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Abstract

Most theoretical descriptions of stresses induced by freezing are rooted in the (generalized)
Clapeyron equation, which predicts the pressure that a solid can exert as it cools below its melting
temperature. This equation is central for topics ranging beyond glaciology to geomorphology,
civil engineering, food storage and cryopreservation. However, it has inherent limitations, requir-
ing isotropic solid stresses and conditions near bulk equilibrium. Here, we examine when the
Clapeyron equation is applicable by providing a rigorous derivation that details all assumptions.
We demonstrate the natural extension for anisotropic stress states, and we show how the
temperature and pressure ranges for validity depend on well-defined material properties.
Finally, we demonstrate how the range of applicability of the (linear) Clapeyron equation can
be extended by adding higher-order terms, yielding results that are in good agreement with
experimental data for the pressure melting of ice.

1. Introduction

When water freezes in confined spaces, it can generate large stresses, often resulting in material
damage. This is important across fields ranging from glaciology to geomorphology, food sci-
ence, civil engineering and cryopreservation (Walder and Hallet, 1985; Karlsson and Toner,
1996; Dash and others, 2006; Petzold and Aguilera, 2009; Rempel, 2010; Vlahou and
Worster, 2015; Jha and others, 2019). Broadly speaking, ice can generate stresses via two dif-
ferent mechanisms (Wettlaufer and Worster, 2006; Peppin and Style, 2013). The first is due to
the expansion of water as it freezes: in a closed cavity, freezing will generate pressure (Fig. 1a).
The second is unrelated to the expansion of water and often dominates in porous materials —
for example, in the process of frost heave (Peppin and Style, 2013). Here, ice can form in open
pores of a wet material (Fig. 1b), but no pressure builds up during the initial ice-formation
process (any pressure is relieved by water flow away from the growing ice). However, after
the initial ice formation, unfrozen water is sucked back toward the ice crystals. When this
water freezes onto the existing ice, it can cause the ice to expand its confining pore. This cryo-
suction process is aided by the presence of thin, mobile layers of water at the surface of ice
(known as premelted films) (Slater and Michaelides, 2019). These allow growth of the ice,
not just at the pore throat, but also along the pore/ice interface. In both cases, ice will continue
to grow, building up pressure, until the pressure reaches a maximum value given by a
temperature-dependent stall pressure, Py (Peppin and Style, 2013; Gerber and others, 2022).
Py is very similar to the concept of crystallization pressure, found when confined crystals
grow from supersaturated solutions (Flatt, 2002; Steiger, 2005; Desarnaud and others, 2016)
and to the concept of condensation pressure, when phase separation occurs in confinement
(Style and others, 2018; Fernandez-Rico and others, 2021).

Theoretical descriptions of these stress-generation mechanisms are rooted in the (general-
ized) Clapeyron equation, a fundamental equation that describes static equilibrium between a
solid (ice) at pressure P, and a reservoir of liquid (water) at a different pressure Pj, but at the
same temperature, T (Black, 1995; Henry, 2000; Wettlaufer and Worster, 2006):

(Tm - T)

T (6]

(Ps — P) + (P — P0)<1 - %) = PyGm

Here, p; and p; are the densities of water and ice respectively, gy, is the specific latent heat of
freezing of ice and Ty, is the melting temperature at a reference pressure, P, (often taken as
atmospheric pressure). For the freezing mechanisms described above, this equation can be
used to predict Py as a function of the temperature, T. For case (i) with ice growing in a closed
cavity, the ice and water are both at the same pressure (P, = P; = Py;) (ignoring capillary effects), so

(@)

o2 1) <l

T

N

Using values from Table 1, we find that ice can exert pressures of ~11 MPa per degree of under-
cooling (Ty, — T).
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Figure 1. (a) Ice generates pressure as it grows in a closed cavity,
due to the expansion of water upon freezing. (b) Ice growing in
an open pore is fed by nearby water, and this growth wedges
open the cavity, generating stresses.

For case (ii), the ice and water need no longer have the same
pressure. If the water reservoir is held at the reference pressure
P, = Py, then Py =P, and

(Pst - PO) — qm(Tm - T)
Ps Tm '

3

In this case, ice can exert pressures of ~1 MPa per degree of
undercooling.

