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Abstract

Small quantities of liquid water lining triple junctions in polycrystalline glacier ice form con-
nected vein networks that enable material exchange with underlying basal environments.
Diffuse debris concentrations commonly observed in ice marginal regions might be attributed
to this mechanism. Following recent cryogenic ring-shear experiments, we observed emplacement
along grain boundaries of loess particles several tens of microns in size. Here, we describe an
idealized model of vein liquid flow to elucidate conditions favoring such particle transport.
Gradients in liquid potential drive flow toward colder temperatures and lower solute concentra-
tions, while deviations of the ice stress state from hydrostatic balance produce additional suction
toward anomalously low ice pressures. Our model predicts particle entrainment following both
modest warming along the basal interface resulting from anticipated natural changes in effective
stress, and the interior relaxation of temperature and solute concentration imposed by our experi-
mental protocols. Comparisons with experimental observations are encouraging, but suggest that
liquid flow rates are somewhat higher and/or more effective at dragging larger particles than pre-
dicted by our idealized model with nominal parameter choices. Diffuse debris entrainment
extending several meters above the glacier bed likely requires a more sophisticated treatment
that incorporates effects of ice deformation or other processes.

1. Introduction

Entrained debris muddy glacier soles, producing distinctive basal layers that influence ice and
landscape dynamics (e.g. Knight, 1997; Hubbard and others, 2009; Waller and others, 2009).
Several different entrainment mechanisms have been identified, with supporting observational
evidence derived from exposed margins (e.g. Sugden and others, 1987; Hubbard and Sharp,
1995; Lawson and others, 1998, see Fig. 1a), remote segments of glacier interiors (e.g.
Jansson and others, 1996; Carsey and others, 2002), the surfaces of capsized icebergs (e.g.
Anderson and others, 1980; Pierce and others, 2021), and controlled laboratory experiments
(e.g. Knight and Knight, 1994, 1999; Hansen and Zoet, 2022). Direct access to the basal envir-
onment is difficult, preventing in situ observations of basal layer formation. Model treatments
designed to elucidate the physical and chemical fingerprints of entrainment processes hold
promise for providing rare and valuable insights into the subglacial conditions that produce
these enigmatic features (e.g. Lliboutry, 1993; Alley and others, 1997; Cook and others,
2006; Rempel and others, 2022).

During recent cryogenic ring-shear experiments, we slid temperate ice over several uncon-
solidated substrates and observed different patterns of diffuse debris entrainment. Following
ice slip over Horicon till (median particle diameter ∼350 μm), a sharp boundary between
debris-free ice and a fringe of ice-infiltrated till was maintained, whereas slip over Iowa
loess (median diameter ∼48 μm) led to diffuse entrainment above the fringe characterized
by the deposition of fine particles (median diameter ∼20 μm) along the veins that line three-
grain junctions in polycrystalline ice, and during the early stages of slip over a bed of glass
beads (median diameter ∼160 μm) we observed particles moving up into the ice, but infer
that these particles had escaped before the end of the ∼20 day experimental run. To investi-
gate, here we develop an idealized continuum model of vein liquid flow (see Fig. 1b) that builds
upon empirically backed formulations of vein evolution by Mader (1992b, 1992) and Nye
(1991), and an idealized treatment of water exchange due to vein flow above subglacial
lakes (Rempel, 2005), to predict how flow characteristics respond to changing conditions
(e.g. along the basal boundary).

Our analysis suggests a prominent role for the following physical elements in governing the
diffuse entrainment we observed. Gradients in liquid potential favor flow toward colder tem-
peratures, lower solute concentrations and reduced ice pressures, so transient temperature, sol-
ute, and pressure fields produce changes in flow rate and the maximum sizes of mineral
particles that can be entrained and transported. In the idealized case where the ice pressure
gradient is hydrostatic, changes in the liquid potential are proportional to a linear combination
of changes in the temperature and solute concentration, which are coupled through their influ-
ence on the liquid volume fraction. This coupling causes the immediate response to an
increase in the local temperature, for example, to be mirrored by an opposing decrease in
the solute concentration that leaves the liquid potential nearly unchanged, limiting the mag-
nitudes of the potential gradients that drive liquid flow over the relatively short time scales that
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are associated with thermal diffusion. Over the longer time scales
associated with compositional diffusion, differing rates of heat
and solute transport lead inevitably to changes in the local liquid
fraction that are accompanied by steepening of potential gradi-
ents, driving more rapid liquid flow that can transport larger par-
ticles. Moreover, following an abrupt perturbation that initially
causes vein liquid transport upward into the ice, we find that
the flow direction can reverse so that subsequent vein liquid trans-
port is directed downward toward the bed. Our model predicts
that liquid flow rate magnitudes tend to diminish with distance
above the glacier bed so that particle transport is confined to
the lowermost basal ice, in qualitative agreement with experimen-
tal observations and field evidence.

We present our continuum model of vein liquid flow next and
develop scaled governing equations that are applicable when the
ice pressure distribution can be approximated as hydrostatic.
With this framework in place, we illustrate aspects of the system
behavior by examining how vein liquid flow can transport parti-
cles in response to changes in basal temperature of the magnitude
expected during sliding over a heterogeneous bed that contains

both macroscopic drainage elements and areas of close contact
between basal ice and till or bedrock. This leads into an analysis
of a scenario in which vein flow is forced by changes in conditions
above the basal interface, as may have been responsible for the dif-
fuse debris entrainment we observed during the ring-shear experi-
ment over loess mentioned above. Measured particle size
distributions and concentrations following our loess experiment
reveal that particle transport is somewhat more effective than pre-
dicted using nominal parameter estimates in our idealized model,
suggesting that some combination of higher vein permeabilities
and/or the increases to particle drag that are associated with
flow in confined spaces might be responsible for causing these
discrepancies. To explore an additional degree of complexity
that is expected in many basal environments, we next outline
how our treatment can be modified slightly to address cases
where the ice pressure distribution deviates from hydrostatic.
We provide a brief discussion of model implications and limita-
tions before offering concluding remarks.

2. Continuum model of vein flow

Consider a block of polycrystalline ice that is subjected to a pre-
scribed set of changes in temperature, liquid pressure, solute con-
centration and ice normal stress along its exterior boundaries.
When liquid flow is directed toward the interior at sufficient
rates, sediment particles can be lofted through the vein network
and incorporated within basal ice layers. Averaged over a volume
spanning many ice grains, Darcy’s law describes the volume flux
of liquid through a polycrystalline cross section as (e.g. Nye and
Frank, 1973)

q = − k
m

∇Pl − rlg
( )

, (1)

where the permeability k is assumed here to be isotropic, μ is
liquid viscosity, Pl is vein liquid pressure, ρl is liquid density,
and g is the acceleration of gravity (i.e. for vertical unit vector
ẑ, we can write g = −gẑ, where g = |g|). Eqn. (1) indicates that
the potential gradient that determines the direction of flow is con-
trolled by gravity and the gradient in liquid pressure. Below, by
enforcing local equilibrium between vein liquid and its bounding
ice walls, we express the liquid pressure in terms of temperature T,
solute concentration c and ice pressure Pi. With the liquid fraction
(i.e. vein volume fraction) denoted by ϕ, the conservation condi-
tions give rise to the following evolution equations for the tem-
perature and the solute concentration in the vein liquid:

