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ARTICLE INFO ABSTRACT

Keywords: In this paper, we propose a novel reduced order model (ROM) lengthscale that is constructed by using energy
Reduced order model distribution arguments. The new energy-based ROM lengthscale is fundamentally different from the current
Lengthscale ROM lengthscales, which are built by using dimensional arguments. To assess the novel, energy-based ROM

Mixing-length
Evolve-filter-relax
Turbulent channel flow

lengthscale, we compare it with a standard, dimensionality-based ROM lengthscale in two fundamentally
different types of models: (i) the mixing-length ROM (ML-ROM), which is a ROM closure model; and (ii)
the evolve-filter-relax ROM (EFR-ROM), which is a regularized ROM. We test the four combinations (i.e., ML-
ROM and EFR-ROM equipped with the energy-based and dimensionality-based lengthscales) in the numerical
simulation of the turbulent channel flow at Re, = 395. The numerical investigation yields the following
conclusions: (i) The new energy-based ROM lengthscale is significantly (almost two orders of magnitude) larger
than the standard dimensionality-based ROM lengthscale. As a result, the energy-based lengthscale yields more
stable ML-ROMs and EFR-ROMs than the dimensionality-based lengthscale. (ii) The energy-based lengthscale
displays the correct asymptotic behavior with respect to the ROM dimension, whereas the dimensionality-based
lengthscale does not. The energy-based lengthscale is intrinsically adaptive with respect to the ROM dimension,
which is important in realistic settings where using the full order model data to determine an optimal ROM
lengthscale may not be possible. (iii) The energy-based lengthscale yields ML-ROMs and (when significant
filtering is effected) EFR-ROMs whose parameters are less sensitive (i.e., more robust) than the parameters
of the ML-ROMs and EFR-ROMs based on the dimensionality-based lengthscale. The novel energy-based
lengthscale could enable the development of better scale-aware ROM strategies for flow-specific applications
and is expected to have long term applications in nuclear reactor thermal-hydraulics.

1. Introduction ROMs can be used to predict a transient turbulent flow field in sec-
onds to minutes on a single CPU, as opposed to turbulence-resolving

Reduced order models (ROMs) are models whose dimensions are methods such as large eddy simulation (LES) or direct numerical sim-
orders of magnitude lower than the dimensions of full order models ulation (DNS), which require large computational resources (hours
(FOMs), i.e., computational models constructed by using classical nu- on clusters or supercomputers). Alternative lower-cost approaches in
merical discretizations (e.g., finite element or finite volume methods). nuclear engineering include coarser LES, hybrid Reynolds-averaged
Because of their relatively low-dimensionality, ROMs can be used as ef- Navier—Stokes (RANS)-LES, or even coarse RANS (Roelofs et al., 2012).

ficient alternatives to FOMs in computationally intensive applications,
e.g., flow control, shape optimization, and uncertainty quantification.

In recent years, ROMs have received a great deal of interest in
nuclear engineering applications to generate models that can account
for the fundamental physics of key phenomena while maintaining a
low computational cost (Merzari et al., 2017; Fick et al., 2018). This
is an important goal in nuclear engineering due to the size and com-
plexity of nuclear systems, which make the detailed three-dimensional
simulation of full systems impractical for design exploration purposes.

Compared to these approaches, ROMs have the advantage that, if
properly constructed, they can offer similar accuracy to LES (Fick et al.,
2018), but they require expensive training data and they are not easily
generalizable.

ROMs have received attention for a variety of specific nuclear
engineering applications. Examples are efforts to develop modal and
machine-learning based ROMs for thermal stratification (Liu et al.,
2022), which is recognized as critical for the licensing of liquid metal

* Corresponding author.
E-mail address: iliescu@vt.edu (T. Iliescu).
URL: https://sites.google.com/view/iliescu/ (T. Iliescu).

https://doi.org/10.1016/j.nucengdes.2023.112454
Received 8 November 2022; Received in revised form 25 April 2023; Accepted 23 June 2023
0029-5493/© 2023 Published by Elsevier B.V.


https://www.elsevier.com/locate/nucengdes
http://www.elsevier.com/locate/nucengdes
mailto:iliescu@vt.edu
https://sites.google.com/view/iliescu/
https://doi.org/10.1016/j.nucengdes.2023.112454
https://doi.org/10.1016/j.nucengdes.2023.112454
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nucengdes.2023.112454&domain=pdf

C. Mou et al.

reactors. Another important application is the use of ROMs to de-
velop closure models (Fiore et al., 2022) as a complement to existing
DNS, LES, or experimental data. In fact, ROMs allow a broader explo-
ration of the parameter space than DNS or LES alone, due to the high
computational cost of the latter.

ROMs have also found applications in the modeling of parameter-
ized coupled thermal-hydraulics and reactor physics problems (Ver-
gari et al.,, 2020, 2021). Similarly, GeN-ROM, which was recently
introduced in German et al. (2022), is a data-driven framework for
reducing multiphysics problems in nuclear systems using a proper or-
thogonal decomposition aided reduced basis strategy. GeN-ROM claims
significant computational speedup for multi-query applications and has
been successfully tested on a two-dimensional multiphysics model of a
molten salt fast reactor (MSFR). Finally, another notable effort is the
use of ROMs to develop flow acceleration for the advection-diffusion
equation (Merzari et al., 2011).

