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Ice-infiltrated sediment, or frozen fringe, is responsible for phenomena such as frost
heave, ice lenses and metres of debris-rich ice under glaciers. Understanding frozen
fringes is important as frost heave is responsible for damaging infrastructure at high
latitudes and sediment freeze-on at the base of glaciers can modulate subglacial friction,
influencing the rate of global sea level rise. Here we describe the thermomechanics of
liquid water flow and freezing in ice-saturated sediments, focusing on the conditions
relevant for subglacial environments. The force balance that governs the frozen fringe
thickness depends on the weight of the overlying material, the thermomolecular force
between ice and sediments across liquid premelted films and the water pressure required by
Darcy flow. We combine this mechanical model with an enthalpy method that conserves
energy across phase change interfaces on a fixed computational grid. The force balance
and enthalpy model together determine the evolution of the frozen fringe thickness and
our simulations predict frost heave rates and ice lens spacing. Our model accounts for
premelting at ice–sediment contacts, partial ice saturation of the pore space, water flow
through the fringe, the thermodynamics of the ice–water–sediment interface and vertical
force balance. We explicitly account for the formation of ice lenses, regions of pure ice
that cleave the fringe at the depth where the interparticle force vanishes. Our model results
allow us to predict the thickness of a frozen fringe and the spacing of ice lenses in subaerial
and subglacial sediments.
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1. Introduction
Freezing of interstitial water in sediments commonly occurs in subaerial and subglacial
environments, contributing to effects such as frost heave, needle ice and the transport
of subglacial debris (Hemming 2004; Dash, Rempel & Wettlaufer 2006; Wettlaufer &
Worster 2006). Through multiple cycles of freeze and thaw in high-latitude environments,
sediment patterns can develop such as the Arctic stone circles (Kessler & Werner 2003). In
this paper, we consider the thermodynamical and fluid dynamical processes that occur as
water freezes in a porous medium. We describe the melting and freezing processes using an
enthalpy formulation, which facilitates our numerical method as we avoid tracking phase
change interfaces. The enthalpy formulation also elucidates the role of the frozen fringe
as a mushy zone of ice- and water-saturated sediments. Our treatment is general enough to
apply in a variety of industrial and environmental contexts (e.g. Deville et al. 2006) where
interstitial freezing occurs, yet here we focus primarily on geophysical applications.

Consider frost heave, the common freeze/thaw phenomenon that takes place throughout
high latitudes. As water held within sediments freezes, horizontally continuous,
sediment-free ice lenses can form. These ice lenses cleave the sediment and expand,
causing vertical displacement of the ground surface. Such surface displacement causes
significant damage to infrastructure at high latitudes and is due to the growth of distinct
ice lenses within the soil rather than the water density change on freezing. Taber (1930)
demonstrated this fact by freezing a sediment pack saturated with benzene, which contracts
on solidification; the benzene produced significant heave through the expansion of discrete
solid lenses.

Early models for frost heave relied on surface tension to draw water to the lowest ice lens,
i.e. the so-called ‘primary model for frost heave’ (Miller 1978). This model suffers from
several deficiencies, most importantly that surface tension acts tangential to the ice surface
and cannot provide the upward force to drive heave. In addition, there is no mechanism
to form distinct ice lenses in primary heave, which led O’Neill & Miller (1985) to derive
the ‘secondary model of frost heave,’ wherein a zone of partially ice saturated sediment
extends below the lowest ice lens (i.e. a frozen fringe; for reviews see Rempel 2010; Peppin
& Style 2013). Fowler & Krantz (1994) clarified the mathematical model for secondary
frost heave and analysed an asymptotically reduced form of the model. Rempel, Wettlaufer
& Worster (2004) highlighted the role of premelting at the interface between ice and
sediment grains. The disjoining pressure across the liquid between ice and sediment grains
relates the local melting temperature to the vertical force balance. Fowler & Krantz (1994),
on the other hand, choose the liquid pressure to be given as a function of soil water content
as set by surface tension, reminiscent of a primary frost heave model. In what follows, we
build on the Rempel et al. (2004) formulation, highlighting an alternate derivation, writing
out the equations, and systematically reducing the equations asymptotically, similar to
Fowler & Krantz (1994).

Field observations show that several metres of frozen sediment are commonly
attached to the base of glaciers, motivating efforts to understand alternative entrainment
mechanisms that include glaciohydraulic supercooling (e.g. Röthlisberger & Lang 1987;
Lawson et al. 1998; Creyts, Clarke & Church 2013) and frost heave. In the fastest flowing
reaches of glaciers and ice sheets, sliding dominates glacier motion and the rate of sliding
is tied to the temperature and water pressure at the glacier base: the same factors that
control the growth of a frozen fringe. Rempel (2008) treats the overlying glacier as a
large lowest ice lens and predicts metre-scale frozen fringes below glaciers for typical
parameters, in line with observations, while not accounting for the potential of initiating
new ice lenses.
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Thermomechanics of frozen fringe

Anderson & Worster (2012, 2014) analysed freezing colloid suspensions through
directional solidification experiments with aqueous suspensions of alumina particles.
Anderson & Worster (2014) developed a model extending from the Rempel et al. (2004)
framework to include compaction and cohesion of the colloid suspension. The model of
Anderson & Worster (2014) assumes a steady-state linear temperature profile throughout
the experiment and boils down to a system of ordinary differential equations for the
location of the compaction front and frozen fringe extent, reminiscent of Fowler & Noon
(1993). Based on their model, Anderson & Worster (2014) described a regime diagram
showing the three primary freezing regimes observed in their experiments: periodic ice
lenses, disordered ice lenses and periodic ice banding. Further work on solidification in
colloidal suspensions has identified mechanisms of ice lens formation that are seeded
by vertical dendritic growth into anomalously large pores that subsequently extend as
propagating horizontal cracks, displacing particles to either side as they extend and
develop into lenses (Style et al. 2011; Style & Peppin 2012; Peppin 2020). By designing
experiments that use heat exchangers to impose a desired, fixed temperature gradient,
attention is focused on the mechanical interactions within these ice–liquid–colloid
systems, justifying model treatments that ignore energy balance constraints despite the
large role that latent heat plays in natural systems.

Frozen fringes and freeze–thaw cycles are inherently problems of phase change and
partial melting. In these types of problems, it can be valuable to solve the energy
conservation equation in an enthalpy form rather than for the temperature to avoid
explicitly tracking phase change interfaces. The enthalpy (i.e. sum of the sensible and
latent heat) accommodates the phase change, which facilitates numerical solutions. From
sea ice (Katz & Worster 2008), permafrost (Clow 2018) and meltwater percolation through
snow (Meyer & Hewitt 2017) to industrial processes (Voller & Prakash 1987), the enthalpy
approach to phase change problems is useful for many applications. Enthalpy methods
have been used extensively for polythermal glaciers, where part of the glacier is below
the melting point and the rest of the glacier is at the melting point, i.e. temperate ice
(Aschwanden et al. 2012; Schoof & Hewitt 2016; Meyer & Minchew 2018). Here we
use the enthalpy method to solve for energy conservation within a frozen fringe. Our
thermomechanical model of a frozen fringe is more general than previous treatments. We
use the enthalpy method numerical framework, which allows us to avoid the interface
tracking issues of Rempel (2007, 2008). We determine the local temperature from the
enthalpy as opposed to using the constant temperature gradient models of Rempel et al.
(2004) and Anderson & Worster (2014). Writing out the enthalpy method, we lay down
the foundation for generalising the model to two- and three-dimensional versions in the
future. We write out the full equations for mass, momentum and energy conservation as
well as the boundary conditions. We then systematically scale the equations, allowing us
to identify the important non-dimensional groups, neglect terms that are small and justify
the idealisations used in Rempel et al. (2004).