∂T
∂t

= K
riCi

∇2 T − L
Ci

∂f

∂t
, (2)

∂c
∂t

= D
f
∇ · f∇c

( )
− q

f
· ∇c− c

f

∂f

∂t
. (3)

Here, ρi is ice density, K is thermal conductivity, Ci is the specific
heat capacity of ice, L is latent heat, and D is the effective compos-
itional diffusivity. The two terms on the right side of Eqn. (2)
represent thermal diffusion through the ice and the latent heat
associated with changes in phase; on the right side of Eqn. (3),
the three terms represent solute diffusion through the veins,
advective transport of solute with the flowing vein liquid, and
the concentrating (or diluting) effect of decreases (or increases)
in liquid volume. In this formulation: i) ϕ is assumed to be
small enough that the thermal conductivity and heat capacity of
the liquid play no role and heat transport by advection can be

Figure 1. (a) Photograph showing diffuse debris in basal ice near Kangerlussuaq,
Greenland (reproduced with permission from Knight and Knight, 1994). (b)
Photograph of four veins meeting at a node to form a connected network through
polycrystalline ice (provided by Heidy Mader; see Mader, 1992a). Note that the center
of curvature for each of the vein walls is inside one of the four ice grains depicted so
that vein cross-sections more closely resemble triangles than circles, with optical
interference producing brightening along the middle (third) edges of the two sub-
horizontal veins and darkening on the middle edges of the two sub-vertical veins
shown here.
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neglected, ii) heat exchange between crystal interiors and bound-
aries is assumed rapid enough for the thermal state to be charac-
terized by the local equilibrium vein temperature, iii) the total
quantity of dissolved solute within the vein network can evolve
only through exchange across the ice base, consistent with expec-
tations when solutes are rejected entirely from the ice lattice so
that they are segregated to the liquid veins and iv) we neglect
both the contributions to vein flow that result from the small dif-
ference between ice and liquid densities as the liquid fraction
evolves, and the ice deformation that is needed to compensate
for gradients in liquid transport rate.

The ice–liquid surface energy and curvature of vein walls pro-
duce differences between the ice and liquid pressures, Pi and Pl.
The equilibrium relation along these surfaces can be expressed
in terms of the deviation of the local temperature from a reference
bulk melting temperature Tm (defined for phase equilibrium at
reference pressure Pi = Pl = Pm, e.g. Tm≈ 273 K for Pm≈ 105 Pa),
the ice pressure, the liquid pressure and the solute concentration
c as (c.f. Nye, 1991; Rempel, 2005; Dash and others, 2006)

Tm − T = Tm

riL
Pi −

Tm

rlL
Pl −

Tm rl − ri
( )

rirlL
Pm + Gc, (4)

where solute concentrations in the example calculations below
will be assumed low enough that the liquidus slope Γ can be trea-
ted in the limit of dilute solution theory as proportional to the gas
constant Rg, with G ≈ RgT2

m/(rlL). Hence, the potential gradient
that drives liquid flow and appears in parentheses on the right
side of Eqn. (1) becomes

∇Pl − rlg = rlL
Tm

∇T + rlLG
Tm

∇c+ rl
ri
∇Pi − rlg, (5)

notably describing the tendency for liquid in a polycrystal to be
drawn from warm to cold temperatures and salty to fresh condi-
tions. Following Nye and Frank (1973), we assume that the per-
meability has a quadratic dependence on liquid fraction and
can be expressed as k = k0(ϕ/ϕ0)

2, where k0 is the permeability at
characteristic liquid fraction ϕ0. Substituting this and Eqn. (5)
into Eqn. (1), while approximating the ice pressure as hydrostatic
for now (i.e. ∇Pi ≈ rig – we briefly discuss how nonhydrostatic
pressure gradients affect vein transport later) gives the Darcy
transport rate as

q = − rlLk0
mTmf

2
0

f2 ∇T + G∇c( ), (6)

where the ratio of terms that forms the prefactor on the right
defines a constant. Because changes in temperature and solute
concentration occur at different rates, as reflected by the differ-
ences between the right sides of Eqns. (2) and (3), over time, gra-
dients in temperature and concentration are expected to vary in
strength and relative importance for determining the direction
of the liquid flow described by Eqn. (6), while the quadratic
dependence on ϕ indicates that changes in flow magnitude are
particularly sensitive as well to changes in the liquid fraction.

The Laplace pressure difference between the ice and liquid
phases that is associated with surface energy γ is Pi− Pl = γ/Rv,
where Rv is the radius of curvature of the vein walls (see
Fig. 1b). The liquid fraction for an equiaxed polycrystal with
grain size d bounded along triple-junctions (i.e. where 3 grains
meet) by veins characterized by Rv can be obtained from (e.g.

Nye, 1991)

f ≈ 3a
Rv

d

( )2

, (7)

where the coefficient a =
%%
3

√
sin2 (p/6− c/2)− 3(p/6− c/2)+

(3/2) sin (p/3− c) varies over a fairly tight range for the span of
dihedral angles ψ at the contacts between ice grains that are typic-
ally observed (Mader, 1992a). Focusing our attention on conditions
under which the grain size d can be treated as constant, with α
effectively constant as well, Eqn. (7) implies that changes in liquid
fraction must be attributed solely to changes in vein radius and the
characteristic liquid fraction ϕ0 can be expressed in terms of a char-
acteristic vein radius Rv0 so that f0 = 3aR2

v0/d
2. We orient the z

coordinate vertically and assign the reference pressure Pm as the
ice pressure at location z = 0 so that when the ice pressure distribu-
tion can be treated as hydrostatic: Pi = Pm− ρigz. Upon substituting
this, the Laplace pressure difference, and Eqn. (7) into Eqn. (4), the
liquid fraction becomes

f = f0g
2

R2
v0

rlL
Tm

Tm − T − Gc( ) + rl − ri
( )

gz
[ ]−2

, (8)

where ϕ0 and Rv0 are the reference values of liquid fraction and vein
radius introduced above. Not surprisingly, ϕ increases when the
temperature warms or the solute concentration is enhanced,
while changes in gravitational potential energy cause modest reduc-
tions in ϕ with elevation z.

2.1 Scaled model equations

The evolution of T and c described by Eqn. (2) and (3) together
with the Darcy transport rate from Eqn. (6) and the description
for liquid fraction in Eqn. (8) can be solved together once appro-
priate boundary and initial conditions are chosen. The results we
describe below emerge as particular examples of such model solu-
tions. To aid in subsequent interpretations, however, it is useful to
first introduce a set of characteristic scales and group parameters
so that the model can be cast in dimensionless form and the rela-
tive importance of the various terms and the processes they
represent can be assessed. Accordingly, in addition to the charac-
teristic liquid fraction ϕ0 introduced above, we also identify repre-
sentative values for temperature T0, concentration c0, distance Δz,
and time Δt, facilitating the following definitions, in which over-
lying tildes indicate scaled variables and operators:

f̃ = f

f0
, T̃ = T − T0

Tm − T0
, c̃ = c

c0
, (9)

∇̃ = Dz∇, t̃ = t
Dt

= tK
riCiDz2

, (10)

C = Gc0
Tm − T0

, S = L
Ci Tm − T0( )

, (11)

Le =
K

riCiD
, b = rlLk0 Tm − T0( )riCi

mTmK
. (12)

The four key dimensionless parameters in Eqns. (11) and (12)
represent: C – the fractional importance of the undercooling
caused by solutal effects (the remaining 1− C is attributed to
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surface energy along curved vein interfaces); S – the heat required
to change phase relative to that required to change temperature by
the characteristic amount Tm− T0; Le – the rate of thermal diffu-
sion relative to compositional diffusion; and β – the ratio of time
scales for diffusion of latent heat and liquid flow.