The Galerkin ROM (G-ROM) framework has been often used in
the numerical simulation of fluid flows (Holmes et al., 1996; Ahmed
et al., 2021). The G-ROM is constructed as follows: First, in an offline
phase, the FOM is used to produce snapshots, which are then utilized
to construct a low-dimensional (i.e., r < N) ROM basis {¢,,...,¢,},
where r is the ROM dimension and N is the FOM dimension. There
are several strategies for constructing the ROM basis, e.g., the proper
orthogonal decomposition (POD) (Holmes et al., 1996; Volkwein, 2013)
and the reduced basis method (Hesthaven et al., 2015; Quarteroni et al.,
2015). In this paper, we exclusively use the POD to construct the ROM
basis. Next, the ROM basis is used together with a Galerkin projection
to build the G-ROM, which can be written as follows:

a=Fa), €h)

where a is the vector of coefficients in the ROM approximation
Zi;l a;(1)@;(x) of the variable of interest, a denotes the vector of time
derivatives of a, and the vector F comprises the ROM operators that
are preassembled in the offline phase. In the online phase, the G-
ROM (1) is employed for new parameter values and/or time intervals
i.e., parameter values and time intervals that are different from those
used in the training stage. Thus, the G-ROM can be utilized in practical
applications to efficiently explore new parameter regimes without
having to run the costly FOM.

We emphasize that, when FOMs (i.e., classical numerical methods,
e.g., finite element, finite volume, or finite difference methods) are
used for the spatial discretization of the fluid flow equations (e.g., the
Navier-Stokes equations), the FOM lengthscale is generally defined as
the mesh size, h, of the spatial mesh. In contrast, the following natural
question is, to our knowledge, still open:

What is the ROM lengthscale, 5?

To formulate the above question mathematically, we first assume
that the following FOM and ROM variables are given, as is generally
the case when ROMs are applied in practical settings:

* ROM variables, e.g., the ROM dimension, r, the total number of
available ROM basis functions, R, the ROM basis functions, ¢,
and the corresponding eigenvalues, 4;, in the eigenvalue problem
solved to construct the POD basis.

» FOM variables, e.g., the FOM mesh size, h, the FOM solution,
u"OM and the computational domain characteristic lengthscale,
L.

Given these input FOM and ROM variables, we then try to answer
the above question, i.e., to express the ROM lengthscale, 6, as a function
of the given FOM and ROM variables.

To motivate the need for a ROM lengthscale, we point out that the
lengthscale is a fundamental notion in engineering, geophysical, and
biomedical applications, where it is used to characterize the resolved
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spatial scales (i.e., to determine the size of the spatial scales approxi-
mated by the computational model) in flows around cars or airplanes,
ocean or atmospheric flows, or blood flow in an artery, respectively.

To further motivate the need for a ROM lengthscale, we emphasize
that there are ROMs that use a lengthscale in their very definition. For
example, in under-resolved simulations of turbulent flows, i.e., when
the number of ROM basis functions is not enough to represent the
turbulent flow dynamics, it is well known that the standard G-ROM (1)
often yields spurious numerical oscillations and even blowup. Thus,
ROM closures and stabilizations are often used (see Ahmed et al., 2021
for a review). The ROM closures modify the standard G-ROM (1) as
follows:

a=Fa) +r, 2

where 7 is the closure term. The energy cascade, which is central
in Kolmogorov’s statistical theory of turbulence (Frisch, 1995; Pope,
2000), states that, in the inertial range, energy is transferred from the
large scales to the small scales. Since the ROM basis functions are
often ordered in decreasing order of energy content, the first ROM
basis functions generally correspond to the large, energy containing
scales, and the remaining ROM basis functions correspond to the small
scales. Thus, the role of the ROM closure term 7 in (2) is to dissipate
energy from the system. The eddy viscosity ROM closures are a popular
class of ROM closures in which the closure term is dissipative. Exam-
ples in this class include the mixing-length ROM (Aubry et al., 1988;
Holmes et al., 1996; Wang et al., 2012), the Smagorinsky ROM (Wang
et al.,, 2012), the dynamic SGS ROM (Wang et al., 2012), the eddy
viscosity variational multiscale ROM (Wang et al., 2012), the RANS-
ROM (Lorenzi et al., 2016), and data-driven ROM closures (Hijazi et al.,
2020; Mohebujjaman et al., 2019).

The ROM stabilizations are a related class of models that aim at
increasing the ROM stability. In this paper, we consider ROM sta-
bilizations that address the numerical instability in the convection-
dominated regime, which are consistent with the energy cascade con-
cept. (ROM pressure stabilizations can be found, e.g., in Ballarin et al.,
2015; DeCaria et al., 2020; Stabile et al., 2017; Stabile and Rozza,
2018.) The regularized ROMs are stabilization strategies that increase
the ROM stability by using ROM spatial filtering of various terms of the
underlying equations. Example of regularized ROMs include the evolve-
filter-relax ROM (Wells et al., 2017; Gunzburger et al., 2019; Girfoglio
et al.,, 2021a,b; Strazzullo et al.,, 2022) and the Leray ROM (Wells
et al., 2017; Sabetghadam and Jafarpour, 2012; Kaneko et al., 2020;
Gunzburger et al., 2020; Iliescu et al., 2018; Tsai and Fischer, 2022).

We emphasize that a ROM lengthscale is needed to construct both
the ROM closures and the regularized ROMs mentioned above. We also
note that a ROM lengthscale could also be useful in the preprocessing
strategy advocated in Aradag et al. (2011), Farcas et al. (2022) as a
means to filter out the noise in the input data.

In this paper, we propose a novel ROM lengthscale, which is con-
structed by using energy distribution arguments. To assess the new
energy-based ROM lengthscale, we compare it with the classical ROM
lengthscale used in Aubry et al. (1988), Holmes et al. (1996), Wang
et al. (2012), which is based on fundamentally different, dimensional
arguments. To compare the two ROM lengthscales, we utilize them
to build two different types of ROMs for under-resolved simulations:
(i) the mixing-length ROM (Aubry et al., 1988; Holmes et al., 1996;
Wang et al., 2012), which is a ROM closure model that augments the
standard G-ROM with a correction term; and (ii) the evolve-filter-relax
ROM (Wells et al., 2017), which is a regularized ROM (Reg-ROM) that
leverages ROM spatial filtering to increase the ROM stability and accu-
racy. We test both the ROM closure and the Reg-ROM equipped with
both ROM lengthscales in the numerical simulation of the turbulent
channel flow at Re, = 395. We note that a preliminary numerical
investigation of the new ROM lengthscale was performed in Mou et al.
(2022).
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The rest of the paper is organized as follows: In Section 2, we outline
the standard G-ROM, ML-ROM, and EFR-ROM. In Section 3, we define
the new, energy-based lengthscale and the standard dimensionality-
based lengthscale. In Section 4, we present results for our investigation
of the ML-ROM and EFR-ROM equipped with the two lengthscales in
the numerical simulation of the turbulent channel flow at Re, = 395.
Finally, in Section 5, we draw conclusions and outline directions of
future research.

