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Bootstrap embedding (BE) is a recently developed electronic structure method that has shown
great success at treating electron correlation in molecules. Here, we extend BE to treat surfaces and
solids where the wave function is represented in periodic boundary conditions using reciprocal space
sums (i.e. k-point sampling). The major benefit of this approach is that the resulting fragment
Hamiltonians carry no explicit dependence on the reciprocal space sums, allowing one to apply
traditional non-periodic electronic structure codes to the fragments even though the entire system
requires careful consideration of periodic boundary conditions. Using coupled cluster singles and
doubles (CCSD) as an example method to solve the fragment Hamiltonians, we present numerical
CCSD-in-HF results on 1D conducting polymers. We show that periodic BE-CCSD can typically
recover ~99.9% of the electron correlation energy. We further demonstrate that periodic BE-CCSD
is feasible even for complex donor-acceptor polymers of interest to organic solar cells - despite
the fact that the monomers are sufficiently large that even a I'—point periodic CCSD calculation is
prohibitive. We conclude that BE is a promising new tool for applying molecular electronic structure

tools to solids and interfaces.

I. INTRODUCTION

The lack of affordable, accurate methods limits com-
putational insights into solids and surfaces. Due to their
enormous (in principle, infinite) size, the electronic struc-
ture of solids and interfaces must be treated under pe-
riodic boundary conditions. To efficiently treat these
systems, one must further exploit the translational sym-
metry of the system by representing the wave function
in reciprocal space. Currently, only a handful of meth-
ods, such as density functional theory (DFT), dynami-
cal mean-field theory (DMFT), or random phase approx-
imation (RPA), can perform periodic computations on
extended systems! ™.

On the other hand, many wavefunction-based elec-
tronic structure methods exist for non-periodic systems
and are readily available in standard quantum chem-
istry codes. Methods such as second-order Moller-Plesset
perturbation (MP2), truncated coupled cluster (CCSD),
complete active space (CAS), or the selected configura-
tion interaction (SCI), have been used with great suc-
cess to predict a variety of electronic, structural, and
thermodynamic properties of molecules and supramolec-
ular complexes. Whereas historically, only a few of these
approaches have been adapted for computation under
the periodic boundary condition, for example, MP2 and
CCSDS !, Much ongoing work is devoted to extending
a greater variety of molecular electronic structure tools
to solids and making existing tools more efficient.

Embedding based-methods have shown promising re-
sults in adapting the aperiodic electronic structure meth-
ods to treat periodic systems'?>23. Notable works in-
clude density functional embedding theory, projection-
based wavefunction-in-DFT methods, and density matrix
embedding theory (DMET)?* 3!, In these approaches,
only the sub-systems are treated with electron correla-
tion methods while the bulk of the system under the pe-
riodic boundary condition is treated at a mean-field level
of theory.

Recently, we developed a fragment-based quantum em-
bedding method called Bootstrap Embedding (BE) to
treat electron correlation for molecules and supramolec-
ular systems®2 35, Unlike other existing embedding ap-
proaches, BE provides scopes for flexible system parti-
tioning using fragments with overlapping regions. The
method utilizes matching conditions of the wavefunction
in the overlap regions to improve the embedding. Nu-
meical tests on various molecular systems have demon-
strated the approach’s accuracy and applicability.

Herein, we implement BE to treat electron correlation
under periodic boundary conditions for infinite solids and
surfaces. We show that traditional, aperiodic correlated
methods can be interfaced with BE to treat periodic sys-
tems. Starting with a mean-field solution at the ther-
modynamic limit (TDL), BE converges the correlated
calculation to the TDL without resorting to reciprocal
space summation. We demonstrate that BE provides an
inexpensive approach to treating electron correlation at
the TDL by computing total energies for 1D conducting
polymers. The periodic implementation of BE typically
recovers ~99.9 % of the total electron correlation energy
with CCSD as the method of choice (BE-CCSD). We
further demonstrate the applicability of periodic BE to
complex polymers with large unit cell sizes.