Adopting the scalings and definitions in Eqns. (9)–(12), the
conservation equations are written as

∂T̃
∂t̃

= ∇̃2
T̃ − Sf0

∂f̃

∂t̃
, (13)

∂c̃
∂t̃

= 1

Lef̃
∇̃ · f̃∇̃c̃

( )
− q̃

f0f̃
· ∇̃c̃− c̃

f̃

∂f̃

∂t̃
, (14)

where the dimensionless Darcy flow rate is defined as

q̃ = Dt
Dz

q = −bf̃
2 ∇̃T̃ + C∇̃c̃
( )

. (15)

Choosing the temperature scale to correspond with the under-
cooling at z = 0 when c = c0, the scaled liquid fraction from Eqn.
(8) becomes

f̃ = 1− T̃ − Cc̃
1− C

+ Rv0Dz
l2c

z̃
( )−2

, (16)

where the capillary length is defined following the standard con-
vention as lc =

%%%%%%%%%%%%%%%
g/[(rl − ri)g]

√
. Equation (15) and the time

derivative of scaled liquid fraction from Eqn. (16) can now be sub-
stituted into Eqns. (13) and (14) to write the evolution of tem-
perature and concentration (following algebraic manipulations) as

∂T̃
∂t̃

=
{(

Cc̃+ 1− C

2f̃
1/2

)
∇̃2

T̃ − CSf0f̃

[
1

Lef̃
∇̃ · (f̃∇̃c̃)

+bf̃

f̃0

(∇̃T̃ + C∇̃c̃) · ∇̃c̃
]}

×
(
Sf0f̃+ Cc̃+ 1− C

2f̃
1/2

)−1

,

(17)

∂c̃
∂t̃

= − 1
C
∂T̃
∂t̃

+ 1− C

2f̃
1/2

1
C
∇̃2

T̃ + 1

Lef̃
∇̃ · f̃∇̃c̃

( )
+ bf̃

f̃0

∇̃T̃ + C∇̃c̃
( )

· ∇̃c̃
[ ]

Sf0f̃+ Cc̃+ 1− C

2f̃
1/2

( )−1

.

(18)

Upon defining appropriate initial conditions and boundary con-
ditions, Eqns. (17) and (18) can be solved for changes in T̃ and
c̃ while making use of the expression for f̃ from Eqn. (16), enab-
ling the spatial and temporal evolution of the scaled Darcy flow
rate to be evaluated from Eqn. (15). Appendix A describes the
semi-discretized numerical scheme used to generate the results
presented below.

Further intuition into the controls on vein flow is facilitated by
substituting the gradient of f̃ from Eqn. (16) into Eqn. (15) to

obtain

q̃ = −b 1− C( ) f̃
1/2

2
∇̃f̃+ f̃

2 Rv0Dz
l2c

ẑ

( )

, (19)

which makes clear from the first term in parentheses that flow
tends toward lower liquid fractions; the second term in paren-
theses represents a small correction that exactly offsets the reduc-
tion in liquid fraction with elevation that occurs under hydrostatic
loading with uniform temperature and concentration. When cir-
cumstances produce slight increases in temperature and/or solute
concentration toward the ice base and thereby result in increased
liquid fractions with depth, Eqn. (19) predicts upward vein flow
that has the potential to cause diffuse debris entrainment.

2.2 Parameter choices

In order to evaluate the relative importance of the different terms
appearing in the governing equations, we chose scalings that make
the dimensionless fields f̃, T̃ , and c̃, along with their spatial deri-
vatives, of order unity (with bounds f̃ ≥ 0, T̃ ≤ 1− Cc̃, and
c̃ ≥ 0). We chose the time scale Δt = ρi CiΔz

2/K in Eqn. (10) to
make the dimensionless temporal and spatial derivatives of tem-
perature balance in Eqn. (13) as well. The values of relevant phys-
ical constants that are summarized in Table 1 imply that the Lewis
number Le from Eqn. (12) is very large, as listed together with the
nominal parameter values compiled in Table 2. The other dimen-
sionless parameters C, S and β are each sensitive to one or more
variables, in particular c0, T0, and k0, that must be estimated for
the physical context of interest.

The approach followed here to obtain self-consistent estimates
of the control variables involves first assigning values for the ice
grain size d and the radius of curvature of vein walls Rv0, so
that the characteristic liquid fraction ϕ0 can be obtained as
noted above following Eqn. (7). Our interest in particle entrain-
ment motivates a focus on vein radii that are sufficiently large
to accommodate particles of the observed size range, with typical
maximum diameters of approximately 2R≈ 10− 100 μm; identi-
fying the radius of the largest circle to fit within a vein cross sec-
tion as Rfit, geometrical considerations (e.g. Mader, 1992a) yield
Rv0 ≈ (6

%%
6

√
/a)1/2Rfit ≈ 12Rfit. For comparison, in detailed obser-

vations on ice from 7–60 m depth beneath the surface of Blue
Glacier, Raymond and Harrison (1975) found that average vein
cross-sectional areas measured within an hour of sample recovery
implied Rv0 values near 100 μm; enhanced solute concentrations
in basal ice would be consistent with larger values and accordingly
we assign a nominal Rv0 = 300 μm, which is similar to the vein
sizes measured in the ice permeability study by Fowler and
Iverson (2022). Guidance in estimating the permeability scale k0

Table 1. Physical constants

Parameter Value Units

Ci 2.1 × 103 J kg−1 K−1

D 4 × 10−10 m2 s−1

g 9.8 m s−2

K 2.2 Wm−1 K−1

L 3.3 × 105 J kg−1

Rg 8.314 Jmol−1 K−1

Tm 273 K
γ 0.029 Jm−2

λc 6.1 × 10−3 m
μ 1.8 × 10−3 Pa s
ρi 920 kg m−3

ρl 103 kg m−3

Γ 0.0019 m3 Kmol−1

4 Alan W. Rempel and others
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comes from theoretical considerations for polycrystalline intergra-
nular flow described by Frank (1968) suggesting that
k0 = f2

0d
2/x, with the constant χ≈ 2000 according to Nye and

Frank (1973). It should be noted, however, that recent experimen-
tal measurements indicate a greater sensitivity of k0 to grain size d
(Fowler and Iverson, 2022) suggesting that the uncertainty in
assigning permeability values that is reflected in the broad range
listed in Table 2 may be somewhat conservative. Fowler and
Iverson (2022) also advocate for a modestly reduced value of
χ≈ 1500 that we employed to assign the nominal value of k0 in
Table 2.

