = 0, and one can solve for A%1 and (-1

in terms of ‘Pio'l) [40], so all the 20D and (1) related

terms become additional operators acting on \PA(PJ) in

Eq. (100). In Appendix C, we show this consistency
explicitly following this prescription.

. 0.1
terms in ‘Pg

Further, we notice that Eq. (100) and Egs. (97) and (98)
are also similar. When studying Petrov type-I spacetimes in
modified gravity, we do not make any assumptions about
what NP quantities vanish at O(¢', €°) to avoid sabotaging
our perturbation scheme, as discussed in Sec. VA. For the
second-order Teukolsky formalism in GR, the stationary
Petrov type-I background at O(¢', €°) is replaced by the
“dynamical background,” driven by GW perturbations at
O(¢° €'), where most NP quantities also do not vanish.
Because of this connection, many challenges shared by
these two situations are solved in the second-order
Teukolsky formalism in GR, such as metric reconstruction
at O(Z% €'"). The success of applying the second-order
Teukolsky formalism to the study of self-force in
Refs. [92,138-144] strongly suggests that our modified
Teukolsky formalism is feasible numerically.

Despite these similarities, there are also differences
between these two efforts. One major difference is the
presence of extra nonmetric fields in class-A beyond-GR
theories. Unlike in GR, even without matter, one needs to
evaluate the effective stress-energy tensor driven by these
intrinsic extra fields and, thus, solve their equations of motion
concurrently. Nonetheless, as discussed in Sec. V C 5, this
issue was already dealt with in the studies of slowly rotating
BHs using metric perturbations in dCS [54,55] and
EdGB [56,57]. Besides the issue of extra fields, one also
has to be careful when constructing the background tetrad in
these non-Ricci-flat backgrounds, as shown in Sec. III B.

B. Modified Teukolsky formalism beyond O(¢!.e!)

As illustrated in the previous section, second- and
higher-order BH perturbation theory in GR has been of
great interest due to its importance in constraining the first-
order perturbations and its need when dealing with certain
physical systems. In the case of modified gravity, one does
not just have to deal with nonlinear terms in €, but also with
nonlinear terms in the dimensionless coupling constant (.
When the beyond-GR theory itself is known at higher
order, these higher-order corrections due to modified
gravity might be interesting, since there might be nonlinear
phenomena that is not described by the linear theory. For
these reasons, we follow Ref. [93] to extend our formalism
beyond O(¢', e").

Let us consider some perturbations at O(&M, €M), M > 0,
N > 1. First, we need to find a tetrad with terms up to
O(EM, M), such that the orthogonality condition in Eq. (5)
is satisfied while our perturbation scheme is preserved,
similar to what we do in Sec. IIIB. For 1 <m <M,
expanding the correction to the tetrad at O(¢™, €°), we have

sel” = Al sel?).

(101)
Through induction, one can easily show that we can solve

for all A((;Z‘O) iteratively, where 1 < m < M. Let us assume
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5e§7L’0>, ey 5e§fZI—1'O) are known, and the base case 5657;0) is
shown in Sec. III B. We also assume that the corrections to

the background metric h,(,i,’o), ... h(M 0)

satisfy Eq. (5), we need

M
<e<a?;°’ +> cméeé’:‘”> ( + Z gep, )
m=1

are known. Then, to

M
<guu(0,0) + Z é'mh/w(m,o)> = Nup- (102)
m=1
For convenience, let us introduce
= Y el ey ko), (103)
;JHkkMo

where every term on the right-hand side is assumed to be
known and 2/(“?) = 0 when M = 1. Then, following the
same procedure as in Sec. III B, at O(¢M, €%) we have

0) _y(m.0)

24M00 — _p0 (104)

where UUM-9 contains AEZI;?), with 1 < m < M solved in the

previous steps. If we pick the same gauge as in Sec. III B to
set A{”) = 0, then we find

M0 1, o
Aib )= (hgb )

+UMO)), (105)
Thus, this proves that one can iteratively find higher-order
corrections to the background tetrad, such that the ortho-
gonality condition in Eq. (5) is preserved.

Next, let us consider tetrad rotations. Inspecting the
rotations we perform in Egs. (30) and (72), one can
immediately notice that, under any type-II rotation
[cf. Eq. (Al6b)] with rotation parameter pimn)  at
O™, e") with m>0, n>1, the Weyl scalars at
O™, €") transform as

Wi ) 4 g mag00)

Py g 300

P ln) y opmng 00
\Pgnn)_>q?mn 4 by oo%

Wy - (106)

where any terms beyond O({™,¢€") are dropped. Since
the background at O({°,€°) is Petrov type D, where

w0, =0, if we pick bmn) =~ /(39 then

w0, WY, - W, (107)

Similarly, by performing a type-I rotation with the rota-

tion parameter almn) = (g B¥P*, one can

remove ‘I‘ )

One may worry that a rotation at O({™, €™) will affect
the Weyl scalars at O({™2, €"2), where m, > my,n, > ny,
since many Weyl scalars at O({™7"™1, ¢"™™) might be
nonzero. However, this problem can be avoided if one
performs these rotations systematically from lower order to
higher order. For example, one may consider the following
procedures.