This work is organized as follows: Section II A pro-
vides the formulation of the embedding Hamiltonian un-
der periodic boundary conditions. Section IIB discusses
the fragment schemes and Section II C describes periodic
BE. Section III outlines the computational details of pe-
riodic BE calculations. The performance and accuracy
of periodic BE are presented in Sections IV A and IV B
compared to full CCSD results with k-point sampling.
Section IV C demonstrates the applicability range of pe-
riodic BE by performing computation on two complex
donor-acceptor polymers. Finally, Section V summarizes
the main results of this work.



II. THEORY

In this section, we briefly review Bootstrap Embedding
(BE) and outline the main framework of BE for periodic
systems. For a detailed discussion on the general formal-
ism and machinery of BE, we refer to Ref. 32.

A. Periodic Embedding Hamiltonian

Our approach for defining the embedding Hamiltonian
largely follows Ref. 29. We present the formalism here
to lay the groundwork for defining fragments and match-
ing conditions in Sections II B and II C, respectively. In
usual practice, mean-field computations under periodic
boundary conditions are performed on a grid of finite
points or k-points in the reciprocal-space first Brillouin
zone (FBZ). Thus, the resulting Hartree Fock (HF) so-
lution has k sets of molecular orbitals corresponding to
solutions on each of the finite k-points on the grid. We
can analogously define atom-centered local orbitals (LO)
for each k-point.
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The LO defined by the above equation can be con-
structed, for example, using Lowdin symmetric orthog-
onalization (the method of choice used in this work).
Other techniques include intrinsic atomic orbitals3® or
maximally localized Wannier functions®’.

A discreet Fourier transform relates k-point represen-
tation and the real-space representation. For conve-
nience, we transform the k-point LO to a real-space rep-
resentation.
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Hereafter, we omit the R-index when dealing with a
real-space representation.

In BE, a subset of LOs, Ny, is defined as fragment
A. The choices of fragments are discussed in the next
section. For each fragment choice, the total system is
divided into fragment orbitals, f4, and bath orbitals, b.
The fragment orbitals are chosen from the subset of LOs
centered on atoms within a unit cell defined as one of the
finite k-points in Equation 2. We note that BE is invari-
ant to the choice of finite k-point to define the fragment
space.

Following a Schmidt decomposition, the HF state can
be distinctly partitioned into3?
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In the above equation, we have further partitioned the
non-fragment space into bath states, |bA>, entangled with
the fragment state, |fA>7 and the environment, ‘@e""’A),
disentangled from the fragment. This definition consid-
erably reduces the Hilbert space of the total system.

In practice, the Schmidt decomposition described
above is achieved by singular value decomposition (SVD)
of the off-diagonal HF density matrix in the LO basis be-
tween the fragment and remainder sites.

A= UaS V] (4)

Working in the real-space representation, P4 by defi-
nition has a dimension of (Niptar — Na) X Na. Niotar is
the total number of LO in the real-space representation.

The left-singular vectors, U4, define the bath orbitals
in Equation 3. We can then construct a projection to the
embedding basis comprising the fragment and the bath

orbitals as below.
I
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The embedding Hamiltonian for each fragment is then
constructed by transforming the molecular Hamiltonian
using TR Since the one-electron and two-electron inte-
grals are usually computed in the k-point representation
under the periodic boundary condition, T®4 absorbs a
phase factor e **R and is denoted by T%4 below.
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where h and V4 are obtained by summation over the
k-points of the environment Fock matrix F' and the two
electron integrals V' respectively,
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Equations 7 and 8 show that the resulting fragment
Hamiltonian H4 has no explicit dependence on either k-
space or real space indices outside the fragment or bath.
Instead, those dependencies are wrapped up in the defi-
nition of new effective interactions, h, and V4, within
the fragment and bath space. The consequence is that
any non-periodic method can be used to solve for the
ground state of the fragment Hamiltonian. In particu-
lar, existing non-periodic code can be used without sig-
nificant modification as a fragment solver for a periodic



system. Further, because only the Hamiltonian (and not
the correlated calculation) depends on k-points, it is very
inexpensive to approach the thermodynamic limit (TDL)
in an embedding calculation; one effectively only needs
to converge the mean field calculation to the TDL and
the embedded calculation will also be converged.