In this paper, we focus on the conditions relevant for subaerial frost heave and subglacial
environments. Although numerous treatments of frost heave exist in the literature (e.g.
Fowler & Krantz 1994; Rempel et al. 2004; Style & Peppin 2012), here we derive
our model from scratch for completeness and clarity. In § 2, we start by writing down
mass, momentum and energy conservation equations for a frozen fringe. Then, we
non-dimensionalise and systematically reduce the equations by exploiting the small
density difference between ice and water as well as the large latent heat of fusion upon
freezing water (i.e. a large Stefan number). We solve our reduced model using an enthalpy
method, where phase-change boundaries are determined implicitly on a fixed grid. In § 3,
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Figure 1. Schematic of the a frozen fringe system: (a) components including the lowermost ice lens or the
bottom of a glacier, the frozen fringe and the unfrozen porous mixture of water-saturated sediments (after
Rempel et al. 2004; Anderson & Worster 2014); (b) surface integral path Γ and inward-pointing normal vector
dΓ ; (c) volume integral domain Ω with the outward-pointing normal vector dΩ .

we demonstrate the results of our enthalpy model. We analyse a steady-state frozen fringe
thickness in melting and balanced thermodynamic conditions in both a semi-analytical
model and an enthalpy framework. Then, we examine the local effective pressure for
melting and freezing conditions, highlighting ice lens formation. Lastly, we show the
formation of periodic ice lenses and map out the different behaviour in a regime diagram
for the heave rate and effective pressure. Finally, we offer conclusions and discuss future
directions in § 4. The advances in this paper are (i) a systematic scaling of the model, which
is not presented elsewhere, (ii) a numerical method that generalises to higher dimensions
and (iii) a calculation of ice lens initiation and spacing, which we compare with laboratory
experiments.

2. Model
Inside the frozen fringe, which is shown schematically in figure 1, we define a coordinate
system that is fixed with respect to the immobile, water-saturated sediment below, with z
vertical, x the lateral coordinate and y pointing into the page. We label the deepest extent of
the fringe as z = zf and the top of the fringe as z = z#, or equivalently z# = zf + h, where
h is the fringe thickness.

2.1. Mass conservation
The frozen fringe is partitioned into three components: ice, water and sediment. The
porosity φ denotes the volume of voids (i.e. ice and water) within a representative control
volume. The fraction of the voids that is taken up by ice is the ice saturation S. Mass
conservation for sediment, ice and water implies that

∂[ρs(1 − φ)]
∂t

+ ∇ · [ρs(1 − φ)Vs] = 0, (sediment) (2.1)
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Thermomechanics of frozen fringe

Fringe parameters Variable scales Non-dimensional values

ρi 917 kg m−3 γ 0.034 J m−2 [T] 0.061 K δ 0.083
ρw 1000 kg m−3 µ 1.8 × 10−3 Pa s [q] 0.070 W m−2 ν 2.5
ρs 2500 kg m−3 rp 10−6 m [z] 1.8 m Pe 0.91
ci 2050 m2 s−2 K−1 α 3.1 [V] 6.5 mm year−1 G 0.26
cw 4200 m2 s−2 K−1 β 0.53 [t] 250 years St 2700
cs 800 m2 s−2 K−1 N 100 kPa [k] 10−17 m2 — —
Ki 2.1 kg m s−3 K−1 σn 1000 kPa [N] 68 kPa — —
Kw 0.56 kg m s−3 K−1 φ 0.35 — — — —
Ks 4.0 kg m s−3 K−1 k0 10−17 m2 — — — —
L 3.34 × 105 m2 s−2 Tm 273.15 K — — — —
g 9.80 m s−2 qin 0.070 W m−2 — — — —

Table 1. Table of parameters for frozen fringe.

∂(ρiφS)

∂t
+ ∇ · [ρiφSV ] = −m, (ice) (2.2)

∂[ρwφ(1 − S)]
∂t

+ ∇ · [ρwφ (1 − S) U] = m, (water) (2.3)

where m is the rate at which ice (density ρi) is melted, i.e. converted into liquid water
(density ρw), V is the speed at which the ice moves through the fringe due to heaving at
the ice lens above the fringe and Vs is the sediment (density ρs) velocity. Here we treat the
sediment, ice and water densities as constants, i.e. independent of space and time, so that
each component is incompressible. The water flux through the fringe is U , which is given
by Darcy’s law as

φ (1 − S) U = − k
µ

[
∇pw + ρwgk

]
, (2.4)

where the permeability k depends on the ice saturation as well as the porosity φ and other
properties of the sediment matrix. Here g is the acceleration due to gravity and k is the
unit vector in the z-direction. Values for all of the parameters are given in table 1.

In this paper, we assume that the porosity φ is constant throughout the fringe. There
may be significant compaction below both the frozen fringe and in its interior due to
the reduced water pressure as the lens pulls in water to freeze (Fowler & Noon 1999;
Anderson & Worster 2012, 2014). We neglect such complications for now and take the
entire sediment pack to maintain a constant porosity φ that jumps to φ = 1 at ice lenses.
A new ice lens forms when the force between sediment grains reaches zero, as described
in the next section.

2.2. Force balance
The force balance within the fringe is composed of three components: the weight of the
material above and within the fringe, the water pressure within and below the fringe, as
well as the thermomolecular force between sediment grains and interstitial ice, which acts
across a thin film of premelted water (Dash et al. 2006). Integrating these components over
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the surface area of the fringe gives
∫

Γ
pin dΓ =

∫

Γ
( pi − pw) n dΓ +

∫

Γ
pwn dΓ , (2.5)

in which pi is the isotropic ice pressure (i.e. local normal stress) at the ice–water interface
within the fringe, pw is the water pressure at the boundary and n is the inward-pointing unit
normal to the boundary Γ (cf. figure 1). The difference between the ice and water pressure,
i.e. the first term on the right-hand side of (2.5), is balanced by a thermomolecular force
(Rempel, Wettlaufer & Worster 2001; Rempel et al. 2004; Wettlaufer & Worster 2006).

We convert these surface integrals over Γ to volume integrals over the unfrozen
component of the fringe Ω . We construct a closed surface by adding surface integrals
with flat surfaces at zf and z, as shown schematically in figure 1. That is, for a generic
pressure field p, we have the integrals

∫

Ω
∇p dΩ =

∫

Γ
pn dΓ +

∫

Γz

pn dΓ +
∫

Γzf

pn dΓ, (2.6)

where n is the outward-pointing normal for the volume Ω . In other words, n = k on the
upper cap at z, the lowest ice lens, and n = −k on the lower cap at the bottom of the fringe
zf , where k is the unit vector in the z-direction.

We take the surface Γz to be the ice boundary at some height z, which we can write
|Γz| = (1 − φS)A where A is the cross-sectional area. This surface has the two limits of
|Γz# | = 0 at the bottom boundary of the lowest active ice lens (φ = 1, S = 1) and |Γzf | =
A at the bottom of the fringe (S = 0). For this reason, no upper cap is necessary when
integrating across the entire fringe, and (2.6) reduces to

∫

Ω
∇p dΩ =

∫

Γ
pn dΓ +

∫

Γzf

pn dΓ . (2.7)

We assume that water flow through ice-saturated porous fringe is governed by Darcy’s
law and that the water pressure varies only on a length scale set by the fringe and not
on the scale of individual grains. This assumption allows us to define the water pressure
throughout the volume Ω , even though part of the domain is filled with ice and sediment.
Crucially, we follow Rempel et al. (2004) and assume that the microscale pressure is
the homogenised pore pressure given by Darcy’s law. In other words, we treat the water
pressure in the thin films between sediment and ice as well as the water pressure in the pore
throats between sediment grains as determined by Darcy’s law, which is a key difference
between Fowler & Krantz (1994) and Rempel et al. (2004).