(1) Perform tetrad rotations step by step from O(°, e!)

to O(¢M,€') to remove (‘P%l), ‘P(lngl))

(2) Next, perform tetrad rotations step by step from
0O(&°, €?) to O(¢M, €2) to remove (‘I’g(gz), s ‘I‘%m)

(3) -

(4) At the Nth step, perform tetrad rotations step by
step from O(L%,eV) to O(M,eV) to remove
PO,

Following this sequence, any higher-order modifications to
¥,5; due to lower-order rotations are removed at the
corresponding step, and higher-order rotations do not affect
the lower-order ¥, 3, which are set to 0. Thus, for any
perturbation at O(¢™,eV) with M >0, N > 1, we can
consistently set

0<m<M, 1 <n<N.

v =0, (108)

Now, one can directly make an expansion of Eq. (76)
similar to what we do at O(¢!, €!) in Sec. V C. One direct
consequence of the tetrad rotations above is that we can
drop all ‘P(lm’"), withm >0, n > 1 [e.g., Eq. (108)], so there
is only the stationary part of ¥ contributing to Eq. (76).
Then, following the same procedures as in Sec. V C, for
perturbations at O(¢M, V), we find

HERWMN) — SUEN) o SN (109)
where
(M.N) o N (M—m,N=n)\gy(m.n)
Sos” = Z —Hy Y
(m.m—(0.1)
u (M=-m.N) g 0)
011 Z H
M
Z HM m,N) mO)
m=1
(m.n)<(M.N)
S(M’N) _ Z [ggM—nz,N—n)Sginn)
m=1,n=0
_EEM—m,N—n)S(lm,n)} (1 10)
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and where (m,n) < (M,N) means m <M, n <N or
m < M, n < N. The equation for ¥, can be found from
the GHP transformation of Eqgs. (109) and (110). For the

case of higher-order perturbations in GR, { = 0, so one can

simply set Si1") = SN — SULN) — 0, where the sum

starts from O(¢!). As discussed in Sec. VI A and shown in
detail in Appendix C, if one chooses the gauge in which
W% = 0, with 1 < n < N, then Egs. (7)~(10) in Ref. [93]
are the same as the GHP transformation of Egs. (109)
and (110). Thus, one can treat this higher-order extension
of our formalism as a modified-gravity generalization of the
higher-order Teukolsky formalism in Ref. [93].

C. Potential challenges

In the previous subsection, we successfully extend our
formalism to higher order in both € and . In this case, all
NP quantities are decoupled at each perturbative order, and
Weyl scalars W4 can be solved, given their solutions at
lower orders. This shows that similar to any perturbation
theory problem (e.g., solving the hydrogen atom in
quantum mechanics), by working out the leading-order
perturbation theory, one can iterate it to solve for higher-
order perturbations. On the other hand, this procedure also
inherits the same challenges of any perturbation theory
solution. For example, the source terms made up of lower-
order perturbations become complicated at very high order.
However, developing a nonperturbative approach is outside
the scope of this work, and one may have to rely on
numerical relativity in the end. In this subsection, we
discuss other challenges and potential solutions when
applying this higher-order modified Teukolsky formalism
to the first few orders beyond O(¢',€') [e.g., O(£%,€') or
O(¢', €%)], where perturbation theory is still tractable.

The major challenge of this higher-order modified
Teukolsky formalism is the need of metric reconstruction
in non-Ricci-flat backgrounds, since we need to evaluate
NP quantities at O({™, ") with m > 0, n > 1, in general.
For example, at O(£%€') or O({',€?), one needs to
reconstruct the perturbed metric at O(¢!, e!). At this order,
we take advantage of the fact that the metric reconstruction
procedure for O(¢°, e!') GW perturbations in GR is well
developed [40,90-92,130,131]. However, for general
perturbations at O({™, €"), the metric reconstruction pro-
cedure is unknown. Moreover, when m > 0, the correction
to the Einstein-Hilbert action generates some effective
stress-energy tensor (see Sec. IITA), so the traceless
condition ¢*“h,, = 0 in the radiation gauge used in these
metric reconstruction procedures with a Hertz poten-
tial [90,91,130,131] is violated.

However, this issue is present not just in our modified
Teukolsky formalism, but also in the higher-order
Teukolsky formalism in GR, since lower-order perturba-
tions become effective sources in the higher-order version
of the Teukolsky equation. References [144,148,149] show

that one can extend the Hertz potential approach by adding
certain correction fields to the metric perturbation con-
structed from a usual Hertz potential. These correction
fields can be obtained from certain decoupled ordinary
differential equations, sourced by the effective stress-
energy tensor. These references prove that this procedure
works for any smooth, compactly supported source, which
is unfortunately not satisfied by sources driven by nonlinear
couplings of gravitational fields. Thus, to apply their
formalism to our nonlinear Teukolsky formalism, addi-
tional work would have to be done. Besides an extension of
the Hertz potential approach, there are also methods that do
not rely on the radiation gauge, such as the approach of
solving the remaining NP equations directly [40,92,150].
This approach has been implemented for vacuum Petrov
type-D spacetimes [92,150], and it is worth exploring
whether one can extend it to nonvacuum backgrounds.

Another challenge is the presence of extra fields. For the
class-A beyond-GR theories mentioned in Sec. Il A, one
has to solve the coupled equations of metric fields and extra
fields at each perturbed order. In terms of solving the
coupled equation itself, this is not a huge challenge, since
similar problems have been solved in these approaches
using metric perturbations [54,55]. There might be numeri-
cal challenges when going to very high order, since the
source terms are complicated nonlinear couplings of
reconstructed NP quantities with extra fields at lower
orders, which need to be solved together with the modified
Teukolsky equation. Nonetheless, this is merely an
unavoidable consequence of perturbation theory.

