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Numerous theoretical and experimental studies suggest that the chemical ordering microstructure plays an
important role for the strength and plastic deformation in the multi-principal-element alloy (MPEA).
Despite the importance of this fact has been well confirmed, little is known about the influence of chemical
ordering degree from the atomic scale to nano scale for the nanocrystal MPEA over a wide grain size range.
In the present work, considering the abnormal local stacking fault energy originated from the hetero-
geneous chemical element concentration, the modified Hall-Petch relationship is elaborately established in
MPEA, quite different from the traditional alloys. Additionally, the effects of the solid solution, local che-
mical ordering, and precipitation on the strengthening contribution and strain partition are evaluated. The
increase of the chemical ordering degree improves the stacking fault energy and deformation gradient, as
well as microrotation field. This trend leads to the yield strength owing to the formation of the slender shear
bands. The geometry of the ordered structure is deformed and twisted to a certain extent, for the com-
patible plastic deformation. This work gives the atomic understanding of chemical-ordering-degree
dominated strengthening mechanisms, to develop the strong and ductile MPEAs with desired properties.
Data availability statement: The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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1. Introduction

The local chemical short-range order (CSRO) invariably exists in
the multi-principal-element alloy (MPEA) at low temperatures or
after long-time annealing and affects the deformation behavior to
enhance the mechanical properties [ 1-4]. Recently, the existence of
CSRO structures in the CoCrNi MPEA has been directly confirmed by
transmission electron microscopy (TEM) [5,6]. The coherency strain
fields arising from CSRO structures suppress dislocation movement
to increase the threshold stress in the Al0.3CoCrFeNi MPEA [7].
Moreover, the formation process of the local order structure, such as
nanoclustering and nanoprecipitation, influences the concentration
and distribution of elements around there, and a low stacking fault
energy (SFE) fluctuation causes the full dislocation to split into wide
partials, resulting in the occurrence of cross-slip at high stress le-
vels [8,9].
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More recently, the results of molecular dynamics (MD) simula-
tions reveal that the SRO-induced composite microstructure en-
hances both the ultimate strength and ductility [10]. The lattice
distortion and CSRO play the key role in the nucleation and evolution
of dislocations and nanotwins in the single crystal and nanocrys-
talline CoCrNi MPEA [11]. Compared with the random solid solution
state sample, the average hardness in a stable SRO sample increases
13.7% due to the dislocation pinning induced by the local Ni-rich
regions [12]. The degree of CSRO depends on the effective cooling
rate in Zr45Cu45Ag10 metallic glass, and the regions of Cu-rich and
Ag-rich have the obvious differences of the dynamic mechanical
properties [13]. The CSRO leads to a softening of the BCC C016.67-
Fe36.67Ni16.67Ti30 MPEAs relative to the random solid solution
state sample, duo to the low solid solution strengthening [14]. The
formation of mechanically derived short-range order in a
Fe40Mn40Cr10Co10 MPEA has a certain contribution to the yield
strength, mechanical twinning, and deformation-induced transfor-
mation [15], and relies on the ordering degree/extent on the applied
strain rates. The nanoindentation of the single crystal CoCrNi MPEA
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Fig. 1. The stacking fault energy with the increase of ordered structure fraction (a). The corresponding configurations include the random sample (b) and different ordered phase
VFs of 11.1 (c), 16.7 (d), 20 (e), 25 (f), and 33.3 (g). The pairwise chemical short-range order parameters at different ordered phase VFs (h).

demonstrates that CSRO inhibits dislocation extension and cross-slip
to enhance the hardness [16,17]. However, the influence of the
random solid solution, local chemical ordering, and precipitation on
the mechanical and physical behaviors are still far from being fully
understood, especially for the nanocrystalline MPEA.

In this work, the effect of the local order structure on the de-
formation mechanisms and tensile behavior of the nanocrystalline
FeCrNi MPEA are studied using atomic simulations. The CSRO degree
correlated with the yielding strength is quantitatively analysed.
Compared with the random solid solution state sample, the CSRO
model exhibits higher strength in the nanocrystalline FeCrNi MPEA.
The detailed microstructure and dislocation evolution are char-
acterized, and the strain distribution is also considered. Here, the
present work could provide an in-depth understanding of role of
CSRO degree on the atomic-level deformation mechanisms.