2. Reduced order models

In this section, we outline the construction of the standard G-
ROM, mixing-length ROM (ML-ROM), and evolve-filter-relax ROM
(EFR-ROM). As a mathematical model, we consider the incompressible
Navier-Stokes equation (NSE):

3—1:—Re_lAu+(u~V)u+Vp =f, 3)

V-u =0, 4

where u = [u,uy,u;]" is the velocity vector field, p the pressure field,
Re the Reynolds number, and f the forcing term. The NSE are equipped
with appropriate boundary and initial conditions.

2.1. Galerkin ROM (G-ROM)

To build the G-ROM, we consider the centering trajectory of the
flow,

| [T
U(x) = —/ u(x,)dt, )
T %
and assume that the ROM velocity approximation can be written as
follows:

.
u,(x,1) = UGx) + Y a,(0@,(x), (6)
j=1

where {g; };:I are the ROM basis functions and a = [ay,...,q,]" are
the sought ROM coefficients. In our numerical experiments, we use the
POD (Holmes et al., 1996) to construct the ROM basis, but other ROM
bases could be used (Brunton and Kutz, 2019; Hesthaven et al., 2015;
Quarteroni et al., 2015). The next step in the G-ROM construction is
to replace u with u, in (3) and project the resulting equations onto the
space spanned by the ROM basis, {¢; };:]. This yields the G-ROM:

<aur,(p[>+((u,~V)u,,(p[)+Re’l(Vu,,V(p[) = (f ¢,») Li=1,...,r, (7)

or

where (-, -) denotes the L? inner product. The G-ROM can be written as
the following dynamical system for the vector of time coefficients, a(t):

t.1=b+Aa+aTBa, 8
where

b, = (¢i.f) = (¢;,U-VU) = Re™ (Vg,, VU), 9)
Ay = —(0,U-Veo,)— (¢, 9, VU) - Re™! (Vo Ve,,) . (10)
By = —(01. 00 Vo,). an

2.2. Mixing-length ROM (ML-ROM)

The G-ROM (8) is computationally efficient and relatively accurate
in the numerical simulation of laminar flows. However, as mentioned
in Section 1, in under-resolved simulations of turbulent flows, the
standard G-ROM (1) often yields spurious numerical oscillations and
even blowup. The reason is that, according to the energy cascade con-
cept and Kolmogorov’s statistical theory of turbulence (Frisch, 1995;
Pope, 2000), the model should include a mechanism to transfer energy
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from the large scales (i.e., the ROM scales) to the small scales. Thus,
the G-ROM is generally equipped with a ROM closure model, which
models the effect of the discarded ROM modes {¢,.,;, ...} on the G-ROM
dynamics:

a=b+Aa+d Ba+r, 12)

where 7 is the ROM closure model. The current ROM closure models are
carefully surveyed in Ahmed et al. (2021). Some of these ROM closure
models are inspired from classical large eddy simulation (LES) closure
modeling (Berselli et al., 2006; Sagaut, 2006). To construct these LES-
ROM closure models, one needs to define a ROM lengthscale, which
represents the size of the spatial scales modeled in the LES-ROM. There
are only a few ROM lengthscales in current use. In Section 3, we define
a novel ROM lengthscale. To assess this new ROM lengthscale, we
consider one of the simplest ROM closure models, the ML-ROM (Holmes
et al.,, 1996; Wang et al., 2012), in which the ROM closure term =
in (12) is written as

t=—(aUy;8)S,a, (13)

where § is one of the two ROM lengthscales defined in Section 3, U,
is a characteristic velocity scale, « is a constant, and .S, is the ROM
stiffness matrix with entries (Sp);; = (V(pi, V(pj), i,j=1,...,r. The ML-
ROM model (13) is a functional closure model, which aims at increasing
the ROM viscosity in order to dissipate energy and mimic the effect
of the discarded modes (Couplet et al., 2003). The ML-ROM (13) was
first used in Aubry et al. (1988), Holmes et al. (1996) and was further
investigated in Wang et al. (2012).

2.3. Evolve-filter-relax ROM (EFR-ROM)

Regularized ROMs (Reg-ROMs) (Kaneko et al., 2020; Wells et al.,
2017) represent an alternative to ROM closures (e.g., the ML-ROM
outlined in Section 2.2) in under-resolved simulations of turbulent
flows. Instead of adding a closure term, z, as in ROM closure modeling
(see (12)), Reg-ROMs are constructed by using ROM spatial filtering
of various terms in the NSE to increase the ROM numerical stability.
Although regularized models have been used for decades in classical
CFD (Fischer and Mullen, 2001; Layton and Rebholz, 2012; Mullen and
Fischer, 1999), Reg-ROMs have only been recently developed (Wells
et al., 2017).

The evolve-filter-relax ROM (EFR-ROM) is one of the most popular
Reg-ROMs. EFR-ROM is a modular ROM stabilization strategy that
consists of three steps: In the first step, which is called the evolve step,
the standard G-ROM is used to advance the current EFR-ROM time
iteration, a”, to an intermediate approximation, w"*!. In the second
step, which is called the filter step, the intermediate approximation,
w"t! is filtered with the ROM differential filter (Wells et al., 2017),
which yields the filtered intermediate approximation, w""!. In the third
step, which is called the relax step, the EFR-ROM approximation at
the next time step, a”"*!, is calculated as the convex combination of
the intermediate approximation, w"*!, and the filtered intermediate

approximation, w"'. The EFR-ROM is summarized in the following
algorithm:
(IO Evolve : a" G-RoM ® w'*!