At this stage, we restrict our focus to a one-dimensional water pressure that only depends
on the vertical coordinate z and assume that there are no transverse pressure gradients.
Therefore, inserting the water pressure pw into (2.6), we find that

∫

Γ
pwn dΓ = A

[∫ z

zf

(1 − φS)
∂pw

∂z′ dz′ − (1 − φS)pw(z) + pw(zf )

]

k, (2.8)

where the porosity φ and saturation S also depend on the vertical coordinate z. Now
integrating across the entire fringe from zf to z# gives

∫

Γ
pwn dΓ = A

[∫ z#

zf

(1 − φS)
∂pw

∂z′ dz′ + pw(zf )

]

k. (2.9)
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Thermomechanics of frozen fringe

The analogous equation for pi − pw represents the thermomolecular contribution to the
force balance (Rempel & Worster 1999; Rempel et al. 2004) and is given by

∫

Γ
( pi − pw) n dΓ = A

[∫ z#

zf

(1 − φS)
∂( pi − pw)

∂z′ dz′ + pi(zf ) − pw(zf )

]

k. (2.10)

When integrated across the entire fringe, the water pressure and thermomolecular force
balance the total normal stress σn at zf resulting from the weight of the overlying material
(e.g. (2.5) and figure 1). With this in mind, we write

∫

Γ
pin dΓ =

{

σn −
∫ z#

zf

[
ρsg(1 − φ) + ρwgφ(1 − S)

]
dz′

}

Ak, (2.11)

where we have included the weight of fringe material as the integral over each constituent.
We now combine the equations for ice (2.11), water (2.9) and thermomolecular pressure

(2.10) as well as include the effects of gravity (2.11) to arrive at

σn =
∫ z#

zf

[
ρsg(1 − φ) + ρwgφ(1 − S)

]
dz′

+
∫ z#

zf

(1 − φS)
∂( pi − pw)

∂z′ dz′ + pi(zf ) − pw(zf )

+
∫ z#

zf

(1 − φS)
∂pw

∂z′ dz′ + pw(zf ). (2.12)

We define the effective pressure at the base of the fringe N as the total normal stress σn at
zf supported by the fringe less the water pressure at the base of the fringe pw(zf ) so that

N = σn − pw(zf ), (2.13)

and

N =
∫ z#

zf

[
ρsg(1 − φ) + ρwgφ(1 − S)

]
dz′

+
∫ z#

zf

(1 − φS)
∂( pi − pw)

∂z′ dz′ + pi(zf ) − pw(zf ) +
∫ z#

zf

(1 − φS)
∂pw

∂z′ dz′. (2.14)

We recognise N as the load supported by contacts between sediment grains at zf .
In addition, we define the local effective pressure Nloc(z) as the portion of the overlying

load that is supported at a height z by sediment grain contacts. The rest of the overlying
load is supported by thermomolecular forces or water pressure acting on the ice fringe
below the height z as well as water pressure at height z. The thermomolecular and water
pressure contributions from below z are given as
∫

Γ
pin dΓ = A

{∫ z

zf

[
ρsg(1 − φ) + ρwgφ(1 − S)

]
dz′

+
∫ z

zf

(1 − φS)
∂( pi − pw)

∂z′ dz′ + pi(zf ) − pw(zf ) − (1 − φS)
[
pi(z) − pw(z)

]

+
∫ z

zf

(1 − φS)
∂pw

∂z′ dz′ + pw(zf ) − (1 − φS)pw(z)

}

k. (2.15)
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We assume that sediment grains have infinitesimal contacts and, therefore, the water
pressure at the height z supports the force A(1 − φS)pw(z)k, which excludes the areas
occupied by ice. The total force supported by grain contacts at a height z is the overburden
σn minus both (2.15) and the water pressure at z. Thus, we can write the effective pressure
Nloc(z) as

Nloc(z) = N −
{∫ z

zf

[
ρsg(1 − φ) + ρwgφ(1 − S)

]
dz′

−
∫ z

zf

φS
∂( pi − pw)

∂z′ dz′ + φS
[
pi(z) − pw(z)

]
+

∫ z

zf

(1 − φS)
∂pw

∂z′ dz′
}

.

(2.16)

A new ice lens initiates at the height zn where the local effective pressure is zero, i.e.
Nloc(zn) = 0, as there is no longer any force on the sediment grains (O’Neill & Miller
1985; Rempel et al. 2004; Anderson & Worster 2014). We do not consider geometric
supercooling and ice-lens initiation through crack propagation (Style et al. 2011), but our
model is flexible enough to incorporate these effects in the future. We treat the effective
pressure at the bottom of the fringe N as an input to the model that is determined by
groundwater hydrology or subglacial drainage (e.g. Schoof 2010).

2.3. Generalised Clausius–Clapeyron and Gibbs–Thomson
The pressure difference between ice and water is related to temperature through the
generalised Clausius–Clapeyron equation, which in its linearised form is given by

pi − pw = ρiL
Tm − T

Tm
+ (pm − pw)

ρw − ρi

ρw
, (2.17)

where the bulk melting temperature at the reference pressure pm is Tm, the specific latent
heat of fusion for ice is L and the densities of ice and water are given as ρi and ρw,
respectively (Worster & Wettlaufer 1999; Worster 2000; Clarke 2005). We choose the
reference pressure to be the overburden σn, so that at the bottom of the fringe z = zf ,
we have

pi(zf ) − pw(zf ) = ρiL
Tm − T

Tm
+ ρw − ρi

ρw
N, (2.18)

and in the interior of the fringe, we have

pi(z) − pw(z) = ρiL
Tm − T

Tm
+ ρw − ρi

ρw

[
N + pw(zf ) − pw(z)

]
. (2.19)

Note that in this formulation changes to σn affect the value of N and Tm.
At the bottom of the fringe, the ice is in contact with water in between pore throats,

as shown in the schematic in figure 1. The curvature induced by the space between
sediment grains, leads to a difference in the pressure in ice and water phases due to the
Gibbs–Thomson effect (Worster 2000), which is given by

pi(zf ) − pw(zf ) = γ κ, (2.20)

where γ is the ice–water surface energy and κ is the curvature of the ice–water interface.
Moreover, the curvature κ at the bottom of the fringe is related to the radius of curvature for
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Thermomechanics of frozen fringe

sediment pore throats rp as κ = 2/rp. The critical effective pressure required to overcome
the pore throat curvature is given by the Gibbs–Thomson effect and defined by the
right-hand side of (2.20), i.e.

Nc = 2γ

rp
(2.21)

(e.g. Fowler 1997; Rempel 2008; Meyer, Downey & Rempel 2018).
Combining the generalised Claussius–Clapeyron equation (2.19) and the Gibbs–Thomson

effect (2.20) at the bottom of the fringe, we can relate the curvature induced by pore throats
to the temperature at the interface, which is given by

ρiL
Tm − T

Tm
= Nc − ρw − ρi

ρw
N. (2.22)

The contribution from surface energy on the right-hand side typically dominates the term
proportional to the density difference, because ice and water densities differ by less than
10 %. Therefore, it is useful to define the undercooling temperature Tf that supports this
balance as

Tf = Tm − NcTm

ρiL
, (2.23)

which allows us to write (2.22) as

T(zf ) = Tf + (ρw − ρi) N
ρiρwL

Tm. (2.24)

Rempel (2008) dropped the second term on the right arguing that it is small, which is
consistent with the dominant balance for the small difference between ice and water
densities. We, however, keep all terms for now and reduce the model systematically in
§ 2.7.2.

