

1 Title: Determining resident microbial
2 community members and their
3 correlations with geochemistry in a
4 serpentinizing spring

5

6 **Authors:** Leah R. Trutschel¹, Brittany R. Kruger², Joshua D. Sackett¹, Grayson L.
7 Chadwick³, Annette R. Rowe^{1*}

8

9 ¹ Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA

10 ² Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, Las Vegas,
11 NV, USA

12 ³ Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA

13

14 *Corresponding author at: 731F Rieveschl Hall, Cincinnati, OH 45220, USA. E-mail
15 address: annette.rowe@uc.edu (A.R. Rowe).

16

17

18 Manuscript length (in words):

19 Number of figures: 9

20 Number of tables: 1

21

22
23

24 **Abstract:**

25 Terrestrial serpentinizing systems allow us insight into the realm of alkaliphilic
26 microbial communities driven by geology in a way that is frequently more accessible
27 than their deep subsurface or marine counterparts. However, these systems are also
28 marked by geochemical and microbial community variation due to the interactions of
29 serpentinized fluids with host geology and the surface environment. To separate the
30 transient from the endemic microbes in a hyperalkaline environment, we assessed the
31 Ney Springs terrestrial serpentinizing system microbial community and geochemistry at
32 six time points over the span of a year. Using 16S rRNA gene surveys we observed 93
33 amplicon sequence variants (ASVs) that were found at every sampling event. This is
34 compared to ~17,000 transient ASVs that were detected only once across the six
35 sampling events. Of the resident community members, 16 of these ASVs were regularly
36 greater than 1% of the community during every sampling period. Additionally, many of
37 these core taxa experienced statistically significant changes in relative abundance with
38 time. Variation in the abundance of some core populations correlated with geochemical
39 variation. For example, members of the *Tindallia* group showed a positive correlation
40 with variation in levels of ammonia at the spring. Investigating the metagenome
41 assembled genomes of these microbes revealed evidence of the potential for ammonia
42 generation via Stickland reactions within *Tindallia*. This observation offers new insight
43 into the origin of high ammonia concentrations (>70 mg/L) seen at this site. Similarly,
44 the abundance of putative sulfur-oxidizing microbes like *Thiomicrospira*, *Halomonas*,
45 and a *Rhodobacteraceae* species could be linked to changes observed in sulfur-
46 oxidation intermediates like tetrathionate and thiosulfate. While these data support the
47 influence of core microbial community members on a hyperalkaline spring's
48 geochemistry, there is also evidence that subsurface processes affect geochemistry
49 and may impact community dynamics as well. Though the physiology and ecology of
50 these astrobiologically relevant ecosystems are still being uncovered, this work helps
51 identify a stable microbial community that impacts spring geochemistry in ways not
52 previously observed in serpentinizing ecosystems.

53
54 **Keywords:** Serpentinization, Ney Springs, Illumina 16S rRNA, metagenome
55
56

57 **Introduction:**

58 Serpentization is a globally relevant subsurface process caused by the
59 hydration of iron and magnesium rich minerals within the Earth's crust which
60 subsequently releases hydrogen gas (McCollum & Seewald, 2013). The hydrogen
61 produced, in addition to other reduced compounds generated, can serve as the
62 energetic basis for microbial food webs. However, the high pH fluids overall have a
63 profound effect on habitability. The degree of serpentinized fluid input can greatly alter
64 microbial community composition, with pH in particular cited as a significant driver in
65 systems that experience a range of pH values (Rempfert et al., 2017; Twing et al., 2017;
66 Fones et al., 2021) The interaction of high pH serpentinized fluids with local geology
67 and other water sources can also result in variation at the microbial community level,
68 even within the same system (Morrill et al., 2013; Rempfert et al., 2017; Ortiz et al.,
69 2018). Lastly, time scale can also have an effect on community composition, as sites
70 undergoing active serpentinization are more impacted by high pH fluids than inactive
71 ones (Schrenk et al., 2004; Szponar et al., 2013). Despite these known broad effects on
72 microbial community composition, we still have limited insight into the specific
73 geochemical drivers that explain the differences seen in the microbial communities
74 across these systems.

75 Remarkable variation is seen across continental serpentinizing systems, even
76 when comparing ones that are located within the same geologic formation (Woycheese
77 et al., 2015; Trutschel et al., 2022). For example, Ney Springs and The Cedars are both
78 a part of the Franciscan Subduction complex, but feature very different levels of salinity
79 and are dominated by different microorganisms (Suzuki et al., 2017; Cook et al., 2021;
80 Trutschel et al., 2022). Ney Springs is a terrestrial system notable for its extremely high
81 pH (12.3-12.7) and abundance of ammonia, methane, and sulfide compared to other
82 serpentinizing systems (Cook et al., 2021; Trutschel et al., 2022). Despite its continental
83 location it also has marine-like levels of sodium, potassium, and boron which are likely
84 the result of serpentinized fluids mixing with connate seawater and/or the Franciscan
85 subduction complex marine deposit (Feth et al., 1961; Barnes et al., 1972). Ney Springs
86 also contains incredibly high amounts of silica (>4,000 mg/L) which is likely due to the
87 hyperalkaline fluids dissolving nearby silica-rich volcanic rocks (Feth et al., 1961;
88 García-Ruiz et al., 2017). Ney Springs is dominated by members belonging to *Tindallia*
89 and *Izimaplasma*, which are not typically abundant or even observed within other
90 characterized serpentinizing systems (Trutschel et al., 2022). In comparison, The
91 Cedars is known for its low conductivity fluids and a shallow groundwater microbial
92 community that is dominated by the alkaliphilic and hydrogenotrophic *Serpentinomonas*
93 (Morrill et al., 2013; Suzuki et al., 2013, 2017). Conductivity values at The Cedars are
94 much lower compared to Ney Springs (0.8-3.0 mS/cm vs. 32-39 mS/cm respectively),
95 and The Cedars is limited for terminal electron acceptors such as sulfate, and nitrate
96 (Suzuki et al., 2013, 2017). The geochemical differences observed in these
97 environments are likely explained by local variation in geology and hydrology, which in
98 turn shape the microbial community composition and the challenges these
99 microorganism face.

100 Though surface exposed terrestrial systems are generally more easily accessed
101 compared to their marine or purely deep subsurface counterparts, they are also subject
102 to greater exogenous inputs and/or may be more impacted by seasonality (e.g., through

103 precipitation, temperature, or photoperiod). Thus, they likely contain a mixture of
104 microorganisms sustained solely by deep subsurface fluid chemistry, and
105 microorganisms that utilize nutrient inputs and/or oxygen resulting from surface
106 exposure. Long term geochemical and microbial community monitoring has been used
107 to study temporal changes and the surface influence on the microbial community
108 composition of mines and soda lake environments (Boros et al., 2017; Osburn et al.,
109 2019). This approach allows one to determine what the endemic microbial community
110 members of these interface environments are and how they utilize both subsurface and
111 surface resources and/or are impacted by temporal or seasonal changes in the
112 environment.

113 In this work we assess the microbial community and aqueous geochemistry at
114 Ney Springs over several points in a year (May 2021 – June 2022). This work identifies
115 geochemical parameters at Ney Springs that change seasonally, and/or those that vary
116 temporally and are not associated with seasonality. We also present data identifying a
117 core microbial community with an average seasonal relative abundance greater than
118 1%. Using metagenomics, we then investigated the potential metabolic features of this
119 core community and how microbial metabolism may link to geochemical variation
120 observed in this environment.

121

122 Materials & Methods:

123 Sample collection and analysis of aqueous geochemistry

124 Samples and field work were conducted at Ney Springs roughly every two
125 months starting in May of 2021 through June of 2022 for a total of six trips. All Ney
126 Springs fluids were collected from a 1m x 1m concrete cistern which captures the spring
127 discharge (**Supplemental Figure 1**). A Mettler-Toledo multimeter (Columbus OH, USA)
128 was used to measure temperature, pH, conductivity, total dissolved solids (TDS),
129 resistivity, and oxidation-reduction potential (ORP). Geochemical analyses conducted
130 on site for dissolved oxygen (DO), S^{2-} , Fe^{2+} , tetrathionate ($S_4O_6^{2-}$), and thiosulfate
131 ($S_2O_3^{2-}$) were done with a HACH (Loveland, CO, USA) portable spectrometer as
132 described previously (Trutschel et al, 2022).

133 Fluid samples for ion chromatograph (IC) analysis of anions (F^- , Cl^- , NO_2^- , Br^- ,
134 NO_3^- , PO_4^{3-} and SO_4^{2-}) and cations (Li^+ , Na^+ , NH_4^+ , K^+ , Mg^{2+} and Ca^{2+}) were collected
135 using autoclaved MasterFlex® PharMed® BPT tubing (Cole-Palmer, Vernon Hills, IL,
136 USA) with a Geopump™ peristaltic pump (GeoTech, Denver, CO, USA) to pump up
137 water from the bottom of the cistern (**Supplemental Figure 1**). Fluids were passed
138 through a polypropylene in-line filter housing (Millipore; Bedford, MA, USA) containing
139 0.1 μ m polycarbonate membrane filters (47 mm diameter, Millipore, Tullagreen,
140 Carrigtwohill Co. Cork, IRL) and kept on ice or refrigerated (4°C) until analysis on a
141 Dionex Aquion Ion Chromatograph (Thermo Fisher Scientific, Waltham, MA, USA). All
142 samples were run at a 1:10 dilution with MilliQ water, or at a 1:5 dilution after the
143 sample had been mixed with Amberlite® MB20 H/OH resin beads (Sigma-Aldrich, USA,
144 with a ratio of 80 mg of beads per 2 mL of sample) for chloride removal. This allowed for
145 better detection of less abundant constituents such as NO_3^- and NO_2^- . Additional
146 samples were collected for external analysis through ACZ Laboratories (acz.com)
147 (Steamboat Springs, CO, USA) for metals (silicon, iron, sodium, etc.) and ion species

148 (nitrate, nitrite, phosphate, sulfate, and sulfide) using sample bottles and protocols
149 provided by the company. Briefly, filtered, and unfiltered fluids were added to 250 mL
150 HDPE bottles that were empty or contained 2 mL of 50% HNO₃. Bottles were kept on
151 ice (~4°C) then shipped within 24 hours and analyzed at ACZ. Inductively Coupled
152 Plasma Spectroscopy (ICP) according to EPA Method 200.7 was used for metal
153 analysis. EPA methods M353.2, M350.1 and M365.1 were used for nitrate/nitrite,
154 ammonia, and phosphorous/phosphate respectively. Methods D516-02-07-11 and
155 SM4500s2-D were used for sulfate and sulfide (total sulfides or S). Samples for stable
156 isotope analysis of hydrogen and oxygen in water were collected in glass exetainer vials
157 filled without headspace or bubbles and capped to prevent evaporation and exchange
158 of samples with atmospheric water vapor. Samples were analyzed at the Center for
159 Stable Isotope Biogeochemistry at the University of California, Berkeley using Isotope
160 Ratio Mass Spectrometry (IRMS). Stable isotope results were reported in parts per
161 thousand (‰), using standard delta notation ($\delta^2\text{H}$ and $\delta^{18}\text{O}$) and are relative to VSMOW
162 (Vienna Standard Mean Ocean Water).
163

164 Sample collection, DNA extraction, 16S rRNA gene and Metagenomic sequencing

165 Microbial biomass was collected using the aforementioned peristaltic pump, 0.1
166 µm polycarbonate membrane filters, and filter setup. Filter housings were kept on ice in
167 the dark while pumping water during summer collection periods. Water was pumped
168 through the filters until they clogged, which occurred over a range of 2-12 L, then filters
169 were promptly harvested and preserved on dry ice and then later at -20°C. At minimum
170 three filters were obtained from the Ney Springs cistern at each collection period. DNA
171 was extracted from preserved filters alongside an unused filter from the same pack to
172 serve as a blank control using a Qiagen DNAeasy Powersoil kit. DNA was then
173 quantified using a Qubit fluorometer (ThermoFisher Scientific, USA). Samples were
174 then sent to Novogene (en.novogene.com) (Beijing, CHN) for 16S rRNA NovaSeq
175 PE250 amplicon sequencing targeting the V4 region (515F-806R) using the Earth
176 Microbiome project primers and protocol (Thompson et al., 2017) or for paired end 150
177 shotgun metagenomic sequencing.
178

179 16S rRNA analysis

180 Raw sequence data was trimmed, chimera checked, and quality filtered in
181 DADA2 (V. 1.22) (Callahan et al., 2016) for R (V. 4.1.2). Taxonomic classification was
182 performed using a compatible Naive Bayesian classifier trained using the
183 SILVA_nr99_V138 training set implemented for DADA2 (McLaren, 2020). Phyloseq (V.
184 1.38.0) was used to generate taxonomic bar charts for 16S rRNA gene data (Mcmurdie
185 and Holmes, 2013). Contamination sequences were determined by using the blank filter
186 controls and were removed from the dataset using the prevalence based method in
187 Decontam, which compares the presence/absence of taxa found in contaminated
188 control samples to that in actual samples (Davis et al., 2018). For determination of core
189 community Amplicon Sequence Variants (ASVs), 23 samples were first pooled into six
190 categories based on time of sampling and then assessed for ASV detection. ASVs that
191 were found within all six sampling events were deemed resident community members,
192 while ASVs found during only one of the six sampling events were deemed transient.
193 Microbial community composition and seasonal taxa overlap were visualized by

