
IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 1, JANUARY-JUNE 2023 41

Kobold: Simplified Cache Coherence for Cache-Attached Accelerators

Jennifer Brana , Brian C. Schwedock , Yatin A. Manerkar , and Nathan Beckmann , Member, IEEE

Abstract—The ever-increasing cost of data movement in com-
puter systems is driving a new era of data-centric computing.
One of the most common data-centric paradigms is near-data
computing (NDC), where accelerators are placed inside the mem-
ory hierarchy to avoid the costly transfer of data to the core.
NDC systems show immense potential to improve performance
and energy efficiency. Unfortunately, adding accelerators into the
memory hierarchy incurs significant complexity for system inte-
gration because accelerators often require cache-coherent access
to memory. The complex coherence protocols required to handle
both cores and cache-attached accelerators result in significantly
higher verification costs as well as an increase in directory state and
on-chip network traffic. Furthermore, these mechanisms can cause
cache pollution and worsen baseline processor performance. To
simplify the integration of cache-attached accelerators, we present
Kobold, a new coherence protocol and implementation which re-
stricts the added complexity of an accelerator to its local tile. Kobold
introduces a new directory structure within the L2 cache to track
the accelerator’s private cache and maintain coherence between the
core and accelerator. A minor modification to the LLC protocol also
enables accelerators to improve performance by bypassing the local
L2. We verified Kobold’s stable-state coherence protocols using the
Murphi model checker and estimated area overhead using Cacti 7.
Kobold simplifies integration of cache-attached accelerators, adds
only 0.09% area over the baseline caches, and provides clear per-
formance advantages versus naïve extensions of existing directory
coherence protocols.

Index Terms—Cache coherence, data-centric, near-data comp-
uting.

I. INTRODUCTION

C
OMPUTER systems are increasingly bottlenecked by the rising
cost of data movement. To combat this trend, near-data comput-

ing (NDC) designs propose accelerators that move compute closer to
data. Cache-attached accelerators are a promising direction for NDC
that enables fine-grain collaboration between cores and accelerators by
offloading work to within the CPU cache hierarchy.

Fig. 1 shows täkō [12], a representative recent system with cache-
attached accelerators. täkō augments a baseline, cache-coherent multi-
core with an engine (i.e., accelerator) on each tile, granting the engine
efficient access to data in the tile’s L2 and last-level cache (LLC) banks.
Each engine also has its own private data cache (eL1D).

Manuscript received 5 January 2023; revised 11 February 2023; accepted
4 April 2023. Date of publication 21 April 2023; date of current version 17
May 2023. This work was supported in part by NSF REU supplement, the
REUSE program at CMU S3D and in part by NSF Award under Grant 1845986.
(Corresponding author: Jennifer Brana.)

Jennifer Brana is with the University of Portland and Carnegie Mellon
University, Pittsburgh, PA 15213 USA (e-mail: jbrana@andrew.cmu.edu).

Brian C. Schwedock and Nathan Beckmann are with the Carnegie Mellon
University, Pittsburgh, PA 15213 USA (e-mail: bschwedo@andrew.cmu.edu;
beckmann@cs.cmu.edu).

Yatin A. Manerkar is with the University of Michigan, Ann Arbor, MI 48104
USA (e-mail: manerkar@umich.edu).

Digital Object Identifier 10.1109/LCA.2023.3269399

Fig. 1. täkō [12] adds a reconfigurable engine (i.e., accelerator) to each tile
of a CMP. Engines accelerate tasks for data that resides in the L2 or LLC bank
on that tile. Each engine has a coherent eL1D cache.

Challenges: Cache-attached accelerators must maintain coherence
with the core’s caches to usefully access shared memory. However, in-
troducing accelerators into the coherence protocol increases verification
costs, directory state, and network traffic.