At this stage, we can now insert the generalised Clausius–Clapeyron equation (2.19) and
the Gibbs–Thomson effect (2.20) into the effective pressure integrals (2.14) and (2.16).
The effective pressure at the bottom of the fringe N is then

N = Nc +
∫ z#

zf

[
ρsg(1 − φ) + ρwgφ(1 − S)

]
dz′

−
∫ z#

zf

(1 − φS)

[
ρiL

Tm

∂T
∂z′ − ρi

ρw

∂pw

∂z′

]
dz′. (2.25)

In the interior of the fringe, the local effective pressure is given by

Nloc(z) = N −
{∫ z

zf

[
ρsg(1 − φ) + ρwgφ(1 − S)

]
dz′ + ρiL

Tm

∫ z

zf

φS
∂T
∂z′ dz′

+ φS
[
ρiL

Tm − T
Tm

+ ρw − ρi

ρw

[
N + pw(zf ) − pw(z)

]]

+
∫ z

zf

(
1 − ρi

ρw
φS

)
∂pw

∂z′ dz′
}

, (2.26)

which connects the local pressure and temperature.
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C.R. Meyer, C. Schoof and A.W. Rempel

If there is not a fringe, the development of the force balance at the base of the fringe still
holds, except that zf = z# and the integrals vanish. In addition, the curvature at the bottom
of the ice is no longer κ = 2/rp and so the effective pressure is given by

N = pi(zf ) − pw(zf ) < Nc, (2.27)

while the temperature at bottom of the ice is given by

T(zf ) = Tm − Tm

ρwL
N, (2.28)

which is modulated by the effective pressure.

2.4. Energy conservation
Mass exchange between the liquid and solid phases within the fringe leads to changes
in ice saturation. Conservation of energy determines the temperature and phase change
within the fringe and can be expressed in terms of the enthalpy, Hα . For the constituents
α that make up the fringe, sediment (s), ice (i) and water (w), conservation of energy in
enthalpy form is given as

∫

Ω

∂

∂t
[(1 − φ)ρsHs + φSρiHi + φ(1 − S)ρwHw] dΩ

=
∫

Γ

{−φSρiHiV − φ (1 − S) ρwHwU − (1 − φ) ρsHsV s + Ke∇T} · dΓ , (2.29)

where Ke is the effective thermal conductivity (Appendix B of Rempel 2008), which can
be represented as

Ke = K(1−φ)
s KSφ

i K(1−S)φ
w , (2.30)

for randomly packed fringe constituents, sediment Ks, ice Ki and water Kw (Clauser &
Huenges 1995). Using the divergence theorem, we can write (2.29) as

∂

∂t
[(1 − φ)ρsHs + φSρiHi + φ(1 − S)ρwHw]

= −∇ · {φSρiHiV + φ (1 − S) ρwHwU + (1 − φ) ρsHsV s} + ∇ · (Ke∇T) . (2.31)

We define the difference between the water flux U and the heave rate V as u, i.e.

u = U − V , (2.32)

which will typically be small as it is the flow of water that allows for heave. Water flow is
given by Darcy’s law (2.4) as

φ(1 − S)u = −φ(1 − S)V − k(S)

µ

(
∂pw

∂z
+ ρwg

)
. (2.33)

Thus, we combine the mass conservation equations (2.2) and (2.3) as

∂

∂t
[φSρi + φ(1 − S)ρw] + ∇ · {[φSρi + φ(1 − S)ρw] V } + ∇ · [ρwφ (1 − S) u] = 0,

(2.34)

which allows us to define the total water W (e.g. Meyer & Hewitt 2017) that is given by

W = φSρi + φ(1 − S)ρw, (2.35)
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Thermomechanics of frozen fringe

so that in the rigid-ice limit with ∇ · V = 0 where the heave rate is spatially independent,
mass conservation (2.34) can be written succinctly as

∂W
∂t

+ V · ∇W + ∇ · [ρwφ (1 − S) u] = 0. (2.36)

Similarly, for conservation of energy we can define the water enthalpy H as

H = H0 + φSρiHi + φ(1 − S)ρwHw, (2.37)

which is specified up to a constant, reference enthalpy H0, which we choose to make H = 0
at T = Tf . Thus, (2.31) reduces to

∂H
∂t

+ V · ∇H + ∂

∂t
[(1 − φ)ρsHs] + ∇ · [φ (1 − S) ρwHwu + (1 − φ) ρsHsV s]

= ∇ · (Ke∇T) . (2.38)

Using the fact that the latent heat L is equal to the difference between the liquid and ice
enthalpies, i.e. L = Hw − Hi, we find that

H = H0 + WHi + ρwL φ(1 − S), (2.39)

which is a sum of sensible and latent heat contributions to energy. We leave (2.38) in
enthalpy form to facilitate the description of the numerical method. For an incompressible
medium, the enthalpy Hα is equivalent to a change in temperature, i.e. dHα = cα dT , where
cα is the specific heat capacity with α representing ice, liquid or sediments. Thus, the
enthalpy can be related to temperature as

H =






ρici
(
T − Tf

)
− ρwL T < T# ( pure ice)

Wci
(
T − Tf

)
− ρwL φS T# ≤ T < Tf ( frozen fringe)

ρwciφ
(
T − Tf

)
Tf ≤ T (water and sediments),

(2.40)

which we show schematically in figure 2. Our choice of reference enthalpy implies that
H0 = −ρwφL . As we describe in the next section, the ice saturation in the fringe is a
function of the temperature.

2.5. Constitutive relations for saturation and permeability
The ice saturation S and, therefore, the permeability k of the frozen fringe depend on
the local thermodynamics with the pressure difference between the phases controlled
by the Gibbs–Thomson effect and interfacial premelting (Andersland & Ladanyi
2004; Hansen-Goos & Wettlaufer 2010; Rempel 2012). Here we use the generalised
Clausius–Claperyon relation to specify the ice saturation S and permeability k as functions
of the local difference between ice pressure and water pressure. That is, we generalise the
relationships used by Rempel (2007, 2008) and define the function Ξ as the ratio of the
critical effective stress to the local pressure difference pi − pw, i.e.

Ξ = Nc

pi − pw
=

Tm − Tf

Tm − T(z) + (ρw − ρi) Tm

ρiρwL

(
Nloc + pw(zf ) − pw(z)

) . (2.41)

This reduces to the expression used by Rempel (2007, 2008) if we ignore the density
difference between ice and water. For now, we proceed with the definition in (2.41) and

964 A42-11

1�
��

:

  

�7
2�7

�0
 �

��
��

�	
 3/

�
��

��
��

��
��

��
��

2:
1.

��
76

�26
.�

�!
��

��
��

2�
0.

�

62

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2023.366


C.R. Meyer, C. Schoof and A.W. Rempel

50

(a) (b)
0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

0

–50

–100 Pure ice
Pure ice

Frozen
fringe Frozen

fringe

Water and
sediments

Water and
sediments

H
 (M

Pa
)

 H

–150

–200
255 260 265 270

T# θ#
Tf

T (K)
275 280 –100 –50 0 50

θ
100 150 200 250

Figure 2. Schematic for the enthalpy H below an ice lens. (a) Temperatures below T# occur above the lowest
ice lens; within the fringe, the temperature is tied to the ice saturation curve; and below the fringe, the water
and sediment temperatures rise above Tf . (b) Non-dimensional version of (a) showing that the enthalpy is zero
at θ = 0 and negative non-dimensional temperatures correspond to unfrozen water with positive enthalpy.

write the ice saturation and permeability as

S = 1 − Ξβ , (2.42)

k = k0 (1 − S)α/β , (2.43)

where the empirical exponents are β > 0 and α > β (typically α > 1; see Watanabe &
Mizoguchi 2002; Rempel 2008; Chen et al. 2020; Chen, Rempel & Mei 2021).

2.6. Boundary conditions
Now that we have specified the governing equations for enthalpy H and total water W,
we describe the boundary conditions. At the top of the lowest fringe, i.e. z = z#, a finite
jump in saturation can occur as the ice lens is fully occupied by ice (φ = 1 and S = 1)
whereas ice only partially saturates the interstices in the underlying fringe (φ < 1 and
S < 1). Integrating mass and energy conservation across the jump at the lowest ice lens
boundary gives the following conditions:

[WV + ρwφ (1 − S) u]+− · n = 0 across z = z#, (2.44)

[−Ke∇T + HV + φ (1 − S) ρwHwu + (1 − φ) ρsHsV s]+− · n = 0 across z = z#.
(2.45)

Taking the heat flux into the ice lens and material above as q, we can simplify these
conditions to

[WV + ρwφ (1 − S) u]− · n = ρiV · n at z = z# (2.46)
[−Ke∇T + HV + φ (1 − S) ρwHwu + (1 − φ) ρsHsV s]− · n = q · n at z = z#, (2.47)

where mass conservation implies that at the top of the fringe, all of the liquid water must
freeze onto the lowest ice lens, and conservation of energy implies that all the heat that
enters the fringe at the bottom must leave through the top. At the bottom of the fringe
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Thermomechanics of frozen fringe

(or at any point below the fringe), we impose a conductive heat flux q which includes
contributions from geothermal heat and friction from sliding, i.e.