The integral transformation of the two-electron repul-
sion integrals (ERI) in Equation 8 from the atomic orbital
basis to the embedding basis is one of the computation-
ally demanding steps in BE. To reduce computational
cost in the transformation, we have utilized density fit-
ting with gaussian-type orbitals as the choice of auxiliary
basis functions. Details on the ERI transformation in the
presence of k-points can be found in Ref. 29.

The ERI transformation in Equation 8 contains re-
dundant computations as two or more fragments share
the same set of atom-quartet ERI in an overlapping re-
gion. The redundant computation can be remedied by
first computing the integral transformation for all unique
atom-quartets and then recovering the fragment ERI for
each fragment from the set of the unique atom-quartets.
Ref. 32 discusses this algorithm in more detail. The cal-
culation presented in Section IV does not require the
efficient integral transform and, therefore, was not im-
plemented. However, we anticipate that significant com-
putational savings would be possible for more complex
systems.

B. Fragment Construction

As mentioned earlier, a subset of LOs defines a frag-
ment in the BE framework. The subset of LOs centered
on the same atom is considered the minimal unit. Fol-
lowing our earlier work, each atom in the unit-cell defines
a fragment composed of LOs on the atom and all atoms
connected up to (n — 1) coordination shell. With n =1,
each atom in the unit cell is a fragment of its own. The
nearest connected neighboring atoms are included in the
fragments for n = 2, while n = 3 also includes the second
nearest neighboring atoms. Here forth, BEn denotes this
scheme. Such a fragment definition provides scope for
using larger fragments in the BE framework.

Considering periodicity, the fragment scheme consid-
ered in this work also uses the atom-centered LOs of the
neighboring unit cell. There are as many fragments as
atoms in the unit cell. The resulting fragments have over-
lapping regions, with a set of N§ LOs appearing as an
edge on fragment A and as a center on at least another
fragment B # A. Figure 1 illustrates fragments in the
BE2 scheme for a unit cell with four atoms.

C. Periodic Bootstrap Embedding

Central to BE, the wave function on edge LOs in one
fragment, E4, is matched to the corresponding wave
function on the center LOs in another fragment, Cg,

e

FIG. 1: Illustration of fragments used in bootstrap embed-
ding. The four fragments have distinct center and edge sites.
Each site in the unitcell (gray box) is the center of a fragment.
The density matching conditions for each fragents are shown
in red arrows.

where it overlaps in terms of a one-electron reduced
density matrix (1-RDM). The embedding Hamiltonian
(Equation 6) is solved at a high-level method such as
CCSD (the method used in this work) to obtain the 1-
RDM. The main idea is that the wave function on each
fragment’s center is more accurately described in the
high-level computation than the wave function on edge.
The reason is that the edges interact more strongly with
the corresponding mean-field bath orbitals. The problem
then boils down to the following constrained optimiza-
tion:

min (W] o |o?) (9)
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where P = (U4 |afa, |W4) is the 1-RDM. We loop
over all fragments, B for which the edge sites in fragment
A, E4, appear as the center sites, Cg. The exact formu-
lation can be derived for all other possible fragments.
Further, a global constraint is imposed on the center of
each fragment to preserve the total electron count.

The above-constrained optimizations lead to a set of
eigenvalue equations for each fragment. Here, the em-
bedding Hamiltonian is dressed with a fragment-specific
effective potential, )\;‘q, that ensures the density match-
ing conditions and global chemical potential, u, that fixes
the electron count. The resulting eigenvalue equation is,
then,
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The above eigenvalue equation is solved using a high-

level electron correlation method in a self-consistent fash-
ion until Equation 10 is satisfied.