To complicate matters further, accelerators desire access to different
levels of the cache hierarchy, depending on the application [8], [12].
Applications with frequent accelerator-to-core communication (e.g., ir-
regular prefetchers) want the accelerator to sit beneath the core’s private
L2, but applications operating over large datasets (e.g., graph search)
want the accelerator to access the LLC directly, without polluting or
waiting for the L2. Systems should therefore provide cache-attached
accelerators with efficient access to both the L2 and LLC, but this is
not supported by existing coherence protocols.

Insights: The complexity added to the shared LLC protocols caused
by cache-attached accelerators can be mitigated if the accelerator’s
eL1D and its local L2 bank look like a single, unified cache to the
LLC. This is achievable by adding extra state within each tile of the
chip-multiprocessor (CMP) to track coherence between the core and
accelerator. Keeping coherence between the core and accelerator local
to the tile reduces the necessary directory state and on-chip network
traffic, while also minimizing impact to the LLC protocol.

However, just making the eL1D a child of the L2, as in traditional
hierarchical coherence designs, can harm performance for systems in
which the accelerator would rather sit beneath the LLC. L2 pollution
can be mitigated by replacement policies [12], but going through the L2
still incurs unnecessary latency [8]. Consequently, we propose a design
in which data accessed only by the accelerator bypasses the L2.

Approach: Our goal is to design a coherence protocol which (i)
restricts the complexity of cache-attached accelerators to within each
tile of a CMP and (ii) befits accelerators independent of which cache
level they want to access. Our solution, Kobold, adds a directory-like
structure to each tile, called the mis-direction filter (MDF) that tracks
the state of the accelerator’s eL1D. The MDF augments the L2 (see
Fig. 2(a)) and allows the processor and accelerator to safely share data
and transfer ownership within the tile, with minimal modification to the
baseline directory coherence protocol at the LLC. The L2 and eL1D
maintain coherence between themselves and coordinate responses to
LLC requests, leveraging the MDF to reduce unnecessary messages.

The main difference from prior hierarchical protocols is that Kobold
requires negligible additional state and is non-inclusive to prevent the
accelerator from polluting its local L2. Moreover, by leveraging fast,
local communication within a tile, Kobold reduces unnecessary traffic
to the LLC and minimizes the latency of hits and misses in the eL1D and

1556-6056 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 31,2023 at 19:22:10 UTC from IEEE Xplore. Restrictions apply.

42 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 1, JANUARY-JUNE 2023

Fig. 2. Architecture of the Kobold system.

Fig. 3. Naïve architecture where the accelerators’ eL1Ds are treated as addi-
tional sharers under the LLC. Example transaction for core read request when
the eL1D holds the data in the modified (M) state. ‘I’ represents Invalid, and ‘S’
represents Shared.

L2. However, to maintain coherence between the core and accelerator,
the L2 must track the contents of the eL1D using the MDF. The resulting
design is a new twist on hierarchical coherence.

Summary of Results: We evaluate Kobold in the context of the täkō
[12] architecture by modifying a baseline MESI coherence protocol.
Our design significantly reduces communication to the LLC, compared
to a näive directory protocol. We verify Kobold’s stable-state coherence
protocol in Murphi [5]. We also estimate Kobold’s area overhead (from
the MDF) at just 0.09% of the baseline caches.

II. BACKGROUND AND MOTIVATION

A. Near-Data Computing

To minimize data movement, many architectures propose moving
processing logic closer to data, rather than moving data to compute.
Some designs propose “processing in-memory” architectures that place
compute logic in memory [6]. Others propose “near-data accelerators”
(NDAs) which place co-processors off-chip close to main memory [2].
NDAs benefit streaming applications, but are inappropriate for appli-
cations with data reuse or fine-grained sharing.

For applications with significant locality or frequent data sharing
between core and accelerator, others propose integrating accelerators
within the cache hierarchy, allowing CPUs to offload work to caches [8],
[12]. Cache-attached accelerators share a unified address space with the
host cores, eliminating the need to control low-level data movement
in software. However, accessing the shared memory of the host core
requires accelerators to maintain coherence.