194 generating an upset plot in UpSetR (V. 1.4.0) (Conway et al., 2017). Comparisons of
195 mean relative abundance of core community ASVs was done using a Kruskal-Wallis
196 test from the Vegan R package (V. 2.6-2) (Oksanen et al, 2022) followed by a Dunn test
197 adjusted with Benjamini-Hochberg correction. The MicroViz R package (Barnett et al.,
198 2021) was used to performed a redundancy analysis (RDA) on community samples with
199 ASVs only detected once over the six sampling periods removed from the sample pool.
200 Changes in the relative abundance of core community ASVs were compared with
201 changes in various geochemical species over time by calculating the correlation
202 coefficient in Excel.
203

204 **Metagenome analysis**

205 Metagenome sequencing data was pooled from the July 2021, January 2022,
206 and March 2022 sampling trips as we were able to select sufficient biomass for
207 metagenomics during these trips. Initial taxonomic classification of metagenome reads
208 was performed with Kaiju (v1.7.4) (Menzel et al., 2016). Metagenomic reads were
209 obtained and co-assembled by IDBA-ID (v1.1.3) (Peng et al, 2010), MEGAHIT (v1.2.9)
210 (Li et al., 2015) and metaSPAdes (Nurk et al., 2017)(v 3.15.3) within the Kbase web
211 platform (Arkin et al., 2018). The three assemblies were then binned using CONCOCT
212 (v1.1)(Alneberg et al., 2014), MaxBin2 (V2.2.4)(Wu et al., 2016) and MetaBAT2
213 (v1.7)(Kang et al., 2019) for a total of nine different permutations. DAS tool
214 (v1.1.2)(Sieber et al., 2018) was then used to merge any overlapping or redundant bins
215 generated from CONCOCT, MaxBin2, and MetaBAT2 into one set of bins for each of
216 the three assembly methods. These three assemblies were then classified using GTDB-
217 tk (v1.7.0)(Parks et al., 2018) and extracted as bins. The bins were named for their
218 number, taxonomic classification, and assembly method and were then merged as one
219 large assembly set which was assessed in CheckM (v1.0.18)(Parks et al., 2015). A
220 multiple sequence alignment (MSA) is generated in CheckM with HMMER
221 (<http://hmmer.janelia.org>), which uses 43 single copy phylogenetic marker genes to
222 assess bin completeness (Parks et al., 2015). The MSA obtained from the CheckM
223 output was then used to generate a tree using FastTree2 (v2.1.9)(Price et al., 2010).
224 Using the phylogenetic tree along with CheckM stats, bins were manually selected
225 based on phylogenetic classification, completeness, and contamination. In most instances
226 the phylogenetic tree nodes were grouped in sets of three, representative of each
227 assembly method (i.e. IDBA-ID, MEGAHIT, and metaSPAdes), which all contained the
228 same marker lineage designation, number of genomes, number of markers, and
229 number of marker sets. The representative bin was then chosen based on highest
230 completeness and lowest contamination. These finalized metagenome assembled
231 genomes (MAGs) were combined with previously obtained MAGs associated with
232 dominant Ney Springs taxa (Trutschel et al., 2022) to investigate the core microbial
233 community members. All assemblies were annotated or re-annotated using the KEGG
234 GhostKoala (v2.2.) online interface (Kanehisa et al., 2016). Metabolic pathway
235 completeness was assessed using the KeggDecoder package (Graham et al., 2018)
236 and via manual search of KO terms for genes of interest not included in the
237 KeggDecoder package.

238 **Results and discussion**

239 **93 ASVs constitute Ney Springs' cistern resident community**

240 Analysis of the pooled monthly seasonal samples revealed many transient ASVs
241 found during only one of the sampling events, with approximately 17,000 out of the
242 almost 20,000 ASVs detected falling into this category. These transient microorganisms
243 are suspected to mostly come from input of debris from the surrounding environment
244 (e.g., plants, insects, dust) into the cistern. The transient community is higher in
245 diversity but much lower in abundance compared to the resident community, which was
246 comprised of only 93 ASVs observed every sampling period. These 93 ASVs are
247 referred to as the resident microbial members due to their persistent detection in the
248 spring (**Figure 1A**). Notably, the resident community members were all bacteria, with
249 Archaea only detected in low amounts in both the 16S RNA gene survey and
250 metagenomic data for the cistern (**Supplemental data 1 and 2**). This aligns with
251 previous findings from Ney Springs which showed very little Archaeal presence
252 (Trutschel et al., 2022). Of these resident community ASVs, the *Tindallia* and
253 *Izimaplasma* genera consistently dominated the microbial community; seven *Tindallia*
254 ASVs comprised 36-55% of the community and two *Izimaplasma* ASVs ranged from 3
255 to 36%. 16 of the resident community ASVs had an average annual abundance of
256 greater than 1%. These 16 were deemed the core community ASVs and collectively
257 comprised 63-87% of the community alone, while the 93 resident ASVs comprised 74-
258 93% of the microbial community (**Figure 1B**).

259 The core community taxa found are from genera predominantly associated with
260 alkaline environments, with many representatives previously detected in soda lakes. For
261 example, the predominance of *Tindallia* and *Izimaplasma* species is distinct compared
262 with other serpentinizing systems, though these taxa have been detected within soda
263 lakes (Kevbrin et al., 1998; Vavourakis et al., 2018). Other predominant core community
264 taxa are those belonging to the *Halomonas* and *Rhodobacteraceae* groups. Isolates
265 from these groups have been cultured from multiple alkaline soda lake environments
266 and have been shown to be heterotrophic sulfur oxidizers (Sorokin et al., 2000; Sorokin,
267 2003; Bryantseva et al., 2015; Kopejka et al., 2017). Approximately 15% of the resident
268 community ASVs belong to the *Rhodobacteraceae* and include the intermingled and
269 poorly phylogenetically resolved *Paracoccus*, *Rhodobaca*, *Rhodobaculum*, *Roseibaca*
270 and *Roseinatronobacter* genera. The closest relative of the Gammaproteobacteria
271 incertae sedis ASV is *Wenzhouxiangella*, another genus originally isolated from an
272 alkaline soda lake (Sorokin et al., 2020). *Thioalkalimicrobium* (aka *Thiomicrospira*) is the
273 only core community member also observed in high abundance in other serpentinizing
274 system microbial communities-the Lost City and Prony Bay hydrothermal fields
275 (Brazelton et al., 2012; Postec et al., 2015), though species have also been isolated
276 from soda lakes as well (Sorokin et al., 2002). Ney Springs is located <640 km from
277 Mono lake, a soda lake which shares many similar microbial members to those found in
278 Ney Springs, such as *Halomonas*, *Thiomicrospira*, and *Roseinatronobacter* (Humayoun
279 et al., 2003; Trutschel et al., 2022). The remaining core community taxa include
280 *Planomicrobium* species, which are not known to be associated with alkaline
281 environments, but the closely related *Planococcus* have been isolated from alkaline
282 soils (Wang et al., 2015). There is also *Tyzzerella*, which is commonly found in the
283 human gut microbiome, though the closest matches with our 16S rRNA sequence are

284 from uncultured members detected in termite guts—which , are known for highly
285 alkaline conditions that aid in digestion of plant material (Schmitt-Wagner et al., 2003).
286 Overall, the core community taxa identified show precedence for being alkaliphiles,
287 though this is the first time many have been detected in abundance within a
288 serpentinizing system.

289
290 **Seasonal evaporation occurs in the Ney Springs cistern**
291 Our previous work used water isotopes to demonstrate that fluids from the Ney
292 Springs primary cistern are distinct from other water sources in the Mt.
293 Shasta/Dunsmuir, CA area as they diverge greatly from the meteoric water line
294 (Trutschel et al., 2022). Our seasonal analysis has now identified seasonal fluctuations
295 within the water isotope signatures, specifically within the $\delta^{18}\text{O}$ (‰ VSMOW) isotopes of
296 H_2O (**Figure 2**). This change in oxygen isotope enrichment is likely due to evaporation
297 as the highest $\delta^{18}\text{O}$ (‰ VSMOW) values are observed in July 2021 and June 2022,
298 corresponding to the highest site temperatures, and the lowest $\delta^{18}\text{O}$ (‰ VSMOW)
299 concentrations coinciding with the lowest temperature in January 2022 (**Figure 2**,
300 **Figure 3A-B**). The temperature extremes for the cistern were observed in January 2022
301 at 6°C (external daytime temperature -0.5 to 11.7°C) and in July 2021 at 13.9°C
302 (external daytime temperature 13.3 to 32.8°C). A strong positive correlation is seen
303 between $\delta^{18}\text{O}$ (‰ VSMOW) values and cistern temperature (correlation coefficient of
304 0.96) as well as $\delta^{18}\text{O}$ (‰ VSMOW) values when plotted alongside average monthly
305 temperature for the region (correlation coefficient of 0.89) (**Figure 3**). When comparing
306 average monthly precipitation to changes in water isotopes, we do not see a strong
307 correlation. Very little precipitation is observed in the region, and a decrease in either
308 $\delta^2\text{H}$ (‰ VSMOW) nor $\delta^{18}\text{O}$ (‰ VSMOW) was observed in Ney water isotopes during
309 October when precipitation was greatest (**Figure 3**). The cistern itself has a recharge
310 rate of 3.88L/hr and its ability to refill quickly does not appear to be influenced by
311 meteoric input. While evaporation appears to be the main driver of seasonal changes in
312 water isotopic signatures, evaporation and precipitation do not appear to influence
313 concentration in redox stable geochemical species such as silicon and sodium which
314 may be more indicative of water rock-interactions (**Figure 3E-F**). Sodium levels at Ney
315 Springs are elevated compared to typical marine geochemistry, making it a likely
316 byproduct of subsurface water-rock interactions (Feth et al., 1961). At this point Ney
317 Springs hydrogeology and specifically how this particular spring is isolated from
318 meteoric water remains unknown. This in addition to the variation in geochemistry that
319 may relate to active vs. mineralized serpentinized fluids is in question, but at present
320 there is no evidence for fluid mixing in the Ney Springs cistern.

321 Temporal variation is also observed in several redox active geochemical
322 constituents, such as sulfur and nitrogen species. These species are more liable to be
323 altered by microbial processes, and their variation may suggest that microbial
324 community dynamics are driving changes that may or may not be related to other
325 environmental parameters that change seasonally (i.e., temperature). In this system,
326 sulfate is predicted to come from the connate nature of the deeper ground waters being
327 influenced by the marine Franciscan subduction complex. It has previously been
328 speculated that the sulfide present in the spring is potentially a product of microbial
329 sulfate reduction, as it is not volcanic in nature (Feth et al., 1961). However, sulfur

330 oxidation, which was previously shown to be a viable metabolism in this system, could
331 also impact sulfate/sulfide concentrations (Trutschel et al., 2022). Interestingly, the
332 balance of sulfur species changes over the course of our year sampling period. The
333 abundance of sulfide vs. oxidized products supports the influence of microbial activity
334 (**Figure 4**). While this change may be occurring at the surface level, deeper subsurface
335 microbial activity and/or water-rock interactions could be influencing the sulfur species
336 composition as well.

337 The high ammonia concentration (74 to 122 mg/L) in this system has been
338 anomalous, especially compared to other characterized serpentinizing systems
339 (Trutschel et al., 2022). It has been hypothesized that the high ammonia in Ney Springs
340 may originate from decaying organic matter, though it is currently unclear if ancient or
341 modern material could be the source (Waring, 1915; Feth et al., 1961). Ammonia
342 concentrations vary over the sampling period, as do other detected nitrogen species.
343 Nitrate (34-95 mg/L) and nitrite (0.01-51 mg/L) are also much higher than what is seen
344 in other serpentinizing systems (Cardace et al., 2015; Crespo-Medina et al., 2017; Cook
345 et al., 2021). The high concentration of nitrogen species within Ney Springs could come
346 from interactions with the Franciscan Subduction Complex, but as the values are much
347 higher than other serpentinizing systems within the same host geology (Morrill et al.,
348 2013), this suggests the presence of additional nitrogen sources as well. Temporal
349 variation in input from ancient marine sediment rich in organic matter could be
350 contributing to nitrogen concentrations, as could subsurface microbial dissimilatory
351 nitrate reduction to ammonia. However, it is also worth noting that within our system, we
352 see particularly elevated amounts of nitrogen species during May and July of 2021,
353 which may be due to seasonal changes in proximal environmental factors such as
354 vegetation.

