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Abstract—As cyber-physical systems are becoming more wide
spread, it is imperative to secure these systems. In the real world
these systems produce large amounts of data. However, it is
generally impractical to test security techniques on operational
cyber-physical systems. Thus, there exists a need to have realistic
systems and data for testing security of cyber-physical systems
[1]. This is often done in testbeds and cyber ranges. Most cyber
ranges and testbeds focus on traditional network systems and
few incorporate cyber-physical components. When they do, the
cyber-physical components are often simulated. In the systems
that incorporate cyber-physical components, generally only the
network data is analyzed for attack detection and diagnosis.
While there is some study in using physical signals to detect
and diagnosis attacks, this data is not incorporated into current
testbeds and cyber ranges. This study surveys currents testbeds
and cyber ranges and demonstrates a prototype testbed that
includes cyber-physical components and sensor data in addition
to traditional cyber data monitoring.

Index Terms—Anomaly Detection, Cyber-Physical, Cyber
Range, Cybersecurity, Data Generation, Testbed

I. INTRODUCTION

As cyber-physical systems become more widespread, the
need to secure these systems becomes more important [1].
Modern cyber-physical systems, often referred to as oper-
ational technology (OT) in industry, have external commu-
nication capabilities that are increasingly networked to take
advantage of advances in Industry 4.0 advanced capabilities
including digital engineering, industrial IoT, data analytics,
digitization, and integration of the cyber-physical value chain.
These communications capabilities increase potential cyber-
attack vectors, even in air gapped networks. Industry has
growing security concerns that a STUXNET style attack on
its cyber-physical systems could degrade or damage their
capability to provide services and support. In addition to
critical infrastructure, manufacturing systems for the aerospace
industry are also an area of concern.
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To our knowledge, limited studies have been done on using
side channel information, such as the information embedded in
electrical signals for cyber-threat detection in cyber-physical
systems. Some cyber-threats including integrity attacks may
not be observed in the cyber-space alone and can only be dis-
covered through inter-dependency analysis of multiple cyber
and physical signals. Thus, there is a significant opportunity
in exploring side channel information from physical signals,
together with cyber signals, to advance cyberspace security
and trustworthy research and design.

In order to take full advantage of information in cyber
networks as well as information in the physical signals from
CPS, researchers need access to both types of data when
studying attacks and testing defenses. To this end, we propose
a cyber-physical testbed that includes data from both sources
and demonstrate its effectiveness. The testbed will lay the
ground work for building a cyber range for cyber-physcial
systems that includes sensor data in addition to cyber data.

II. BACKGROUND AND RELATED WORKS

Until recently, attacks on cyber-physical systems were either
simulated, along with their physical systems, or physical
devices were monitored in isolation. This is due to the nature
of cyber-physical systems. Testing attacks and defenses on a
live system poses many issues such as the potential to damage
systems, harm to people, and loss of access to services they
provide [1] [2]. Simulated data and attacks often generated
data that are very clean and are not representative of real-world
systems. On the other hand, creating realistic faults and attacks
in an isolated system were difficult to do. Thus, the Center
set out to build a testbed that incorporates physical systems
integrated into a network in which a variety of attacks could
be created generated, and defenses could be tested. The goal is
to have a testbed in which cyber data could be generated and
collected along with physical data from sensors. The long-
term goal is building a cyber range in which physical CPS
components can be added and removed from the range as
necessary to test defenses and incorporate realistic attacks.



To accomplish this, a survey of existing testbeds and cyber
ranges were performed. The criteria for our testbed are as
follows:

o Includes cyber-physical component
« Ability to collect cyber data (network/system data)
« Ability to collect physical data from physical component
o Ability to collect side channel data from physical com-
ponent(s)
o Ability to implement attacks on cyber-physical compo-
nent
« Ability to implement defense for the cyber-physical com-
ponent
o Data Fusion of cyber and physical data in attack defense
Based on our findings a simple prototype testbed was created.
During this search, multiple surveys on testbeds and cyber
ranges were found and were of great help in conducting this
survey [1], [3]-[10]. The information collected from other
testbeds aided our team in deciding how to expand upon our
prototype. The advantage of the UGA’s testbed is that we
use side channel information in defense of our cyber-physical
systems. While we were able to find cyber-physical testbeds
the met a most of our requirements such as [11]-[19], we
were unable to locate a testbed or cyber range that used side
channel information from sensors in defense of cyber-physical
systems. Nor were we able to find a testbed that use data fusion
of cyber and physical data in attack defense.