In summary, the connection of our work to the second-
order Teukolsky formalism in GR demonstrates the fea-
sibility of the approach presented in this work. When
applying our formalism to specific modified gravity the-
ories, one should not expect more difficulties than when
solving the second-order Teukolsky equation in GR, which
has been widely studied. On the other hand, the formalism
developed in this work aims to incorporate corrections from
modified gravity, so it contains features unique to modified
gravity and cannot be directly obtained from the second-
order Teukolsky formalism in GR. The extension of our
formalism to higher order naturally generalizes the higher-
order Teukolsky formalism in Ref. [93] from GR to
modified gravity. As a consistency check, we study the
limiting case of ¢ — 0, compared the results to those
obtained in Ref. [93], and present these concrete compar-
isons in Appendix C.

VII. DISCUSSIONS

In this work, we extended the Teukolsky formalism to
non-Ricci-flat, Petrov type-D BH backgrounds, as well as
to non-Ricci-flat, Petrov type-I BH backgrounds that can be
treated as a linear perturbation of a Petrov type-D back-
ground. We began by presenting a brief review of the
derivation of the Teukolsky equation for a Ricci-flat and
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Petrov type-D background in GR via the original approach
in Teukolsky’s paper [44], as well as using an approach
proposed by Chandrasekhar [40]. These two approaches
differ in the method adopted to eliminate the ¥; and W;
dependence from the two Bianchi identities and one Ricci
identity [see, e.g., Eq. (13)]. Teukolsky’s approach makes
use of additional Bianchi identities to obtain a commutation
relation to eliminate ¥; and W5. Chandrasekhar’s approach
uses the available gauge freedom to make a convenient
gauge choice that eliminates ¥, and W5 directly. One can
then solve these equations to obtain a single decoupled
differential equation for the perturbed Weyl scalars ¥,
and Y¥,.

We first extended both approaches to obtain the modified
Teukolsky equation in a generic modified gravity theory
that allows BH backgrounds to be non-Ricci-flat and Petrov
type-D backgrounds. Since the background is now non-
Ricci flat, we have additional nonvanishing background NP
quantities. We then used the two approaches described
above to obtain decoupled differential equations for the
perturbed Weyl scalars ¥, and ¥,. We found that for non-
Ricci-flat, Petrov type-D BH backgrounds in modified
gravity, the master equations for curvature perturbations
acquire a source term [see, e.g., Egs. (60) and (63)]. In
order to evaluate these source terms, we found that one
needs to perform metric reconstruction from the GR
curvature perturbations [40,90-92,130,131] [i.e., to
O(L0, '), where ¢ labels the order of the GR deformation
and e labels the order of the dynamic GW perturbation from
the stationary background]. We showed that both the
Teukolsky approach and the Chandrasekhar approach lead
to the same modified Teukolsky equation, but the latter is
algebraically simpler and, thus, more convenient.

The algebraic simplicity of Chandrasekhar’s approach
makes this method ideal for the study of curvature
perturbations of BH backgrounds that are non-Ricci flat
and Petrov type 1. We, thus, extended Chandrasekhar’s
approach to such BH backgrounds. The nonvanishing of
the background NP Ricci scalars, the background NP spin
coefficients, and the background Weyl scalars ¥, ¥,, and
Y5 forces the NP equations [see, e.g., Eq. (13)] to have
additional nonvanishing NP quantities. However, when one
requires the BH background to be a perturbation of a non-
Ricci-flat, Petrov type-D BH background at leading order
in the GR deformation, the equations do decouple. This is
achieved by rotating the tetrad such that the perturbed Weyl

scalars ‘Pgl’n and ‘I’gl’l) (at linear order in both the non-GR
expansion parameter and the GW expansion parameter)
vanish. With this, we then derived a single decoupled

differential equation for ‘I’(()l'l) and ‘Pil'l).

The modified Teukolsky equation obtained in this way
has the structure of the traditional Teukolsky equation but
with certain source terms. The differential operator on the
left-hand side of the modified Teukolsky equation acts on
the perturbed Weyl scalar ¥ 4, and it has a functional form

that is similar to the Teukolsky operators in GR [44]. The
source terms on the right-hand side of the modified
Teukolsky equation arise because of either (i) modifications
to the stationary BH background spacetime or (ii) additional
stress-tensor terms due to corrections to the Einstein-
Hilbert action.

The first type of source terms comes from the homo-
geneous part of certain Bianchi and Ricci identities [see,
e.g., Egs. (13)]. Some of these source terms can be directly
evaluated using the modified background metric and the
solution to the Teukolsky equation in GR. The rest are
couplings of O(¢', €°) corrections to the Weyl scalars with
the O(¢°, €') corrections to the metric due to GWs in GR.
Thus, in order to evaluate these source terms, we need to
reconstruct the metric for the curvature perturbations in
GR [40,90-92,130,131], just as in the case of non-Ricci-
flat, Petrov type-D backgrounds.

The second type of source terms comes from the stress
tensor due to corrections to the Einstein-Hilbert action. We
have classified the modified gravity theories into two
classes based on the presence or absence of extra non-
gravitational dynamical fields. Class-A beyond-GR theo-
ries can have couplings to other dynamical scalar, vector,
or tensor fields [as is the case in dCS gravity [65,66],
EdGB gravity [107,114,115], Horndeski theory [151],
scalar-tensor theories [152], f(R) gravity [122,129],
Einstein-aether theory [153], and bigravity [154]].
Class-B beyond-GR theories depend only on the gravita-
tional field, and there are no additional dynamical fields (as
is the case in certain effective field theory extensions of GR,
such as higher-derivative gravity [117-120]). For class-B
beyond-GR theories, these source terms can be directly
evaluated with the background metric and the reconstructed
metric. For class-A beyond-GR theories, one must solve the
equations of motion for these extra fields to evaluate the
stress tensor, and this can be done only on a theory-per-
theory basis. The case-by-case treatment of these extra field
equations is left to future work.