B. Coherence and Consistency

1) Directory-Based Coherence Protocols: Directory-based
protocols use a directory structure to track child caches. For coherence
requests, the directory determines the actions required based on the
current location(s) and state of the block.

However, naïvely extending directory-based coherence to support
cache-attached accelerators does not work well. Fig. 3 shows an
architecture where the accelerators’ eL1Ds are additional sharers un-
der the LLC. In this example, all transactions between the core and

Fig. 4. Kobold architecture where the L2 tracks eL1D state with an MDF.
Example transaction for core read request when the eL1D holds the data in the
modified (M) state.

accelerator pass through the LLC, and data is written back to the
LLC when transferred. Alternatively, the eL1D and L2 caches could
directly forward data to each other when prompted by the LLC. This
optimization eliminates data transfer through the LLC, but the request
must still go through the LLC to update the directory. Unfortunately,
any communication with the LLC is quite wasteful because the core
and accelerator reside on the same tile, while the LLC directory can be
across the chip. This naïve design also doubles LLC directory state to
track twice as many sharers. To alleviate these issues, other types of
coherence have been proposed.

2) Hierarchical Coherence Protocols: Directory-based proto-
cols face scaling challenges due to the storage required to track all
caches and on-chip network traffic. To improve scalability, multicore
chips can be organized into hierarchies of caches with multiple levels of
directories. Intermediate levels of the hierarchy serve as directories for
the lower levels, reducing storage overhead in the LLC. Additionally,
locality enables the majority of transactions to be performed within a
cluster, reducing traffic to the LLC.

The DASH [7] architecture improves scalability by mitigating the
bottlenecks of directory protocols. To maintain coherence, DASH uti-
lizes two coherence protocols: a snooping-based intra-cluster protocol
and a directory-based inter-cluster protocol. Private data references are
localized to the cluster, reducing accesses to the directory.

Kobold is also a hierarchical coherence protocol that, like DASH,
uses a combination of local snooping and directories to improve scala-
bility and limit coherence traffic. However, unlike DASH, Kobold does
not add an intermediate cache on the critical path to arbitrate remote
accesses. Instead, Kobold uses peer-to-peer communication to maintain
intra-tile coherence via the MDF, and the accelerator can speculatively
bypass the L2 to access the LLC directly.

3) Cache Inclusion: A key design choice when building a multi-
level cache hierarchy is whether to enforce inclusion. Inclusive caches
benefit from snoop filtering. However, inclusion leads to data duplica-
tion, reducing effective cache size. Additionally, data brought in by the
eL1D can remain in the L2 long after it is evicted from the eL1D.

Kobold starts from a baseline inclusive protocol. However, Kobold
implements the L2 as non-inclusive of the eL1D and integrates an
additional directory (MDF) within the L2 to enable snoop filtering.
The MDF is not exclusive of the L2; tags can exist in both the MDF
and the L2 at the same time. Furthermore, the MDF is used to determine
coherence messages for requests originating from both the LLC and the
core. Finally, the MDF holds a copy of the eL1D tags but tracks the
overall state of the tile, as discussed below (see Fig. 4).

4) Coherence and Consistency for Heterogeneous Systems:
Inter-device communication in heterogeneous architectures is a major
bottleneck that has motivated the adoption of a unified coherent address
space. Allowing the host and accelerator to share a single, coherent
address space greatly improves inter-device communication and sim-
plifies programming. However, ensuring that shared memory remains
coherent is a major challenge due to the diverse memory demands and
coherence properties of accelerators.

Recent coherence protocols target discrete co-processors located
near memory, where communication is expensive between cores and
accelerators. CoNDA [4] is a recent coherence mechanism that allows

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 31,2023 at 19:22:10 UTC from IEEE Xplore. Restrictions apply.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 1, JANUARY-JUNE 2023 43

NDAs to optimistically execute kernels to gather information on mem-
ory accesses. It uses this information to avoid unnecessary coherence
requests. Spandex [1] is a coherence interface that efficiently supports
integrating a variety of devices with divergent memory access patterns
and diverse coherence properties into a single address space.