355
356 [Changes in geochemistry and abundance of core microbial community members help](#)
357 [explain seasonal variation](#)

358 While the overall microbial community composition of Ney Springs changes
359 seasonally, all the samples collected across the six sampling events have a similar
360 degree of variance. Permanova/adonis results on Bray-Curtis distances calculated for
361 the monthly samples revealed there is a significant difference in the centroids of
362 monthly samples ($pr (>F) = 0.001$), and they maintain a similar homogeneity of
363 dispersion between them and are not significantly different in dispersal pattern
364 ($\text{betadisper, } pr (>F) = 0.224$). Interestingly, community structure does not appear to be
365 solely a function of season. For example, not all summer months cluster similarly. While
366 May 2021 and July 2021 samples cluster, the June 2022 community samples cluster
367 near March 2022 (**Figure 5**). Structure is also not simply a product of linear divergence
368 over time due to the placement of the January 2022 and October 2021 samples in
369 between these clusters. However, a longer sampling period would be needed to
370 determine if the community follows any sort of cyclical or oscillating pattern.

371 The strongest correlations between taxa with particular sampling periods were
372 seen in core community ASVs that experienced a significant increase in relative
373 abundance within that sampling period (**Figures 5 and 6**). Out of the 16 core
374 community members, 12 underwent significant changes to their mean relative
375 abundance seasonally (Kruskal-Wallis test, p . value <0.05) (**Figure 6**). The greatest

376 change in average relative abundance was observed in *Izimaplasma* sp. A, between
377 May 2021 and March 2022 at 35% vs. 2.7% of the total microbial community
378 respectively (Dunn test, p.adj. value= 0.0001). Previously, *Izimaplasma* had been
379 observed as the most abundant microbial community member during the first sampling
380 of Ney Springs in late May of 2019, reinforcing its observed strong association with the
381 early summer month (Trutschel et al., 2022). Two other ASVs followed the inverse of
382 this pattern, with their highest abundance and strongest correlation associated with
383 March 2022 and their lowest abundance observed in May 2021. This included
384 *Planococcus* sp. A (March 1.7% vs. May 0.05%) and the *Planomicrobiun* sp. (March
385 1.91% vs. May 0.05%) (Dunn test, p.adj. values < 0.01). Other ASVs experienced a
386 period of upsurge where their average relative abundance was significantly higher
387 (Dunn test, p.adj. value<0.04) compared to two or more of the other sampling times
388 included the *Tyzzerella* sp. during July 2021 with a maximum observed relative
389 abundance of 7.6%, *Halomonas* sp. A in October 2021 at 3.84%, *Thioalkalimicrobium*
390 sp. A in January 2022 at 2.41%, and *Tindallia* sp. C in March at 2.93%.

391 In addition to determining sampling periods' associations with specific ASVs, a
392 redundancy analysis (RDA) was performed to determine how much seasonal variation
393 within the microbial community may be explained by changes in geochemistry.
394 Constrained elements were chosen based on their seasonal variation, potential for
395 interaction with microbial metabolism, and on their unrelatedness to one another. These
396 parameters included pH, temperature, sodium, ammonia, and sulfide. The five
397 independent constrained variables explained 74.3% of the variation seen between the
398 microbial community samples (Figure 5). This revealed several potential relationships
399 between core community taxa and constrained elements associated with metabolism,
400 such as *Tindallia* spp. with ammonia as well as *Thioalkalimicrobium* sp. A, and
401 *Halomonas* sp. A with sulfide. Meanwhile, changes in pH, sodium, and temperature may
402 cause a shift in favorable growth conditions for multiply core community members in a
403 way that broadly alters structure. This could also explain why certain sampling periods
404 are associated more closely with these parameters (e.g., sodium with Jan. 2022).
405

406 Core community associated MAGs show adaptations to salinity and alkalinity

407 To understand the drivers of the observed correlations between species abundance,
408 seasonality, and geochemistry, metagenome assembled genomes (MAGs) of the core
409 microbial community were analyzed. In addition to seven previously obtained MAGs
410 (Trutschel et al., 2022), we report nine additional MAGs used to investigate the
411 metabolic potential of the core community members (Table 1). Three MAGs were below
412 95% complete (*Planococcus* bin 006, *Lachnospirales* bin 026, and *Roseinatronobacter*
413 bin 022) and though all were present in the core microbial community, they have been
414 omitted from further analysis due to the inability to confidently assess metabolism.
415 *Tindallia* bin 004 was included despite its higher potential for contamination (9.27%)
416 because it contained a 16S rRNA gene sequence that directly matched the most
417 abundant ASV (*Tindallia* sp. A) and because all genes of interest matched *Tindallia* bin
418 001, which only contained 3% contamination. When assessing mechanisms for dealing
419 with the stress of this environment, focus was placed on the organisms' genetic
420 potential for tolerating salinity and alkalinity. While temperature is potentially a driving
421 feature of seasonal variation of the spring community, genome level adaptations to

422 temperature were not investigated as the cistern temperature remained in the low
423 mesophilic to psychrophilic range all year (6-13.9°C), and as such, we would not expect
424 a strong genome level signature for temperature.

425 Many of the MAGs encoded genes associated with salinity and alkalinity tolerance
426 such as Na^+/H^+ antiporters Mrp and/or Nha (Figure 7). Mrp antiporters are often
427 essential for maintaining an electrochemical gradient in alkaline and marine conditions
428 by pumping sodium ions out while pumping protons in (Ito et al., 2017). Homologs of the
429 Na^+/H^+ antiporter NhaD found in the *Halomonas* MAG do not exhibit activity below pH 8
430 and have thus far only been found in alkaliphiles (Nozaki et al., 1998). NhaC homologs,
431 which are detected in the *Tindallia* and *Wenzhouxiangella* MAGs, have been shown to
432 be necessary for growth in alkaliphilic conditions for several *Bacillus* sp. (Ito et al., 1997;
433 Krulwich et al., 1997). Putative sodium pumping NADH-coQ reductase (Nqr) was also
434 observed in many of the MAGs, which can help maintain the electrochemical gradient
435 under alkaline conditions in conjunction with the H^+/Na^+ antiporters by pumping sodium
436 out (Vorburger et al., 2016). As described previously, most of the MAGs appear to
437 encode for H^+ binding rather than Na^+ binding ATPases based on amino acid sequence
438 despite the low concentrations of H^+ at pH 12 (Mulkidjanian et al., 2008; Trutschel et al.,
439 2022). The exceptions to this are the *Tindalliaceae* and *Izemoplasmataceae* MAGs
440 which are predicted to contain Na^+ binding F-type ATPases and are notably the most
441 abundant taxa in the system (Figure 7). *Tindallia* sp. A and D exhibit a slight negative
442 correlation with sodium respectively, but no other core community ASVs have a
443 suggested strong relationship with sodium (Figure 8). Notably, the relative abundance
444 of *Izimaplasma* sp. A is negatively correlated with pH, while only the *Rhodobaca* sp. A
445 ASV was strongly positively correlated with an increase in pH (Figure 8, Figure 9AB).
446 Previously an isolate from the *Roseinatronobacter-Rhodobaca* cluster of the
447 *Rhodobacteraceae* family was isolated from Ney Springs and was found capable of
448 growth in pH 12.4 media (Trutschel et al., 2022), suggesting that some members of this
449 clade may be better at tolerating high pH conditions.
450

451 Metagenomic information shows potential for ammonia production by most abundant 452 core community member

453 The source of ammonia within Ney Springs is unknown, but may be linked to current
454 or past microbial activity. The potential for generation of ammonia through denitrification
455 (DNRA) is observed in the *Rhodobacteraceae* and *Halomonas* MAGs, which each
456 encode nitrate and nitrite reductases (NarGH/NapAB and NirBD) (Figure 7), however
457 none of the *Rhodobacteraceae* or *Halomonas* ASVs exhibit a strong correlation
458 coefficient with nitrite, nitrate, or ammonia (Figure 8). Conversely, *Tindallia* sp. A, B and
459 D are all positively correlated with ammonia (Figure 8, Figure 9F). The *Tindallia* MAGs
460 encode the enzymes necessary for Stickland reactions from glycine and ornithine
461 (GrdABE and Ord), which have been shown to produce ammonia (Sangavai and
462 Chellapandi, 2017). *Tindallia magadii*, the type-strain of the genus, has been observed
463 producing upwards of 30mM of ammonium over a 60 hour period when grown in culture
464 with 2 g/L arginine and ornithine as the initial substrate (Kevbrin et al., 1998). Stickland
465 reaction in members of the *Peptostreptococcaceae* are cited as the most abundant
466 ammonia producing organisms within the rumen, with several strains capable of
467 producing up to 0.4 mM per mg of protein per minute (Paster et al., 1993; Sangavai and

468 Chellapandi, 2017). Given the high concentrations of ammonia generally produced by
469 these groups, it is predicted that these organisms have adaptations for ammonia
470 tolerance, though there is little insight into what these genetic adaptations may be.
471

472 **Lack of Hydrogen and Methane metabolism amongst core community members**

473 Ammonia is hypothesized to be one of key driving factors of community composition
474 within this environment, and the likely reason we do not observe methanogens or
475 methane oxidizers typically associated with serpentinizing systems within Ney Springs
476 (Trutschel et al., 2022). The abundance of free molecular ammonia (NH_3 as opposed to
477 NH_4^+) potentially places strong selective pressure on microbial inhabitants due to its
478 increased membrane passivity (Kayhanian, 1999). Both ammonia and methane
479 associated metabolisms are known to be inhibited by high ammonia concentrations
480 (Lehtovirta-morley, 2018; Yan et al., 2020). No evidence of potential ammonia oxidation
481 (AmoA or Hzo), nor methanogenesis or methane oxidation (McrA, MmoA or PmoA) was
482 observed within the core community MAGs (Figure 7), which concurs with previous
483 results showing a lack of evidence for these metabolisms (Cook et al., 2021; Trutschel
484 et al., 2022). Similarly, there were very few potential hydrogenases detected within the
485 core community MAGs (Figure 7). Partially complete NAD (HoxFUY) and NADP-
486 reducing (HndBCD or HndCD) hydrogenases were found in five of the MAGs. A partially
487 complete NiFe hydrogenase (HyaBC) was found within *Rhodobacteraceae* bin 004, but
488 it was missing the small subunit (HyaA). This could suggest a loss of gene function in
489 these organisms. Hydrogen has been measured at exceptionally low concentrations at
490 Ney Springs when compared to other serpentinizing systems. Bubbles that arise from
491 the bottom of the cistern have consistently contained around 0.02 atm hydrogen by
492 volume, while dissolved hydrogen was measured at <0.01 mg/L (Mariner et al., 2003;
493 Trutschel et al., 2022). Although thermodynamically favorable in this system, hydrogen
494 oxidation is likely limited due to the low concentration of hydrogen available within the
495 cistern (Trutschel et al., 2022). Acetate and formate represent other potential energy
496 sources that may be formed via serpentinization. Many of the MAGs did encode for
497 putative formate dehydrogenases (FdOGHI) (Figure 7), with many of the
498 *Rhodobacteraceae* MAGs containing multiple copies. The
499 *Izemoplasmataceae/Tenericutes* MAGs also contained formate C-acetyltransferase
500 (PflAD). Other than the *Tindalliaaceae* and *Izemoplasmataceae/Tenericutes* MAGs, the
501 core community members all contained Acetyl-CoA synthetase (ACS).
502 *Rhodobacteraceace* and *Halomonas* spp. have been isolated from the system
503 previously and have been observed using acetate as a carbon/energy source (Trutschel
504 et al., 2022).
505

506 **Temporal fluctuation in sulfur species concentrations associated with putative sulfur- 507 oxidizing core community members**

508 Another peculiar aspect of Ney Springs is the abundance of sulfide, which is not
509 commonly found in terrestrial serpentinizing systems. Sulfide is found in marine
510 serpentinizing systems such as the Lost City (2-32 mg/L (Schrenk et al., 2004)), but it is
511 often orders of magnitude higher at Ney Springs (430-700 mg/L). Despite the
512 abundance of sulfide and theoretical energy available for sulfate-reducing metabolic
513 reactions, we have once again found little genetic evidence of microbial sulfide