The major goal of this work was to simplify the
perturbed gravitational equations, in general, for modified
gravity theories that admit non-Ricci-flat and Petrov type-I
or Petrov type-D BH backgrounds such that all the
curvature perturbations are packed into two fundamental
variables W, and W,. With this at hand, one can now, in
principle, evaluate all source terms and separate the
modified Teukolsky equation into radial and angular parts
to solve for the QNM frequencies of perturbed BHs in
modified gravity. It is important to realize that this was not
possible until this work due to the inherently complicated
nature of the perturbed field equations when working with
metric perturbations. Indeed, up until now, the QNM
spectrum of perturbed BHs in modified gravity had been
studied only for nonrotating BHs [e.g., in dCS grav-
ity [50,51,58], EdGB theory [52,53], Einstein-aether
theory [70-74], higher-derivative gravity (quadratic [75],
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cubic [76], and more generic [77,78]), and Horndeski
gravity [79]] or for slowly rotating BHs (e.g., in EdGB
theory [56], dCS gravity [54,55], and higher-derivative
gravity [80,81]). The only study of QNM perturbations of
rotating BHs was carried out in dCS gravity from numerical
relativity simulations of BH mergers, but these suffer from
secularly growing uncontrolled remainders [82,83].

Our work creates a new path to directly calculate the
corrections to the QNM frequencies of perturbed BHs with
arbitrary spin in modified gravity and, more generally, any
background spacetime that can be treated as a linear
perturbation of a Petrov type-D spacetime. One of our
next major goals is to do a case-by-case study of all these
well-motivated modified theories, using the formalism
developed here, to then use GW observations to constrain
these theories. For dCS gravity, we would like to compare
the QNM frequencies obtained for arbitrarily rotating BHs
to those found in the slow-rotation approximation to
linear order in spin [54], as well as others that use
metric perturbations [50,51,54,55,58] and numerical
relativity [82,83,127,128].

By extending the Teukolsky formalism, we have also
laid the foundation for studying gravitational perturbations
other than QNMs around BHs in modified gravity. For
example, the Teukolsky formalism has been applied to
compute gravitational waveforms and energy and angular
momentum fluxes sourced by a point particle orbiting
around a BH in EMRIs [155-160]. The same procedure has
been applied to a few modified gravity theories, e.g., in
scalar-tensor theories [161] and for a spinning horizonless
compact object [162], where the Teukolsky formalism in
GR can be directly applied. With this extended Teukolsky
formalism, we are now able to study EMRIs in a much
wider class of modified gravity theories. These results can
also be compared with those obtained using post-
Newtonian studies of EMRIs in GR and modified grav-
ity [58,163-168].

Another example is the break of isospectrality (where
even and odd parity modes have the same QNM frequen-
cies) in certain modified gravity theories, e.g., dCS
gravity [50,51,54,55,58], EAGB gravity [52,53,56], and
higher-derivative gravity [81]. The study of isospectrality is
mostly done with metric perturbations, since the Zerilli-
Moncrief and the Regge-Wheeler functions naturally divide
the metric perturbations into even and odd parity sec-
tors [41,42]. For BHs with arbitrary spin, there are no
known extensions of the Zerilli-Moncrief and the Regge-
Wheeler functions, so we may have to use NP quantities in
this extended Teukolsky formalism to study parity break-
ing. Since the Teukolsky equation does not naturally
classify its solutions into different parities, we first need
to understand better what even and odd parity modes mean
in the Teukolsky formalism and their connections to the
Zerilli-Moncrief and Regge-Wheeler functions even in
GR. This, and much more, is now possible thanks to the

derivation of a master evolution equation for curvature
perturbations in modified gravity.

In this work, we have focused on the formalism up to
leading order in modified gravity corrections, i.e., at O({).
This is mainly because the theories we have discussed in
Sec. III A are presented only to leading order in corrections,
since these are treated in an effective field theory approach,
considering small deformations from GR. However, one
can consider a modified theory of gravity different from the
examples shown in Sec. III A, where one can look at
higher-order deformations from GR. As discussed in
Sec. VI, our leading-order formalism can be extended to
higher order [O({™,€"), m >0, n > 1] by iterating the
perturbation scheme in Sec. III B and the procedure of
finding the master equation in Sec. V. However, utmost care
needs to be taken when considering theories at higher than
leading-order corrections to GR, as such theory may admit
ghost modes [104]. Additionally, this formalism relies on
the approximation that the theories mentioned in Sec. III A
are an effective field theory of GR. Therefore, the space-
times we can probe using this formalism cannot deviate too
much from their GR counterparts.