(II) Filter :
(III) Relax :

(M, +78S,)w™" =w™!

1

n+1 +XE"+ ,

an+l =(1- 1) w
where y € [0,1] is a relaxation parameter and M, is the ROM mass
matrix with entries (M,);; = (¢;.9;), i.j = 1,....r. In Step (II), we
use the ROM differential filter (DF) with an explicit ROM lengthscale,
5, which represents the filtering radius. The DF acts as a spatial filter
by eliminating the small scales (i.e., high frequencies) from the input
data (Berselli et al., 2006). We note that, in Step (II), we modify the
classical DF (Berselli et al., 2006) by introducing a new parameter



C. Mou et al.

y. This new parameter y has a role similar to that of the parame-
ter a used in the ML-ROM (13): It controls the amount of filtering
used in the DF. Step (III) is a relaxation step in which the EFR-ROM
velocity approximation at the new time step is defined as a convex
combination of the approximations obtained in Step (I) and Step (II).
The relaxation parameter y diminishes the magnitude of the numerical
diffusion (Ervin et al., 2012; Fischer and Mullen, 2001; Mullen and
Fischer, 1999) and increases the accuracy (Bertagna et al., 2016; Ervin
et al.,, 2012). Although there is no universal y scaling, the choices
x ~ 4t (Ervin et al., 2012), where 4 is the time step size, and higher y
values (Bertagna et al., 2016) have been used in the literature. To our
knowledge, the EFR-ROM was first used in Wells et al. (2017) without
the relaxation step, and in Gunzburger et al. (2019) with the relaxation
step (see also Strazzullo et al., 2022 and references therein). EFR-ROM
was also investigated in Wells et al. (2017), Gunzburger et al. (2019),
Girfoglio et al. (2021a,b), Strazzullo et al. (2022).

3. ROM lengthscales

In this section, we present two different ROM lengthscales: In
Section 3.1, we present a standard ROM lengthscale, denoted §,, which
is constructed by using dimensional analysis arguments. In Section 3.2,
we propose a novel ROM lengthscale, denoted §,, which is constructed
by using energy balance arguments. As explained in the introduction,
both definitions aim at expressing the ROM lengthscale as a function of
the following two types of input variables: (i) ROM variables (e.g., the
ROM dimension, r, the total number of ROM basis functions, R, the
eigenvalues, 4;, and the ROM basis functions, ¢;). (ii) FOM variables
(e.g., the fine FOM mesh size, h, the FOM solution, u"®™  and the
computational domain characteristic lengthscale, L). Given these input
FOM and ROM variables, we then try to answer the following natural
question: What is the ROM lengthscale, 5?

3.1. Standard dimensionality-based ROM lengthscale &,

In this section, we use dimensional analysis to construct the first
ROM lengthscale, 5,. To this end, we follow the approach used in
Section 3.2 in Wang et al. (2012), which, in turn, is based on the
pioneering ML-ROM proposed in Aubry et al. (1988) for a turbulent
pipe flow.

To construct the ROM lengthscale §;, we first define the componen-
twise FOM velocity fluctuations, i.e., the unresolved component of the
velocity, which is computed by using FOM data:

R
WM = N afoMyl =123, (14)
Jj=r+l
where R is the total number of ROM modes, ¢’ are the componen-
twise ROM basis functions, and af°M = @M ¢;) are the ROM
coefficients computed by using FOM data. Using the componentwise
FOM velocity fluctuations u’l Fom ,u’z Fom , and u; FOM in the x, y, and z
directions, respectively, we build the FOM velocity fluctuation vector
field ' FOM = [u’lFOM P FOM 1 FOM gince w/'FOM varies with time,

sy Uy
1FOM
)

we calculate the time averaged value of u ie.,

M M R
Wm0 = 2 Y M =2 Y Y (uFOM(~,rk>, fp,(~>> @10),
k=1

k=1 l=r+1

(15)

where M is the number of snapshots.

To construct the ROM lengthscale §,, we adapt equation (22) used
in Wang et al. (2012) to our computational setting (i.e., the turbulent
channel flow in Section 4):

1/2
Ly Ly rLy 3 FOM ;FOM
[ Al e Y u] dx; dx, dx;
o= FOM FOM > e
! !
Ly Ly ;L33 §3 9% 4
o Jo oo Eici Zjm ox; ox;

dx; dx, dx;
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where L, L,, and L; are the streamwise, wall-normal, and spanwise
dimensions of the computational domain of the turbulent channel flow
test problem, respectively.

Note that a quick dimensional analysis shows that the quantity
defined in (16) has the units of a lengthscale: [§,] = ((m/s)(m/s)m?) /
((A/9)1/s) m3)1/ 2 — m. We also note that the ROM lengthscale, &,
deFfiglA(jd in (16), depends on the FOM velocity fluctuation vector field,
u .

An alternative lengthscale was defined in equation (23) in Wang
et al. (2012). Since this alternative lengthscale was not used in the
numerical investigation in Wang et al. (2012) (because it was harder
to implement), we do not consider it in this study.

3.2. Novel energy-based ROM lengthscale &,

In this section, we use energy balancing arguments and propose a
new ROM lengthscale, §,. Noticing that the ROM truncation level, r,
has the role of dividing the kinetic energy of the system, we can require
that the new ROM lengthscale, §,, do the same. Specifically, we require
that the ratio of kinetic energy contained in the first » ROM modes,
Y_, 4;» to the kinetic energy contained in the total number of ROM
modes, Z,i | Ai» be equal to the ratio of the kinetic energy that can be
represented on an imaginary mesh of size §,, KE(5,), to the kinetic
energy that can be represented on the FOM mesh, K E(h):

Zio 4 _ KE@G)
T4 KE®

aa7)

Remark 3.1. We emphasize that the mesh of size §, is not used in
the actual ROM construction. Instead, this imaginary mesh is used to
highlight the fundamental difference between the physical lengthscales
of the space generated by the first  ROM modes, X" = span{¢,, ..., @,},
and the physical lengthscales of the space generated by all R ROM
modes, X® = span{@;,..., @, @,,1, ..., g}. Indeed, since the FOM data
was used to build all the ROM modes, all the lengthscales of the space
XR can be represented on the FOM mesh. However, the imaginary
mesh of size §, can represent only the lengthscales of the space X"; it
cannot be expected to represent the physical lengthscales of the space
spanned by the higher index ROM modes {@,,;,...,@r}, which are
generally associated with the small scales.