Ice recovered from natural glaciers and produced for labora-
tory experiments is often quite pure, as gauged on the basis of
the weight of soluble impurities relative to the total. For reference,
distilled water typically has less than 0.5 ppm by weight total dis-
solved solids, while municipal tap water might be expected to
exceed this concentration by two or three orders of magnitude.
An analysis of tap water from the laboratory in Madison, WI,
for example, found 8 ppm Ca, 4 ppm Mg, and 4 ppm Na; whereas
impurity levels in the distilled water that was frozen for our ring-
shear experiments were below the detection limit of 0.02 ppm for
each of these species. Impurity levels measured in polar ice cores
vary, but are typically similar to those for distilled water except in
the bottom few meters of basal ice, which can have impurity con-
centrations that are several orders of magnitude higher (e.g. Hallet
and others, 1978; Knight, 1997). Defining the bulk concentration
of mobile impurities on a molar basis as cB0, we expect the dis-
solved concentration in the vein liquid to be given by c0 = cB0/
ϕ0, where the tendency for cB0 and ϕ0 to covary limits the range
reported in Table 2. The nominal value of cB0 that we report in
Table 2 is an order of magnitude lower than the tap water concen-
trations noted above, yet much less pure than the distilled water
that was introduced to the loess bed before sitting and interacting
with particle surfaces for days prior to the start of the ring-shear
experiment.

Using the equilibrium relation from Eqn. (4), while accounting
for the effects of surface energy γ and vein-wall curvature in set-
ting Pi = Pl + γ/Rv0, and taking Pi = Pm leads to an estimate for the
temperature scale of Tm− T0 = Tmγ/(ρl L Rv0) + Γc0. We note that
reasonable choices for the length scale Δz might be based on fac-
tors like the typical size of bedrock obstacles or the dimensions of
ice samples inserted within an experimental apparatus; a natural
choice in the absence of such considerations could involve setting
Dz = l2c/Rv0 (approximately 0.1 m for the nominal Rv0 listed in
Table 2 and spanning from 0.07− 0.7 m for the listed range of
Rv0 values), which simplifies the final term in Eqn. (16) to

more clearly indicate that this is the length scale over which
changes in gravitational potential significantly affect vein geom-
etry. The nominal choice of Δz made in this way leads to a ther-
mal diffusion time scale Δt of about 3.5 hours.

In order for vein cross-sections to be large enough to convey
debris particles that are tens of microns in size, dissolved impurity
levels must generally be much more effective than surface energy
in generating vein liquid and hence the nominal value of C listed
in Table 2 is very close to unity, as is its typical range. For these
estimates of C, Eqn. (15) implies that temperature gradients and
concentration gradients are of comparable importance for driving
liquid flow. The product Sf0 in Eqn. (13) is of order unity for the
nominal parameter values, suggesting that the sensible heat asso-
ciated with changes in temperature is similar in scale to the latent
heat associated with changes in phase. Note, however, that the
broad range of typical values listed for ϕ0 and S in Table 2,
allow for conditions where the product Sf0 is either large or
small compared to unity, in the former case describing a regime
in which temperature changes are primarily limited by the
removal of latent heat, whereas in the latter case sensible heat is
more important. Meanwhile, the enormous Lewis number ensures
that L−1

e is always very small, suggesting that compositional diffu-
sion is comparatively unimportant in Eqn. (14). Note however
that the relative importance of advective and diffusive compos-
itional transport depends not only on the Lewis number, but
also on the magnitude of the transport rate; we show below that
the counteracting effects of temperature and concentration gradi-
ents often conspire to make q̃ so small that diffusion actually
dominates compositional transport despite the large value of Le
(this is consistent with the a priori assumption made by Nye,
1991, in his idealized treatment of vein evolution). The nominal
value listed for the transport factor β is of order unity, though
the potential variations in the permeability and undercooling
allow for a particularly broad range of values for this parameter.
While it is tempting to jettison the small terms, for example by
expanding the governing equations and retaining only the leading
order dependence on the small parameter 1− C, this procedure
doesn’t yield an obvious numerical advantage so we retain every-
thing for now. We observe, however, that in the small 1− C limit,
Eqn. (18) implies that changes in the scaled concentration are
very nearly opposite to changes in the scaled temperature, with
notable consequences for limiting the efficacy of vein flow, as dis-
cussed below.

3. Vein flow forced by changes in basal temperature

The generalized Clapeyron equation that describes equilibrium
between ice and liquid within the veins also applies at the glacier
bed, here assigned location z = 0. Along the ice-walled surfaces
overlying macroscopic drainage elements (e.g. channels, cavities),
the ice and liquid pressures must equal each other and with
Pi = Pl = Pm Eqn. (4) implies that the scaled temperature increases
above its nominal value of T̃ = 0 to reach T̃ = 1− Cc̃. (We note
that cases with Pi = Pl < Pm along z = 0 must commonly occur as a
result of stress bridging that allows Pi above macroscopic drainage
elements to be lower than the overburden stress (e.g. Rempel and
others, 2022); the warmer values of T̃ that represent such circum-
stances can be determined using Eqn. (4), and the corresponding
changes in ice pressure distribution above the bed can be incorpo-
rated into a generalized treatment of changes in liquid fraction,
with appropriate modifications to Eqn. (16).) In regions where
the basal ice approaches near enough to enable stress transmission
across thin premelted liquid films to the underlying till or bed-
rock, however, the ice pressure must exceed the liquid pressure
(e.g. Dash and others, 2006; Rempel, 2008), much as it does
along the boundaries of veins, where surface energy is responsible

Table 2. Nominal parameters, dimensionless variables and scales

Parameter1 Value Range units

†cB0 0.05 0.01 − 10 mol m−3

c0 17 1 − 103 mol m−3

†d 3 1 − 10 mm
k0 5.4 × 10−14 10−17− 10−12 m2

†Rv0 0.3 0.05 − 0.5 mm
Tm− T0 0.031 0.0019− 1.9 K
†c 25 0 − 35 degrees
α 0.10 0.061− 0.16 []
ϕ0 0.003 10−5− 0.05 []
C 0.9975 0.75 − 1 []
Le 2.8 × 103 n.a. []
S 5.0 × 103 80− 8 × 104 []
β 1.0 0.008− 1.2 × 106 []
ρp 2650 2000 − 3000 kg m−3

Δz 0.12 0.074− 0.74 m
Δt 1.3 × 104 4800 − 4.8 × 105 s

1 Indicates a control variable that was assigned to determine values for some of the other
parameters, as described in the text.
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for maintaining the ice–liquid pressure difference. This suggests
an idealized model scenario in which ice that is initially at a uni-
form temperature, with T̃(t̃ = 0, z̃) = 0, containing veins with a
uniform composition, c̃(t̃ = 0, z̃) = 1, encounters an abrupt tem-
perature change along its basal boundary so that
T̃(t̃, z̃ = 0) = n(1− Cc̃) for a chosen ν≤ 1, while the boundary
solute concentration is held fixed at c̃(t̃, z̃ = 0) = 1. With ν = 1
this might represent the conditions obtained when ice slides
over a subglacial cavity, for example, whereas values of ν < 1
could represent conditions resulting from changes in effective
stress that are caused by transient behavior in the basal hydro-
logical system. Far-field boundary conditions of T̃(t̃, z̃max) = 0
and c̃(t̃, z̃max) = 1 are applied at some distance z̃max beyond the
range at which thermal and compositional changes are able to
propagate in the idealized one-dimensional results described
below.