To present the feasibility of our formalism extending the
Teukolsky equation to non-Ricci-flat Petrov type-D and
Petrov type-I spacetimes, our collaboration is already
working on a series of calculations. The first in this
planned series of works is the study of perturbations of
a non-Ricci-flat vacuum Petrov type-D BH spacetime
representing a slowly rotating BH to leading order in spin
in dCS gravity [169]. In Ref. [169], we will present the
calculation of the perturbed field equations. These field
equations, as expected from the results of this paper, are
sourced equations which we compute in the null basis. We
will then implement the necessary metric reconstruction
procedures and tetrad rotations. In the last step, we will
convert all NP quantities to a coordinate basis to separate
the master equation into radial and angular ordinary
differential equations with couplings between the gravita-
tional and scalar sectors. Then, in a follow-up work [170],
we will make use of the eigenvalue perturbation method to
calculate the QNM frequencies of these BH spacetimes and
verify our results with previously obtained frequencies
computed in the slow-rotation limit [54,55]. We will then
extend these calculations to arbitrarily spinning BHs in dCS
gravity, which are described by non-Ricci-flat, vacuum,
Petrov type-I BH metrics in Ref. [171]. This problem is
more challenging due to the presence of additional theory-

independent source terms (i.e., ngi’ol)), which need metric
reconstruction (e.g., SE)L;LL_D). However, it is much simpler
to evaluate these additional terms than the theory-depen-
dent source terms (i.e., S(I'V) coupled to the pseudoscalar
field, which we would have already computed in our
previous work [169] on Petrov type-D BHs in dCS gravity
mentioned above. We expect that, through these extensions,
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we will acquire a deep knowledge of QNMs in modified
gravity.
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Note added.—Recently, we became aware of an equivalent
and independent analysis of decoupled equations for
gravitational perturbations around BHs in modified grav-
ity [173]. Instead of using the NP formalism, Ref. [173]
focuses mostly on the Einstein equations and shows how to
partially decouple them, following the order-reduction
scheme in Ref. [127]. To make the equations of gravita-
tional perturbations separable, Ref. [173] uses Wald’s
formalism to project the Einstein equations onto a (modi-
fied) Teukolsky equation [174]. Although our work is
independent of that of Ref. [173], there are similarities in
the general format of the final master equation. For
example, both approaches require metric reconstruction
of GWs in GR. Reference [173] also presents a direct
derivation of the modified Teukolsky equation following
Teukolsky’s original approach [44]. Our work greatly
simplifies the NP approach through the use of gauge
freedom, following Chandrasekhar’s approach [40].
These two independent studies can be used to validate
results when computing the shift of QNM frequencies in
certain modified gravity theories.

APPENDIX A: NP FORMALISM (CONTINUED)

In Sec. II A, we present the orthogonality relations for the
tetrad basis vectors in NP formalism. One can further com-
pactly express the relation in Eq. (5) as g, = e} e’n.p, where

em = (1", n#,m", m"),

0 -1 0 0
-1 0 0 0
— b — , Al
Hap =1 o 0 0 1 (A1)
0 0 1 0

where we use Latin indices to denote the null tetrad indices
whereas the Greek indices are the tensor indices. Furthermore,
using the metric and the null tetrad, we can define the quantity
known as Ricci rotation coefficients, which are similar to
Christoffel symbols. These are complex quantities in nature
and defined as

(A2)

Yeab = eau;velgez
with the symmetry

Yeab = —Yach- (A3)

The commutation relations of the intrinsic derivatives are
related to the Ricci rotation coefficients by

H"

[e“’ e/lj] = (ycba - }/cab)ecﬂ' (A4)

The tetrad components of the Riemann tensor can then
be defined by

p
Rabcd = Ra/fyéegeéy e};efl' (AS)

Using a form of Eq. (A2), the Riemann tensor can also be
expressed in terms of the Ricci rotation coefficients:

Rubed = ~Yabed + Yavde + Yabr (¥ ca = 7' ac)

+ 7/ lacybfd —y/ .adybfc’ (A6)

where  ¥upcq = yabc‘ﬂe’;. The relationship among the
Riemann tensor, Weyl tensor C,g,5, and Ricci tensor R
remains unchanged in tetrad notation:

1
Rahcd = Cabcd - E (”acRbd - nthad - nadRhc + nhdRuc)

1
+ 6 (nacnbd - nadrlbc)R' (A7)
In tetrad notation, Bianchi identities (R,g,s,) = 0) take the
form
1
Rab[cd;f] = 6 Z[Rabcd,f - (Ynamebcd
[cdf]
+7/nthamcd + Ynchubmd + Yndeahcm)]' (As)

1. NP quantities

With the formalism developed above, Newman and
Penrose defined 12 complex functions known as the spin
coefficients which can be defined in terms of the Ricci
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rotation coefficients (and, thus, the tetrad). The spin
coefficients are as follows:

— _— v
K =7yi31 = l,m"l",

=~y = —ny, M,

_ 1 _ / Hv Tk IV
€= 5()’121 —Y341) = 5( up L — My, m ),
P =734 = l,m'm’,

A= —ya4 = —ny,m'm,

1 1 wmy oy
o= B (V124 = 7344) = E(l”;”n m- —my, m-m ),
6 =yi133 = l,m'm”,

U= =Yz = —n,,m'm",

1 1 )
h= 2 (Y123 —7343) = 3 (Lyn'm* — m,.,m*m"),

U= =Yy = —Ny, m'n’,
1

1 —_
r=5 (Y122 = 7302) = 5 (Lyntn? —m,, m'n"),

j— j— v
T= Y3 = ly,m'n”.