SYSTEM DESIGNS

The initial phase of the testbed is a basic prototype that con-
tains the proposed components: cyber-physical components,
collection of physical sensor data and cyber data in real time,
basic attack on the physical components, and a basic detection
capability. Unique to our testbed is the incorporation of side
channel data for defense of our cyber-physical systems. In the
current setup, we use electric-waveform data of our motor’s
power to detect attacks. See Figure 1 for images of some of
the testbed equipment.

Fig. 1. Testbed Equipment.

A. Motors & Sensors

The testbed is constructed to emulate the behaviours of
the industrial machines. Such testbed consists of a permanent
magnet synchronous machine (PMSM), a three-phase inverter
and an ARM-based digital control unit. Table I shows the
detail specifications of the testbed motors and Fig. 2 shows
the control diagram of the motor drive.

TABLE I
MINI-S&A-TESTBED MOTOR SPECIFICATIONS

Control Unit
Power Module
Motor
Motor Ratings
Power Supply
4*Interfaces

NXP S32K144 (Arm Cortex-M4F)
SMARTMOS GD3000 3-phase motor driver
LINIX 45ZWN24-40
24V, 40W, 4000rpm, 2.3A, 2 pole pairs
PS-1250APL05/S3: 12V, 5 A
On-board for CAN
On-board for LIN
On-board OpenSDA debug interface
SWD/JTAG debug interface

As shown in Fig. 2, the control unit adopts the field
oriented control algorithms to regulate the rotating speed
of PMSM according to the requirement from the PC. The
PC and the control unit are communicating through the
NXP FreeMASTER interface and the Low Power Universal
Asynchronous Receiver-Transmitter (LPUART) module. The
control algorithms have a two-level feedback control loop:
the outer control loop and the inner control loop. The outer
loop has a speed regulator associated with the field weak-
ening module to control the motor rotating speed and the
air gap flux. The outer loop generates the current references
and sends them to the inner loop. The inner loop has two
proportional—integral controllers for controlling the d- and g-
axis current, respectively. The outputs of the inner control
loop are the d- and g-axis voltage commands. Then the
Inverse Park Transformation transforms such commands into
stationary reference frame, and the PWM modulation module
converts these commands into PWM signals, which directly
control the six power switches in the inverter. Table II lists
the detailed descriptions of all the variables in the control
diagram. In addition, National Instrument c-DAQ compact
data acquisition board is used to collect and pre-process the
physical measurements from the pre-deployed sensors. The
sensors implemented for collecting motor line current signals
are from Texas Instruments (TMCS1108A4B), which are Hall-
effect current sensors with internal reference.
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Fig. 2. Control diagram and attack source of the motor testbed.

B. Software

The testbed is a combination of commercial, open source,
and in-house software. The software for the motor boards are
NXP’s FreeMASTER Run Time Debugging Tool, FreeMAS-
TER Lite, and S32 Design Studio IDE. These tools are used
for loading software onto the motor board and for setting up
communication to the board from a workstation. Additionally,



TABLE II
CONTROL VARIABLE DETAIL DESCRIPTIONS
speed_req motor rotating speed command
omega_actual_mech feedback motor rotating speed
is_d_req d-axis current reference
is_q_req g-axis current reference
is_q_lim g-axis current limitation
is_d feedback d-axis current
is_q feedback g-axis current
is_a feedback motor phase-A current
is_b feedback motor phase-B current
is_c feedback motor phase-C current
is_alpha feedback o-axis current
is_beta feedback (3-axis current
us_d d-axis voltage command
us_q g-axis voltage command
us_alpha uncompensated a-axis voltage command
us_beta uncompensated [3-axis voltage command
us_alpha_comp compensated c-axis voltage command
us_beta_comp compensated (3-axis voltage command
u_dc feedback DC bus voltage
theta feedback motor rotor position
theta_enc rotor position signal from encoder