514 production via dissimilatory sulfate reduction or anaerobic methane oxidation using
515 sulfate as a terminal electron acceptor (Trutschel et al., 2022). We did not detect
516 methyl-coenzyme M reductase (McrA) or dissimilatory sulfate reductase (DsrAB) within
517 the core microbial community associated MAGs, though a putative DsrAB was
518 previously found in a MAG associated with resident community member *Desulfurivibrio*
519 (Figure 7) (Trutschel et al., 2022). Two *Rhodobacteraceae* MAGs putatively contain
520 sulfate adenyllyltransferase (Sat), which are likely to be involved in sulfur assimilation
521 but has also been implicated in dissimilatory sulfur oxidation in this organism (Yu et al.,
522 2007; Parey et al., 2013). Evidence of sulfur oxidation is much more prevalent in the
523 core community members, as all the core community MAGs except those belonging to
524 the *Tindalliacae* and *Izemoplasmataceae* have the potential to engage in some form of
525 sulfur species oxidation. The *Thiomicrospira/Thioalkalimicrobium* MAG contains Sqr
526 (sulfide:quinone oxidoreductase) along with SoxXYZABCD (sulfur oxidation operon) and
527 is predicted to oxidize sulfur species completely to sulfate. *Thioalkalimicrobium* sp. A
528 relative abundance has a slight positive correlation with thiosulfate (Figure 8) and is
529 most abundant when sulfide and thiosulfate are highest in January 2022. MAGs
530 classified as *Rhodobacteraceae* all contain Sqr, have varying degrees of completeness
531 of the Sox sulfur oxidation pathway, and all contain a complete or almost complete
532 SoeABC (quinone sulfite dehydrogenase). Despite this putative evidence, only
533 *Rhodobacteraceae* sp. A exhibits a positive correlation with sulfide and thiosulfate
534 concentrations within the cistern (Figure 8), as its abundance is highest when
535 thiosulfate and sulfide are also at their highest and conversely low when these
536 concentrations are also low (Figure 9 C, E). The *Halomonas* MAG only contains SoxZ
537 (thiosulfate oxidation carrier protein), but does contain thiosulfate dehydrogenase
538 (TsdA), an alternate thiosulfate oxidizing protein (Denkmann et al., 2012). This pathway
539 produces tetrathionate as an end-product, which is not observed in organisms only
540 utilizing the Sox system (Kelly et al., 1997; Grabarczyk and Berks, 2017). The changes
541 in relative abundance of the *Halomonas* sp. A and B ASVs track well with changes in
542 tetrathionate concentration within the cistern over time (Figure 9D) and *Halomonas* sp.
543 A has a very high positive correlation coefficient with tetrathionate (Figure 8). A
544 *Halomonas* isolate from Ney Springs has previously been shown to oxidize thiosulfate
545 to tetrathionate *in vitro* as well, confirming this as a likely product produced by these
546 organisms in the environment (Trutschel et al., 2022).
547

548 Implications

549 Since the discovery of active serpentinization in the Coast Range ophiolite many
550 serpentinizing systems have been identified by Barnes in Northern California, including
551 what is now the Coast Range Ophiolite Microbial Observatory, The Cedars, and Ney
552 Springs (Barnes et al., 1967, 1972; Barnes and O'Neil, 1969). The investigation of Ney
553 Springs has allowed us greater insight into the ecology of terrestrial serpentinizing
554 systems and the role host geology and microbial metabolism have on shaping
555 geochemistry. Serpentinizing springs like Ney are commonly studied as windows into
556 subsurface microbial communities and food webs that subsist on the reduced
557 compounds generated by the serpentinization reaction. Notably, these systems maintain
558 their high pH and much of their geochemistry despite surface exposure, which results in

Commented [R1]: this is right?

Commented [RL2R1]: Yes, KO=K21307-K21309 SoeABC if you want to confirm

Commented [RL3R1]:

559 a specialized microbial community. This can be seen within Ney Springs, with the
560 resident community members making up the overwhelming majority of this interface
561 microbial community. Using ASVs as the final denominator may produce an artefact of a
562 seemingly large introduced community, but this more conservative method is preferred
563 since it allowed us to focus on a limited number of well-established core taxa adapted to
564 the polyextreme conditions of Ney Springs. By further identifying the putative
565 adaptations and metabolic capabilities of these core community members, we could
566 then assess the potential influence these organisms have on their environment and how
567 that may explain temporal variation observed in the geochemistry.

568 The putative role of these core community members at Ney Springs is of interest,
569 as they are likely driving temporal geochemical changes in the spring through their
570 metabolisms. Within the core community, a few members had strong associations with
571 changing geochemical parameters, and the metabolic potential we observed in their
572 corresponding MAGs supports the capacity to use or produce these geochemical
573 species. This was seen clearly with the *Tindallia* taxa and their correlation with ammonia
574 concentrations. While additional experiments will be necessary to confirm that the
575 *Tindallia* species detected are capable of excess ammonia generation, these findings
576 represent the first plausible explanation with evidence for the profuse ammonia found
577 within this environment. Though ammonia is a stressor, and is not common in many
578 naturally occurring alkaline environments, it has been shown to inhibit microbial
579 activities in bioreactors that experience ammonia buildup over time (Kayhanian, 1999;
580 Leejeerajumnean et al., 2000). Similarly, while we have not yet observed this in other
581 serpentinizing systems on Earth, the co-occurrence of high ammonia concentrations
582 and serpentinization end products (e.g., hydrogen) have been detected on icy moons
583 such as Enceladus (Vance et al., 2007; Waite et al., 2009). Understanding how
584 ammonia impacts microbial metabolism and viability is an astrobiologically relevant
585 question that could be further investigated at Ney Springs.

586 While the source of the sulfide at Ney Springs remains unclear, this work points
587 to a metabolically diverse group of sulfur-oxidizing microbes that may use sulfide,
588 thiosulfate, or elemental sulfur found within the spring. The complex role of sulfur
589 intermediates within hyperalkaline environments is understudied, though many species,
590 such as polysulfides and thiosulfate, have increased stability at high pH and are much
591 more abundant and biologically available under these conditions (Van den Bosh et al.,
592 2008; Findlay, 2016). Though best observed in the case of *Halomonas* and
593 tetrathionate, other core community species may be producing and consuming these
594 less studied sulfur intermediates. *Thiomicrospira* and members of the
595 *Rhodobacteraceae* were more abundant when sulfide and thiosulfate were at their
596 highest, supporting a potential link between the energy available for sulfur oxidation and
597 these populations. Organisms like *Thiomicrospira* are obligate chemolithoautotrophs
598 and the majority of *Rhodobacteraceae* from this environment are likely
599 chemolithoheterotrophs. A *Rhodobacteraceae* isolate from this cistern, as well as
600 closely related members of this family isolated from soda lakes, have been previously
601 described as chemolithoheterotrophs and their ability to supplement energy through
602 sulfur oxidation could explain their increased abundance during times of higher reduced
603 sulfur species availability (Sorokin, 2003; Trutschel et al., 2022). As such,
604 *Rhodobacteraceae* populations may be more linked to carbon pools rather than sulfur

605 species, though at present we have only low-resolution measurements for DOC/TOC
606 from Ney Springs and cannot identify which carbon species are present and potentially
607 bioavailable.

608 Future work within Ney Springs will focus on the role of carbon speciation and how it
609 shapes the microbial community, as many of the core community species identified did
610 not appear to have a strong association with the geochemical constraints chosen, such
611 as seen with *Izimaplasma*. These organisms have been twice observed having a period
612 of significantly increased abundance within late May, but the driving factor for this bloom
613 has yet to be identified. Potentially increased organic availability via exogenous carbon
614 input from detritus could explain this, but further investigation is required. Other potential
615 impacts on organism abundance are their relationships with one another. Organisms
616 with similar metabolisms, like *Izimaplasma* and *Planocococcaceae* species, which are
617 both putative simple sugar fermenters, may face competition with one another.
618 Similarly, a decrease in exogenous organic carbon input utilized by many of the
619 abundant heterotrophic and/or fermentative taxa may then allow for the increased
620 abundance of autotrophic organisms like *Thiomicrospira*. Additional work with
621 enrichments and *in situ* activity assays may help identify which organisms are most
622 active within this environment and are in direct competition with one another for
623 resources. The role subsurface processes play in introducing or supporting different
624 microbial taxa observed in this system remains to be explored. Certain geochemical
625 parameters vary temporally with no seasonal pattern and could be a function of
626 differences in host rock interactions. In addition, subsurface microbial processes that
627 are feasible but not observed in the surface community (e.g., sulfate reduction or
628 anaerobic methane oxidation) could also be impacting spring, though we currently lack
629 evidence for these activities.

630
631

632 **Acknowledgements**

633 Funding and salary support for Leah Trutschel, Brittany Kruger and Annette
634 Rowe have been provided by the NSF-EAR LowTemp Geochemistry Geobiology award
635 2025687 and NASA-Roses Exobiology Program grant number (80NSSC21K0482).
636 Leah Trutschel received a Lewis and Clark Field work in Astrobiology fellowship and the
637 University of Cincinnati Dr. Stacy Pfaller memorial scholarship.

638

639

640 **CRediT Author contributions**

641 LT, BK, JS, GC, and AR performed field sampling and data collection for Ney Springs.
642 LT and BK performed geochemical analyses and interpretations. Metagenomic
643 analyses were performed primarily by LT with assistance from GC. LT performed
644 statistical analyses and visualization. LT and AR are the primary authors of the
645 manuscript with editing by BK, JS, and GC. Funding acquisition by AR and BK.

646

647 **Competing interests**

648 The authors declare no competing interests.

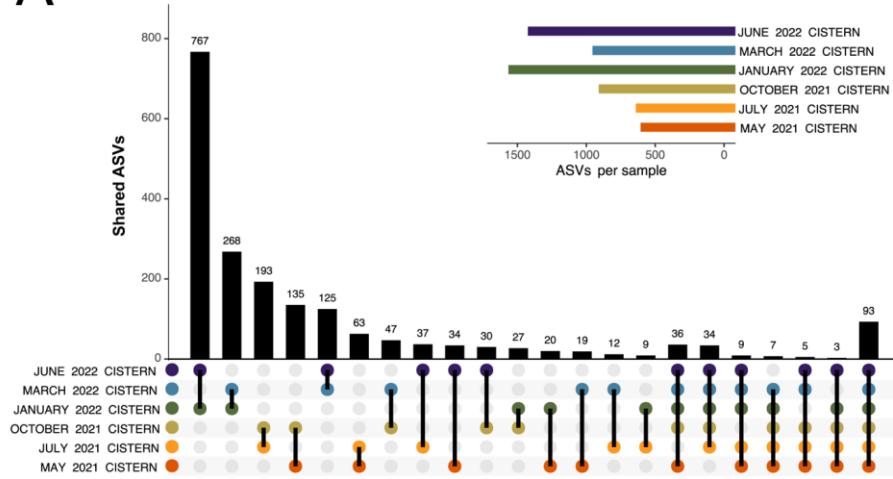
649

650

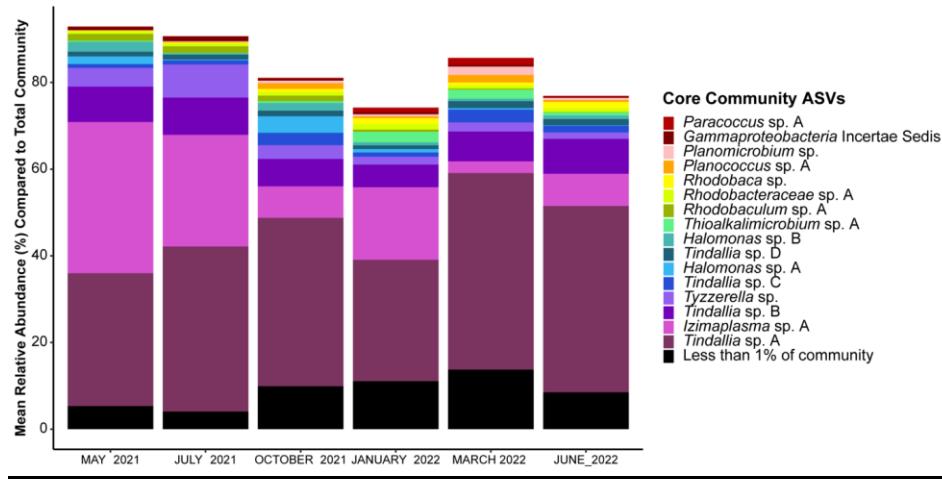
651 **Supplementary data can be found:**

652 **Supplemental data 1:** Excel sheet of ASV taxonomy and counts breakdown

653 **Supplemental data 2:** Kaiju classifications of metagenomic reads

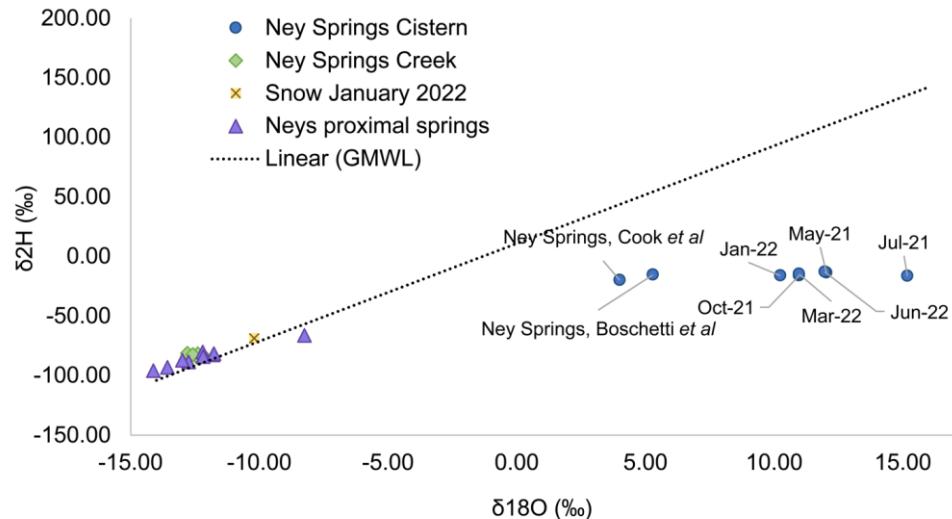

654 **Supplemental figure 1:** Photograph of Ney Springs cistern and peristaltic pump setup