Even when ice is not in equilibrium (e.g. it is growing), the
Clapeyron equation gives us useful information. During growth,
there is no macroscopic equilibrium, but water immediately adja-
cent to an ice surface can often be considered to be in equilibrium
with the ice (Wettlaufer and Worster, 2006). Then, the Clapeyron
equation relates the local hydrodynamic pressure in the water, P,
to the local pressure that has been built up in the ice (P, is the
pressure that would exist in a bulk reservoir of water that was con-
nected to, and in thermodynamic equilibrium with water at the
ice interface — note that this definition works even for water in
premelted films). Water flows along non-hydrostatic gradients
in P, so the Clapeyron equation allows us to predict how water
is transported toward (or away from) ice, and thus gives ice
growth/melting rates (Derjaguin and Churaev, 1986; Wettlaufer
and Worster, 1995; Rempel and others, 2004; Style and
Worster, 2005; Wettlaufer and Worster, 2006).

The various applications of the Clapeyron equation make it a
key tool for understanding freezing processes (e.g. Dash and
others, 2006; Wettlaufer and Worster, 2006; Vlahou and
Worster, 2015; Gerber and others, 2022). However, it makes a
number of assumptions. For example, it assumes that ice can be
described by an isotropic pressure, whereas ice is often character-
ized by an anisotropic stress state, o;; (Budd and Jacka, 1989) - for

Table 1. Ice/water parameter values at atmospheric pressure and 273.15K
(Hobbs, 2010)

Density of ice Ps 917kgm™
Density of water o 997 kg m™
Latent heat of fusion Gm 334 kJ kg™
Melting temperature Tm 273.15K
Heat capacity of ice c? 2093 J (kg K)™*
Heat capacity of water o 4184 J (kg K)™*
Bulk modulus of ice Ks 11.33GPa
Bulk modulus of water K 1.96 GPa
Coeff. thermal expansion, ice as 51x107° K2
Coeff. thermal expansion, water o —50x107° K™t
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Case (i): Ice growth in a
confining cavity

Case (ii): Ice growth in an
open pore

example, in glacier flow (Glen, 1955), or because anisotropic stres-
ses arise spontaneously in a temperature gradient (Gerber and
others, 2022). It also uses linear approximations that are valid
only near the bulk melting point of ice (see later). Thus, several
key questions arise. In particular: What is the appropriate exten-
sion of the Clapeyron equation for anisotropically stressed ice?
Over what range of conditions should the Clapeyron equation
be applicable?

Surprisingly, we are not aware of a systematic derivation of the
Clapeyron equation that would allow us to address these ques-
tions. However, there are several related works. For example, sev-
eral authors have established the thermodynamic relations that
govern the dissolution of anisotropically stressed solids into
adjacent fluids (Gibbs, 1879; Kamb, 1959, 1961), with notable
applications to recrystallization and pressure solution processes
(e.g. Paterson, 1973). Although melting was not a focus of these
works, some of the consequences for ice melting were recognized
by Nye (1967). He argued that the phenomenon of wire regelation
requires a generalization of Eqn (2). For this case, P; should be
replaced by the normal stress —c,,,,, and not by the mean of the
principal stresses —Tr(c)/3, as had been argued by others.
Finally, Sekerka and Cahn (2004) examined the special case of a
solid with o,,, = —P,, to show that anisotropically stressed solids
in equilibrium with their melt will recrystallize to form an iso-
tropically stressed state.

Here, we provide a first-principles derivation of the generalized
Clapeyron equation, along similar lines to Paterson (1973). We
clearly lay out all the underlying assumptions, and present the
appropriate extension for the melting behavior of anisotropically
stressed ice.

2. Deriving the generalized Clapeyron equation

We consider thermodynamic equilibrium for the two scenarios
shown in Figure 1, in both of which the temperature is held
fixed at T< T,. In case (i), water freezes in a closed cavity, so
that the ice and and water both have the same pressure, P;=P).
In case (ii), ice has frozen in an open cavity, and is in equilibrium
with neighboring bulk water, which has pressure P;. At the same
time, the ice exerts a normal stress, —o,,,, on the walls of the cav-
ity, but is assumed to exert negligible shear forces, due to the pres-
ence of premelted films which lubricate the ice/cavity interface
(Gerber and others, 2022). The ice cannot grow through the
small, connecting pore throat into the neighboring water due to
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capillarity (i.e. the Gibbs-Thomson effect (Hardy, 1977; Schollick
and others, 2016)).