2. Method
2.1. Material

The previous work shows the local element enrichment to result
in the local chemical ordering [6,14,18,19]. Hence, the size of the Cr-
element enrichment region is 0, 1, 2, and 5 nm (Fig. 1b-g), which is
used to regulate the degree of short-range order based on the result
of the previous simulation and experiment [14,18,19]. Here, the
corresponding volume fractions (VFs) of the ordered phases are 0 %,
111 %, 16.7 %, 20 %, 25 %, and 33.3 %. The size of sample is
89.9 x 89.9 x 2.5 nm>, where the thlckness of the columnar grain is
larger than the cutoff distance of 5 A for meeting the periodicity
along the z direction. The nanocrystalline is built by the Voronoi
method [20], and the average grain size is 5, 7,10, 15, and 20 nm (See
Fig. S1). The atomic number is about 1,720,000. The z direction is
set along the < 111 > direction, and periodic boundary conditions are
applying all directions [20]. To construct the desired MEA FeCrNi
sample with the random elements, the atoms in the polycrystal Cr
are randomly replaced by atoms of Fe, and Ni, as presented in Fig. 1b.
To the MEA FeCrNi sample with local chemical ordering, the square
Cr element segregation region is created in the MEA FeCrNi sample
in Fig. 1c-g. Here, the nanostructured MEA FeCrNi film of three-di-
mensional (3D)< 111 > textured (or columnar) grains is built. Here,
according to the size of the local ordered structure, we would divide
the samples into three categories: random solid solution corre-
sponding to the size less than 0.5 nm (size < 0.5 nm), local chemical
ordering corresponding to the size less than 3 nm (0.5 <size <3 nm),

and precipitation corresponding to the size less than 100 nm
(3 <size < 100 nm).

2.2. Simulation detail

According to the Maxwell Boltzmann distribution, the velocities
of all atoms are randomly set. Before the loading, the sample is first
subjected to the energy minimization using the conjugate gradient
method, and NVT dynamics (the canonical ensemble with a constant
number of particles, volume and temperature) at the temperature of
300K for 100 picoseconds in order to the relaxation. Then, NPT
dynamics (the isothermal-isobaric ensemble with a constant
number of particles, volume and pressure) at the temperature of
300K is performed for 100 picoseconds in order to the further re-
laxation. A time step is 1 femtosecond. The uniaxial tensile loading
with the constant rate of 1x 108 s™! is applied along the x-direction
under NPT dynamics at temperature of 300 K. The temperature in
the NVT and NPT dynamics is adjusted by the Nose-Hoover method
[20-22]. The maximum engineering strain reaches 6 %. An em-
bedded-atom method potential [10,23-25] is employed to the in-
teractions of atoms in the MPEA FeCrNi. The MD simulations are
computed by the open-source Large-scale Atomic/Molecular Mas-
sively Parallel Simulator code [26]. The local atomic structure is
analyzed by the common-neighbor analysis (CNA), and the micro-
structural evolution is presented via the Ovito software [27]. Based
on the value of CNA, the green color represents face-centered cubic
(fcc) structure, the red color stands for hexagonal close-packed (hcp)
structure, and the blue color means other structure including dis-
location, and grain boundary.

2.3. Chemical short range order parameter

It is common to describe SRO in form of Warren-Cowley short-
range order or pair-correlation parameters which is defined as

aft = pl.;." - G |/(6; — G) [28,29], where m means the mth nearest-
neighbor shell of the central atom i, p}}1 is the average probability of
finding a j-type atom around an i-type atom in the mth shell, Gj is the
average concentration of j-type atom in the system, and &; is the
Kronecker delta function. When o' =0, this feature describes
random alloys namely in this case elements i and j are found in the
alloy system. In the case of "' > 0 there is a tendency of clustering
or segregation of i-i and j-j pairs and for ' < O there is a tendency
of unlike pairs ordering i-j.
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Fig. 2. The average stress-strain curves for different grain size samples (a-c). For each average grain size, the average stress-strain curve is obtained by averaging over three
independent MD calculations (see Appendix A), for eliminating the errors caused by the grain shape artificially constructed. The relationship between the yielding strength and