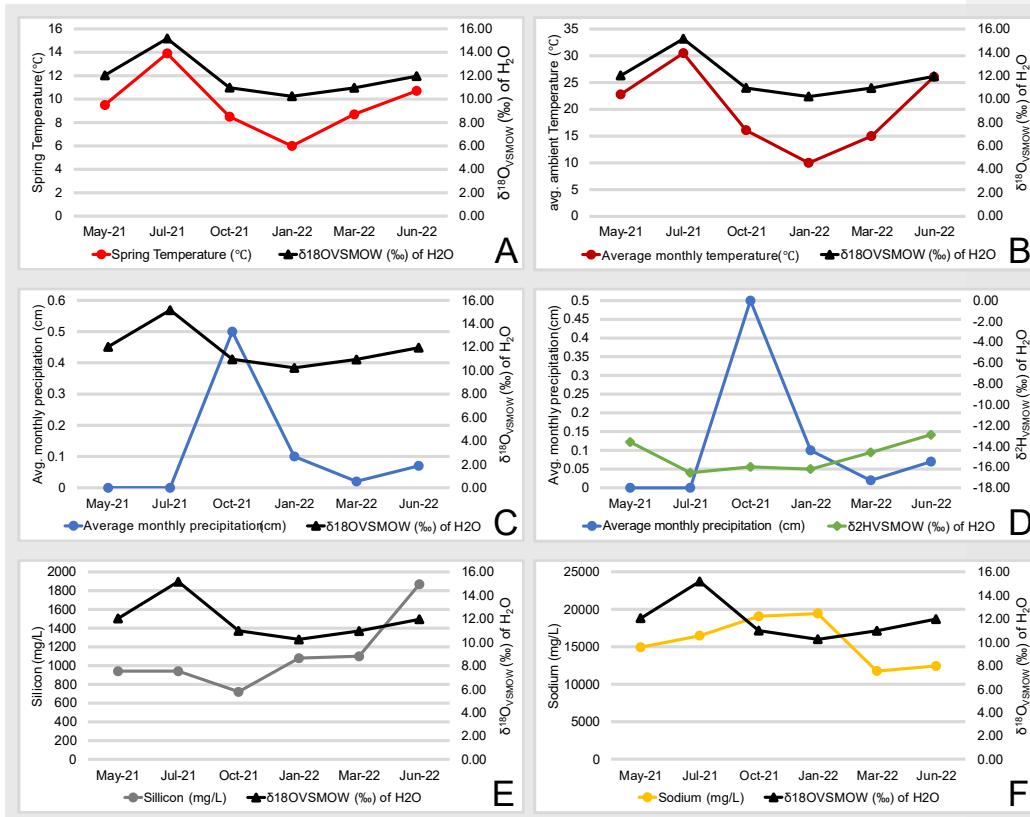
655


656
657

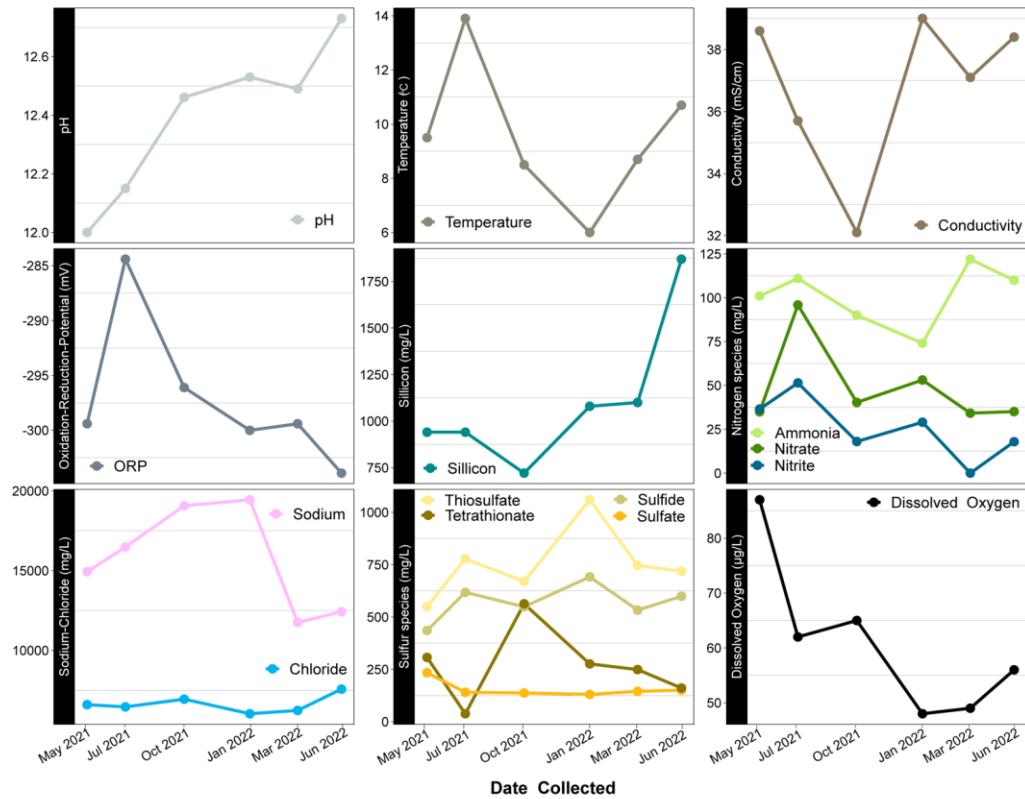
FIGURES

A

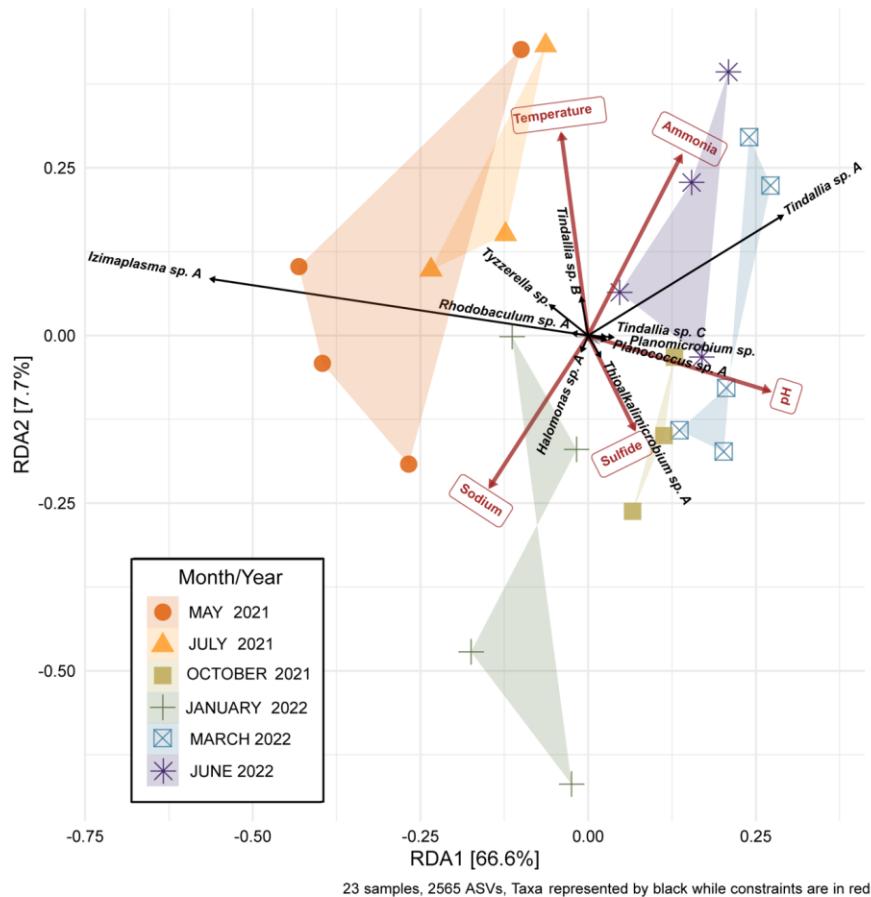

B


658
659
660

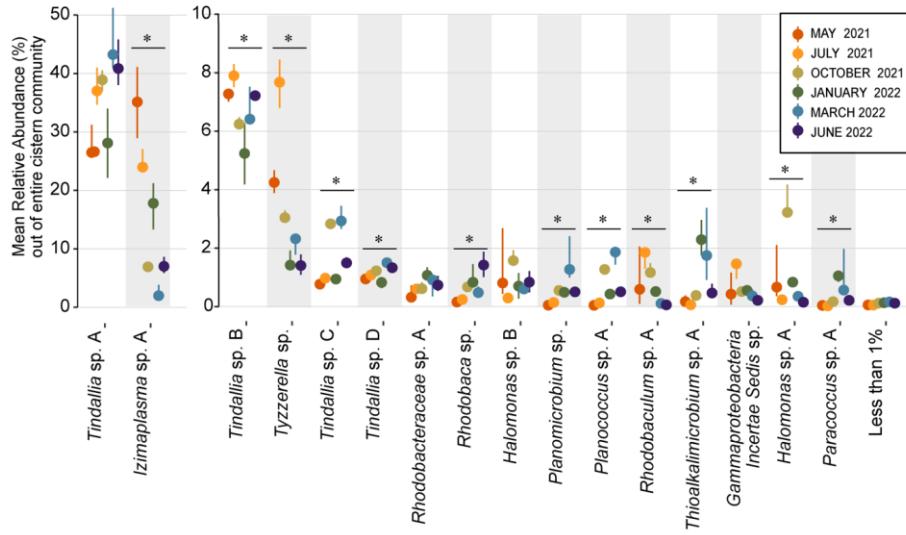
661 **Figure 1: (A)** UpSet plot showing how many unique ASVs overlap between pooled
 662 monthly samples. Plot shows overlap between all six months, at least five of the six
 663 months, and then ASVs which are only found in two of the six months sampled. The 93
 664 ASVs found in all six months sampled represent the resident community members. The
 665 sample size for each month was $n \geq 3$. **(B)** Barplot showing the mean relative
 666 abundance of the 93 resident community ASVs compared to the total community. Only
 667 the top 16 with a mean relative abundance of $>1\%$ are shown, which represent the core
 668 community members. The remaining 77 resident community members are grouped
 669 together. A complete list of the resident community members can be found in
 670 **Supplemental Data 1**.