Figure 2 summarizes some of the model predictions for the
near-basal effects of an abrupt change in bed temperature.
Immediately afterward, the ice above the bed is warmed and
this change in temperature diffuses upward as time progresses,
resulting in the different profiles shown with black lines in
Fig. 2a. Coupling of the thermal and compositional fields through

their mutual control on the changing liquid fraction cause the sol-
ute concentration (red lines) to evolve in response to changes in
temperature. In particular, slight increases in f̃ that take place
with increases in T̃ cause local freshening of vein liquid and cor-
responding drops in c̃ (displayed as c̃− 1 in the profiles of Fig. 2a
and the time histories of Fig. 2b to facilitate comparison with the
simultaneous changes in T̃ on the same axes). The tendency for
the time evolution of T̃ and c̃ to mirror each other makes the con-
tributions of ∇̃T̃ and ∇̃c̃ to driving liquid flow in Eqn. (15) nearly
cancel. However, as described by Eqn. (18), the compositional and
thermal evolution are not perfectly matched, and compositional
diffusion toward the ice interior from the comparatively solute-
rich fluid near the bed does eventually allow the concentration
to return toward its boundary value, as shown by the time evolu-
tion of c̃− 1 for the lowest layer (solid red) depicted in Fig. 2b
and the spatial variation of c̃− 1 at the longest times in Fig. 2a.
As might have been anticipated, Fig. 2a shows that a concentra-
tion profile sampled at a particular time exhibits an abrupt
decrease with elevation close to the bed (at a location controlled
by the rate of compositional diffusion), which is separated from
an abrupt increase with elevation higher up (at a location that
is controlled by the rate of thermal diffusion); the distance
between these changes scales approximately as

%%%
Le

√
≈ 50.

Similarly, the time history shown in Fig. 2b for the lowest dis-
played location, 0.5 cm above the bed, exhibits a drop in concen-
tration that is associated with processes of thermal diffusion that
precedes a later rise in concentration that is associated with com-
positional diffusion; the time delay between these changes scales
approximately as Le≈ 2800.

The nominal vein radius Rv chosen for these calculations is
of sufficient size to permit the passage of silt-sized particles
(as noted above, Mader, 1992b, 1992, found that
Rv ≈

%%%%%%%%
6

%%
6

√
/a

√
Rfit ≈ 12Rfit, so that particles a factor of 12 smaller

than the radius of curvature Rv can fit within veins; for example
Rfit≈ 25 μm for the nominal Rv0 and α). Whether such particles
can be dragged by the flowing vein liquid and lofted above the
bed depends on the speed of liquid flow. Recognizing that the
average velocity of water molecules is given by the ratio of the
Darcy flow rate to the liquid fraction, we approximate the radius
R of the largest particle of density ρp that can be lifted by this flow
as corresponding with the Stokes’ settling velocity, yielding

R ≈
%%%%%%%%%%%%%%%

9m|q|

2 rp − rl

( )
gf

√√√√ =

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9k0 rl − ri

( )
f̃ ∇̃T̃ + C∇̃c̃
∣∣ ∣∣

2f0 rp − rl

( )
1− C( )

√√√√ . (20)

We note that Eqn. (20) represents a conservative estimate of the
largest entrained particles, since it is based on the expression
for particle drag that determines the steady speed of a particle
relative to an unbounded fluid (i.e. for R≪ Rfit), whereas drag
is enhanced during flow in confined geometries (e.g. Humphrey
and Murata, 1992); we revisit this complication later. Under the
idealized conditions where Eqn. (20) applies, Fig. 3 shows the
radii of particles that can be carried by the liquid flow through
veins, with upward transport indicated in black and downward
transport in red, which we model as also following Eqn. (20).
Immediately after the basal temperature perturbation, rates of
liquid flow are very low because changes in temperature and sol-
ute concentration combine to keep liquid potential gradients
small. Over time, the differing rates of heat and solute transport
facilitate increases to both the driving potential gradient and the
liquid fraction so that the Darcy flow rate increases. The faster
liquid flow is able to mobilize larger particles, as shown by the
profiles in Fig. 3a and the increases in R over time at particular
elevations in Fig. 3b. This late-stage particle transport is delayed

Figure 2. Perturbed near-bed conditions following an abrupt temperature rise from
T̃ = 0 to T̃ = 0.99(1− C) along z̃ = 0, modeled using the nominal parameter values
listed in Table 2. (a) Profiles of scaled temperature T̃ (black) and change in dimen-
sionless concentration c̃− 1 (red) as a function of height above the bed at the differ-
ent labeled times. (b) Evolution of scaled temperature T̃ (black) and change in
dimensionless concentration c̃− 1 (red) at the different labeled elevations. Note
that the axis limits of T̃ = +2× 10−3 represent excursions in T away from
T0 ≈ −0.031 ◦C of magnitude 6.3× 10−5 ◦C, while the same axis limits on c̃− 1
represent deviations in c from c0≈ 17 mol m−3 of magnitude 0.03 mol m−3.
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until compositional diffusion is sufficiently effective at transport-
ing solute from the basal interface to diminish concentration gra-
dients appreciably, enabling residual temperature gradients to
more effectively drive liquid flow. Comparison against the corre-
sponding values of Rfit (not shown) confirm that particle entrain-
ment for this scenario is limited by the rate of liquid flow rather
than the physical dimensions of the veins themselves.

4. Vein flow accompanying interior relaxation

Diffuse debris entrainment occurred during a controlled ring-
shear experiment that slid a temperate ice ring over a bed of satu-
rated loess. Analysis following the conclusion of the experiment
confirmed that diffuse debris entrainment had led to the depos-
ition of loess particles along grain boundaries (see Fig. 4), but
the imposed experimental conditions make it unlikely that this
behavior was forced by an abrupt basal temperature change.
This recognition led us to investigate whether transient evolution
of the vein network that began prior to the initiation of slip might
have primed the system for particle entrainment.

For context, we provide a brief description of the cryo-ring-
shear experiment and refer the reader to Hansen and Zoet
(2022) for further detail regarding equipment specifications and

protocols. For this experiment, a ∼15 cm ring of ice emplaced
atop an 11 cm thick bed of saturated Iowa loess (median particle
diameter 48 μm, distribution shown in Fig. 5c) was loaded under
uniaxial compression. A vertical axial stress (mean ∼176 kPa) was
applied to the sample chamber by a hydraulic ram for ∼20 days,
and two pressure transducers installed in the sidewalls 7 cm below
the ice–bed interface recorded water pressures throughout the
experiment (mean Pw≈ 89 kPa). Temperature was monitored by
four RTD thermistors embedded in the sample chamber base-
plate and eight RTDs in the acrylic sidewalls. Heat flux into the
sample chamber was regulated with a temperature-controlled gly-
col–water bath. Twelve drainage lines connected the sample
chamber to atmospheric pressure, allowing excess porewater to
drain from the system.