To compute the ratio ’:(’2((5’,2) in (17), we transfer the problem to the

usual Fourier space. To this end, we first notice that 6, defines a cutoff
wavenumber:

.2z
=

We then notice that the kinetic energy in the system can be written in
terms of the energy spectrum, E(-):

ks (18)

k
KE(k) = / E(K)dK', 19
ko

where k, = 2z is the Fourier wavenumber that corresponds to the
computational domain characteristic lengthscale, L. In the case of
isotropic, homogeneous turbulence, we have the usual energy spectrum
given by Kolmogorov’s theory (Sagaut, 2006; Pope, 2000)

E(k) ~ Ce¥P k™13, (20)
Thus, the condition imposed in (17) can be written as

[ Eqar
ko _ Z,-f] /11' nota=tion

. === A, 21
fko”E(k)dk Yt Ai

where k;, = 2z is the highest Fourier wavenumber that can be resolved
on the given FOM mesh size, 4. The LHS of (21) can be evaluated by
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using (20):
2/3  ,-2/3
ks ks, -k
/ ZE(k)dk:C£2/3/ i Bak=cet 20 | (22)
ko ko -2/3
and, similarly,
K . 23 23
/ E(k)dk=C52/3/ kP dk=ceP 0 (23)
ko ko -2/3

Plugging (22) and (23) back into (21), simplifying, and rearranging, we
obtain

-2/3

k;;” = AP w1 =) k. 24

Since 1 < r < R, A satisfies the inequality 0 < A < 1. Thus, (24) implies
that k;/ 3 is a convex combination of k;z/ 3 and kaz/ 3, Furthermore, as
expected, k;, satisfies the following asymptotic relations:

[(r - R) = (k;, — kh)] and [(r - 0) = (k;, — ko)] .

(25)
Using (24) together with (18), gives us a formula for 6,:
2r 27\723 27\723 32
5, = i =2z [A (T) +(1—A) (T)
= (AR 41— 2P (26)

The new ROM lengthscale, 6,, defined in (26), depends on the FOM
mesh size, h, the ROM dimension, r, the total number of ROM ba-
sis functions, R, the eigenvalues, 4;,, and the computational domain
characteristic lengthscale, L.

Remark 3.2 (Asymptotic Behavior). We note that the novel ROM length-
scale, §,, satisfies the following two natural asymptotic relations:

+ As r approaches R, &, approaches h.
This simply says that, as expected, when the ROM dimension, r,
approaches the maximal ROM dimension, R, the ROM length-
scale, 6,, approaches the minimal FOM lengthscale, & (i.e., the
spatial mesh size).

As r approaches 1, 6, approaches L.

This simply says that, as expected, when the ROM dimension,
r, approaches the minimal ROM dimension, 1, the ROM length-
scale, &,, approaches the maximal FOM lengthscale, L (i.e., the
dimension of the computational domain).

4. Numerical results

In this section, we perform a numerical investigation of the two
lengthscales discussed in Section 3: the standard dimensionality-based
ROM lengthscale, §,, defined in (16), and the new energy-based ROM
lengthscale, 6,, defined in (26). To this end, we use two fundamentally
different ROMs: the ML-ROM presented in Section 2.2 and the EFR-
ROM presented in Section 2.3. In each type of ROM, we use the two
ROM lengthscales and compare the results. To this end, in our numer-
ical investigation, we test four types of models: (i) ML-ROM1, which
is the ML-ROM in which the velocity scale, U,,;, is set equal to §;;
(ii) ML-ROM2, which is the ML-ROM in which the velocity scale, Uj;;,
is set equal to &,; (iii) EFR-ROM1, which is the EFR-ROM in which the
filter radius, 6, is set equal to §;; and (iv) EFR-ROM2, which is the EFR-
ROM in which the filter radius, é, is set equal to §,. Thus, to compare
the two lengthscales, we compare the four ROMs (i.e., ML-ROM1,
ML-ROM2, EFR-ROM1, and EFR-ROM2) in the numerical simulation
of the 3D turbulent channel flow at Re, = 395. We emphasize that
the goal of this section is not to find the best ML-ROMs and EFR-ROMs.
Instead, we investigate whether the two lengthscales are different and, if so,
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quantify their differences and how these differences impact the ML-ROM
and EFR-ROM results.

4.1. Numerical setting

FOM. The computational domain is a rectangular box, 2 = (-2x,27)x
(0,2) x (—2x/3,2x/3). We enforce no slip boundary conditions on the
walls at y = 0 and y = 2, and periodic boundary conditions in the
x— and z—directions. We also use the forcing term f = [1,0,0]" and
the Reynolds number Re, = 395. To generate the snapshots, we
use the reduced NS-a (rNS-a) Cuff et al., 2015; Eroglu et al., 2017;
Rebholz et al.,, 2017b,a model, which is an LES model. The rNS-a
model was proposed in Cuff et al. (2015) as a stable and efficient C°
finite element approximation to the NS-a model, which was originally
developed from the Camassa-Holm equations (Chen et al., 1998). To
generate the snapshots, we utilize the same computational setting as
that used in Rebholz et al. (2017a), where the rNS-a was shown to
yield accurate results on coarse meshes in the numerical simulation
of the turbulent channel flow at Re, = 395. Specifically, to ensure
that the Reynolds number is kept constant during the simulation, we
dynamically adjust the bulk velocity at each time step (John and
Roland, 2007). In the spatial discretization of the rNS-a model, we
use a finite element discretization and the (P3,P2“”“) divergence-free
Scott-Vogelius elements on a tetrahedral mesh that is heavily weighted
towards the wall. The mesh provides 82281 velocity and 53 760 pressure
degrees of freedom. In the time discretization of the rNS-a model, we
use the decoupled IMEX-BDF2 method with the time step size 4r =
0.002. Finally, we use an rNS-« filter radius a = 0.02, which is the same
as that used in Rebholz et al. (2017a).