671
 672
 673

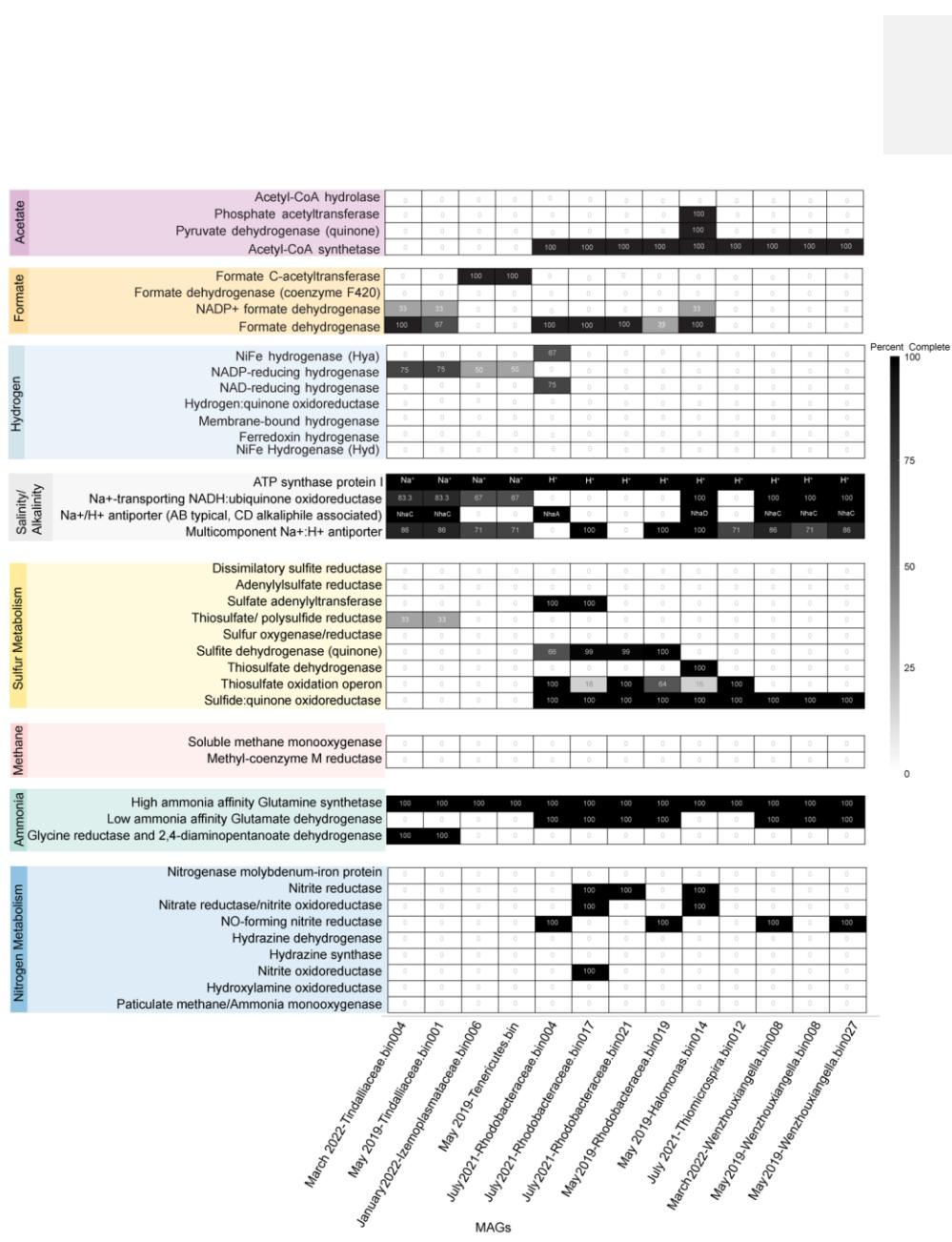
674
 675
 676
 677 **Figure 2:** Water isotope plot showing Ney Springs cistern samples collected seasonally
 678 compared to surface water proximal springs, Ney Springs Creek, snow melt, and the
 679 global meteoric water line. Samples are differentiated by color and shape.
 680
 681
 682
 683
 684
 685
 686



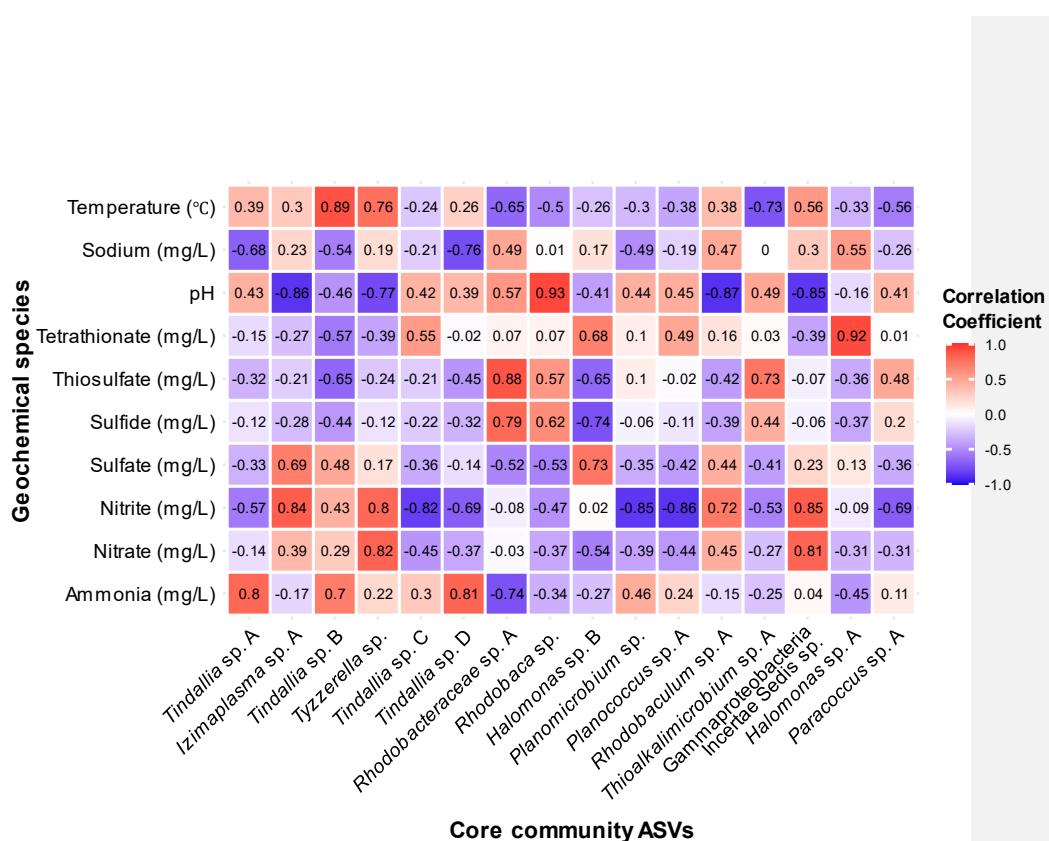
687
688 **Figure 3:** Geochem and Water isotope time series plots. Plots consists of two Y axes,
689 with data points listed in chronological order on the X axis. Panels are as follows: (A)
690 Ney Springs cistern fluid temperature compared to $\delta^{18}\text{O}$ (‰ VSMOW) of H_2O . (B)
691 Average ambient monthly temperature for greater Ney Springs area compared to $\delta^{18}\text{O}$
692 (‰ VSMOW) of H_2O . (C) Average monthly precipitation for greater Ney Springs area
693 compared to $\delta^{18}\text{O}$ (‰ VSMOW) of H_2O . (D) Average monthly precipitation for greater
694 Ney Springs area compared to $\delta^{2}\text{H}$ (‰ VSMOW) of H_2O . (E) Silicon concentration in
695 Ney Springs cistern (mg/L) compared to $\delta^{2}\text{H}$ (‰ VSMOW) of H_2O . (F)Sodium
696 concentration in Ney Springs cistern (mg/L) compared to $\delta^{2}\text{H}$ (‰ VSMOW) of H_2O .


697
698 **Figure 4:** Time series scatter plots of geochemical constituents measured over a year
699 at Ney Springs. X axis represents time sampled while Y axis specifies units for each
700 constituent. Similar species likely to have relationships grouped together.

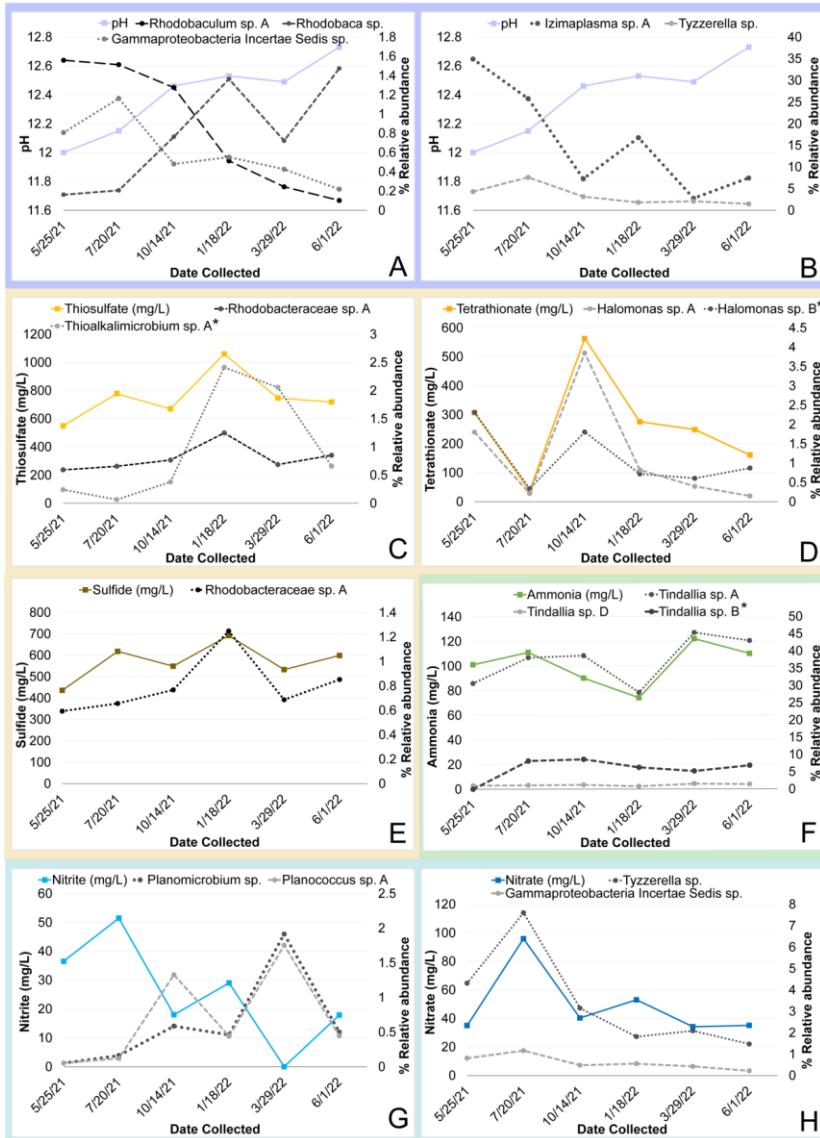
701 **Commented [TL4]:** us/cm has now been corrected to
702 mS/cm on the conductivity plot
703



704
705
706
707
708
709
710
711
712


Figure 5: Redundancy analysis (RDA) plot of the Ney Springs cistern microbial community samples. 23 microbial community samples were collected during six different sampling events. Samples are devoid of transient ASVs, i.e. ASVs that were only encountered during one sampling event, in order to best represent the resident microbial community. Count data is transformed to be in terms of relative abundance per sample. Constrained elements were chosen based on their ability to explain variation within the microbial community and lack of overlap with one another.

713
714 **Figure 6:** Dot plot showing change in mean relative abundance of sixteen core
715 community ASVs that regularly comprise 1% or more of the total community. The
716 remaining 77 resident community members are grouped together as the “Less than 1%”
717 category. ASVs are organized by decreasing overall mean relative abundance, with
718 groups split between two Y axes in order better visualize changes in less abundant
719 ASVs. The dots plotted represent the mean relative abundance of $n \geq 3$ samples each
720 month, while lines emitting from the dots represent the 95% confidence interval. ASVs
721 that had a significant change in relative abundance between months (Kruskal-Wallis
722 test, P value <0.05) are denoted with a bar and “*” above them.
723



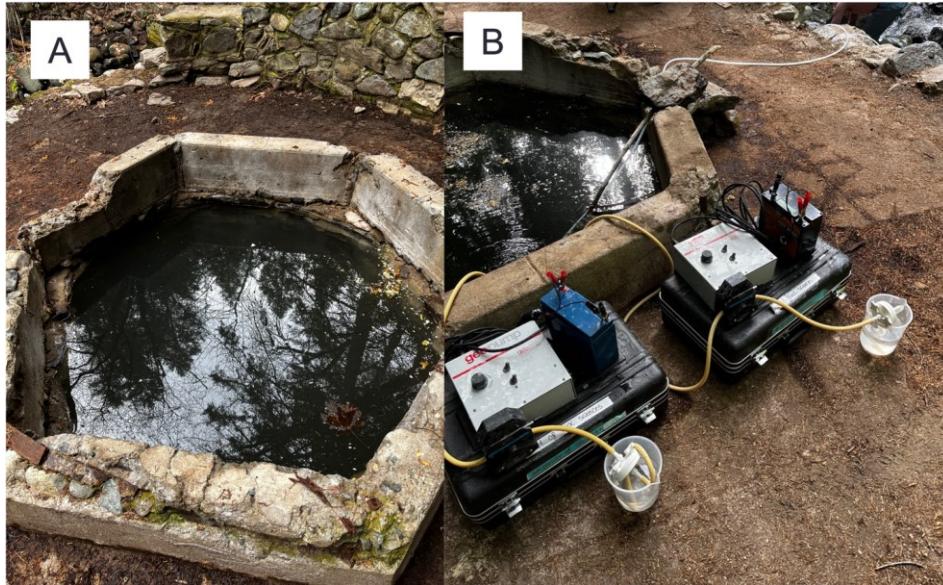
727 **Figure 7:** Heatmap of core community associated MAGs with selected marker proteins
728 relating to nitrogen, sulfur, methane, hydrogen, formate, and acetate metabolism or are
729 associated with alkalinity and salinity tolerance. Only MAGs that had greater than 95%
730 completeness are shown within the Heatmap. The black boxes for ATP synthase
731 protein I have all necessary subunits for an F-type ATPase (AtpFBCHGDAE) and
732 instead specify whether an organism is likely to encode for a Na^+ or H^+ binding ATP
733 synthase based on amino acid sequence. For organisms that do contain the gene
734 homolog, the black boxes for the Na^+/H^+ antiporter specify if the organism is likely to
735 contain NhaA, C or D, with Nha C and D originally characterized in and often associated
736 with alkaliphiles.
737

738
739 **Figure 8:**
740 Heatmap showing correlation coefficient values between the relative abundance of 16
741 core community ASVs with geochemical constituents of interest as determined by
742 results of RDA analysis.