At the onset of a ring-shear experiment, the upper surface of
the ice ring must be frozen into the notched Delrin® platen that
drives shear. To facilitate this coupling, the lower half of the
∼15 cm thick ice ring was maintained near the bulk melting
temperature through heat exchange with the circulating bath
that was lowered to a position ∼7.5 cm down the ice ring.
Simultaneously, the upper half of the ice ring was exposed to
an ambient freezer temperature of −4 ◦C and an axial force
was applied. Once the ice ring was securely affixed to the
upper platen, the level in the circulating bath was raised to sub-
merge the full thickness of the sample chamber so that the
upper half of the ice ring warmed to approach the bulk melting
temperature. The drive was engaged at this point, sliding the
temperate ice ring atop the loess bed at a constant centerline vel-
ocity of 73 m a−1.

At the conclusion of the experiment, we observed a ∼0.5−
1 cm thick layer of frozen debris (i.e. a ‘frozen fringe’, see
Rempel, 2008) adhered to the base of the ice (Fig. 4a), but also
a diffuse fraction of sediment entrained above the upper boundary
of the fringe (Figs. 4b,c; note that the ice ring was turned over
so the fringe is at the top of these images). Thin sections cut
from the ice ring in this diffuse zone reveal particles concentrated
along grain boundaries (Fig. 4d). To assess how debris concentra-
tion varied with distance from the ice–bed interface, a hot wire
was used to section off horizontal segments of the ice ring
(∼15 cm), which were subsequently weighed and melted. Above
the upper boundary of the fringe, volumetric debris concentra-
tions y (in %) decreased monotonically (Fig. 5b), well described
by a power-law of the form y≈ 12.3 z−2.051 (with z in cm mea-
sured from the sliding surface along the fringe base). As shown
in Fig. 5c, the loess bed had an approximately lognormal particle
size distribution, and the median radius of (expμ)/2 ≈ 24 μm was
noticeably higher than the median size of entrained particles,
which is shown as a function of distance from the sliding interface
in Fig. 5d.

The evolution of vein temperature, solute concentration and
liquid fraction for this experimental scenario are expected to sat-
isfy the governing equations described above, but with different
initial conditions and boundary conditions. For simplicity, in
our idealized model treatment we considered one dimensional
transport in the vertical direction, assigning the location z̃ = 0
to the ice base and z̃ = z̃max = 0.15m/Dz to the upper boundary.
We again used the nominal parameter values from Table 2, basing
d on the average observed grain size from Fig. 5a, and imposed
a uniform initial solute concentration so that c̃(t̃ = 0, z̃) = 1.
To approximate the initial thermal state we set T̃(t̃ = 0, z̃ , 0.5̃
zmax) = 0 and T̃(t̃ = 0, z̃ . 0.5z̃max) = −4 ◦C/(Tm − T0). On
the bottom boundary we imposed constant temperature and con-
centration conditions with T̃(t̃, z̃ = 0) = 0 and c̃(t̃, z̃ = 0) = 1,
whereas we treated the upper boundary at z̃max as thermally
insulating so that ∂T̃/∂z̃ = 0 and imposed the same uniform
boundary concentration as before so that c̃(t̃, z̃max) = 1.

Figure 3. Approximate radii R of the largest particles that can be carried upward by
modeled rates of liquid flow through the vein network, treating the fluid drag on par-
ticles as corresponding with that for Stokes’ settling velocity and evaluated using
Eqn. (20) for the nominal parameters listed in Table 2. Black lines represent upward
flow, whereas red lines are for downward flow toward the bed. (a) Profiles of R at the
different labeled times. (b) The evolution of R in the lowermost basal ice. Note that
Eqn. (20) implies that the average velocity of vein liquid |q|/ϕ is quadratic in R such
that |q|/ϕ≈ 2.0 × 10−4 μm/s along the lower axis limit of R = 10−2 μm, rising to |q|/ϕ≈
1.8 mm/s at the upper axis limit of R = 30 μm.
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Figure 6a shows model predictions for profiles of the scaled
temperature and concentration at the labeled discrete times as
the vein network relaxes from the perturbed initial conditions.
As expected, the temperature (black) evolves quickly toward a
steady-state T̃ = 0 that is consistent with the imposed boundary
conditions. In the lower half of the ice ring (i.e. below z = 7.5
cm), changes in the solute concentration (red) mirror the changes
in temperature, which is similar to the behavior shown earlier in
Fig. 2a. The rapid warming that takes place above the midpoint,
where the ice was initially cold (T̃(t = 0, z . 7.5 cm) ≈ −130,
corresponding with T = −4◦C), causes the vein liquid content
to increase, thereby diluting the solute and causing c̃ to approach
its limiting value of zero above z = 7.5 cm. As shown by the evo-
lution of scaled temperature and concentration in Fig. 6b, this
region persists as being much fresher than the lower half of the
ice ring for many days of model time. In the lower half of the

ice ring, Fig. 6b shows how the response of the scaled temperature
and concentration to the changing conditions above is both
enhanced with proximity to the ring midpoint and increasingly
delayed as the ice base is approached.

We show how the size of the largest particles that can be mobi-
lized by the flowing vein liquid evolves in Fig. 6c and display pro-
files of this maximum size at different times in Fig. 6d. Below the
ring midpoint, the more rapid response to changing conditions
nearer to the warming region above z = 7.5 cm causes upward
transport to first be capable of carrying micron-sized particles
at higher elevations, but within an hour our model predicts that
vein transport is capable of mobilizing micron-sized particles
up into the ice from the bed (i.e. see the dashed black line in
Fig. 6d). The predicted flow direction reverses later so that by
the time one day has elapsed, the particle transport direction is
downward throughout the lower half of the ice ring. Notably,

Figure 4. Entrained debris following a ring-shear experiment sliding ice over a bed of Iowa loess. (a) The base of the ice ring with a patchy frozen ‘fringe’ developed
during sliding. (b) Side view of the near-basal region (flipped so that the ẑ direction is downward, as labeled) with a thin fringe layer that was overlain during the
experiment by ice that is discolored from diffuse concentrations of entrained debris. (c) Close-up of the fringe and lowermost debris-laden ice. (d) Thin section from
near the fringe boundary viewed with cross-polarized light to show debris concentrated along grain boundaries.
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over the time frame represented in Fig. 6c at each horizon the
maximum particle size that can be carried upward at early
times is larger than the maximum particle size that can be carried
downward later on – implying that the outcome of this vein flow
history is capable of depositing particles within the vein network.
Above the mid-point, upward transport is maintained and
increases in magnitude for the model time displayed in Fig. 6c.