Following Ref. 39, the total BE energy is computed as:
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where E[;IJ]JL is the reference HF energy, FIY) is the Fock

matrix corresponding to the reference HF density in the
embedding basis, AP# is the difference in the correlated
1-RDM, P4 and the reference HF density, PH¥4 of the
fragment, and K is an approximate two-body cumulant
defined in terms of the true two-body cumulant of the
fragment, K, as:
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The two-electron reduced density matrix, I'* and the
true two-body cumulant, K4 are related by:
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As discussed in Ref. 39, we note that using the ap-
proximate two-body cumulant, K4, avoids constructing
the Fock matrix, FAPY corresponding to the correlated
1-RDM, P4,

III. COMPUTATIONAL DETAILS

The accuracy of periodic BE was tested by comput-
ing the total electron correlation energy per unit cell
for 1D polyethylene (PE), polyacetylene (PA), poly(p-
phenylene) (PPP), poly(p-phenylene vinylene) (PPV),
and polythiophene (PT) chains. BE calculations were
also performed on a modified structure of the NT-812 and
the PM6 polymers. The side alkane chains on these poly-
mers were removed and replaced by a hydrogen atom. All
the structures, including the lattice constants, are pro-
vided in Supporting Information. STO-3G basis set was
used throughout. The BE energies were compared to full
k-point CCSD (denoted k-CCSD hereafter) correlation
energies. The k-CCSD calculations were performed with
a Monkhorst-Pack k-point sampling that included up to
(I x 1 x 18) k-point grids. The k-CCSD computation
for extremely dense k-points is challenging even for the
relatively small systems (PE and PA) considered in this
work. For BE calculations, periodic Hartree-Fock solu-
tions with k-points sampling up to (1 x 1 x 45) k-point
grids were used.

Following our earlier work, an unrelaxed CCSD one-
electron reduced density matrix (1-RDM) was used for

PPP

PPV g PT

FIG. 2: Unit cell of the various polymers used in this work.

the matching condition in Equation 10. The total elec-
tron correlation energy per unit cell obtained from BE,
as well as k-CCSD calculations, are extrapolated to the
thermodynamic limit (TDL) using a power law expansion
of the form?°:

E(Ny) = Eoo +aN, ' + BN, ? (15)

The BE computations were performed with an in-
house code using PySCF to generate the necessary in-
tegrals in Equations 7 and 8 and for the CCSD solver
(non-periodic implementation)*42. A Quasi Newton-
Raphson optimization algorithm was employed to per-
form the BE optimization with approximate Jacobian as
described in Ref 32. The BE matching conditions were
satisfied when the threshold set for the root-mean-square
in the difference of 1-RDM for all the fragments is below
1 x 1076,

IV. RESULTS AND DISCUSSIONS
A. Convergence with k-points

This section discusses the performance of periodic BE
compared to full k-CCSD calculations. In particular, we
look into the convergence of total electron correlation en-
ergy as a function of k-points used to sample the first
Brillouin zone (FBZ). Figure 3 presents the convergence
of the total electron correlation energy per unit cell to the
TDL for the polyacetylene (PA) chain from various BEn
schemes and full k-CCSD, rescaled per electron pair. 1D
PA chains are widely used in literature to benchmark the
accuracy of new methods®?. Notably, the convergence to
the TDL for the PA chain strongly depends on the density
of k-points used to sample the FBZ. With increasing sys-
tem size, the correlation strength substantially changes
in the PA chain; a considerable k-point computation is
necessary to converge the electron correlation energy to
the TDL. Convergence plots for the other polymer chains



considered in this work are provided in the Supporting
Information.
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FIG. 3: Convergence of the total electron correlation energy
per unit cell, rescaled per electron pair, to the thermodynamic
limit for 1D polyacetylene chain.