Overall, we find that prior protocols for heterogeneous systems do
not work well for cache-attached accelerators because they assume
infrequent communication between the core and accelerator. This
assumption does not hold for the fine-grain communication commonly
exhibited by cache-attached accelerators.

5) Formal Verification of Coherence Protocols: Modern
CMPs employ coherence protocols that ensure high performance at
the cost of significant verification complexity. To eliminate bugs from
protocols, an exhaustive search of the protocols’ state space is required.
Verification overheads typically grow very fast with respect to protocol
complexity, so it is desirable to limit the additional coherence-related
complexity of the accelerators’ caches to their respective tiles.

III. KOBOLD DESIGN AND IMPLEMENTATION

We consider a chip-multiprocessor (CMP) where each tile contains a
core, private L1D/L1I, private L2, shared LLC bank, and cache-attached
accelerator with its own private eL1D (see Fig. 1). To avoid adding
state and coherence complexity to the LLC, Kobold confines nearly all
modifications to within a tile. Similar to prior hierarchical coherence
protocols, the eL1D is logically a child of the L2, alongside the core’s
L1D/L1I, and the L2 is responsible for maintaining coherence between
the core and accelerator. But unlike prior protocols, the L2 is not inclu-
sive of the eL1D, and the L2 and eL1D operate as peers via snooping to
handle many coherence transactions, enabling the accelerator to access
either the L2 or LLC “directly”.

A. Overview

In Kobold, additional coherence complexity and state is restricted
to the L2 and eL1D. The L2’s responsibilities are to (i) maintain
coherence between its local L1D and eL1D banks, and (ii) prevent
the accelerator from polluting the L2 bank. Kobold’s design enforces
these requirements with minimal overheads by augmenting the L2 with
a small directory structure called the mis-direction filter (MDF).

Fig. 2(a) shows Kobold’s cache hierarchy. The eL1D and the core’s
L1D (and L1I, not shown) are logically children of the L2, as far as
coherence is concerned. However, the eL1D operates as a peer cache of
the L2 to, e.g., avoid polluting the L2 with data accessed by the eL1D.
Interaction between the L2 and eL1D is mediated by the MDF.

Mis-Direction Filter: The MDF tracks the contents of the eL1D. It is
a metadata-only array that maintains only the tags and coherence state
for data in the eL1D. (The MDF tracks coherence state for the entire
tile, which may diverge from the state in the eL1D, as in Fig. 4.)

Fig. 2(b) shows the microarchitecture of the L2 in Kobold. Ignoring
the MDF, the operation of the main L2 tag and data arrays is unchanged
from a baseline CPU cache hierarchy: e.g., data is inserted into the L2
tag and data arrays upon a L1D miss. However, to ensure coherence
between the L2 and eL1D, the MDF is accessed in parallel with the
main L2 tags to determine the coherence action. Using the MDF to
track the eL1D tags in the L2 enables Kobold to perform snooping-like
logic on-demand with no performance overhead. (The MDF is much
smaller than the L2 tags and is accessed in parallel.) If a line is cached
in the eL1D, metadata for the line will be tracked in both the eL1D tags
and MDF, and the state in the MDF will determine whether a memory
transaction can be handled locally within the tile or if the LLC must be
contacted to, e.g., upgrade permissions.