4.1 Model–data comparison

Consistent with the results of earlier experiments (e.g. Knight and
Knight, 1999), the median radii of entrained debris particles are
smaller than the median radii of bed particles from which they
are drawn (see Figs. 6c,d). Nevertheless, the predicted maximum
sizes of entrained particles shown in Fig. 6 are smaller than the
observed vein particles documented in Fig. 5d. These discrepan-
cies might be explained if vein flow is faster than predicted by
our idealized model, for example if the transport factor β is larger
than that which corresponds with the adopted nominal parameter
values. Both the impurity loading that determines c0 and controls
Tm− T0, and the permeability scale k0 are amongst the least well-
constrained parameters for describing experimental conditions.
Since β in Eqn. (12) is proportional to their product, it is conceiv-
able that higher rates of liquid flow might be explained by the
actual values of k0 and c0 being higher than the nominal values

summarized in Table 2. An increase in β by an order of magni-
tude, for example, would raise predictions for the maximum
entrained particle size by a factor of

%%%
10

√
≈ 3 so that particles

of the median size reported in Fig. 5d would be carried upward
during the early model stages illustrated in Fig. 6c and d. We
note that recent experimental results reported by Fowler and
Iverson (2022) yielded vein permeabilities that were indeed on
the high end of previously published estimates. Moreover, in add-
ition to the possibility that our idealized model may underesti-
mate vein flow rates, we recognize as well that the drag on a
particle in an unbounded fluid can be much lower than the
drag associated with particle transport in Poisseuille flow.
Humphrey and Murata (1992) summarize theoretical and experi-
mental estimates of particle settling velocities in circular tubes.
When the particle radius is an appreciable fraction of the tube
radius, the Stokes’ settling velocity can be much larger than mea-
sured and predicted particle velocities. For example, results com-
piled by Humphrey and Murata (1992) suggest that a given rate of
flow through a circular tube can entrain a spherical particle that is
an order of magnitude larger than would be predicted by Eqn.
(20) once the particle radius approaches ∼85% of the tube radius
(a three-fold enhancement is seen when the particle radius is
approximately half the tube radius – this effect is roughly equiva-
lent to the behavior noted above for the case when β is raised by
an order of magnitude). We are not aware of analogous work

Figure 5. Data from a ring-shear experiment sliding ice over Iowa loess. (a) Frequency distribution of ice grain diameter measured on a vertical thin section contain-
ing ∼320 grains. (b) Sampled volumetric debris concentration plotted as a function of distance from the sliding surface. Blue line shows approximate location of the
fringe upper boundary. (c) Particle size distribution of the Iowa loess (blue, solid) shown with an approximate lognormal fit (black, dashed) indicating a median
diameter of exp μ≈ 48 μm. (d) Median radii of entrained particles found at diffuse concentrations and shown as a function of distance above the sliding interface.
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examining particle transport velocities in triangular, or vein-
shaped tubes, but the implication is clear: particle transport is
enhanced when fluid flow is restricted significantly by partial
blockage of the fluid conduit, making the Stokes’ settling limit
encapsulated in Eqn. (20) a conservative estimate for the max-
imum size of entrained particles at a given q.

Prior to the loess experiment, we followed the procedure
described above to examine fringe growth during shear over a
bed of Horicon till. The median grain size of the till was approxi-
mately 350 μm, which we infer to have been too large for vein
entrainment as the fringe–ice interface remained sharp, with no
evidence of diffuse entrainment. After the loess experiment, we
used the ring-shear apparatus to conduct yet another experiment
with slip over glass beads that had a median grain size of approxi-
mately 160 μm. High resolution video evidence obtained through
the transparent sample chamber wall clearly showed particle
movement upward into the ice early on during this experiment,
consistent with the model predictions discussed above.
However, upon extraction of the ice ring at the conclusion of
this experiment, we observed that the fringe–ice interface was
sharp, with negligible concentrations of diffuse debris remaining
in the overlying ice. This suggests that the predicted reversal in
the direction of vein flow, discussed above, may have been

responsible for removing the particles that we observed moving
upward during the early stages of the glass-bead experiment.

An important model limitation concerns valid questions as to
whether or not Eqn. (20) really sets the maximum size of particles
that can be mobilized by downward flow. As long as a particle’s
density exceeds that of water, it will have a tendency to sink
and rest against the base of an inclined vein, where it might be
expected to encounter a flow rate that on average would be slower
than |q|/ϕ because of the proximity to vein walls. Perhaps more
importantly, the acceleration of gravity is aligned with the prevail-
ing direction of vein flow when it is oriented downward. As a
result, particles might be expected to simply sink downward
toward the ice base even in the absence of significant downward
vein flow. In reality, flow pathways, whether conveying transport
that is on average upward or downward, are tortuous and
expected to involve a range of vein orientations from vertical
through horizontal, with differing local flow speeds that are cap-
tured by a Darcy-type flow law only as an overall average trans-
port rate in the direction of the macroscopic hydraulic potential
gradient. These considerations suggest that the particle radius
described by Eqn. (20) is best regarded as an estimated scale for
the typical size of a particle that can be induced to move in the
direction of vein flow. Individual particles along particular vein

Figure 6. Modeled conditions for ring-shear experiments. (a) Profiles of scaled temperature (black) and concentration (red) at the different labeled times. (b)
Evolution of scaled temperature (black) and concentration (red) at the different labeled heights above the bed. (c) Maximum particle radius that can be mobilized
by flow upward into the ice (black) and downward toward the ice base (red) when particle drag is assumed to correspond with Stokes’ settling velocity, displayed
for the different labeled distances above the ice base. (d) Profiles of maximum particle radius that can be mobilized by upward (black) and downward (red) flow at
the different labeled times. In (a) and (b) note that the axis limits of T̃ = +40 represent excursions in T away from T0 ≈ −0.031 ◦C of magnitude 1.26 ◦C, while the
same axis limits on c̃ represent deviations in c from c0≈ 17 mol m−3 of magnitude 667 mol m−3. In (c) and (d), the average velocity of vein liquid that entrains
particles of the size given by the lower axis limit of R = 10−2 μm is |q|/ϕ≈ 2 × 10−4 μm s−1, while R = 10 μm requires |q|/ϕ≈ 2 × 102 μm s−1. (Note, in panel (a), the
predictions for 1 day and 10 days nearly coincide and give the appearance of vertical long-dashed lines.).
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transport paths can be expected to experience conditions that
deviate from the average behavior in ways that a continuum
model such as ours is not designed to describe. Keeping these
complications in mind, we are encouraged, nevertheless by the
qualitative agreement between experimental observations and
the predictions of our idealized model, which suggest that the
controlling physical effects are captured reasonably well by our
continuum treatment.