(A9)

Using Eq. (A7), one can decompose the Riemann tensor
into the Weyl tensor, completely determined by five
complex Weyl scalars:

Yo = Ci313 = Copsl®mPlim?,
Y, =Cpiz = C{l/,v},{gl"nﬂlymg,

W) = Ciaap = Cupsl®mPin'n®,
W3 = Ciaar = Copsln’imn’,

lP4 = C2424 = Caﬁy,;n“rhﬁn}’rh‘s, (AlO)

the Ricci tensor, and the Ricci scalar, characterized by ten
NP Ricci scalars:

1 1

Dy = §R11 = ERWI”Z",
1 1 . 1 1 — v

¢)01 :§R13 :ERﬂl’lﬂm N ¢)10:§R14:§Rﬂylﬂm N
1 1 _

D)) = 1 (Ri2+R3y) = ER;JL/(Z””IJ +mtmY),
1 1 1 1

Dy, = §R33 =5 Ry mim?”, P12 = §R23 - ERW”ﬂmD’
1 1 1 1

Dy = §R44 =R, m'm", ©; = §R24 = ERﬂv””m ;
1

®,, = 5R22 =R, n"n", A=R/24 (A11)

2. NP equations

Using the NP quantities defined above, one can consider
appropriate linear combinations of Eq. (A6) and rewrite the
equations in terms of the NP quantities. The resulting
equations are called Ricci identities in Ref. [40] and
given by

Dp — 8k = (p* + 006*) + (e + €)p —k'T

—k(Ba+ p =)+ Dy, (Al2a)
Do -6k = (p+p“)o+ 3e—¢")o
—(t—7*+ o +3p)k + ¥, (A12b)
Dr—Axk=(t+7")p+ (" + 7)o+ (e — ')t
- Gr+y)c+ ¥ + D, (Al2c)
Da— 6= (p+ €& —2¢)a+ po* — fe
— kA =Ky + (e + p)m + @y, (Al2d)
Df—ée=(a+mo+ (p* —&)p
—(u+y)k—(af —7*)e+ ¥, (Al2e)
Dy—Ae= (t+n")a+ (" +n)p—(e+€")y
—(y+r)etmm—k+ ¥ - A+, (Al2f)
Di—&n= (pA+o'u)+n*+ (a—p)n
—uvk* — (3e — )4 + Dy, (Al2g)
Dy —om = (p'p +od) +nn* — (e + € )u
—n(a* = p) —vk + ¥y + 2A, (A12h)
Dv—An= (z+7)u+ (7" +0)A+ (y—7)x
— (3£+€*)I/+T3 +(I)2], (AIZI)
AL =68V =—(u+u)A— 3y —7)A
+@Ba+p +r—1)-Y¥,, (A12))
Sp—5c=pla+p)—c@Ba-p)+(p—p)e
+ (u—p )k =¥ + @, (A12k)
ba—5" = (up—Ao) +aa* + pp* —2ap
+r(p=p*) te(p—p") =+ A+ @y, (Al2])
A== (p—p W+ (u—p )z + pla+p)
(@ —38) =¥, + Dy, (A12m)
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Sv—Ap = (2 + %)+ (r +7)u

—v'r+ (t=3f-a" v+ Dy, (Al2n)
Sy—Af=(t—a" =Py +ur—ov—ef
=By —v —pu) +al + @, (A120)
St—Ac=(uo+A1p)+ (t+p—-a)z
—@Br—r)o—xv + @, (Al2p)
Ap—6't=—(pu* +0d)+ (" —a—1")t
+ (47 )p+uk— ¥, —2A, (A12q)
Aa—6y=(p+ev—(t+p)A
+ (7 —p)a+ (-t -5 (Al2r)

Similarly, rewriting Eq. (A8) in terms of the NP
quantities, one gets a set of equations called Bianchi
identities in Ref. [40]. These equations are given by

(6" —da+7)¥— (D—4p—26)¥, —3c¥, =S,, (Al3a)
(A—dy+u)Wy— (-4 —20)¥, —36W¥, =S,,  (AI3b)
(644 —7)W, — (A+2y +4)Ws +30W, =S5, (Al3c)
(D+de—p)Wy — (5" +4n+20)Ws + 3%, = S,, (A13d)
(6" +37)W, — (D +2e—2p)Ws — 20, k¥, =S5, (Al3e)
(A+3p)W, — (5426 —20)Ws —20%, oW, =Se,  (AI3f)
(6-37)¥,— (A=2y+2u)¥, +v¥y+20¥;=S;, (Al3g)

(D - 3p)lP2 - (5* +27Z—2@)LP1 +/1‘“PO +2K'LP3 = Sg, (A13h)

8@ +0@ 1o —D(Py; +3A) — Ady
= K*q)lz +K'(I)21 + (2(X+21* —ﬂ)q)(n
+(2a* +2t =" )y —2(p+p") Py

=0 @y —o @y + [u+p* —2(r +7*)|@oo,  (A13i)
5@,y + 5@y, — A(Dy; + 3A) — DDy,
= —v®y — v’ Dy + (7 = 2" - 27) D),
+ (=28 =27")®y +2(u + ") Py,
—(p+p"—2e=26")Dyy + ADg; + 17Dy,  (A13))

5((1)11 - 3A) _DCI)IZ - Aq)(n +5*(I)02
= @22 —I/*q)oo + (T* -+ 20!—2,5*)@02
—G(I)Ql +/1*(I)10—|—2(T—7[*)(I)11

—(2p+p" =26 )@+ (20" +pu=2y)®g,  (A13K)

where S; are related to the Ricci tensor and defined to be

Sl = (5 + 77:* —-2a" — Zﬂ)q)oo - (D — e — Zp*)q)(n

+ 26(1)10 - 2]('(1)11 - K*(D027 (A14a)

Sz = ((3 —+ 2" — 2ﬂ)q)01 - (D —2¢ + 2¢e* —p*)q)oz
- A*QOO + 20'@11 - 2K®12, <A14b)