Avoiding L2 Pollution: Finally, the MDF is key to enabling coherence
for cache-attached accelerators without disrupting core performance.
Prior work has demonstrated that, with a conventional inclusive cache
hierarchy, cache-attached accelerators can cause severe cache pollution
by streaming data into the L2 that evicts the core’s working set, slowing
down cores by >4× in some cases [12]. The MDF achieves a similar
objective without modifying the L2 replacement policy or inserting
data into the L2 at all: Kobold tracks the eL1D contents in the MDF

Fig. 5. Finite-state machine for eL1D. Only shows new intra-tile messages in
Kobold that enable coherence between the eL1D and L2.

and never inserts data into the L2 unless it is accessed directly by a core.
When data is evicted from the eL1D, its tag is simultaneously evicted
from the MDF, and the L2 contents are unaffected (though permissions
may be upgraded, depending on the state in the MDF; see Fig. 6 below).
Kobold thus eliminates L2 pollution by design.

B. Kobold’s Cache Coherence Protocol

Kobold introduces peer-to-peer communication between the eL1D
and L2 that allows the caches to maintain coherence and data within a
tile and coordinate responses to LLC requests. Fig. 5 highlights the new
MESI state transitions at the eL1D, which are triggered by messages
from the L2. The L2 MESI finite state machine is similarly modified in
Kobold, but we omit the figure due to space constraints.

New requests fall into two categories: data requests and upgrades.
(i) A GET request is forwarded from the L2 to eL1D when the core
requests data which is located in the eL1D but not L2. The eL1D replies
directly with the data and downgrades state if necessary; the LLC is
not involved. (ii) Upgrades are sent when the L2 evicts data that is
also in the eL1D, but the data is tracked with higher permissions in
the MDF than eL1D. For example, if the data is tracked as modified
(M) in the MDF but tracked as shared (S) in both the L2 and eL1D,
when the L2 evicts the data a FWD_L2_GETX is sent to the eL1D to
upgrade its state to M. This eliminates redundant coherence traffic to
the LLC by allowing the L2 and eL1D to change states while the tile’s
state remains unchanged from the LLC’s perspective.

1) Handling LLC Requests: Requests from the LLC (i.e., down-
grades or invalidations) to the tile are broadcast to both the eL1D and L2
caches. We ensure that only one of the caches, usually the L2, responds
to LLC coherence requests. To enable this, the L2 protocol uses the
MDF to determine when it must wait for the eL1D to complete an LLC
request before responding to the LLC. Upon completing the LLC re-
quest, the eL1D sends an acknowledgement to the L2 cache. Following
this acknowledgement, the L2 cache can respond to the LLC if needed.

In transactions requiring a data response or writeback, the L2 services
requests when it can. However, when the eL1D holds the only copy of
data, the eL1D responds. To ensure only one cache writes back at a
time, the L2 cache prompts the eL1D to issue the response itself.

2) Handling Core Requests: Each time a core-issued request
reaches the L2, the L2 and MDF are searched in parallel. The L2 cache
controller uses both results to determine how to proceed (see Fig. 2(b)).

If the L2 cannot service the request but the MDF holds the line with
the requested permissions, the request is forwarded to the eL1D. The
eL1D responds to the request and downgrades its state if necessary.
Upon receiving a response from the eL1D, the L2 updates its local
state as well as the MDF to reflect any changes to the eL1D.

As demonstrated in Fig. 4, in the case that the line is not found in
the L2 and the MDF holds the line in E or M when S is requested,
the request is satisfied accordingly. However, during the transaction the
eL1D downgrades, leaving both the eL1D and L2 in the same state (S)
while the MDF maintains its original state. The state of the MDF now
reflects the overall state of the tile (M), rather than the state of the eL1D.
This mechanism avoids involvement of the LLC when a core and its
local accelerator access the same data.

If the line is found in the MDF in state S when M is requested,
concurrent requests are sent to the eL1D and the LLC. The eL1D
supplies the data to the L2 and transfers its permissions to the L2. An

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 31,2023 at 19:22:10 UTC from IEEE Xplore. Restrictions apply.

44 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 1, JANUARY-JUNE 2023

Fig. 6. Continuation of the example from Fig. 4 where the data is evicted from
the eL1D (step 1), stored by the accelerator (steps 2-7), and finally evicted from
the eL1D again (step 8).