5. Effects of non-hydrostatic ice pressure gradients

In the idealized scenarios described above, the ice pressure was
treated as hydrostatic. To address more general circumstances
where this approximation does not apply, we can introduce a
non-hydrostatic pressure perturbation P, defined so that the ice
pressure is Pi = Pm − rigz + P. The scaled liquid fraction from
Eqn. (16) is modified under these perturbed conditions to

f̃ = 1− T̃ − Cc̃
1− C

+ Rv0Dz
l2c

z̃ − Rv0P
rigl

2
c

( )−2

, (21)

while the scaled Darcy flow rate from Eqn. (15) becomes

q̃ = −bf̃
2 ∇̃T̃ + C∇̃c̃+ 1− C( )rlRv0

rl − ri
( )

rigl
2
c
∇̃P

[ ]

. (22)

Equation (21) suggests that non-hydrostatic pressure changes
have a significant effect on the liquid fraction when they are com-
parable to rigl

2
c/Rv0, which is approximately 1.1 kPa for the nom-

inal value of Rv0 from Table 2. The tendency for non-hydrostatic
pressure gradients to drive liquid flow is made explicit by the final
bracketed term in Eqn. (22); however, we note that the direct
dependence of the multiplicative coefficient on 1− C, which is
expected to be very small under conditions where veins are
enlarged enough by the presence of solutes to accommodate
micron-scale particles, limits the importance of non-hydrostatic
pressure gradients for driving liquid flow that entrains particles,
in comparison to the effects of temperature and concentration
gradients. Nevertheless, since non-hydrostatic pressure gradients
drive ice deformation and perform work, they can have a signifi-
cant indirect influence by acting as a heat source that alters the
temperature field with consequences for both of the other two
gradient terms that combine to determine the bracketed liquid
potential gradient that drives flow on the right side of Eqn.
(22). A more complete assessment of the consequences of non-
hydrostatic ice pressure gradients for driving vein liquid flow
and associated debris entrainment could be made with a more
sophisticated treatment that is coupled to the ice deformation
problem. Previous coupled models have treated vein transport
as a consequence of viscous compaction, while ignoring the influ-
ence of surface energy and solute content (e.g. Schoof and Hewitt,
2016); we leave the problem of reconciling these different
approaches to future work.

6. Discussion and Conclusions

Our idealized continuum model confirms that vein liquid flow
can entrain and transport silt-sized particles up from the glacier
bed into the lowermost basal ice. Predicted liquid flow velocities
are reduced by the tendency for gradients in temperature and sol-
ute concentration to counteract each other and limit the overall
magnitude of the driving gradient in liquid potential (see
Fig. 2). However, because thermal and solute transport rates dif-
fer, in response to perturbed bed conditions, temperature and

concentration gradients undergo different rates of change; as a
result, the vein liquid fraction can grow and cause flow to acceler-
ate so that the radii of the largest particles that can be transported
increase with time elapsed since the bed perturbation occurred
(see Fig. 3). The predicted growth in vein liquid fraction that
helps facilitate increasing flow rates is in qualitative agreement
with the asymptotic analysis of changes in vein radii by Nye
(1991), who considered an idealized system in which the density
difference between ice and liquid water was neglected so there was
no liquid flow. Because small changes in basal temperature are an
inevitable consequence of anticipated heterogeneous changes in
the difference between the ice normal stress and the subglacial
liquid pressure, this mechanism can be expected to lead to wide-
spread diffuse debris entrainment that complements other basal
mass-exchange processes (e.g. Alley and others, 1997; Rempel
and others, 2022).

Examining a scenario motivated by the relaxation of tempera-
ture and solute concentration that occurred at the beginning of
our ring-shear experiments, our model suggests that vein flow
can lead to a pattern of particle entrainment that is in qualitative
agreement with detailed observations. For our nominal parameter
choices and the conservative assumption that particle drag can be
approximated from analysis of the terminal settling velocity in an
unbounded viscous fluid, the predicted maximum sizes of
entrained particles are smaller than the largest particles entrained
during our experiments (see Figs. 5 and 6). These discrepancies
could be an indication that the permeability of polycrystalline
ice under given conditions is higher than assigned by our treat-
ment, or it could result from our neglect of the enhancement to
particle drag that results from requiring flow to intrude between
the narrow gaps that separate particle surfaces from vein walls.
Ongoing experimental efforts to measure the permeability of
polycrystalline glacier ice (e.g. Fowler and Iverson, 2022) are
expected to reduce the uncertainty in assigning values for this
important parameter. Relatively straightforward model extensions
could be made to include the dependence of particle drag on vein
size, though it should be noted that detailed observations of par-
ticle settling in capillary tubes (e.g. Humphrey and Murata, 1992)
suggest additional complications, including nontrivial sensitivities
to tube angle and particle position (relative to the tube axis) that
might combine to add a stochastic element and further challenge
the ability of continuum formulations to make accurate predic-
tions. It is worth noting as well that our model formulation
using Darcy’s law to describe vein transport is appropriate over
length scales that are much larger than the typical diameter of
ice grains, and this condition is violated near the basal interface
where the most rapid vein liquid transport is expected to occur.
Moreover, we recognize that predicted spatial gradients in flow
magnitudes, sometimes including reversals in flow directions,
must entail corresponding ice deformation in order to conserve
mass; for the low liquid fractions and modest flow rates that are
typical, we anticipate that the errors associated with neglecting
this complication are likely to be small, but note that the non-
hydrostatic ice pressure gradients that develop in consequence
are of interest for future work.

When the gradient in ice pressure deviates from hydrostatic
equilibrium, liquid flow is drawn toward regions of anomalously
low ice pressure (i.e. described by Eqn. (22)). Ice deformation
takes place as well under such nonhydrostatic stress states and vis-
cous dissipation provides a heat source that can affect temperature
gradients, thereby further altering the pattern of vein liquid flow.
Hence, a rigorous model treatment of such scenarios requires an
analysis that couples the flow of both ice and liquid (in addition to
heat and solute). Such thermomechanical coupling is expected to
be important not only for driving vein flow and enabling diffuse
debris entrainment, but also for helping to control the liquid
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volume fraction and thereby affecting the ice softness that influ-
ences both the form drag that limits basal sliding (e.g.
Weertman, 1957; Gudmundsson, 1997) and the deformation
that takes place in shear margins (e.g. Schoof and Hewitt, 2016;
Minchew and others, 2018; Haseloff and others, 2019).
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Appendix A.

The governing Eqns. (16)–(18) were discretized in space and solved using the
Matlab stiff ODE solvers. With M equally spaced interior nodes separated by
d = z̃max/(M + 1) so that the ith node is at location z̃i = id and the corre-
sponding scaled temperatures and concentrations are denoted by T̃ i and c̃i,
the scaled porosity is written as

f̃i =
1− T̃ i − Cc̃i

1− C
+ DzRv0

l2c
id

[ ]−2

. (A1)

Using centered differences, the one dimensional semi-discretized forms of
Eqns. (17) and (18) become

∂T̃ i

∂t̃
≈
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1+ 2
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1/2
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3/2
i SC

[
1

2Lef̃id
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− (f̃i + f̃i−1)(c̃i − c̃i−1))

+ bf̃i

4d2
(T̃ i+1 − T̃ i−1 + C(c̃i+1 − c̃i−1))(c̃i+1 − c̃i−1)

]}
,
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Although this system of 2M equations was easily solved in many cases, numer-
ical instabilities arose when advective solute transport was sufficiently rapid
and an upwinding scheme was implemented instead in which we defined

Vci = T̃ i+1 − T̃ i−1 + C c̃i+1 − c̃i−1
( )[ ]

, (A4)

with

V+
ci = max Vci, 0( ) andV−

ci = min Vci, 0( ). (A5)

The revised ‘upwinding’ numerical scheme continued to use second order
finite differences for all of the terms, defining separate skewed values for the
concentration gradient as

c+gi = −3ci + 4ci+1 − ci+2, (A6)

and c−gi = 3ci − 4ci−1 + ci−2, (A7)

so that the revised equations for the evolution of scaled temperature and con-
centration are
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