average grain size (d).
3. Results
3.1. Stacking fault energy

The deformation characteristics and mechanical behavior of
materials are strongly dependent on the stacking-fault energy (SFE),
which directly influences on the slip mode, and deformation twin-
ning as well as phase transformation in the fcc alloys [30]. Thus, a
basic understanding of how the SFE is affected by composition plays
a crucial role in the alloy design. Here, for the sample with different
sizes of the ordered structures, the SFE is presented in Fig. 1a, and
the corresponding models are described in Fig. 1b-g. Here, the or-
dered structure fraction is 0 %, 11 %, and more than 16.7 %, which
stands for the sample with random solid solution, the sample with
local chemical ordering, and the sample with precipitation. The in-
creased VF of an ordered phase would increase the SFE in equimolar
multicomponent alloys. The SFE can change from 35 to 87 mJ/m? and
would strongly affect the deformation behavior of the FeCrNi MPEA
by controlling the nucleation and emission of the full dislocation and
partial dislocation [31]. Hence, the variation of SFE with the degree
of CSRO has the shape of a linear positive correlation (Fig. Th).

3.2. Hall-Petch relationship

Fig. 2a-c show the tensile engineering stress-strain curves of our
designed MEAs with different ordered phase VFs (0 %, 11.1 %, 25 %,
and 33.3 %). In order to eliminate the difference of grain structures,
the average stress-strain curve is calculated from 5 groups of in-
dependent samples. For the various average grain sizes, a yield
strength increases with increasing the degree of local chemical or-
dering, but the flow stress after the yielding declines significantly.
The MEAs with a random element distribution present a good tensile
uniform elongation. The generalized form of the Hall-Petch relation
can be expressed as o = g + kD-'/2 [32,33], where o is the tensile
flow stress, gp is a friction stress, k is a constant which has been
traditionally referred to as the Hall-Petch slope [34], and D is the
average grain size. By fitting these three discrete yield strengths
when the average grain size of d > 10 nm, the Hall-Petch relation of
MEA can be expressed as: 6=3.5+3.7 D12 (0 %), 5=3.8+3.2 D'/
(111 %), 6=3.6+5.1 D12 (25 %), and 6=3.7+6.1 D12 (33.3 %), as
presented in Fig. 2d. For the average grain size of d < 10 nm, the
inverse Hall-Petch relation of MEAs can be expressed as: ¢=6.3-5.1

Table 1
Elastic module for a grain size of 5 nm.
Ordered C11 (GPa) C12 (GPa) (44 (GPa) Poisson's u (GPa)
phase VF ratio
0% 242.5 87.7 60.1 0.294 66.5
111% 252.0 90.0 63.4 0.291 69.9
25% 270.9 94.7 69.1 0.287 76.2
33.3% 286.2 98.9 73.6 0.285 81.1
Table 2
Elastic module for a grain size of 20 nm.
Ordered C11 (GPa) C12 (GPa) (44 (GPa) Poisson's u (GPa)
phase VF ratio
0% 2274 69.1 63.4 0.263 69.3
11.1% 2394 724 66.7 0.262 73.0
25% 2611 78.6 723 0.261 79.4
33.3% 279.4 83.5 76.7 0.261 84.6

D2 (0 %), 6=6.1-43 D™Y2 (111 %), 6=6.8-5.1 D™/? (25 %), and
6=74-5.5 D72 (33.3 %), as exhibited in Fig. 2d.

In the context of the previous work [34], the slope of the Hall-
Petch relationships considering the effect of SFE can be expressed as

k= %, where bis the Burgers vector, v is the Poisson's ratio, u
is the shear modulus from Tables 1 and 2, « and B are dimensionally
consistent constants, and x; is the stacking fault energy. The value of
Burger vector is taken as 0.3591 nm, based on the FCC lattice para-
meter obtained from XRD [35]. Hence, the present research corre-
lates the complex relationships between the extent of CSRO and SFE

as well as microstructures.