LLC request is sent in parallel to obtain exclusive permission, and, after
receiving an acknowledgement from the LLC, the L2 finally upgrades
to M and can satisfy the request.

If the line is not in the L2 or MDF, the request is sent directly to
the LLC. Using the MDF to determine that the eL1D does not have the
data ensures the L2 does not send an unnecessary request to the eL1D.
Rather, the L2 immediately sends a request for the data to the LLC,
ensuring the critical path is the same as an L2 miss in a baseline CMP.

3) Handling Accelerator Requests: When an accelerator-issued
request misses in the eL1D, the request is first forwarded to the L2. In
the case that the L2 can service the request fully, data is transferred, the
L2 is downgraded if necessary, and the MDF is updated to reflect the
new eL1D state (see steps 2-7 in Fig. 6).

If the L2 holds the block in E or M when S is requested, the L2
downgrades and sets the MDF to its old state. The L2 and eL1D caches
share the data but the MDF and LLC track the data as E or M.

If the L2 cannot service the request, it informs the eL1D which sends
the request to the LLC. When the LLC responds, a state change is sent
to update the MDF before the eL1D completes the request.

“Direct” LLC Access via Speculative L2 Bypass. So far, Kobold adds
L2 latency to the critical path of eL1D misses. This is to prevent requests
arriving at the LLC while the L2 has a valid copy of the data. However,
for applications which desire direct access to the LLC, the additional
L2 latency on every eL1D miss can significantly harm performance [8].

Instead, in Kobold, the eL1D can speculatively issue an LLC request
in parallel with an L2 request to hide L2 latency. To enable these
speculative requests, the LLC needs to handle two additional scenarios:
requests for data that the child has (a) in a shared state, and (b) in an
exclusive state. Scenario (a) is common in prior protocols which allow
the L2 to silently drop clean data. However, scenario (b) would not
occur in a silent-drop protocol because dirty data cannot be dropped
silently. Accordingly, Kobold requires a minor modification to the LLC
protocol to ignore redundant requests to data owned by the requesting
tile in an exclusive state, since the L2 will handle the request and no
response from the LLC is required.

Speculative L2 bypass improves performance at the cost of unnec-
essary LLC accesses on misspeculation (i.e., when the data is actually
in the L2). We observe that bypass can be predicted accurately [11],
particularly since cache-attached accelerators often have strong pre-
dictors of data’s location (i.e., at which level tasks were scheduled to
execute [8], [12]).

4) Handling Evictions: When the L2 replaces a block, it first
checks the state in the L2 directory and the MDF. If only the L2 cache
holds the line, the L2 issues a PUT request to the LLC. However, if the
MDF also holds the tag (i.e., the eL1D has the data), the L2 silently
drops the data. If the MDF tracks the data as in E or M while the L2
holds the data in S, the eL1D state is upgraded to that of the MDF and
the L2 drops its copy.

If the eL1D replaces a block in a private state, it concurrently issues
a PUT request to the LLC and informs the MDF that it replaced the
line (see step 8 in Fig. 6). However, when the eL1D replaces a block
in the S state, more indirection is required. First, the eL1D checks if
the L2 cache holds the line. If the L2 does not hold the data, the MDF
is invalidated and the L2 triggers the eL1D to issue a PUT request to

the LLC. However, if the L2 holds the data, the eL1D silently drops
the data, the MDF is invalidated, and the L2 is upgraded to reflect the
previous state of the MDF if necessary (see step 1 in Fig. 6).

IV. EVALUATION

Verification: We used the Murphi model checker [5] to formally
verify Kobold’s stable-state protocols. We made the model transaction-
atomic based on the method in [9]. Our Murphi model verified Kobold’s
protocols against the single-writer, multiple-reader invariant and proved
deadlock-freedom. During verification, Murphi explored 12,534 states.