BEn clearly reproduces the convergence of k—CCSD
correlation energies to TDL with an absolute error of
0.039, 0.010, and 0.003 meV per electron pair for BE2,
BE3, and BE4, respectively, at TDL. The BEn correla-
tion energy also converges with respect to the fragment
size, going from BE2 with smaller fragments to BE4 with
larger fragments at each k—points. The same is true for
the other polymer chains considered in this work; for
the polyethylene (PE) chain, BE4 almost exactly repro-
duces the k—CCSD correlation energy (see Supporting
Information). The main distinction to the k-point CCSD
computation is that correlation computation in BEn cal-
culation has no explicit dependence on the number of
k-points. And thus, the computational cost of BEn cal-
culation depends rather weakly on the reciprocal space
mesh sizes. On the other hand, the computational cost
of the full k-CCSD increases rapidly and becomes in-
tractable. Given the relatively small sizes of the 1D poly-
mers considered in this work, we can still converge the
total electron correlation energies with the full k&-CCSD
for reference. It is, however, different for extended-sized
unit cells, such as the polymers in Section IV C, where
even a ['-point full k-CCSD computation is not feasible.

Figure 4 presents the total wall time required for com-
puting the total electron correlation energies with the
BEn schemes and the full k-CCSD calculations as a func-
tion of the number of k-points for the PA chain. The
computational cost of BEn hardly depends on the num-
ber of k-points, whereas the full k-CCSD scales quadrat-
ically with the reciprocal space mesh sizes. Although
the computational cost of BE2 is lower than the full k-
CCSD for all the mesh sizes, BE3 and BE4 calculations
become less expensive for mesh sizes large than 6 and
10 k-points, respectively. However, as visible in Figure 3,
these crossing points are far from converging the electron
correlation energies to the TDL. Thus, with BEn, the
electron correlation energy at extremely dense k-points
can be accessed at almost the same cost of computations
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FIG. 4: Computational time for k-CCSD, BE2, BE3, and
BE4 with respect to the number of k-points of polyacetylene
chain.

on fewer k-points, guaranteeing convergence to the TDL.
It is also noteworthy that BE2 and BE3 have relatively
similar computational costs, whereas BE4 is compara-
tively more expensive than the two BE schemes.

B. Accuracy of Periodic BE

To establish the accuracy of periodic BE, we now com-
pare the total electron correlation energies at the TDL
computed from the BEn schemes to the full £&-CCSD
method for PE, PA, PPP, PPV, and PT polymer chains.
PPP, PPV, and PT are conducting polymers with many
applications, such as light-emitting diodes and photo-
voltaic devices*®#4. Full k-CCSD computations with
dense reciprocal space mesh sizes are prohibitive on these
polymers due to large memory requirements. Figure 5
presents the percentage error in total electron correla-
tion energy per unit cell at the TDL from the various
BEn schemes compared to full k-CCSD energies. The
mean absolute errors in the total electron correlation en-
ergies per unit cell at TDL for the polymer chains are
0.59%, 0.11%, and 0.07% with BE2, BE3, and BE4, re-
spectively.

BE2 underestimates the full k-CCSD correlation en-
ergy with an error between 0.3% and 0.9% in the polymer
chains. BE3, on the other hand, yields correlation energy
with an error between 0.03% and 0.21% as compared to
the full k-CCSD correlation energy. BE4, with the largest
fragment, has an error between 0.005% and 0.173%. The
systematic errors are in the order of less than 0.04, 0.01,
0.004 meV per electron pair with BE2, BE3, and BE4,
respectively (see Supporting Information). As also seen
in the previous section, the BE electron correlation con-
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FIG. 5: Percentage error at the thermodynamic limit. The
total electron correlation energy per unit-cell from the BE2,
BE3 and BE4 are compared to the full k-point CCSD corre-
lation energy.

verges to the k—CCSD correlation energies with an in-
crease in fragment size for all the polymers. A slight
deviation is observed in the PT chain, where BE3 has
an error of 0.03% while BE4 has an error of 0.17%. BE3
and BE4 yield highly accurate correlation energies for the
polymer chains considered in this work, typically recov-
ering about 99.9% of the total electron correlation energy
per unit cell. Out of the three BE schemes, BE3 best bal-
ances the accuracy and size of the fragments. The total
electron correlation energies at various k-points from the
BEn schemes, as well as full k-CCSD calculations for the
polymers, are provided in Supplementary Information.