−Ke∇T|+ · n = qin on z = zf , (2.48)

which is the full heat flux as H = 0 at the base of the fringe (i.e. where we have chosen H0
such that H = 0 when T = Tf ). The ice saturation transitions smoothly from 0 ≤ S < 1
within the fringe to S = 0 below the fringe and, therefore, no jump condition is required
at z = zf . The water pressure pw at the bottom of the fringe is set by the effective pressure
N and is given by

pw = σn − N on z = zf . (2.49)

2.7. Non-dimensionalisation
We now scale our model to find the dominant physical balances. For example, we write t =
[t]t∗ for the time t, where [t] is the scale and t∗ is the non-dimensional variable. Proceeding
in this way, we write all variables as

N = [N]N∗, pw = σn − N + [N]p∗
w, T = Tf − [T]θ, Ke = KiK∗, V = [V]V∗

z = [z]z∗, t = [t]t∗, k = [k]k∗, H = ρwL H∗, W = ρwW∗, h = ci[T]h∗,

}

(2.50)

and choose the scales for the variables based on the expected physical balances.
A scale for the effective pressure within the fringe is the threshold entry pressure, i.e.

[N] = Nc, and a scale for the heat flux into the fringe is the geothermal heat flux, i.e.
[q] = qin. We choose the temperature scale to be the temperature difference implied by
premelting, i.e.

[N] = ρiL [T]
Tm

−→ [T] = Tm[N]
ρiL

. (2.51)

A scale for the vertical distance [z] comes from the heat flux scale, i.e.

[q] = Ki
[T]
[z]

−→ [z] = Ki
[T]
[q]

. (2.52)

The rate of heaving is determined by water percolation, so we choose

[V] = [k][N]
µ[z]

, (2.53)

and time can be scaled for the solidification as
ρwL

[t]
= Ki

[T]
[z]2 −→ [t] = ρwL [z]2

Ki[T]
. (2.54)

For the permeability, we choose the scale to be the prefactor as

[k] = k0. (2.55)

We also define the dimensionless variables

δ = 1 − ρi

ρw
, ν = ρs

ρw
, Pe = [V][t]

[z]
, G = ρwg[z]

[N]
, St = L

ci[T]
, (2.56a–e)

where δ is the scaled density difference, ν is the ratio of the sediment density to water
density, Pe is the Péclet number, G is the ratio of gravitational hydrostatic pressure to
infiltration pressure and St is the Stefan number.
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C.R. Meyer, C. Schoof and A.W. Rempel

2.7.1. Full model
We now write the model in non-dimensional variables and for concision, we drop the
asterisks. Rewriting (2.25), the force balance across the fringe is

N = 1 + G
∫ z#

zf

[ν(1 − φ) + φ (1 − S)] dz′ +
∫ z#

zf

(1 − φS)

[
∂θ

∂z′ + (1 − δ)
∂pw

∂z′

]
dz′,

(2.57)

if a fringe exists, or the effective pressure is constrained by N < 1 if there is not a fringe.
The local effective pressure in the fringe is

Nloc(z) = N −
{

G
∫ z

zf

[ν(1 − φ) + φ (1 − S)] dz′ −
∫ z

zf

φS
∂θ

∂z′ dz′

+ φS
[
1 + θ + δ (N − pw(z))

]
+

∫ z

zf

[1 − (1 − δ)φS]
∂pw

∂z′ dz′
}

. (2.58)

The total water in the fringe is

W = φ (1 − δS) , (2.59)

and the enthalpy is

H = 1
St

WHi − φS

=






−(1 − δ)(θ/St) − 1 θ > 0&φ = 1 ( pure ice),
−φ(1 − δS)(θ/St) − φS θ > 0 ( frozen fringe),
−φ(θ/St) θ ≤ 0 (water and sediments).

(2.60)

Non-dimensionalising (2.38) results in

∂H
∂t

+ PeV · ∇H + ν

St
∂

∂t
[(1 − φ)Hs] + Pe

St
∇ · [φ (1 − S) Hwu + ν(1 − φ)HsV s]

= −∇ · (K∇θ) . (2.61)

The scaled total water equation is given by

∂W
∂t

+ PeV · ∇W + Pe∇ · [φ (1 − S) u] = 0, (2.62)

which depends on both the flow of water u and the rate of heave V .
The constitutive laws for permeability and saturation are written non-dimensionally as

k = Ξα, (2.63)

S = 1 − Ξβ , (2.64)

where

Ξ = 1
1 + θ + δ

[
Nloc − pw(z)

] . (2.65)
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Thermomechanics of frozen fringe

Finally, the non-dimensional boundary conditions are given as

[WV + φ (1 − S) u]− · n = (1 − δ) V · n at z = z#, (2.66)
[

K∇θ + Pe HV + Pe
St

φ (1 − S) Hwu + ν Pe
St

(1 − φ) HsV s

]

−
· n = 1 at z = z#,

(2.67)

K ∇θ |+ · n = 1 below z = zf , (2.68)
pw = 0 on z = zf . (2.69)

2.7.2. Model reduction
Typical values for the non-dimensional variables based on the parameters are given in
table 1. The scaled density difference δ is a small value and therefore it is reasonable to
neglect terms that are multiplied by δ (Rempel 2008). Taking this limit, we find that the
vertical force balance reduces to

N = 1 + G
∫ z#

zf

[ν(1 − φ) + φ(1 − S)] dz′ +
∫ z#

zf

(1 − φS)

[
∂θ

∂z′ + ∂pw

∂z′

]
dz′, (2.70)

unless N < 1, in which case there is not a fringe. In the same way, the local effective
pressure Nloc(z) is

Nloc(z) = N −
{

G
∫ z

zf

[ν(1 − φ) + φ(1 − S)] dz′ −
∫ z

zf

φS
∂θ

∂z′ dz′

+ φS [1 + θ] +
∫ z

zf

(1 − φS)
∂p
∂z′ dz′

}

. (2.71)

Now because the Stefan number St is large, the sensible heat contributions to the
enthalpy H within the fringe can be ignored. Thus, we have that

H =






−(θ/St) − 1 θ > 0 & φ = 1 ( pure ice)
−φS θ > 0 ( frozen fringe)
−φ(θ/St) θ ≤ 0 (water and sediments)

(2.72)

to leading order in 1/St in the fringe. Only sensible heat terms persist in the pure ice and
water and sediments and we retain the 1/St dependence to meet flux boundary conditions.
The enthalpy variation in the frozen fringe is tied to the temperature θ through the ice
saturation S as

H = −φS = −φ
[
1 − (1 + θ)−β

]
, (2.73)

analogous to the liquidus condition in a mushy zone (Worster 2000).
Given that frozen fringes are often much wider than thick, we now restrict our attention

to one vertical dimension for conservation of mass and energy. Thus, in the same large
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Stefan number limit, the evolution equation for enthalpy is

∂H
∂t

+ Pe V
∂H
∂z

= − ∂

∂z

(
K

∂θ

∂z

)
, (2.74)

where we have neglected terms proportional to Pe/St as well. In the limit δ = 0, the total
water W reduces to

W = φ, (2.75)

which is a constant, meaning that the pore space is entirely occupied by ice and water,
yet there is no distinction in this limit due to the small density difference. Therefore, mass
conservation implies

V
∂

∂z
[φ (1 − S)] = ∂

∂z

[
k(S)

(
∂pw

∂z
+ G

)]
. (2.76)