Area: We used Cacti 7 [3] to evaluate the area requirements of the
MDF. Like täkō [12], we evaluate with a 128 KB L2, 8 KB eL1D,
and 512 KB LLC per tile. In 22 nm, Cacti estimates the L2 size as
0.2706 mm2, the LLC bank as 0.5963 mm2, and the MDF size as
0.00076 mm2. Compared against the baseline area of the L2 cache and
LLC bank, the MDF adds an area overhead of only 0.09%.

V. FUTURE WORK AND CONCLUSION

In this era of memory-hierarchy specialization and heterogeneous
architectures, ease of integration is vital for incorporating special-
ized hardware like cache-attached accelerators. Even in homogenous
systems, cache coherence is a challenging mechanism to correctly
implement and verify. To integrate cache-attached accelerators with
minimal impact on coherence complexity and system overhead, we
introduced the Kobold coherence protocol. By keeping additional
coherence actions local to a single CMP tile, Kobold significantly
simplifies accelerator integration, minimizes on-chip network traffic,
and avoids impacting baseline processor performance.

Moving forward, we plan to generate the fully concurrent protocols,
i.e., the transient states and transitions required for concurrency. Specif-
ically, we plan to modify the HieraGen tool [10] to support Kobold’s
non-inclusive hierarchy design.

ACKNOWLEDGMENT

We thank the reviewers and editors for their feedback.

REFERENCES

[1] J. Alsop, M. Sinclair, and S. Adve, “Spandex: A flexible interface for
efficient heterogeneous coherence,” in Proc. IEEE/ACM 45th Annu. Int.

Symp. Comput. Architecture, 2018, pp. 261–274.
[2] R. Balasubramonian et al., “Near-data processing: Insights from a MICRO-

46 workshop,” IEEE Micro, vol. 34, no. 4, pp. 36–42, Jul./Aug. 2014.
[3] R. Balasubramonian et al., “CACTI 7: New tools for interconnect explo-

ration in innovative off-chip memories,” ACM Trans. Architecture Code

Optim., vol. 14, pp. 1–14, 2017.
[4] A. Boroumand et al., “CoNDA: Efficient cache coherence support for

near-data accelerators,” in Proc. IEEE/ACM 46th Annu. Int. Symp. Comput.

Architecture, 2019, pp. 629–642.
[5] D. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, “Protocol verification

as a hardware design aid,” in Proc. IEEE Int. Conf. Comput. Des.: VLSI

Comput. Processors, 1992, pp. 522–525.
[6] C. E. Kozyrakis et al., “Scalable processors in the billion-transistor era:

IRAM,” IEEE Comput., vol. 30, no. 9, pp. 75–78, Sep. 1997.
[7] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, “The

directory-based cache coherence protocol for the DASH multiprocessor,”
in Proc. 17th Annu. Int. Symp. Comput. Architecture, 1990, pp. 148–159.

[8] E. Lockerman et al., “Livia: Data-centric computing throughout the mem-
ory hierarchy,” in Proc. 25th Int. Conf. Architectural Support Program.

Lang. Operating Syst., 2020, pp. 417–433.
[9] T. Olausson, “Towards the automatic synthesis of cache coherence proto-

cols,” Ph.D. dissertation, 2020.
[10] N. Oswald, V. Nagarajan, and D. J. Sorin, “HieraGen: Automated

generation of concurrent, hierarchical cache coherence protocols,” in
Proc. IEEE/ACM 47th Annu. Int. Symp. Comput. Architecture, 2020,
pp. 888–899.

[11] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-offs in ar-
chitecting DRAM caches,” in Proc. IEEE/ACM 45th Annu. Int. Symp.

Microarchitecture, 2012, pp. 235–246.
[12] B. C. Schwedock et al., “täkō polymorphic cache hierarchy for general-

purpose optimization of data movement,” in Proc. 49th Annu. Int. Symp.

Comput. Architecture, 2022, pp. 42–58.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 31,2023 at 19:22:10 UTC from IEEE Xplore. Restrictions apply.