Eclipse Paho MQTT and custom built Python software are
used for setting up motors in their default run-time state and
for issuing remote commands to the motors. Motor commands
are sent to the local NXP Lite Node Servers via JavaScript
Object Notation - Remote Procedure Calls (JSON-RPC). In-
fluxDB is used for storing all real-time data. Wireshark and
Tshark are used for logging network traffic. Hydra is used
for password cracking. LabView is used to read data from the
sensors. Our LabView program passes data to a Python script
that extracts Phasor Measurement Unit (PMU) data from the
raw sensor data and sends it to InfluxDB for storage. There
is also a Python script that collects information from filtered
Tshark packet collection and stores the data in InfluxDB.
Lastly, CollectD is used to gather hardware system statistics
data on the testbed’s Raspberry Pi workstations. A Python
script is used to pass the collected data to InfluxDB for storage.
There is another Python script which monitors the data for
anomaly detection. Grafana is used for visualization of various
features in real time as well as for anomaly detection display.

C. Network Description

The testbed is a small network that includes four motors.
It is connected to the University of Georgia’s PAWS-Secure
network. The motors are used to emulate a steel roller in which
all four motors should operate at the same speed. Each motor
is connected to a Windows 10 workstation that act as the
motors controllers. The motors are connect to the workstations
by a micro-usb cable. These workstations are connected via
Ethernet to a router that is connected to PAWS-Secure. This
setup is to loosely represent an Operational Technology (OT)
network connected to a traditional Information Technology
(IT) network. There are four Raspberry Pi 4 connected to
a Wi-Fi router. The Wi-Fi router is connected by Ethernet
to the same router as the Windows 10 workstations. The
purpose of the Raspberries is to emulate user workstations
residing on IT network that can remote into the Windows 10

controllers located on an OT network. Even though our OT
workstations are connect to PAWS-Secure, our team needed to
avoid attacking any devices in PAWS-Secure, thus we attached
a small wireless LAN to represent our IT network. Sensors
are attached to each motor in order to read the raw electric
wave-form data from each motors power usage. These sensors
output data to a Windows 10 workstation via a National
Instruments (NI) cDAQ. PMU and Total Harmonic Distortion
(THD) data are extracted from the raw waveforms and sent
to the InfluxDB database. An Ubuntu workstation hosts our
Grafana dashboards that monitor all of our data collection
in real-time. The InfluxDB server, Ubuntu workstation, and
the LabView workstation are all directly connected to PAWS-
Secure. See the Fig. 3 below for details.

Fig. 3. Schematic of the testbed.

D. Attack Description

For our proposed step-stone attack, we developed a Python
script that launches a chain attack in the WLAN based on
the input series of IP addresses of the target. The complete
workflow is as follows:

1) attacker gained access to the IT network via an unse-
cured wireless access point shown in Fig. 3

2) attacker launches port scan to locate other workstations
on the network

3) brute force password cracking attack based on the target
victim IP address, which is arbitrary selected from the
scan

4) once the password is cracked, the attacker logs in and
loads and runs a script that sends JSON-RPC commands
to the NXP Lite server to execute motor commands. This



allows the attacker to speed up, slow down, stop, restart,
and disconnect the motor

5) The compromised Pi then launches this attack on another
Pi

6) Repeat

III. SYSTEM DEMONSTRATIONS AND EVALUATIONS

The testbed collects and stores three types of data. Sensor
data, network packet data, and workstation system statistics
data. The details of each type of data are discussed below.

A. Network Data

Network data statistics play a crucial role in detecting
suspicious activities in a network. The testbed uses Wireshark
and Tshark to capture and analyze network traffic data. In
the testbed’s step-stone attack, compromised Raspberry Pis
send out ARP request to identify the IP address of the next
Raspberry Pi to attack. This happens until the last Raspberry Pi
is compromised. To detect the sudden influx of ARP packets,
we calculate network statistics, in particular traffic and packet
size every 5 seconds. Traffic denotes the number of packets
and packet size denotes the size of packet for each identified
protocol type. This is done by using a protocol analyzer i.e
Tshark, a command line version of the popular tool Wireshark.
We then pipe the output of Tshark to a python script for
post processing and digest the data into the testbeds InfluxDB
server. From InfluxDB, the data is then visualized using
Grafana. When the attack is carried out, there is a clear spike
in traffic and packet size. This is simple means of identifying
the step-stone attack using network traffic data. I more robust
means of detecting this anomalous behavior will be added to
the test bed in the future. See Figure 5 for an example of
Grafana network data dashboard.