3.3. Evolution of microstructures

To reveal the ordered phase VF on the microstructure evolution,
the defect structures with the increased local chemical ordering
degree are performed when the plastic strain has reached about 4 %
(Fig. 3a), and the evolution of the dislocation density is presented
(Fig. 3b). As a result, there is an obvious difference in the grain
boundary configuration and dislocation structures formed inside the
crystal grain (Fig. 3a). For the mean grain sizes of 5nm and 20 nm,
the grain boundary maintains a relatively complete structure for the
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Fig. 3. Evolution of grain boundary structure and dislocation with the increased of the ordered phase VF for the grain sizes of 5nm and 20 nm at the strain of 6% (a). The
dislocation density with the increase of the ordered phase VF at the grain sizes of 5nm and 20 nm (b).

sample with a random solid solution, and the existence of the or-
dered phase reduces the grain boundary stability (Fig. 3a) owing to
the reduction of the grain boundary resistance in the low Cr ma-
trix.This trend suggests that the limited amount of Cr solutes im-
pacts the grain boundary stability at the large degree of local
chemical ordering, in good agreement with those experimentally
observed in nanocrystal FeCr alloys [36]. The dislocation density in
the sample with an ordered phase increases in a comparison of the
sample with random solid solution (Fig. 3b). For the inverse Hall-
Petch relation, the increased ordered phase VF reduces the disloca-
tion density. However, this result seems to be independent of the
local chemical ordering degree in the Hall-Petch relation. For the
large grain, the deformation of a grain boundary itself also plays a
key role at the limited plastic deformation, which is not completely
dependent on the dislocation slip mechanism. Thus, the increased
ordered phase VF would not significantly disturb the evolution of the
dislocation density.

The dislocation behavior plays a crucial role determining the
strength and ductility of the materials [1,37,38]. Fig. 4(a) exhibits the

(a)

Ordered structure fraction

0% 11.1% 25%

evolution of dislocation distribution with the increased CSRO degree
at the strain of 6 %. Compared with other types of dislocations, a
large number of Shockley partial dislocations occurs with the in-
crease strain, which are responsible for the material plasticity. Quite
a few stair-rod dislocations are generated, and maintain the work
hardening of materials. It is widely known that the higher disloca-
tion storage capacity represents better ductility in MPEAs [39,40].
Here, to analyse the influence of chemical ordering degree on the
ductility of the FeCrNi MEAs, the variation of the mobile dislocation
density with the increased strain is counted in Fig. 4(b), where the
Shockley partial dislocations are mobile. For the high ordered phase
VFs, increment of the mobile dislocation not only has a large
number, but also has a fast multiplication rate. Thus, improving the
CSRO degree is beneficial to enhance the ductility of MEAs.

4. Discussion

Fig. 5 shows a lattice distortion field generated in the ordered
phase, where the high strain appears there within the grain
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boundary regions. The samples with low ordered phase VFs have
some dense fine shear bands, and the slender shear bands exist with
regions containing high ordered phase VFs. The increased ordered
phase would change the morphology and distribution of shear bands
for the grain sizes of 5 nm and 20 nm. Thus, the ordered phase plays
a key role in influencing the strain partitioning for the same initial
microstructure [41]. Hence, the solid solution, local chemical or-
dering, and precipitation produce the local lattice distortion to affect
itself and its surrounding area. Fig. 6 presents the evolution of an
ordered structure shape. The initially ordered phases with the same
shape at different positions experiences the complex stress states,
and tilt along various directions despite the uniaxial tensile de-
formation and the given grain. This phenomenon is quite different

from the well-known grain rotation during deformation [42], which
is attributed to the glide of cross-grain dislocations and the grain-
boundary-dissociation-induced dislocations (Fig. 3). Obviously, this
process is difficult to be captured through the strain distribution.
Besides, the coherency strain fields do not exist there around these
nano-ordered structures which are different from the experimental
observation for the huge increase in value of Hall-Petch slope [7].
Hence, we would analyze the deformation gradient and microrota-
tion to reveal the effect of the ordered phase VF on the mechanical
properties of the nanocrystalline MEA.

The lattice vectors for each atom are determined in both the
reference and current configuration, and the deformation gradients
for each individual atom can be calculated [43]. Fig. 7 shows the

Fig. 6. The distribution of elements for the increased ordered phase VF at the strain of 6%. The grain size is 5 nm (a-d), and 20 nm (e-h). Here, the dotted line is used to better

contrast the change of ordered phase.
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deformation gradients at a strain of 6% for various ordered phase
VFs. As well known, the dislocation nucleation and grain boundary
movement could obviously reduce the elastic strain. In other word,
the local plastic deformation reduces the elastic strain in regions
with the increasing strain after yielding. For smaller grained sam-
ples, the deformation gradient can be displayed more clearly due to
more plastic behavior activated (Fig. 7a). The large grain sample has
a low deformation gradient induced by the weak grain boundary
linkage characteristics. The increased ordered phase VF enhances not
only the region size of low deformation gradient, but also the region
size of high deformation gradient (Fig. 7b), where this case can be
captured in nanocrystalline samples with grain sizes of 5 and 20 nm.
This case would cause severely heterogeneous deformation, where
the local region bears strong strain responses. It suggests that the
heterogeneity of the atomic scale shear strain agrees with the shear
strain gradient field (Figs. 5 and 7).