S3=— (A +2u* +2y7)Dy + (6 — 7" + 20 + 2f") Dy,
+2l/(I)11 +y*(1)20—2/1q)]2, (A14C)

Sa=— (A +p" +2y =2y )@y + (6" + 2a — 277) Dy,
+ 21/@10 - ZACI)“ + G*q)zz, <A14d)

SS = (5 - 2a* + Zﬂ + ﬂ*)q)zo - (D - 2p* + 28)@21
- 2/4(1)10 -+ 271'@11 - K'*(I)zz - 25*/\, (Al4e)

Sé = (5 + 277.'* + 2ﬁ)¢21 — (D —,0* + 28 + 26*)@22
—2ud,, — 1By + 27,5 — 2AA, (A14f)

§7=—(A+2u" = 2y)®@g; + (6" — " + 26" — 2a) Py
+ 2/)(1)12 + U*(I)OO - 21(1)11 - 25/\, (A14g)

Sg=—(A+p" =2y =27 )@y + (6" = 2a — 27") Dy,
+ qu)ll + U*¢02 - 2Tq)10 - 2DA (A14h)

For the Bianchi identities, we reorganize the terms and
shuffle the sequence of equations in comparison to the one
in Ref. [40], so our equations here are consistent with the
equations in Sec. IT A.

Finally, the commutation relation in Eq. (A4) can be
written as

[A,D]=(y+7y")D+ (e + € )A = (" + 7)

— (v + 7%)6", (Al5a)
6,D] = (" +p—7*)D+ kA — (p* +e—¢€")5

— 6", (A15b)
6,Al ==v'D+ (t—a* = B)A+ (u—y+7*)s

s (Al5¢)
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(0%, 6] = (W =)D + (p* = p)A + (a— ")

+(B—a")s". (A15d)

3. Tetrad rotations

In Sec. IT A, we mention that the tetrad basis vectors can
be rotated in certain ways such that the orthogonality
conditions in Eq. (5) are still preserved. As discussed in
Ref. [40], all these tetrad rotations can be classified into
three types:

I: 1>, m—m+ al, m—m+ a*l,
n—n+a‘m+am+ aa*l. (Al6a)
II: n - n, m — m+ bn, m—m+ b*n,
[ > 1+ b'm+ bm+ bb*n. (A16b)
Ir: [ —» A, n — An, m — em,
mn— e Om. (Al6c)

Here, a and b are complex functions, and A and 0 are real
functions. Under these rotations, the Weyl scalars transform
in the following way:

HE)O.O)lP(()I,l) + H(()I.O)lPE)O.I) + H(()O’UT(()I’O) _ HEO,I)T(ll,O)

Here, we have

HO - 52F2 _glFl - 3‘1‘2,

and
£ =6—1+71" —a* —3f—¥;'59,,
E=D—-p—p*=3e+e& —V;'DY,,

with

Yy - ¥, Y, - ¥, + a"'¥,,
W, - W, 4+ 24", + (a*)2W,,
I: W3 - W5 +3a"¥, + 3(a*)?¥, + (a*)*Y¥,,
Y, = W, + 4a*W; + 6(a*)?¥, + 4(a*)P,
+ (a*) "Wy

(Al7a)

¥, — W, +4bY, +6b>Y, +4b3 Y5 + b*Y,,
¥, > ¥, +3bY, +30°Y; + bV,

¥, >, +2b¥; +b2Y,, W3- P;+bY,,
Y, — Wy

1I: (A17b)

lPO d A—ZeZi(‘)\PO, lP] = A—leiﬁlpl’
: ¥, - ¥,, Y, — Ae 09,
¥, - AZe 209,

(Al7c¢)

For the transformations of the spin coefficients under the
tetrad rotations, since we do not use them explicitly in our
calculations, we refer the readers to Ref. [40] for all the
details.

APPENDIX B: MODIFIED TEUKOLSKY
EQUATION IN ONE PLACE

For convenience of the reader, we organize the modified
Teukolsky equation in one place. For ¥, we have

_ ggo.O)S(zl.l) + ggo,nsgl,o) _ gEO.O)S(ll,l) _ gg(),l)S(ll.O). (Bl)

Sl = (5 + 71'* - 2(1* - Zﬂ)q)oo - (D - 28 — 2/7*)(1)01 + 26@10 - 2K'CI)11 - K'*q)oz,

S2 = ((S + 271'* - 2ﬁ)q)01 - (D - 28 + 28* —p*)q)oz - l*q)oo + 20(1)11 - 2K'q)12.

For ¥,, we have
Hgo,o)q,gl,l) _i_H‘(‘l,O)lP‘(‘O,l) n Hgo,l)q,gl,o) _ HgO.l)ngl,O)

Here, we have

H4 - 54F4 —83F3 —3\112,

and

Hy=&J, - &1, (B2)

F, =6 —4a+n, Ji =D —-2¢e—-4p,
Fry=A—4y +u, J,=6—47-2p, (B3)
(B4)
_ g‘(‘O,O)S‘(‘I,l) +ggo,1>sgl,o> _ggo,O)Sgl,l) _Sgo.l)sgl,m. (B5)
Hy = &E4J4 — &35, (B6)
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Ey=8+3a+p +rn—1 -V,
Es=A+pu+u +3y—y — VAP,

with

Fy=6+4p -7,
F,=D +4e—p,

J3=A42y +4u,

Jy=6"+4r + 2a, (B7)

S3 = —<A + 2/,{* + 2}/)(1)21 + (5* - T* + 2a —+ 2,3*)@22 + 2l/q)ll + V*(DZO - 2/1@12,

S4 = —<A +,M* + 27 —_ 2}/*)@20 + ((‘5* + 2a - 2’[*)(1)21 + 21/(1)10 —_ 2/1(1)11 + G*(I)zz.