The boundary conditions for mass, momentum and energy conservation reduce to
[
φSV + k(S)

(
∂pw

∂z
+ G

)]

−
= V at z = z#, (2.77)

[
K

∂θ

∂z
+ Pe VH

]

−
= 1 at z = z#, (2.78)

K
∂θ

∂z

∣∣∣∣
+

= 1 below z = zf , (2.79)

pw = 0 on z = zf . (2.80)

We now integrate (2.76) and impose the boundary condition (2.77), which implies that
the water pressure gradient is

∂pw

∂z
= −G − V

k
(1 − φS) . (2.81)

We can now insert this water pressure gradient into the vertical force balance (2.70) to find
that the heave rate V is given by

V =
1 − N + G (ν − 1) (1 − φ)

(
z# − zf

)
+

∫ z#

zf

(1 − φS)
∂θ

∂z′ dz′

∫ z#

zf

(1 − φS)2

k
dz′

, (2.82)

as shown previously by Rempel (2008). This prescription of the heave rate is determined
by force balance as well as conservation of mass and requires integrating the temperature
field θ and the attendant saturation S. Thus, we can summarise our full model for the
transient evolution of a frozen fringe as: enthalpy evolution (2.74) with heave rate (2.82)
subject to boundary conditions (2.78) and (2.79).

2.8. Enthalpy numerical method
We write (2.74) in conservative form, defining the flux as the sum of the advective
and diffusive components. We then discretise the conserved fluxes in space using a
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Thermomechanics of frozen fringe

finite-volume method implemented in Python. In this numerical method, we divide the
domain into cells and each variable is constant within a cell whereas velocities and
fluxes are evaluated at cell edges. For advection, we use an upwinding scheme where
the advective fluxes on cell edges are given by the cell values below (above) for positive
(negative) heave rates. We evolve explicitly (2.74) in time using solve_ivp (‘LSODA’)
and the method of lines in Python. With these choices, the finite-volume implementation
is conservative, meaning that the flux transferred between cells respects conservation
of energy and phase change. The code is in a github repository (doi: 10.5281/zenodo.
7868088).

The two input parameters for the model are the effective pressure N and the heave rate
V . Thus, coupling the governing equation (2.74) with the heave rate equation (2.82), this
problem takes an integro-differential equation form, where at each timestep we integrate
(2.82). Rather than implementing the top boundary condition (2.78) as a total flux, we
apply a boundary condition to the diffusive part as

K
∂θ

∂z
= 1 − Pe VinputH at z = z#, (2.83)

where Vinput is the input value. The steady state is diagnosed when the value of V computed
through (2.82) is equal to Vinput. We study the steady-state problem in more detail in the
next section. The outputs for the model are the frozen fringe thickness h = z# − zf , the
temperature profile through the fringe and the ice saturation profile in the fringe, as well
as the initiation, timing and spacing of ice lenses.

3. Results

3.1. Steady-state frozen fringe
To understand the development of a frozen fringe as well as the relationship between a free
boundary representation and the enthalpy method, we start by considering a steady-state
frozen fringe with constant thermal conductivity. The problem is then: for a fixed location
of the lowest ice lens z# (e.g. the glacier–sediment interface), a constant heave rate V
and a known effective pressure N, what is the steady-state temperature profile θ(z) and
fringe-front location zf ?

Conservation of energy in the fringe and the water-saturated region in front of it is given
by

Pe V
dH
dz

= −d2θ

dz2 (zf < z < z#), (3.1)

d2θ

dz2 = 0 (0 < z < zf ), (3.2)

where the enthalpy H in the fringe is given by (2.73) as H = −φS.
The boundary conditions are

dθ

dz
+ Pe VH = 1 on z = z#, (3.3)

dθ

dz
= 1 on z = 0, (3.4)
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with the internal conditions

θ = 0 on z = zf , (3.5)
[

dθ

dz

]+

−
= 0 at z = zf . (3.6)

We start by deriving the temperature profile for the region below the fringe. By
integrating (3.2), we have

θ = z − zf (0 ≤ z ≤ zf ), (3.7)

which satisfies the geothermal heat flux boundary condition (3.4) and the scaled
temperature goes to zero at the bottom of the fringe to satisfy the internal condition (3.5).

Now in the fringe, we integrate (3.1) once and apply the boundary condition (3.3), which
results in

dθ

dz
= 1 + Pe Vφ

[
1 − (1 + θ)−β

]
, (3.8)

which is the governing ordinary differential equation for the temperature profile in the
fringe, subject to the boundary condition θ = 0 at z = zf . Thus, for a given heave rate
V and effective pressure N, the temperature profile is specified by (3.8). The only piece
of information that is missing is the location of the bottom of the fringe zf , which we
determine through force balance (2.82). To solve for θ and zf , we numerically integrate
(3.8) for the temperature, insert the solution into the force balance (2.82), and find the
fringe front zf using a root-finding algorithm (i.e. similar to a shooting method).

The result of this numerical procedure with the parameters given in table 1 is shown
as the red line in figure 3. The black line shows the solution to the same problem using
the enthalpy method, where the z domain runs from 0 to z#. Here we set z# = 1. We find
the steady state through a relaxation method, i.e. we integrate (2.74) in time until the
difference between the computed heave rate and the target value Vinput is less than 10−3.
The enthalpy in the frozen fringe is negative, taking on its smallest value at the base of
the lowest ice lens z# and rising monotonically up to zero at the base of the fringe zf .
The enthalpy is positive in the water-saturated sediments, yet is very small due to the
large Stefan number St. The non-dimensional temperature θ is shown in figure 3(b). In
line with T = Tf − [T]θ , we see that θ is positive in the fringe and negative below. The
temperature profile is close to linear, which makes sense given that the heave rate V is
small, and is exactly linear in the thermodynamically balanced case where V = 0 and
when the thermal conductivity is constant. At the bottom of the fringe θ = 0 and the
location zf is determined through force balance. The non-dimensional fringe thickness is
given as h = z# − zf and we find h = 0.36 for the parameters in figure 3. This equates to a
0.65-m-thick fringe under 100 kPa of effective pressure, which could be expected below a
glacier for this parameter combination.

In figure 4, we show the dimensional fringe thickness h = [h](z# − zf ) in metres
as a function of the non-dimensional effective pressure N/Nc for balanced (V = 0,
figure 4a) and temperate melting (V = −q/(ρiL [V]), figure 4b) thermodynamics using
five different solution methods. The first two techniques are what we just described: ‘ODE’
is the solution to (3.8) subject to (2.82) and ‘enthalpy’ is the conserved finite-volume
method for solving (2.74). In the thermodynamically balanced case, (2.82) can be
integrated exactly and the fringe thickness can be found with a root-finding algorithm,
which we name ‘root’ in figure 4. The last two methods ‘uega’ and ‘shooting’ are from
Rempel (2008) and are run here using the parameters in table 1. In the uniform external
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Figure 3. Comparison between the finite-volume enthalpy method and the steady-state ordinary differential
equation (ODE) solution (non-dimensional parameters V = −0.055 and N = 1.5). (a) Enthalpy H with height
z below the lowest ice lens at z# = 1. The frozen fringe extends from zf = 0.64 to z# = 1, with water and
sediments below. The non-dimensional fringe thickness is h = z# − zf = 0.36. The enthalpy in the water and
sediments portion is close to zero throughout the depth. (b) Temperature θ as a function of height z as calculated
from the enthalpy.
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Figure 4. Compilation of benchmark solutions for dimensional fringe thickness h for two non-dimensional
heave rates (a) V = 0 and (b) V = −q/(ρiL [V]) = −1.1. The ‘uega’ and ‘shooting’ are solution methods
from Rempel (2008). The ‘enthalpy’ solution is from the finite-volume method, ‘ODE’ is the steady-state ODE
solution and ‘root’ is the semi-analytical root-finding method. All methods give the same result.

gradient approximation (uega) method Rempel (2008) maps the fringe with imposed
external heat fluxes to a Stefan problem domain whereas the ‘shooting’ method searches
for a consistent temperature at the base of the lowest ice lens. As expected, all five of
these solution methods give the same result. The fringe thicknesses are much lower in
the temperate melting case because the liquid pressure distribution in the fringe needed to
expel meltwater supports a larger portion of the overburden and the fringe melts as the ice
infiltrates into the sediments.