ROM. We collect a total of 5000 snapshots from t+ = 60 to t = 70
(i.e., from a time interval in which the flow is in the statistically steady
regime) and use the POD to generate the ROM basis. For illustrative
purposes, we plot the magnitude of the velocity fields of the ROM basis
functions ¢, ,5, and @5, in Fig. 1.

For the ROM time discretization, we utilize the commonly used
linearized BDF2 temporal discretization with a time step size 47 = 0.002.
As the ROM initial conditions, we use the ROM projections of the LES
approximations at + = 60 and ¢ = 60.002. For convenience, in our ROM
simulations, ¢ = 0 corresponds to ¢ = 60 in the LES model.

To assess the ROMs’ performance, we use two different criteria:
(i) the time evolution of the kinetic energy, E(r), and (ii) second-
order statistics. For the ML-ROM assessment, we also use the energy
spectrum.

We define the ROM kinetic energy as follows:

E@ = % / (uy (e, 0 + up(x, 1 + uz(x, 1)*) dx, 27)
Q

where u;,u,, and u; are the components of the ROM velocity field
approximation.

Following Rebholz et al. (2017a), we consider the following two
second-order statistics: (i) the normalized root mean square (RMS) of
the streamwise velocity component, Uy, s:

™ 1 3 ™ 1/2
'Rn -3 Ry
Upus = , (28)

ul,‘r

and (ii) the normalized streamwise-spanwise Reynolds stress tensor
component, R;,:

Ry, i= —2. (29)

In these second-order statistics, the Reynolds stress tensor components
are calculated as follows:

R, = (Cwy ), ), = (i), ((w5),), - G0
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Fig. 1. The 1st, 25th, and 50th POD modes.

where (-), denotes spatial averaging, (-), denotes time averaging, and
u; are the components of the given ROM or FOM velocity field approx-
imations. The friction velocity, «; ., which is used in (29), is calculated
by using the following formula:

U .
uy, =1[v mean(ymm)’ (31)

Ymin
where v is the kinematic viscosity, y,,;, the minimum positive y-value of
the FOM mesh, and Upean = ((u), ), the average ROM or FOM velocity
flow profile.
To calculate the energy spectrum, we perform a fast Fourier trans-
form of the kinetic energy data.

4.2. Numerical results: Lengthscale comparison

In this section, we investigate the relative size of the two ROM
lengthscales: (i) the standard dimensionality-based lengthscale, &, de-
fined in (16), and (ii) the novel energy-based ROM lengthscale, 5,
defined in (26). To calculate §, in Eq. (26), we define the FOM global
mesh size, h, as h = maxgcy rg, where the mesh K is the set {K} of
tetrahedrons, and ry is the inradius of the local tetrahedron, K. For
the test problem used in our numerical investigation, 2 = 1.1 x 1071,
Furthermore, we define the maximal FOM lengthscale, L, as the vertical
size of the computational domain, i.e., L = 2.

In Table 1, we list the 6, and &, values for r values from 4 to 50.
These results show that the two ROM lengthscales have very different
behaviors with respect to changes in r.

Magnitude behavior. First, we notice that the 6, magnitude is between
one and two orders of magnitude larger than the §; magnitude. Indeed,
for the low r values (i.e., r = 4,8,16), 4, is more than an order of
magnitude larger than §,. For the large r values (i.e., r = 32,40, 50), &,
is still an order of magnitude larger than §;, but the difference between
the two lengthscales is smaller.

Asymptotic behavior. Second, the asymptotic behavior of the ROM
lengthscales with respect to r is fundamentally different: As r increases,
the §, magnitude remains relatively unchanged. In contrast, as r in-
creases, the 5, magnitude decreases by almost one order of magnitude.
We emphasize that §, has the natural asymptotic behavior expected
from a ROM lengthscale, as explained in Remark 3.2: (i) As r increases
toward its maximal value, i.e., R (which is R = 804 in our numerical
investigation), 6, approaches 4. Indeed, the results in Table 1 show that
for the maximal r value (i.e., for r = 50), 5, achieves the smallest value,
8, = 4.32x107!, which is the same order of magnitude as the FOM mesh
size, h = 1.1 x 1071, (ii) As r approaches its minimal value (i.e., 1), 6,
approaches L. Indeed, the results in Table 1 show that for the minimal
r value (i.e., for r = 1), 8, achieves the largest value, 6, = 1.63 x 10°,
which is the same order of magnitude as the size of the computational
domain, L =2.0x 10°.

Table 1

ROM lengthscale values for different r values.
r 4 8 16 32 40 50
8, 4.64e—02 4.65e—02 4.68e—02 4.68e—02 4.66e—02 4.62e—02
8, 1.63e00 1.41e+00  1.08e+00  6.84e—01 5.56e-01  4.32e-01

4.3. Numerical results: ML-ROM investigation

In this section, we investigate the role played by the two ROM
lengthscales, 6, and 6,, in the ML-ROM (13):

t=—(aUpyp Lyy) S, a. (32)

We denote ML-ROM1 the ML-ROM in which L,,; = §, in (32) and
ML-ROM2 the ML-ROM in which L,,; = é, in (32). To ensure a fair
comparison of ML-ROM1 and ML-ROM2, we use the same constant «
and the same velocity scale U,,; (i.e., the time averaged streamwise
velocity component) in (32) for both models, and vary only the ROM
lengthscale, i.e., Ly,;; =6, or Ly, = &,. To vary the ROM lengthscale,
we vary the r value in the definitions of é; and 6,. In Figs. 2-7, we
plot the time evolution of the kinetic energy, the second-order statistics,
and the energy spectra of the ML-ROM1 and ML-ROM2 for different r
values and two different « values: a = 6 x 1073 (Figs. 2, 4, and 6) and
a = 6x107* (Figs. 3, 5, and 7). (Results for more a values are presented
in the preliminary numerical investigation in Mou et al. (2022).) As
a benchmark for the ROM results, we use the projection of the FOM
results on the ROM basis (denoted as LES-proj in these plots). Thus,
for each ROM space dimension, r, we ensure that the benchmark is the
best possible approximation of the FOM data in the r-dimensional ROM
space.