For each scenario, we establish equilibrium behavior by min-
imizing the relevant free energy of the ice/water system. The rele-
vant free energy, Gy satisfies AGyys = AUy — TASg + W, where
Usys is the internal energy of the ice/water system, Sy is its
entropy and W is the work done by the system on its surround-
ings. For case (i), AGys=AUss— TASys+ P(AV+AV)), while
for case (ii), AGgys=AUys— TASsys — 0,, AV + PAV) where Vi
and V) are the volumes of ice and water, respectively. The first
case is just a specialized version of the second, where —o,,,, = P,.
Thus, without loss of generality, we can proceed with the case
(ii) expression, and the result will describe both cases.

We consider a perturbation to the system in Figure 1b, where a
small mass of ice, Am, melts and flows into the reservoir. Thus,
the volumes of ice and water change as AV =-vAm, and
AVi=vAm, where v(o;, T) and w(P, T) are the specific
volumes of the ice and water, respectively. At equilibrium, this
perturbation must not change the free energy, so AGgy, =0,
which becomes

wAm — uAm — T(s) — sg)Am + 0, vsAm + PviAm = 0. (4)

Here, uy(cy, T)and w(P, T) are the specific internal energies of
the ice and water, respectively, and sy(o;;, T) and s(P, T) are the
respective specific entropies. Dividing through by Am, we obtain

— (Ounvs + Pv) = (1) — ug) — T(sy — s5). (5)

In principle, Eqn (5) completely describes equilibrium between
ice and water - i.e. one could use tabulated values of &, v, and s to
find —o,,(P;, T). However, a more convenient form is found by
expressing the equation relative to the pressure and temperature

under bulk melting reference conditions, (Py, T.,). With
—0,, =P =Py Eqn (5) becomes
Po(v] — ) = (f — ug) — T} — 9)s (6)

where the superscript ° indicates reference conditions. Subtracting
Eqns (5) and (6), we find

a-8=&-& 7)
where the specific free energies g(T, P;)=u — Ts;+ P, and g
(T, 03)=us— Ts;—0,, vs. These can be Taylor-expanded to

obtain the Clapeyron equation (e.g. Dash and others, 2006;
Hitter and Tervoort, 2008):

0 0
(T, v) = g (Tum, Po) + (ﬁ) (T — Tp) + <ﬂ> (P — Py)
b T

oT oP
(8
and
o 8g5
gs(T: o'ij) =& (me P0)+ ﬁ (T_ Tm)

Tjj

+ () (0 4+ osy) ©)
Tij ij)>
80',] T I 0%

where &j; is the identity matrix. To evaluate the derivatives, we
note that Agi= —siAT + wAP,. Thus, at reference conditions,

8\ _ o (%) _ 0
or), " \op ),V

(10)
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and similarly in the solid at reference conditions (o;; = —Pyd;;)

g\ o
(),~-=

]

1)

To calculate the final derivative, we notice that
g = (fs + PoVs) — GunVs, where f; is the specific Helmholtz free
energy of the solid, and &;; = oy + Py 8;. Here, (f; + Povy)/ vy is
the free-energy per unit volume for deformations in an atmos-
phere at constant pressure, Py, and thus is the elastic energy per
volume of ice in the reference state. Assuming that ice has linear-
elastic behavior, we can write

_ 1_ o — of 1
8 =5 Oy€;jV — OV

Tr(o)
+ 3K, ), (12)

where K is now the bulk modulus of the solid. €;; is the strain of
the ice relative to its shape in the reference state (T,,, P), and sat-
isfies the linear-elastic constitutive relationship:

1
Etj = E_s [(1 =+ VS)(_T,']' — VS(SI'J'TI'(&)], (13)

where E; = 3K,(1 — 2v;) is the Young’s modulus of the ice and vy is
its Poisson ratio. For small strains, vy = v¢(1 4 Tr(e)), and we use
this in the second term of Eqn (12).

With the two equations above, we can evaluate the remaining
derivative at (Py, Ty):

08\ -
( 8 ) (03 = 0) = —mn;vy.
T

(14)

Here, n; is the normal vector to the surface of the ice, so that
Oppn = n,—&,-jnj.

Finally, we can insert these first-derivative expressions into
Eqns (7)-(9) to obtain the Clapeyron equation for anisotropically
stressed solids:

(O'nn + PO) (Pl - PO) Qm(Tm - T)
— — — = . (15)
pq P Tm
Here, p{ = 1/v}, and p{ = 1/v¢ are the densities of water and ice
respectively at the bulk melting point, and gy = (s — s7) T,.
Consistent with the regelation analysis of Nye (1967), this version
of the Clapeyron equation is identical to Eqn (1), but with P

replaced by —o,,, and not —Tr(c)/3, as some might assume
(Verhoogen, 1951).