3.2. Ice lens initiation
In the calculation of the steady-state fringe thicknesses, we focused on melting (V < 0)
and balanced (V = 0) thermodynamics. Although steady states do exist for relatively
small freezing rates and relatively small effective pressures (Meyer et al. 2018), transient
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Figure 5. Local effective pressure Nloc(z) with height z scaled with the effective pressure N at the base of
the fringe for: (a) a melting steady state (V = −0.01 and N = 2.9) where Nloc > 0 throughout the fringe and
(b) a transient freezing simulation (V = 0.20 and N = 2.9) where the local effective pressure goes to zero
Nloc(zn) = 0, at point in the fringe zn, initiating a new ice lens.

behaviour such as ice lens initiation can occur when there is net freezing (V > 0). In
figure 5, we show the local effective pressure Nloc as a function of depth z for melting
(figure 5a) and freezing (figure 5b). Here the top of the domain is the lowest ice lens
z# = 20 and Nloc is evaluated in the fringe region above zf ≈ 18 (a) and zf ≈ 6 (b). In
the steady melting case, Nloc monotonically increases from the ice lens to the effective
pressure at the bottom of the fringe N. The low pressure at the base of the ice lens draws in
water as the ice lens infiltrates into the sediments through regelation (Gilpin 1980; Fowler
& Krantz 1994; Rempel & Meyer 2019). In the transient freezing case, water is drawn into
the fringe and freezes onto the base of the lowest ice lens. The ice saturation increases,
which lowers the permeability and requires a larger hydrodynamic pressure gradient to
continue freezing. The fringe thickens until, at some point in time, the local effective
pressure reaches zero, i.e.

Nloc(zn) = 0, (3.9)

and a new ice lens forms at zn.
We determine the time when a new ice lens forms using the ‘events’ functionality built

into solve_ivp, which flags the location and time of the new ice lens as an event and
stops the integration. We then shift our domain up so that the new ice lens is at the top and
pad the bottom of the domain with water-saturated sediments following the same incoming
heat flux. Then, we restart the integration until the next ice lens forms. Written inside a
loop, we generate sequences of ice lenses with an interlens time t#.

Using the constant heave rate V and interlens time t#, we can reconstruct the
porosity structure a posteriori. We treat the porosity as a constant φ in the fringe and
water-saturated sediment. In the ice lenses, the porosity is also constant with φ = 1. In
one vertical dimension, mass conservation for sediments from (2.1) is

∂(1 − φ)

∂t
+ ∂[Vs (1 − φ)]

∂z
= 0, (3.10)

for a constant sediment density ρs. If we say that the sediment advection Vs is given by the
heave according to

Vs =
{

0, below the lowest lens,
V, above the lowest lens,

(3.11)
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Figure 6. Porosity structure of a freezing sediment pack. (a) Initial porosity profile with z# = 25. The region
above z# is the lowest ice lens and the region below is fringe as well as water-saturated sediments. (b) A
posteriori travelling-wave solutions for porosity after initiation and growth of three periodic ice lenses. The
non-dimensional parameters V = 0.5 and N = 1.5 and the non-dimensional interlens time is t# = 9.6.

we find that
∂φ

∂t
+ V

∂φ

∂z
= 0, (3.12)

above zf because V is constant in this region. This model assures that the ice lenses
and interstitial fringe advect vertically as one unit of rigid ice (O’Neill & Miller 1985).
Importantly, this treatment assumes that there is no volume expansion upon freezing and
the water freezes in place, treating the ice and water densities as equal. This approximation
is valid to leading order in the scaled and simplified model we describe in § 2.7.2. We solve
(3.12) equation analytically using the travelling-wave form, i.e.

φ = f (z − Vt) , (3.13)

which we apply at the initiation of each new ice lens, where we have that φ = 1 at z =
zn. The ice lens then grows at the rate V , lifting the overlying material following (3.12).
In figure 6, we show the evolution of the porosity φ with time as three new ice lenses
sequentially nucleate and grow. With these parameters, the lenses form periodically with
equal spacing and interlens times.

3.3. Ice lens spacing
With a constant heave rate V , the interlens time t# allows us to compute the ice lens spacing
# as

# = Vt#. (3.14)

For a set value of the effective pressure N, we find that the ice lens spacing # decreases
with an increasing heave rate V (cf. figure 7). To capture the general trend of lens spacing
with heave rate, we can scale the boundary condition at z# given in (2.78), which we repeat
here

K
∂θ

∂z
+ Pe VH = 1, (3.15)

i.e. the Stefan condition at the interface. We take the temperature gradient to scale with
the ice lens temperature θ# divided by the ice lens spacing #, take the thermal conductivity
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Figure 7. Ice lens spacing # as a function of heave rate V . (a) Non-dimensional simulation results (green
dots) compared with a 1/V (black line) and Stefan condition scalings (blue line) with N = 1.103 and the
default parameters from table 1. Dashed black vertical line shows the onset of period lenses. (b) Comparison
between simulation results (black dots) and Wang et al. (2018) laboratory experiments (blue dots). Here
we use parameters following the experiments, i.e. N/Nc = 1.001, α = 4, φ = 0.33, rp = 60 × 10−6 m, ρs =
2700 kg m−3 and default otherwise. The model includes enthalpy evolution (2.74) with heave rate (2.82) subject
to boundary conditions (2.78) and (2.79) as well as the ice lens nucleation condition (3.9).

to scale as unity and set the ice saturation S using the lens temperature θ#, with enthalpy
in the fringe given by H = −φS. We find that

# ∼ θ#

1 + Pe VφS
. (3.16)

For each simulation, we tabulate the ice lens spacing #, the heave rate V and the lens
temperature θ#. We compare the simulation results and the (3.16) scaling in figure 7. At
moderate V , (3.16) shows that there is a regime where the ice lens spacing is largely
independent of the heaving rate and predominantly a function of the lens temperature
(cf. Rempel et al. 2004; Rempel 2007). In this regime, the ice lens temperature becomes
colder in pace with the increasing freezing rate, leading to a balance. For large V , (3.16)
implies a scaling where # ∼ 1/V . The rapid freezing rate does not allow the temperature
at the lens to decrease concomitantly, and θ# asymptotes to a constant value, leading to
more closely spaced ice lenses. In figure 7(a), the blue line for (3.16) includes no fitting
constants, whereas the black line for the # ∼ 1/V is proportional to a fitted prefactor for
illustration. The vertical dashed line shows the heave rate onset of periodic lenses for
this effective pressure. Heave rates below the dashed line support a steady fringe without
producing periodic lenses, i.e. the interlens time t# is infinite. For heave rates slightly larger
than the dashed line, the interlens time t# approaches infinity, leading to the uptick in lens
spacing near the critical value.

We compare our simulations for ice lens spacing to laboratory observations from Wang
et al. (2018), as shown in figure 7(b). We select these experiments because of the range of
heave rates and clear images. We digitised the spacing between lenses from their figure 5
at three points across the sample and show the mean as well as standard deviation as error
bars. We computed the average heave rate V̄Wang for the experiment as

V̄Wang = Ki

ρiL

0T
h0

, (3.17)
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Figure 8. Regime diagram showing the system behaviour as a function of the heave rate V and effective
pressure N. The maximum steady fringe thickness is shown as a solid black line and the theory is described in
the Appendix.

from the temperature difference 0T and initial sample height h0 given in their table 2.
There are inherent errors in this tabulation of ice lens spacing and the approximation of
the heave rate, but the general trend and model agreement are encouraging.