Stability. Since the results in Table 1 show that 6, is between one and
two orders of magnitude higher than §,, we expect ML-ROM2 to yield
more stable results than ML-ROM1. Indeed, since we fix all the ML-
ROM parameters (i.e., the constant « and the velocity scale U,,;) and
8, is significantly larger than §,, we expect the ML-ROM2 artificial
viscosity to be higher than the ML-ROM1 artificial viscosity and, thus,
ML-ROM2 to be more stable than ML-ROM1. Specifically, when there
is not enough artificial viscosity to dissipate energy from the system at
the correct physical rate, we expect the ML-ROM kinetic energy to grow
to unphysically high levels and, eventually, to blow up. In Figs. 2-7,
ML-ROM2 yields stable results for all r values and for both « values. In
contrast, for the smallest a value, a = 6 x 10~* (Figs. 3, 5, and 7), ML-
ROM1 blows up for all r values. (We note that, in the energy spectrum
plot in Fig. 6, the ML-ROM1 blowup is manifested in unphysical energy
values, which are much higher than the LES ones.) Furthermore, for
the largest « value, a = 6 X 10~3 (Figs. 2, 4, and 6), ML-ROM1 blows
up for the small r values (i.e., r = 4,8,16, and 32). To quantify the
stability of the two ML-ROMs, in Table 2, for different r values, we list
the threshold « value, i.e., the value that ensures that, if « > «;, then
the ML-ROM is stable. These results show that, for each r value, the
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Fig. 3. Time evolution of the ML-ROM kinetic energy for a = 6 x 107,

Table 2
ML-ROM threshold «, values for different r values.
r 4 8 16 32 40 50
ML-ROM1 o 10e-3 9.8e-3  9.2e-3  85e-3  6.5e-3  6.2¢-3
ML-ROM2  q 2.9e-4  3.4e-4 4le-4 6.7¢e-4 59e-4  7.5e—4

threshold «, value is more than an order of magnitude lower for ML-
ROM2 than for ML-ROM1. Thus, we conclude that ML-ROM2 is more
stable than ML-ROM1, which is the same conclusion as that yielded by
Figs. 2-7.

Accuracy. Since §, is between one and two orders of magnitude higher
than §,;, we expect the ML-ROM accuracy to depend on the constant a.
Indeed, the ML-ROM1 and ML-ROM2 plots in Figs. 2-7 do not show
a clear winner: For the largest « value (i.e., « = 6 x 10~3), ML-ROM1
is more accurate than ML-ROM2 for large r values (i.e., r = 40 and
50) and less accurate for small r values (i.e., r = 4,8, and 16). For the
smallest a value (i.e., @ = 6 x 10~*), ML-ROM2 is more accurate than
ML-ROMI1 for all r values (since ML-ROM1 simply blows up). We also
note that, for « = 6x10~%, ML-ROM2 is quite accurate for larger r values
(i.e., r = 32,40, and 50).
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Table 3
ML-ROM optimal a values for different r values.
r 4 8 16 32 40 50
ML-ROM1 « 1.50e-2 1.38e-2 1.38e-2 1.28e-2 7.80e-3 6.51le-3
ML-ROM2 « 4.35e-4 4.42e-4 5.33e-4 6.70e—4 6.20e—4 7.50e—4

Parameter sensitivity. Finally, we investigate the ML-ROM’s parameter
sensitivity. Specifically, we investigate which ROM lengthscale yields
ML-ROMs that are less sensitive (i.e., more robust) with respect to
the ML-ROM’s « parameter. We emphasize that the model sensitivity
with respect to model parameters is a well known issue that has
hindered the development of closures and stabilizations in CFD over the
years (Sagaut, 2006; Berselli et al., 2006; Layton and Rebholz, 2012).
Thus, finding robust (i.e., less sensitive) ML-ROMs that require as little
parameter tuning as possible is an important practical problem.

To quantify the ML-ROM’s parameter sensitivity, in Table 3, for
different r values, we list the optimal « value in ML-ROM, i.e., the «
value that ensures that the average ROM kinetic energy, K EROM is the
closest to the average FOM (LES) kinetic energy, K ELFS. Specifically,
we solve the following optimization problem:

. |——=ROM ——LES
min |KE —-KE , (33)
a

where KE = % > /’{": | KE(;), and M is the number of snapshots.

The results in Table 3 show that the optimal ML-ROM « values are
sensitive with respect to changes in r. Indeed, as r increases from 4
to 50, « decreases by a factor of 2.3 for ML-ROM1 and increases by a
factor of 1.7 for ML-ROM2. Overall, the results in Table 3 show that
the ML-ROM’s parameter a sensitivity is higher for ML-ROM1 than for
ML-ROM2.
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statistics for @ = 6 x 1073,

4.4. Numerical results: EFR-ROM investigation

To further investigate the role played by the two ROM lengthscales,
6, and 6,, in reduced order modeling of turbulent flows, in this section
we consider the EFR-ROM presented in Section 2.3. We emphasize that
the EFR-ROM is completely different from the ML-ROM investigated
in Section 4.3: The EFR-ROM is a Reg-ROM based on numerical stabi-
lization, whereas the ML-ROM is a closure model. Thus, the EFR-ROM
investigation in this section could shed new light on the novel ROM
lengthscale, §,.