APPENDIX C: CONSISTENCY CHECK
WITH PREVIOUS HIGHER-ORDER
TEUKOLSKY FORMALISM

In this appendix, we show that the GHP transformation
in Egs. (109) and (110) when ¢ =0 is consistent with
Egs. (7)—(10) in Ref. [93] when we are in the same gauge as
in Eq. (108).

First, let us write down the GHP transformation of
Egs. (109) and (110) when ¢ = 0:

HGRy(Y)
N A= N
Tho =Y —H{"
n=1

where we use the single superscript notation, since there is
only one expansion parameter, €. In comparison, Ref. [93]
finds

=TM,

(C1)

HFRY = T/,
T - 2[<sg°>FgN-"> el
n=1
+ 380 (W yN=my — 380 ) j(v-m)
= 3w (EYT) — BT, (2)
where we set all the terms containing ‘I‘gom for n > 0 to

zero and replace the operators 21’3,4 in Ref. [93] with the
operators E54 by observing that

dy = E; + 3n, d, = E, +3u, (C3)
49 —pR = g0 40— por = g0 (ca)

As discussed in Sec. VI A, to show that Eq. (C2) is the
same as Eq. (C1), one needs to use Bianchi identities to
express A and v in terms of W, or vice versa. Since ‘P( ) =0
for Petrov type-D spacetimes, and we choose a gauge in

which ‘Pg’” =0 for all n>1, we can set Y5 =0 in
Eq. (14), such that

F3\P4 = —3‘11211, F4lP4 = —SlPQA, (CS)

(B8)

where we also set S35 = S, = 0 since we focus on vacuum
spacetimes. Notice that Eq. (C5) is true at all orders in e.
Expressing ¥, in terms of A and v is easier when
comparing Eq. (C2) with Eq. (C1). Let us first perform
this transformation on Eq. (C1). From the definition in
Egs. (12) and (34), we know that
53 — E3 - lPEl(S*"Pz, (94 = E4 -

WA, (C6)

Inserting Egs. (C5) and (C6) into Eq. (C1), we find

HWy= (E4F4—E3F3—3¥,)Yy
= =3[E4(¥2A) — AV, — E5(Wor) + 57, + V)W)
= —3“}’2(E4A,—E3IJ+‘P4), (C7)

which is simply —3W, times the Ricci identity in Eq. (14c¢).
Since Eq. (C1) is essentially the Nth-order expansion of
H 4lP4, we find
[<3W,(E4d — Esv 4+ ¥,)|™) = 0. (C8)

Equation (C8) is consistent with our procedures to derive
the master equation in Secs. V C and VI B. The equation we
use is indeed 3¥, multiplying the Ricci identity Eq. (14c)
with 4 and v replaced by the Bianchi identities Eqgs. (14a)
and (14b). Since the Teukolsky equations have to be
consistent with all the Bianchi identities and Ricci iden-
tities, one also expects that, starting from a Teukolsky
equation and simplifying it using Bianchi identities, one
will get back the original Ricci identity.

Now, let us transform Eq. (C2). We first move the first
line of 7' geg in Eq. (C2) to the left-hand side of the
equation, so it becomes

N
0 N-n 0 N-n n 0 N
> (80 F ) 3w

n=1
= &V(FW)™ = eV (Fyw,)™) — 390gV)
= =3[ (W)W - £ () V] = 39PN (C9)

Next, subtracting off the second line of 7’ g!g in Eq. (C2)
from Eq. (C9), we find
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0 0 0 0 0 N
(e () — D 0]

= 39V (EL A — EQy) ), (C10)

which, with the last line of 7’ g’!g in Eq. (C2), gives us

YV [(Ed - Ew+9,)™M =0.  (ClI)
As discussed above, Eq. (Cl1) is expected, since the
Teukolsky equations are consistent with the Ricci identities.

Comparing Eq. (C11) to Eq. (C8), one can notice that the
only difference is the overall normalization factor. In
Eq. (C11), this normalization factor is —3¥)”, while in
Eq. (C8) a normalization factor of —3¥, appears before the
expansion. Then, when expanding Eq. (C8), we also mix
lower-order Ricci identities in the equation. For example,
we can get the term —3‘P§]>(E4/1 — Ev+¥,) N0,
Nonetheless, after inserting in all the lower-order NP
quantities into the equation, these lower-order Ricci iden-
tities vanish, since they are automatically satisfied by the
lower-order Teukolsky solutions in the previous steps. On
the other hand, before inserting lower-order Teukolsky
solutions, Eq. (C8) might be more complicated than
Eq. (C11) due to these lower-order equations.

One can easily remove this difference by replacing the
normalization factor 3%, in Eq. (76) with 3‘1‘%0’0). The
reason we inserted 3¥, in Eq. (76) is that the O(Z%, €')
expansion of the equation reproduces the original

Teukolsky equation in GR [44], which is also true if we

instead insert 3‘1’%0’0). Moreover, we can absorb the factors

of ¥, and W5 in Eq. (76) nicely into the operators &;. If we
instead use 3‘P§0’0>

ators &; as

, we can alternatively define the oper-

& =wPVEws! (C12)
in comparison to the original definition in Eqgs. (32) and
(34). For the goals of this paper, finding the O(¢!,€!)
corrections to the Teukolsky equation, both ways of
normalizing the equation are fine and make little difference.
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