3.4. Regime diagram and subglacial observations
The two primary control parameters for the geophysical system are the heave rate V and the
effective pressure N. So far we have shown steady states for balanced (V = 0) and melting
(V < 0) conditions as well as ice lens initiation for freezing conditions (V > 0). In figure 8,
we show a regime diagram for the system behaviour as a function of V and N. Each point
on the figure is a simulation and the colour denotes the grouping. For N < Nc, no fringe
forms and the lens either melts or grows, depending on the sign of V . When N > Nc, ice
infiltrates into the sediment forming a fringe. In melting or balanced cases where V ≤ 0, a
steady-state fringe thickness emerges (e.g. figures 3 and 4). For positive heave rates V > 0,
steady states for relatively small effective pressures give way to periodic lenses as the heave
rate increases. In the Appendix, we calculate the maximum steady fringe by considering
the largest load that can be supported by a steady fringe. Just below this boundary between
the steady and periodic regimes, there is a zone of hysteresis, where depending on the
initial conditions the system either relaxes to a steady state or periodically generates new
ice lenses, consistent with the Rempel et al. (2004) regime diagram. Here we find that
large freezing rates result in closely spaced ice lenses (cf.figure 7). Although we observe
some small variability in the interlens times, we do not see anything reminiscent of the
chaotic regime found by Anderson & Worster (2014).

Rempel et al. (2004) constructed their regime diagram with constant heat flux
experiments in mind, whereas the regime diagram of Rempel (2007) was designed for the
step freezing sub-aerial case. In contrast, here we focus on the geophysical applications,
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e.g. subglacial behaviour, permafrost regions and frost-heaving soils. A key difference
between our figure 8 and the previously published regime diagrams are the variables
plotted on both axes. While we define N as the difference between the ice and water
pressures at min(zf , zl), the unscaled p0 in figure 8 of Rempel et al. (2004) is the gauge
pressure of the ice itself, with the water pressure defined as hydrostatic at some location
zh that is treated as 0 in all of their calculated results. Partly as a result, the boundary at
Nc between lens no fringe and (i) steady lens with fringe, (ii) hysteresis or (iii) periodic
lensing that we find is not a reproduction of the result from Rempel et al. (2004). Figure 8
of Rempel et al. (2004) also has a different y-axis. The scaled v in Rempel et al. (2004)
is the constant pulling rate or imposed rate of advance of isotherms. In our new work it is
the heave rate, or rate of advance of the lens boundary. Because of this difference, in the
treatment of Rempel et al. (2004) there is the potential for sufficiently rapid freezing that
no lenses can nucleate, leading to a region of their regime diagram that collapses onto the
x-axis in our new regime diagram. The regime diagram of Rempel et al. (2004) focused on
experimental controls (pulling speed and applied load) with water pressure set at a remote
warm location rather than the furthest extent of pore ice. The regime diagram we develop
here focuses on key system observables, i.e. heave rate and effective pressure. Rempel
(2007) shows regime diagrams for different soils in figures 7 and 8, but these are plotted
with axes of P0 and undercooling, which is related but distinct from our results.

Based on figure 8, if we have estimates for V and N in a geophysical context such
as below a glacier, we can predict the system behaviour such as whether ice lenses will
form. For example, Rada & Schoof (2018) measure the effective pressure N = 87 kPa in
a subglacial conduit. With Nc = 68 kPa, the ratio is N/Nc = 1.3 and if we take balanced
thermodynamics V = 0, then the resulting fringe thickness in the sediments adjacent to the
conduit will be about 40 cm (0.23[z]). Results for similar parameters are shown in figure 3
and the same value could be read off of figure 4(a). For melting below temperate ice
at V = −1.1 corresponding to 7.9 mm year−1, the predicted fringe is about 20 cm thick
(0.11[z]), as shown in figure 4(b) and closer to observations from Rada & Schoof (2018).

4. Conclusions
In this paper, we have derived the thermodynamical and fluid mechanical equations
governing frost heave in a geophysical context. We have systematically reduced the
equations using the fact that ice and water have similar densities (i.e. small δ) as well
as the large Stefan number St. We have solved the reduced set of equations using
an enthalpy method where the interstitial ice saturation acts like a liquidus condition
in the frozen fringe and conservation of enthalpy allows us to determine the fringe
interface implicitly. For melting and balanced thermodynamics, we have compared our
enthalpy method to a steady state obtained by solving an ordinary differential equation
for temperature and found excellent agreement. In freezing cases, we have found that
the local effective pressure can go to zero within the fringe and nucleate a new ice
lens. We accommodate this process in our enthalpy model using an ‘events’ function
that stops the integration when a new ice lens forms and restarts the integration with
a domain shifted below the new ice lens. Based on our solutions for the time between
lenses, we have reconstructed the porosity profile showing the sequence of ice lenses. We
have found that the spacing of ice lenses follows a scaling set by the Stefan condition
and that the simulation results agreed with experimental data. Finally, we have compiled
a regime diagram of our simulation results, showing the onset of periodic lensing and
behaviour including hysteresis. Our results advance the understanding of frozen sediments
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in subaerial and subglacial environments through providing a systematic scaling of the
full model, a novel numerical implementation and a new scaling for ice lens spacing
which we have compared directly with laboratory experiments. Our regime diagram shows
similar features to previous work, but is tailored to the geophysical environment. Our
results inform the interpretation of geophysical systems and are a foundation for future
investigations into the role of compaction as well as further comparisons with laboratory
experiments.
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Appendix. Steady heave near thermal balance
For an effective pressure N greater than the infiltration threshold Nc, a steady fringe
will form for melting (V < 0), balanced (V = 0) and weakly freezing (0 < V < Vmax(N))
thermodynamics, where Vmax depends on the effective pressure N (namely, figures 4 and
8). Alternatively, the maximum freezing heave rate can be thought of in the reverse: for
a given heave rate (V > 0), there is a maximum effective pressure Nmax(V), which is the
largest load that can be supported by a steady fringe. For larger effective pressures, periodic
lenses form. Here we will show how to calculate Vmax(N) and Nmax(V).

We start by rearranging (2.82) for N, which is

N = 1 + G (ν − 1) (1 − φ)
(
z# − zf

)
+

∫ z#

zf

(1 − φS)
∂θ

∂z′ dz′ − V
∫ z#

zf

(1 − φS)2

k
dz′.

(A1)

To find the maximum effective pressure, we treat zf as fixed and set the derivative of N
with respect to z# equal to zero, i.e.

∂N
∂z#

= G (ν − 1) (1 − φ) + (1 − φS)
∂θ

∂z

∣∣∣∣
z#

− V
(1 − φS)2

k

∣∣∣∣
z#

= 0. (A2)

Treating the thermal conductivity variation as negligible, we insert the heat flux from (3.8)
to find

G (ν − 1) (1 − φ) +
[
1 − φS(θ∗

# )
] [

1 + Pe VφS(θ∗
# )

]
− V

[
1 − φS(θ∗

# )
]2

k(θ∗
# )

= 0, (A3)

which can be solved using a root-finding algorithm for the lens temperature θ∗
# (V), i.e. the

lowest lens temperature that can be supported for a given heave rate V . We now change the
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integration variable from z to θ in the force balance equation (A1) using (3.8) and use the
minimum lens temperature θ∗

# in the limits of integration, i.e.

N = 1 +
∫ θ∗

# (V)

0

G (ν − 1) (1 − φ)

1 + Pe VφS(θ)
dθ +

∫ θ∗
# (V)

0
[1 − φS(θ)] dθ

− V
∫ θ∗

# (V)

0

[1 − φS(θ)]2

k(θ) [1 + Pe VφS(θ)]
dθ . (A4)

For a given value of N, we use another root-finding algorithm to find the heave rate V that
satisfies (A4), which is the maximum heave rate with a steady fringe. Repeated application
of this root-finding algorithm results in the black curve Vmax(N) shown on figure 8 and
partitions the periodic lens regime from the hysteresis/steady lens regime.
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