3. Field data supporting the anisotropic Clapeyron equation

While Nye (1967) has presented arguments supporting the form
of Eqn (15) in the context of regelation, further evidence comes
from simultaneous measurements of temperatures and liquid
pressures in glacier boreholes. These measurements show that
temperatures increase when changes in the hydrologic system
cause borehole pressures, P, to decrease (e.g. Andrews and others,
2014).

The anisotropic Clapeyron equation indeed recovers this cor-
relation. Along borehole walls, o, = —Py. Inserting this into Eqn
(15), we find that changes in temperature are correlated with
changes in borehole pressure by:
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AT = —EGO—%)API
dm \Ps P

~ (—=7.16 x 10"*KPa ")AP, (16)
in agreement with the field data.

By contrast, extending the isotropic Clapeyron Eqn (1), by
replacing —P;=Tr(c)/3, does not match the experimental
data. The classic analysis of Nye (1953) gives the complete
stress tensor at the surface of an idealized cylindrical borehole
containing liquid at pressure P,. Far from the borehole, the ice
has a far-field isotropic ice pressure P, and creeps according
to Glen’s flow law with exponent n=3 (Glen, 1955; Hewitt
and Creyts, 2019). In this case, —Tr(0)/3 =P+ (P, — P)/n.
Substituting Ps=-Tr(c)/3 into the isotropic Clapeyron
Eqn (1) and treating the far-field ice pressure as constant
leads to

T./1 1 1
dm \Ps P|  1Pg
~ (2.26 x 107 KPa ')AP; . (17)
This predicts the opposite of the correlation seen in the field
data.

4. Errors in the Clapeyron equation

In deriving this version of the Clapeyron equation, we have had to
make two main assumptions. Firstly, strains in the ice are small,
so we can use linear elasticity (Sekerka and Cahn, 2004). This is
reasonable as the stresses in the ice (which are O(MPa) - see
introduction) are much less than the ice’s elastic moduli E,
K, = O(GPa), so strains will be small.

Secondly, we assume that higher-order terms in the expan-
sions of g and g are negligible. We can test this by reverting to
the case of isotropically stressed ice (o;=—Pi;). Then, we
Taylor-expand Eqn (7) in T, P and P; to obtain the second-order
version of the Clapeyron equation:

(PS_PO)_(PI_PO):qm(Tm_T)
Py 23 Tm
p

i T S O
2T, 200K,

1
2p¢K;

S

(Py — Py)’

— B (T = TP = Po) + 2 (Tyy — T)(Ps — Py).
p] ps
(18)

Here, we use the following identities (e.g. Venerus and Ottinger,
2018): 0°g/dT* = *' Ty, 0°g/oP*> =1/(Kp°) and 0°g/0TAP = alp®,
where P is the heat capacity at constant pressure, K is again the
isothermal bulk modulus and « is the coefficient of thermal
expansion.

We can now predict the pressure-melting curve for different
freezing scenarios. For bulk ice/water equilibrium (Fig. 1a), Py= P,
and we take atmospheric pressure, P,, as the reference pressure,
and T,,=273.15K. Figure 2a compares the isotropic Clapeyron
Eqn (1) (red, dashed) with experimental data (black, dotted)
(Dunaeva and others, 2010). There is a significant error between
the two results for an undercooling of more than ~3 °C. However,
when we use the full, second-order Clapeyron Eqn (18) (blue), we
find good agreement down to an undercooling of at least 15°C.
In this situation, the terms that are quadratic in pressure dominate
the error, and to excellent approximation (Fig. la, orange
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Figure 2. Evaluating the accuracy of the Clapeyron Equation. (a) The pressure of ice
in bulk ice/water equilibrium in a closed cavity (P, = Ps = —o,,), as a function of under-
cooling. The black, dotted curve shows experimental data (Dunaeva and others,
2010). (b) The stress exerted by ice in an open pore, as a function of undercooling.
Both figures show the linear Clapeyron equation (dashed red), full second-order the-
ory (Eqn (18), blue) and simplified second-order theory (Eqns (19) and (21), orange
dash-dotted).

dash-dotted):

)PP+ (5 — )R Y
pg Pf) s 0 zplo Kl ng Ks s 0
Qm(Tm - T)
=, 19
- 19)
Note this equation offers a way to extract information about material
properties from a pressure/temperature phase diagram, as the curva-
ture of the liquidus is controlled by the quadratic term’s prefactor.
Comparing the first two terms in the equation, we see that the linear
Eqn (15) is only appropriate when:

<1 1)( 1 1 )“
Py \2pKs  2p7K;

Typically, a factor of 10 suffices for such inequalities to hold. Thus,
we expect the linear theory to hold when |P— P,| < AP*/10 =42
MPa: in good agreement with the data.