ARP Packet Count

Fig. 4. A Grafana panel showing ARP Packet counts. Note the increase in
ARP traffic during an attack highlighted in the red box.

B. System Statistics Data

System statistics data represents the status of the worksta-
tion, which in our case are of four raspberry Pis. Specifically,
it consists of memory usage, CPU core temperature, CPU
short/long term load, network traffic (TX and RX), disk
usage and disk bandwidth. Collectd is used to collect those
data. It is a daemon which collects system and application
performance metrics periodically and provides mechanisms to

Fig. 5. A Grafana panel showing system statistics data. It is showing the real
time status of the Raspberry Pi 2. From the picture, we could monitor the
CPU core temperature, Memory usage, CPU short/long term load and disk
usage, etc.

Mater
Starting Up

Fig. 6. A Grafana panel showing sensor data. It is showing the real time
status of a motor. From the picture, you can see when a motor starts up and
when its attacked.

store the values in a variety of ways, such as data pushed
to the InfluxDB database. By taking this information into
consideration, we could tell the system’s current status in real
time, which potentially shows if the system is healthy or not.
For example, when our designed step-stone attack is happening
in a Raspberry Pi, some metrics will show abnormal pattern
such as CPU temperature, traffic and CPU short term load.
Figure 5 shows an example of Grafana panel. From the picture
we could see the status of Raspberry Pi 2 in real time.

C. Sensor Data

Texas Instruments TMCS1108A4B sensors are connected
directly to the power cables on the motor. The sensors send
current data. For each motor, we currently have two sensors
connected to record two of the three phase currents. This
information is collected with a National Instrument c-DAQ
compact data acquisition board and sent to a workstation
with LabView. This workstation displays the raw waveforms
and utilizes a python script to extract PMU data (magnitude,
frequency, phase angle) and the Total Harmonic Distortion
(THD) from the raw waveforms. This extracted data is sent to
InfluxDB for storage via the same script. This data is our side
channel data that our anomaly detectors utilizes. Not that the
sensor data is sent directly to InfluxDB directly from a system
on PAWS-Secure and does not traverse the OT network. See
Figure 6 for an example of a Grafana dashboard displaying
sensor data.



D. Anomaly Detection & Analysis

Singular Spectrum Transformation (SST) [20], [21] is a
classical way to decompose the time series and get the change
point score (CP score) that could help us find anomalies. It
embeds the time subsequences into the subspaces composed
by top principle components. Then, we could define a change
point score based on an appropriate distance between two
subspaces to filter out the noise and feature the signal that
drastically change over time.

We first denote the a time sequence by X; =
(Tisty -y Tist+m+w), and the next time sequence with lag [
is Xey1 = (Tp(e41)s oo Tis(t4+1)+m+w) Where t € {1,..,n},
m is the order of each time window, w is the window length,
and [ is the time lag between two consecutive time window.
For each sequence of time series of length m+w, we stack the
m subsequences of length w and convert the time sequence
X4, X¢41 to matrices Hy, Hy1 1, respectively. Figure 7 shows
how we stack the subsequences for each time window and
get the CP score. Each parallelogram represents a stacked
time matrix, and the CP score of the present time window
is calculated by the distance between the past time window
and present time window.

Xo X1 Xn-a Xn
start end

rder window window
length

der
ize length size
I\ I\
[ ) [ ) ;

h 1
T
lag length 1

Score 1=
distance (Xo, X1)

h L
v
lag length l

Scoren =
distance (X,_1, Xn)

Fig. 7. The procedure of the algorithm processing the sequential data.

Since the signals are often with noise which would contami-
nate the anomalous information, we would like to use singular
value decomposition (SVD) to select the major information.
Then the time matrix H; could embed the time series into
subspaces S" = span{uV), ..., u™}, where {u), .. u®}
are top h left singular vectors from applying SVD to matrix
H,. Since two time sequences are now embedded to two
subspaces with different dimensions, we could define the
distance between two time sequences by distances in the
projected spaces.