FIG. 6: Unit cell for the modified NT812 (upper) and PM6
(lowe) polymers. The side alkane chains in the original struc-
tures have been replaced with a hydrogen atom.

C. Application to Polymer Solar Cells

NT812 and PM6 are two polymer solar cells that ex-
hibit promising photovoltaic performances*>4%. Figure 6
illustrates the unit cell of the two polymers, which have
substantial sizes. For both polymers, even a I'—point
calculation becomes impossible with the full k-CCSD, so
the reference k-CCSD electron correlation energies are
unavailable. In contrast, correlated calculations with the
BEn schemes are feasible for relatively large reciprocal
space mesh sizes. The computed total electron correla-
tion energies per unit cell as a function of k-points are
presented in Figure 7, rescaled per electron pair. The
correlation energies converge to the TDL very quickly
with only a few k-points for both polymers.
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FIG. 7: Convergence of the total electron correlation energy
per unit cell to the thermodynamic limit for the modified
polymers: (a) NT812, and (b) PM6

Although the reference full k-CCSD correlation ener-
gies are not available, the BEn correlation energies are
very close to each other.The difference in the correlation
energy between BE2 and BE3 is 0.0003 and 0.0005 meV
per electron pair for PM6 and NT812, respectively. BE3
and BE4 differ by 0.0007 and 0.0009 meV per electron
pair in the correlation energy of PM6 and NT812, re-
spectively. These differences in the correlation energies
between the BEn schemes are well within the observed
difference between BE3 and BE4 in the polymers dis-



cussed in the previous section. Further details on the
correlation energies for comparison are provided in the
Supporting Information. With the observed consistency
in the differences between the BEn schemes, we estimate
that the correlation energies recovered by BE3 and BE4
in the test cases of Section IV B will not change in large
polymers, such as NT812 and PM6 polymers. BE3 and
BE4 recover electron correlation energy with an error
that falls in the window of +0.1% in those test cases.
Based on this, we predict the electron correlation ener-
gies of the modified PM6 and NT812 donor-acceptor type
polymer to be 0.300740.0003 and 0.456340.0005 meV
per electron pair, respectively, at the TDL. Herein, the
correlated calculation at the TDL for such large periodic
systems demonstrates the applicable range of systems us-
ing periodic BE.

V. CONCLUSIONS

In this work, we presented periodic bootstrap embed-
ding (BE), a new efficient approach to computing ac-
curate electron correlation energy in periodic systems.
As a fragment-based method, the Hilbert space dimen-
sion of the individual fragments is significantly reduced
compared to the full system. Thus, there is a dramatic
reduction in the computational cost. As such, complex
periodic systems with large unit cells for which even a
I'-point computation is impossible can be treated with
BE to compute accurate electron correlation energy.

The framework presented in this work provides an
interface for utilizing existing non-periodic methods to
treat periodic systems. Another important aspect of
periodic BE is that the correlated fragment calculation
has no explicit dependence on reciprocal space. This al-

lows inexpensive access to the electron correlation en-
ergy at the thermodynamic limit, which otherwise re-
quires extremely dense k-point sampling with the corre-
lated method.

Using CCSD as the local fragment correlated solver,
periodic BE with BE3 or BE4 fragment schemes yields
high accuracies for the total electron correlation energy,
with a typical error of around 0.1%. With the develop-
ments presented in this work, we anticipate BE to be the
method of choice for computing highly accurate electron
correlation energies with periodic boundary conditions.
In the future, periodic BE will be extended to large ba-
sis sets and two-dimensional periodic systems. With the
concurrent computational efficiency and accuracy of peri-
odic BE, the prospect of studying large polymers at the
periodic boundary conditions using the high-level elec-
tron correlation methods is opened up.

Supplementary Information

Supplementary Information is provided for: (i) Con-
vergence of total electron correlation energies to the TDL
for the polymers in Section IV B; (ii) Total electron cor-
relation energies at the TDL for all polymers used in this
work; (iii) Geometries of all the polymers in cartesian co-
ordinates along with lattice constants in .xyz file format.
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