We can perform a similar analysis for freezing in an open sys-
tem (Fig. 1b). We let P, = Py = P,, and assume that the ice is in an
isotropic state of stress, with pressure, P,. Figure 2b compares the
prediction of the Clapeyron Eqn (1) (red, dashed) with that
obtained when we keep the extra quadratic terms (18) (blue).
We are not aware of any experimental data precise enough to val-
idate the theory (Gerber and others, 2022). However, here, the
higher-order theory agrees well with the linear Clapeyron

|Ps_Pa|<<AP*:

~ 420 MPa. (20)
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equation down to large undercoolings. The difference is domi-
nated by the term in Eqn (18) that is quadratic in undercooling.
Thus, to excellent approximation (Fig. 1a, orange dash-dotted):

p,— p, = Pan(Tm = T) _ P — )
T 2T,

(T — T)2. (21)

Comparing terms on the right-hand side shows that we only
recover the linear Clapeyron Eqn (1) if

2qm
d—d

~ 320K.

|Tm — T| € AT* = (22)

Again, assuming a factor of 10 for the inequality to hold, we find
that linear theory should work when |T,,, — T| < AT*/10 =32 K.
This requirement is certainly reasonable for many terrestrial tem-
peratures. Thus, there is some justification for use of the linear
Clapeyron equation down to relatively large undercoolings to
model this type of freezing scenario.

To summarize, our results suggest that the linearized Clapeyron
equation will be valid, provided that |P, — Py| and |Ps — Py| are both
less than AP*/10, while |T,, — T| <AT*/10. At larger pressures/
undercoolings, the quadratic terms in Eqn (18) should be included.

5. Conclusions

In conclusion, we have derived the linear Clapeyron equation
describing equilibrium between water and ice, clearly laying out
all the assumptions involved. In particular, this equation is
derived using a Taylor expansion around a reference temperature
and pressure, and ignoring higher-order terms. Thus, it is only
valid for a range of pressures and temperatures around the refer-
ence conditions. Fortunately, for most naturally occurring terres-
trial freezing scenarios, the linear form of the Clapeyron equation
should be adequate. For example, at the base of a glacier, pressures
are typically close to hydrostatic, and thus O(MPa) (Sugiyama and
Gudmundsson, 2004) - this is small enough to lie within the
range of applicability of the Clapeyron equation. However, more
extreme conditions are expected in extraterrestrial settings (e.g.
Dunaeva and others, 2010; McCarthy and Cooper, 2016).
There, the linearized Clapeyron equation will not accurately pre-
dict melting temperatures, which could lead to significant errors
in models of ice dynamics (as predicted flow rates are typically
based on the departure from bulk melting conditions (Budd
and Jacka, 1989)). In this case, the accuracy of the Clapeyron
equation can be improved by retaining higher-order terms in
the Taylor expansion.

We have also demonstrated the correct form of the Clapeyron
equation for the case where ice is anisotropically stressed. This is
identical to the isotropic form of the Clapeyron equation, but with
ice pressure, P, replaced by the normal stress exerted by ice on its
surroundings, —o,,,. One consequence of this is that differently
stressed faces of ice (e.g. in a polycrystal) will have different melt-
ing temperatures.

While our analysis has focused on ice and water, the results
should apply to any processes involving solid/liquid equilibrium,
for example, in the melting and deformation of rocks in geological
processes (e.g. Katz and others, 2006). Note however, that there
are two key further effects that will likely be important to include
in real-world applications. Firstly, we have neglected the presence
of solutes, which are known to strongly affect the solid/liquid
equilibrium (Zhang and others, 2021; Wettlaufer, 1999; Zhou
and others, 2018; Dedovets and others, 2018). Secondly, we
have ignored the surface energy of the ice (Wettlaufer and
Worster, 2006; Wilen and Dash, 1995). We anticipate that both
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of these effects can be incorporated into the results presented
here, by including colligative and capillary effects in the analysis
above. In the case of capillary effects, we expect that the aniso-
tropic Clapeyron equation will continue to hold, with capillarity
just causing a jump between P, and —o,, at curved interfaces
(e.g. Style and Worster, 2005).
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