743
744

745
746 **Figure 9:** Timeseries plot of changes in core community ASV relative abundance that
747 may be related seasonal changes in a geochemical constituent as identified by a
748 correlation coefficient value at or above 0.80 unless otherwise noted (*). Each plot
749 shows the relative abundance of one or more core community ASVs plotted alongside a

750 different variable. Panels are as follows with correlation coefficient values for each ASV
751 indicated in parentheses: **(A)** Change in pH compared to relative abundance of
752 Gammaproteobacteria incertae Sedis sp., (-0.85), *Rhodobaculum* sp. (-0.87), and
753 *Rhodobaca* sp. (0.93). **(B)** Change in pH compared to relative abundance of
754 *Izimaplasma* sp. A (-0.86) and *Tyzzerella* sp. (-0.77) **(C)** Change in thiosulfate
755 compared to relative abundance of *Thioalkalimicrobium/Thiomicrospira* sp. A (0.73*)
756 and *Rhodobacteraceae* sp. A (0.88). **(D)** Change in tetrathionate compared to relative
757 abundance of *Halomonas* sp. A and B (0.92 and 0.68*). **(E)** Change in sulfide compared
758 to relative abundance of *Rhodobacteraceae* sp. A (0.79). **(F)** Change in ammonia
759 compared to relative abundance of *Tindallia* sp. A, B and D (0.8, 0.7*, 0.81
760 respectively). **(G)** Change in nitrite compared to relative abundance of *Planococcus* sp.
761 A (-0.86) and *Planomicrobium* sp. (-0.85). **(H)** Change in nitrate compared to relative
762 abundance of *Tyzzerella* sp. (0.82) and Gammaproteobacteria incertae Sedis sp. (0.81).
763
764
765


Table 1:

Summary of MAGs relating to core microbial community

¹These MAGs omitted from metabolic discussion in paper due to less than 95% completeness

²At the genus level this organism may be classified as *Thiomicrospira* or *Thioalkalimicrobium*

MAG Name	Phylum	Class	Order	Family	Genus	Completeness	Contamination	Contigs	Potential core community ASV match based on taxonomic classification	Source
March 2022-Tindalliaaceae.bin004	Firmicutes_A	Clostridia	Peptostreptococcales	Tindalliaaceae	JAABS_W01	95.8	9.27	143	Direct match to <i>Tindallia</i> sp. A 16s rRNA	This work
May 2019-Tindalliaaceae.bin001	Firmicutes_A	Clostridia	Peptostreptococcales	Tindalliaaceae	-	97	3	275	<i>Tindallia</i> sp. B,C,D,	Trutschel et al, 2022
January 2022-Izemoplasmataceae.bin006	Firmicutes	Bacilli	Izemoplasmatales	Izemoplasmataceae	CSBR1 6-87	98.67	0	75	<i>Izimaplasma</i> sp. A	This work
May 2019-Tenericutes.bin	Firmicutes	Bacilli	Izemoplasmatales	-	-	99	0	97	<i>Izimaplasma</i> sp. A	Trutschel et al, 2022
¹ May 2019-Lachnospirales.bin026	Firmicutes_A	Clostridia	Lachnospirales	UBA5962	-	90	0	35	<i>Tyzzerella</i> sp.	Trutschel et al, 2022
July 2021-Rhodobacteraceae.bn004	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	Tabrizicola	95.52	5.19	330	<i>Paracoccus</i> sp. A	This work
July 2021-Rhodobacteraceae.bn017	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	Yoonia	98.99	0.84	329	<i>Rhodobaculum</i> sp. A	This work
July 2021-Rhodobacteraceae.bn021	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	Roseibaca	98.94	0.61	330	<i>Rhodobaculum</i> sp. A	This work
May 2019-Rhodobacteraceae.bn019	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	-	96	1.1	168	<i>Rhodobacteraceae</i> sp. A	Trutschel et al, 2022
¹ March 2022-Roseinatronobacter.bn022	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	Roseinatronobacter	74.14	8.75	58	<i>Rhodobacteraceae</i> sp. A	This work
May 2019-Halomonas.bn014	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Halomonadaceae	Halomonas	99	6.1	229	<i>Halomonas</i> sp. A,B	Trutschel et al, 2022
¹ March 2022-Planococcus.bn006	Firmicutes	Bacilli	Bacillales	Planococcaceae	Planococcus	54.52	4.52	275	<i>Planococcus</i> sp. A, <i>Planomicrobium</i> sp.	This work
² July 2021-Thiomicrospira.bn012	Proteobacteria	Gammaproteobacteria	Thiomicrospirales	Thiomicrospiraceae	Thiomicrospira	99.39	0	164	<i>Thioalkalimicrobium</i> sp. A	This work
March 2022-Wenzhouxiangella.bn008	Proteobacteria	Gammaproteobacteria	Xanthomonadales	Wenzhouxiangellacea	Wenzhouxiangella	98.71	2.04	276	<i>Gammaproteobacteria</i> Incertae Sedis sp.	This work
May 2019-Wenzhouxiangella.bn008	Proteobacteria	Gammaproteobacteria	Xanthomonadales	Wenzhouxiangellacea	Wenzhouxiangella	96	1.2	56	<i>Gammaproteobacteria</i> Incertae Sedis sp.	Trutschel et al, 2022
May 2019-Wenzhouxiangella.bn027	Proteobacteria	Gammaproteobacteria	Xanthomonadales	Wenzhouxiangellacea	Wenzhouxiangella	98	4.6	71	<i>Gammaproteobacteria</i> Incertae Sedis sp.	Trutschel et al, 2022

Supplemental Figure 1:

(A) Overhead photograph of Ney Springs cistern and (B) view of cistern with peristaltic pump setup.

Supplemental data 1: 16S rRNA ASVs with counts and taxonomic classification

Supplemental data 2: Kaiju taxonomic classification and percent relative abundance of raw metagenome reads.

References:

Alneberg, J., Bjarnason, B. S., De Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., et al. (2014). Binning metagenomic contigs by coverage and composition. *Nat. Methods* 11, 1144–1146. doi: 10.1038/nmeth.3103.

Arkin, A. P., Cottingham, R. W., Henry, C. S., Harris, N. L., Stevens, R. L., Maslov, S., et al. (2018). KBase: The United States department of energy systems biology knowledgebase. *Nat. Biotechnol.* 36, 566–569. doi: 10.1038/nbt.4163.

Barnes, I., LaMarche Jr, V. C., and Himmelberg, G. (1967). Geochemical Evidence of Present-Day Serpentization. *Science* (80-). 156, 6–8.

Barnes, I., and O'Neil, J. R. (1969). The Relationship between Fluids in Some Fresh Alpine-Type Ultramafks and Possible Modern Serpentization, Western United States. *Geol. Soc. Am. Bull.* 80, 1947–1960.

Barnes, I., Rapp, J. B., O'Neil, J. R., Sheppard, R. A., and Gude III, A. J. (1972). Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentization. *Contrib. to Mineral. Petro.* 35, 263–276. doi: 10.1007/BF00371220.

Barnett, D., Arts, I., and Penders, J. (2021). microViz: an R package for microbiome data visualization and statistics. *J. Open Source Softw.* 6, 3201. doi: 10.21105/joss.03201.

Boros, E., V-Balogh, K., Vörös, L., and Horváth, Z. (2017). Multiple extreme environmental conditions of intermittent soda pans in the Carpathian Basin (Central Europe). *Limnologica* 62, 38–46. doi: 10.1016/j.limno.2016.10.003.

Brazelton, W. J., Nelson, B., Schrenk, M. O., Christner, B. C., and State, L. (2012). Metagenomic evidence for H₂ oxidation and H₂ production by serpentinite-hosted subsurface microbial communities. 2, 1–16. doi: 10.3389/fmicb.2011.00268.

Bryantseva, I. A., Gaisin, V. A., and Gorlenko, V. M. (2015). Rhodobaculum clavigiforme gen. nov., sp. nov., a new alkaliphilic nonsulfur purple bacterium. *Microbiol. (Russian Fed.* 84, 247–255. doi: 10.1134/S0026261715020022.

Cardace, D., Meyer-dombard, D. A. R., Woycheese, K. M., Arcilla, C. A., Brazelton, W., and Carolina, E. (2015). Feasible metabolisms in high pH springs of the Philippines. 6, 1–16. doi: 10.3389/fmicb.2015.00010.

Conway, J. R., Lex, A., and Gehlenborg, N. (2017). UpSetR: An R package for the visualization of intersecting sets and their properties. *Bioinformatics* 33, 2938–2940. doi: 10.1093/bioinformatics/btx364.

Cook, M. C., Blank, J. G., Suzuki, S., Nealon, K. H., and Morrill, P. L. (2021). Assessing Geochemical Bioenergetics and Microbial Metabolisms at Three Terrestrial Sites of Serpentization: The Tablelands (NL, CAN), The Cedars (CA, USA), and Aqua de Ney (CA, USA). *J. Geophys. Res. Biogeosciences* 126, 1–16. doi: 10.1029/2019jg005542.

Crespo-Medina, M., Twing, K. I., Sánchez-Murillo, R., Brazelton, W. J., McCollom, T. M., and Schrenk, M. O. (2017). Methane dynamics in a tropical serpentizing environment: The Santa Elena Ophiolite, Costa Rica. *Front. Microbiol.* 8, 1–14. doi: 10.3389/fmicb.2017.00916.

Davis, N. M., Proctor, Di. M., Holmes, S. P., Relman, D. A., and Callahan, B. J. (2018). Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. *Microbiome* 6, 1–14. doi: 10.1186/s40168-018-0605-2.

Denkmann, K., Grein, F., Zigann, R., Siemen, A., Bergmann, J., van Helmont, S., et al. (2012). Thiosulfate dehydrogenase: A widespread unusual acidophilic c-type cytochrome. *Environ. Microbiol.* 14, 2673–2688. doi: 10.1111/j.1462-2920.2012.02820.x.

Feth, J. H., Rogers, S. M., and Roberson, C. E. (1961). Aqua de Ney, California, a spring of unique chemical character. *Geochim. Cosmochim. Acta* 26, 519–521. doi: 10.1016/0016-7037(62)90101-1.

Findlay, A. J. (2016). Microbial impact on polysulfide dynamics in the environment. doi: 10.1093/femsle/fnw103.

Fones, E. M., Colman, D. R., Kraus, E. A., Stepanauskas, R., Templeton, A. S., Spear, J. R., et al. (2021). Diversification of methanogens into hyperalkaline serpentizing environments through adaptations to minimize oxidant limitation. *ISME J.* 15, 1121–1135. doi: 10.1038/s41396-020-00838-1.

García-Ruiz, J. M., Nakouzi, E., Kotopoulou, E., Tamborino, L., and Steinbock, O. (2017). Biomimetic mineral self-organization from silica-rich spring waters. *Sci. Adv.* 3, 1–7. doi: 10.1126/sciadv.1602285.

Grabarczyk, D. B., and Berks, B. C. (2017). Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ. *PLoS One* 12, 1–15. doi: 10.1371/journal.pone.0173395.

Graham, E. D., Heidelberg, J. F., and Tully, B. J. (2018). Potential for primary productivity in a globally-distributed bacterial phototroph. *ISME J.* 12, 1861–1866. doi: 10.1038/s41396-018-0091-3.

Humayoun, S. B., Bano, N., and Hollibaugh, J. T. (2003). Depth distribution of microbial diversity in mono lake, a meromictic soda lake in California. *Appl. Environ. Microbiol.* 69, 1030–1042. doi: 10.1128/AEM.69.2.1030-1042.2003.

Ito, M., Guffanti, A. A., Zemsky, J., Ivey, D. M., and Krulwich, T. A. (1997). Role of the nhaC-encoded Na⁺/H⁺ antiporter of alkaliphilic *Bacillus firmus* OF4. *J. Bacteriol.* 179, 3851–3857. doi: 10.1128/jb.179.12.3851-3857.1997.

Ito, M., Morino, M., and Krulwich, T. A. (2017). Mrp antiporters have important roles in diverse bacteria and archaea. *Front. Microbiol.* 8, 1–12. doi: 10.3389/fmicb.2017.02325.

Kanehisa, M., Sato, Y., and Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. *J. Mol. Biol.* 428, 726–731. doi: 10.1016/j.jmb.2015.11.006.

Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., et al. (2019). MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. *PeerJ* 7, e7359. doi: 10.7717/peerj.7359.

Kayhanian, M. (1999). Ammonia inhibition in high-solids biogasification: An overview and practical solutions. *Environ. Technol. (United Kingdom)* 20, 355–365. doi: 10.1080/09593332008616828.

Kelly, D. P., Shergill, J. K., Lu, W.-P., and Wood, A. P. (1997). Oxidative metabolism of inorganic sulfur compounds by bacteria. *Antonie Van Leeuwenhoek* 71, 95–107.

Kevbrin, V. V., Zhilina, T. N., Rainey, F. A., and Zavarzin, G. A. (1998). *Tindallia magadii* gen. nov., sp. nov.: An alkaliphilic anaerobic ammonifier from Soda Lake Deposits. *Curr. Microbiol.* 37, 94–100. doi: 10.1007/s002849900345.

Kopejka, K., Tomasch, J., Zeng, Y., Tichý, M., Sorokin, D. Y., and Kobližek, M. (2017). Genomic analysis of the evolution of phototrophy among halotolerant alkaliphilic rhodobacterales. *Genome Biol. Evol.* 9, 1950–1962. doi: 10.1093/gbe/exv141.

Krulwich, T. A., Ito, M., Gimour, R., and Guffanti, A. A. (1997). Mechanisms of cytoplasmic pH regulation in alkaliphilic strains of *Bacillus*. *Leejeerajumnean, A., Ames, J. M., and Owens, J. D. (2000). Effect of ammonia on the growth of *Bacillus* species and some other*

bacteria. *Lett. Appl. Microbiol.* 30, 385–389. doi: 10.1046/j.1472-765x.2000.00734.x.

Lehtovirta-morley, L. E. (2018). Ammonia oxidation : Ecology , physiology , biochemistry and why they must all come together. 1–9. doi: 10.1093/femsle/fny058.

Li, D., Liu, C. M., Luo, R., Sadakane, K., and Lam, T. W. (2015). MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. *Bioinformatics* 31, 1674–1676. doi: 10.1093/bioinformatics/btv033.

Mariner, R. H., Evans, W. C., Presser, T. S., and White, L. D. (2003). Excess nitrogen in selected thermal and mineral springs of the Cascade Range in northern California, Oregon, and Washington: Sedimentary or volcanic in origin? *J. Volcanol. Geotherm. Res.* 121, 99–114. doi: 10.1016/S0377-0273(02)00414-6.

McLaren, M. R. (2020). Silva SSU taxonomic training data formatted for DADA2 (Silva version 138). doi: 10.5281/ZENODO.3986799.

McMurtrie, P. J., and Holmes, S. (2013). phyloseq : An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. 8. doi: 10.1371/journal.pone.0061217.

Menzel, P., Ng, K. L., and Krogh, A. (2016). Fast and sensitive taxonomic classification for metagenomics with Kaiju. *Nat. Commun.* 7. doi: 10.1038/ncomms11257.

Morrill, P. L., Kuenen, J. G., Johnson, O. J., Suzuki, S., Rietze, A., Sessions, A. L., et al. (2013). Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars. *Geochim. Cosmochim. Acta* 109, 222–240. doi: 10.1016/j.gca.2013.01.043.

Mulkidjanian, A. Y., Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2008). Evolutionary primacy of sodium bioenergetics. *Biol. Direct* 3, 1–19. doi: 10.1186/1745-6150-3-13.

Nozaki, K., Kuroda, T., Mizushima, T., and Tsuchiya, T. (1998). A new Na⁺/H⁺ antiporter, NhaD, of *Vibrio parahaemolyticus*. *Biochim. Biophys. Acta - Biomembr.* 1369, 213–220. doi: 10.1016/S0005-2736(97)00223-X.

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. A. (2017). MetaSPAdes: A new versatile metagenomic assembler. *Genome Res.* 27, 824–834. doi: 10.1101/gr.213959.116.

Ortiz, E., Tominaga, M., Cardace, D., Schrenk, M. O., Hoehler, T. M., Kubo, M. D., et al. (2018). Geophysical Characterization of Serpentine Hosted Hydrogeology at the McLaughlin Natural Reserve, Coast Range Ophiolite. *Geochimistry, Geophys. Geosystems* 19, 114–131. doi: 10.1002/2017GC007001.

Osburn, M. R., Kruger, B., Masterson, A. L., Casar, C. P., and Amend, J. P. (2019). Establishment of the Deep Mine Microbial Observatory (DeMMO), South Dakota, USA, a Geochemically Stable Portal Into the Deep Subsurface. *Front. Earth Sci.* 7, 1–17. doi: 10.3389/feart.2019.00196.

Parey, K., Demmer, U., Warkentin, E., Wyneen, A., Ermler, U., and Dahl, C. (2013). Structural, Biochemical and Genetic Characterization of Dissimilatory ATP Sulfurylase from *Allochromatium vinosum*. *PLoS One* 8. doi: 10.1371/journal.pone.0074707.

Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarszewski, A., Chaumeil, P. A., et al. (2018). A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. *Nat. Biotechnol.* 36, 996. doi: 10.1038/nbt.4229.

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. (2015). CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res.* 25, 1043–1055. doi: 10.1101/gr.186072.114.

Paster, B. J., Russell, J. B., Yang, C. M. J., Chow, J. M., Woese, C. R., and Tanner, R. (1993). Phylogeny of the ammonia-producing ruminal bacteria *Peptostreptococcus anaerobius*, *Clostridium sticklandii*, and *Clostridium aminophilum* sp. nov. *Int. J. Syst. Bacteriol.* 43, 107–110. doi: 10.1099/00207713-43-1-107.

Postec, A., Quéméneur, M., Bes, M., Mei, N., and Benaisse, F. (2015). Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period. 6, 1–19. doi: 10.3389/fmicb.2015.00857.

Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. 5. doi: 10.1371/journal.pone.0009490.

Rempfert, K. R., Miller, H. M., Bompard, N., Nothaft, D., Matter, J. M., Kelemen, P., et al. (2017). Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite , Oman. 8. doi: 10.3389/fmicb.2017.00056.

Sangavai, C., and Chellapandi, P. (2017). Amino acid catabolism-directed biofuel production: *Clostridium sticklandii*: An insight into model-driven systems engineering. *Biotechnol. Reports* 16, 32–43. doi: 10.1016/j.btre.2017.11.002.

Schmitt-Wagner, D., Friedrich, M. W., Wagner, B., and Brune, A. (2003). Phylogenetic Diversity, Abundance, and Axial Distribution of Bacteria in the Intestinal Tract of Two Soil-Feeding Termites (Cubitermes spp.). *Appl. Environ. Microbiol.* 69, 6007–6017. doi: 10.1128/AEM.69.10.6007-6017.2003.

Schrenk, M. O., Kelley, D. S., Bolton, S. A., and Baross, J. A. (2004). Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. *Environ. Microbiol.* 6, 1086–1095. doi: 10.1111/j.1462-2920.2004.00650.x.

Sieber, C. M. K., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G., et al. (2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. *Nat. Microbiol.* 3, 836–843. doi: 10.1038/s41564-018-0171-1.

Sorokin, D. Y. (2003). Oxidation of inorganic sulfur compounds by obligately organotrophic bacteria. *Microbiology* 72, 641–653. doi: 10.1023/B:MICI.0000008363.24128.e5.

Sorokin, D. Y., Gorlenko, V. M., Tourova, T. P., Tsapin, A. I., Nealson, K. H., and Kuenen, G. J. (2002). Thioalkalimicrobium cyclium sp. nov. and *Thioalkalivibrio jannaschii* sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline Mono Lake (California). *Int. J. Syst. Evol. Microbiol.* 52, 913–920. doi: 10.1099/ij.s.0.02034-0.

Sorokin, D. Y., Mosier, D., Zorz, J. K., Dong, X., and Strous, M. (2020). Wenzhouxiangella Strain AB-CW3, a Proteolytic Bacterium From Hypersaline Soda Lakes That Preys on Cells of Gram-Positive Bacteria. *Front. Microbiol.* 11, 1–14. doi: 10.3389/fmicb.2020.597686.

Sorokin, D. Y., Tourova, T. P., Kuznetsov, B. B., Bryantseva, I. A., and Gorlenko, V. M. (2000). Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll a-containing bacterium isolated from a soda lake. *Microbiology* 69, 75–82. doi: 10.1007/BF02757261.

Suzuki, S., Ishii, S., Hoshino, T., Rietze, A., Tenney, A., Morrill, P. L., et al. (2017). Unusual metabolic diversity of hyperalkaliphilic microbial communities associated with subterranean serpentinization at The Cedars. *Nat. Publ. Gr.* 11, 2584–2598. doi: 10.1038/ismej.2017.111.

Suzuki, S., Ishii, S., Wu, A., Cheung, A., Tenney, A., Wanger, G., et al. (2013). Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem. *Proc. Natl. Acad. Sci.* 110, 15336–15341. doi: 10.1073/pnas.1302426110.

Szponar, N., Brazelton, W. J., Schrenk, M. O., Bower, D. M., Steele, A., and Morrill, P. L. (2013). Geochemistry of a continental site of serpentinization, the Tablelands Ophiolite, Gros Morne National Park: A Mars analogue. *Icarus* 224, 286–296. doi: 10.1016/j.icarus.2012.07.004.

Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., et al. (2017). A communal catalogue reveals Earth's multiscale microbial diversity. doi: 10.1038/nature24621.

Trutschel, L. R., Chadwick, G. L., Kruger, B., Blank, J. G., Brazelton, W. J., Dart, E. R., et al. (2022). Investigation of microbial metabolisms in an extremely high pH marine-like terrestrial serpentinizing system: Ney Springs. *Sci. Total Environ.* 836, A. doi: 10.1016/j.scitotenv.2022.155492.

Twing, K. I., Brazelton, W. J., Kubo, M. D. Y., Hyer, A. J., Cardace, D., Hoehler, T. M., et al. (2017). Serpentinization-influenced groundwater harbors extremely low diversity microbial communities adapted to high pH. *Front. Microbiol.* 8. doi: 10.3389/fmicb.2017.00308.

Van den Bosch, P. L. F., Sorokin, D. Y., Buisman, C. J. N., and Janssen, A. J. H. (2008). The Effect of pH on Thiosulfate Formation in a Biotechnological Process for the Removal of Hydrogen Sulfide from Gas Streams. 42, 2637–2642.

Vance, S., Harnmeijer, J., Kimura, J., Hussmann, H., Demarion, B., and Brown, J. M. (2007). Hydrothermal systems in small ocean planets. *Astrobiology* 7, 987–1005. doi: 10.1089/ast.2007.0075.

Vavourakis, C. D., Andrei, A. S., Mehrshad, M., Ghai, R., Sorokin, D. Y., and Muyzer, G. (2018). A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments 06 Biological Sciences 0605 Microbiology 06 Biological Sciences 0604 Genetics. *Microbiome* 6, 1–18. doi: 10.1186/s40168-018-0548-7.

Vorburger, T., Nedielkov, R., Brosig, A., Bok, E., Schunke, E., Steffen, W., et al. (2016). Role of the Na⁺-translocating NADH:quinone oxidoreductase in voltage generation and Na⁺ extrusion in *Vibrio cholerae*. *Biochim. Biophys. Acta - Bioenerg.* 1857, 473–482. doi: 10.1016/j.bbabi.2015.12.010.

Waite, J. H., Lewis, W. S., Magee, B. A., Lunine, J. I., McKinnon, W. B., Glein, C. R., et al. (2009). Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. *Nature* 460, 487–490. doi: 10.1038/nature08153.

Wang, K., Zhang, L., Li, J., Pan, Y., Meng, L., Xu, T., et al. (2015). *Planococcus dechangensis* sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soils in Dechang Township, Zhaodong City, China. *Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol.* 107, 1075–1083. doi: 10.1007/s10482-015-0399-1.

Waring, G. (1915). Springs of California.

Woycheese, K., Arcilla, C. A., Magnuson, T., and State, I. (2015). Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep. 6, 1–12. doi: 10.3389/fmicb.2015.00044.

Wu, Y. W., Simmons, B. A., and Singer, S. W. (2016). MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. *Bioinformatics* 32, 605–607. doi: 10.1093/bioinformatics/btv638.

Yan, M., Treu, L., Zhu, X., Tian, H., Basile, A., Fotidis, I. A., et al. (2020). Insights into Ammonia Adaptation and Methanogenic Precursor Oxidation by Genome-Centric Analysis. *Environ. Sci. Technol.* 54, 12568–12582. doi: 10.1021/acs.est.0c01945.

Yu, Z., Lansdon, E. B., Segel, I. H., and Fisher, A. J. (2007). Crystal Structure of the Bifunctional ATP Sulfurylase - APS kinase from the Chemolithotrophic Thermophile *Aquifex aeolicus*. *J. Mol. Biol.* 365, 732–743. doi: 10.1016/j.jmb.2006.10.035.