The previous work demonstrates that the microrotation is not
only a useful measure for determining deformation [44,45], but also
able to capture the nanoscale deformation (e.g., dislocation slip,

_— 3

grain boundary sliding, and migration) [4G]. Here, Fig. 8a shows the
distribution of the microrotation fields along the z axis, where atoms
are colored according to the calculated microrotation. Interestingly,
some regions show an obvious microrotation even where high strain
is absent. Furthermore, the microrotation fields surrounding the
ordered phase (Fig. 8a) are strikingly similar to those shown in
Fig. 7a. To further evaluate the distinct information regarding the
deformation history of each atom from the microrotation, Fig. 8b
exhibits the VF of the average atomic microrotation larger than 0.1 as
a function of ordered phase VF for the increased imposed strain. The
value of atomic microrotation shows an opposite trend over the
increased ordered phase VF. Hence, the good strength and ductility
of the nanocrystalline MEA is controlled by the complex restriction-
and-regulation mechanism among the strain, deformation gradient,
and microrotation fields dependent on the degree of chemical or-
dering.

To evaluate competitive relationships between the solid solution
strengthening and the ordered structure strengthening, Fig. 9 shows
the interaction between the dislocation and ordered solid solution
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phase. As the size of the Cr-riched ordered structure increases, the Cr
content of the matrix decreases significantly (Fig. 9a). This trend
would slightly affect the microstructure (Fig. 9b), which would not
dominate the strengthening behavior of materials. It is worth noting
that the low strain local regions markedly increase (Fig. 9c), thus
reducing the solid solution strengthening from the contribution of
lattice mismatch. The corresponding strain statistical results are
presented in Fig. 9d, in consistent with the strain distribution
(Fig. 9¢). Hence, with the increase of the ordered structure size, the
solution strengthening decreases, but the ordered strengthening
increases (Fig. 9d). In order to obtain the highest strength, the rea-
sonable strategy of the chemical element distribution mediated
deformation/strain partitioning could be one of the most critical
choice through the regulation of the ordered phase degree [47].
Furthermore, this composition distribution regulation could also be
extended to the amorphous alloys. For example, based on the new
strategy of gradient design of alloying compositions, the CuZr-based
metallic glasses exhibit high strength and good ductility due to the
mechanistic strain gradient effect [48], which affects the activation
mechanisms of shear band nucleation and propagation. Hence, the
introduction of short-range order is bound to produce the good
ductility in amorphous alloys [49], via the rational distribution of
local high strain to reduce the strain localization degree.

5. Conclusions

Considering a wide range of grain sizes, the deformation me-
chanisms of the nanocrystalline samples with different ordered
phase degrees are investigated using atomistic simulations under
the uniaxial tension at room temperature. The results show that the
coherency strain fields do not exist there around these nano-ordered
structures which are different from experimental observation for the
huge increase in the value of the Hall-Petch slope. The local plastic
deformation reduces the elastic strain with the increased strain after
yielding. For a smaller grained sample, the deformation gradient in
the small grain sample is displayed more clearly due to more plastic
behavior activated, and the large grain sample has a low deformation
gradient induced by the weak grain boundary linkage characteristics.
The increased ordered phase VF enhances not only the region size of
a low deformation gradient, but also the region size of a high de-
formation gradient. The heterogeneity of the atomic scale shear
strain agrees with the shear strain gradient field. In addition, the
good mechanical properties of the nanocrystalline MEA are

controlled by the complex restriction-and-regulation mechanism
among the strain, deformation gradient, and microrotation fields
dependent on the degree of the chemical ordering. The present
study provides an insight into the nanoscale deformation me-
chanism of the complex structured MPEAs, and motivates further
intensively microstructure design by experiment.
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