For example, if the subspace of X; is S" of dimension
h, and the subspace of X;,; is V" of dimension r, we could
apply projection operators P}, and P,. to two subspaces S", V",
respectively. We define the operators as follows:

h T
P = Z:u(i)u(i)T and P, = 2:’0(1')’0(1-)T (1)
i=1 i=1
where {v()), ..., v("} are the top r singular vectors of the
time matrix H;;;,. We could then define a CP score as the
distance between two consecutive subspaces S", V"

CPy1=d(Sp,Ve)’=  min  [(Pa =P z|* ()
xESy,||z||=1

In this example, we applied the SST algorithm to DC current
of the 1%t sensor in our testbed. As for the choice of the
number of singular vectors of the time matrix, we use the top
ones that the corresponding singular values could take up 90%
of the sum of all singular values. As for the hyperparameters,
we set the window length as 15, lag and order are both 5.
Applying the above algorithm, we could get the anomaly
score of the DC current for the 2" sensor. As shown in
Figure 8, we could see that after the anomaly happens, the CP
score calculated by the anomaly detection algorithm increased
drastically with little delay.

Fig. 8. A Grafana panel showing the anomaly score and the DC current
magnitude of sensor 2.

E. Issues & Limitations

During the setup of the testbed, we encountered several
problems. The initial sensors that were chosen did not provide
good signals when monitoring the motors’ electric waveforms
which led to us replacing them with the current sensor model.
This was partly due to the small power requirements of the
motors use.

The motors used in the testbed are small and not built to
any industry standards. We performed some simple tests to
verify the limits at which the motor could speed up without
causing a fault. We determined that approximately 40 rads/sec
was the maximum increment we could safely speed up or
slow down all of the motors with out causing a fault. Some of
the motors could handle larger increments while others could
not. When creating our attacks to speed up/slow down the
motors, we tried causing the motors to spin faster than their
specifications would safely allow. We were able to do so, but
repeated attempts eventually damaged the motor such that it
could no longer spin properly.

A third issue related to the use of NXP’s Node Server.
We initially connected all of the motors to on Windows
10 workstation that ran a single instance of Node Server.
However, when sending the JSON-RPC commands to multiple
motors, only one motor would execute the commands. Thus
we moved to multiple workstations with multiple instances of
Node Server running. Note that we had to change the service
name of each instance in order to have multiple running on
the same network.

Currently, our testbed is very limited. While we have ap-
proximated an IT/OT network, we do not have true separation
using Demilitarized Zones (DMZ) between the IT and OT



networks. Additionally, the network traffic is minimal due to
the very small size of our current setup. Thus anomaly activity
stands out more in our testbed than would it would in a real
world network. Lastly, the system statistics data is monitored
on Raspberry Pis that do very little. There is no actual user
or many applications running on them. Thus anomalies that
stand out in the current set up may not be so obvious on an
active real world workstation.

CONCLUSIONS AND FUTURE WORKS

The testbed is successful in collecting and storing all of the
required data: sensor data, network traffic, and system statistics
data. Additionally, we have successfully created a step-stone
attack with in the test bed and used anomaly detection to
identify the attacks. At this point, we have not yet incorporated
data fusion to look at the combined data for attack detection.
Our testbed provides an advantage over other testbeds in
that we apply sensors to directly monitor the motors electric
waveforms for anomalous behaviour. Thus we were able to
incorporate the use of side channel information in defense
of a cyber-physical systems. Additionally, the collection and
analysis of the sensor data is logically separated from the
OT network, which provides an added layer of security. Note
that the workstations connected directly to the motor-boards
could read physical data, such as speed. However, when the
workstation is comprised, this data cannot be trusted.

In order to make our testbed a better approximation of a
real-world IT/OT network, we need to make several improve-
ments. First, we plan on adding a DMZ between our simulated
IT network and our OT network. In both of these, we plan on
adding more traffic by using a combination of virtual machines
and software the simulates user activity. Second, we plan
on adding fault and attack diagnosis in addition to anomaly
detection. Third, we plan to use data fusion to use our network,
system statistics data, and sensor data for anomaly detection,
diagnosis, and localization. Lastly, we intend to implement
more sophisticated stealthy attacks to test the efficacy of our
defenses.
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