To ensure a fair comparison of the two ROM lengthscales, §, and
8,, we fix the parameters y and y in the EFR-ROM in Section 2.3 and
change only the filter radius, §, of the differential filter used in Step
(II) of the EFR-ROM algorithm. We denote the resulting models as EFR-
ROM1 (when § = §;) and EFR-ROM2 (when § = §,). In our numerical
investigation, we fix the y value for both EFR-ROM1 and EFR-ROM2 to
x = 6x 1073, which is the minimum value that yields a stable solution
for r = 4 EFR-ROM1. We also fix the y value for both EFR-ROM1 and
EFR-ROM2. In our numerical investigation, we consider two y values.
To vary the ROM lengthscale, we vary the r value in the definitions of
6, and §,.

In Figs. 8-11, we plot the time evolution of the kinetic energy
and the second-order statistics of the EFR-ROM1 and EFR-ROM2 for
different r values and two different y values: y = 8x1072 (Figs. 8 and 10)
and y = 9x 10! (Figs. 9 and 11). As a benchmark for the ROM results,
we use the projection of the FOM results on the ROM basis (denoted as
LES-proj in these plots).

Stability. Since the results in Table 1 show that §, is between one and
two orders of magnitude higher than §,, we expect EFR-ROM2 to yield
more stable results than EFR-ROM1. Indeed, since we fix all the EFR-
ROM parameters (i.e., y and y) and §, is significantly larger than §,,
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Fig. 5. Second-order ML-ROM statistics for a = 6 x 107*.
Table 4 Table 5
EFR-ROM threshold y, values for different r values. EFR-ROM optimal y values for y = 6 x 10~ and different r values.
r 4 8 16 32 40 50 r 4 8 16 32 40 50
EFR-ROM1 %0 1.0e0 1.0e0 9.0e-1 8.0e-1 7.0e-1 7.0e-1 EFR-ROM1 y 1.01e0 9.98e0 9.03e—1 8.05e-1 8.44e-1 7.00e-1
EFR-ROM2 %0 2.9e-2 3.3e-2 3.9e-2 5.5e-2 5.9e-2 7.5e-2 EFR-ROM2 y 2.90e-2 3.30e-2 3.90e-2 5.50e-2 7.08e-2 7.50e-2

we expect the EFR-ROM2 filtering level to be higher than the EFR-
ROM1 filtering level (and, thus, EFR-ROM2 to be more stable than
EFR-ROM1). This is clearly shown in the plots in Figs. 8-11, in which
EFR-ROM2 yields stable results for all r values and for both y values. In
contrast, for the smallest y value, y = 8 x 10~2 (Figs. 8 and 10), EFR-
ROM1 blows up for all r values. Furthermore, for the largest y value,
y =9x10~! (Figs. 9 and 11), EFR-ROM1 blows up for the small r values
(i.e., r = 4 and r = 8). To quantify the stability of the two EFR-ROMs,
in Table 4, for different r values, we list the threshold y, value, i.e., the
value that ensures that, if y > y,, then the EFR-ROM is stable. These
results show that, for each r value, the threshold y, value is more than
an order of magnitude lower for EFR-ROM2 than for EFR-ROM1. Thus,
we conclude that EFR-ROM2 is more stable than EFR-ROM1, which is
the same conclusion as that yielded by Figs. 8-11.

Accuracy. Since §, is between one and two orders of magnitude higher
than §;, we expect the EFR-ROM accuracy to depend on the constant
y. Indeed, the EFR-ROM1 and EFR-ROM2 plots in Figs. 8-11 do not
display a clear winner: For the largest y value (i.e., y = 9 x 1071),
EFR-ROM2 is more accurate than EFR-ROM1 for the small r values
(i.e., r = 4 and 8) since EFR-ROM1 simply blows up. For the remaining
r values, EFR-ROM1 and EFR-ROM2 display the same accuracy level.
For the smallest y value (i.e., y = 8x1072), EFR-ROM2 is more accurate
than EFR-ROML1 for all r values (since EFR-ROM1 simply blows up). We

also note that EFR-ROM2 is relatively accurate for the largest r value
(i.e., r = 50).

Parameter sensitivity. To study the EFR-ROM’s parameter sensitivity,
we investigate which ROM lengthscale yields EFR-ROMs that are less
sensitive (i.e., more robust) with respect to the EFR-ROM’s y param-
eter. To quantify the ML-ROM’s parameter sensitivity, in Table 5, for
different r values, we list the optimal y value in EFR-ROM, i.e., the y
value that ensures that the average ROM kinetic energy, K EROM is the
closest to the average FOM (LES) kinetic energy, K ELFS. Specifically,
we solve the following optimization problem:
M ——LES

. |—=ro
min |KE - KE . 34)
Y

The results in Table 5 display a relatively low sensitivity of the
optimal EFR-ROM parameter y with respect to changes in r. Indeed, as
r varies, the order of magnitude of the optimal y remains the same for
both EFR-ROM1 and EFR-ROM2, although the latter is more sensitive
than the former.

One possible explanation for the relatively low sensitivity of the
optimal EFR-ROM parameter y is that the EFR-ROM parameter y,
which controls the amount of filtering in the relaxation step of the
EFR-ROM algorithm, is low (y = 6 x 1073). Thus, only 0.6% filtering
is applied at each time step of the EFR-ROM algorithm. Since only a
low amount of filtering is used, the effect of the filter radius (i.e., the
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Fig. 6. ML-ROM energy spectrum for a =6x 1073 .
Table 6 each EFR-ROM time step (Table 6). The results in Table 6 show that
i - -2 i . . . .
EFR-ROM optimal y values for ¥ = 6x 10 and different r values. the optimal EFR-ROM y value is very sensitive with respect to changes
r 4 8 16 32 40 50 in r. Indeed, as r increases from 4 to 50, y decreases by almost one
EFR-ROM1 y 2.92e-1 6.25e-2 6.00e-2  4.84e-2 4.4le-2 3.6le-2 order of magnitude. The optimal EFR-ROM2 y values are less sensitive
EFR-ROM2 y 236e-4 6.83e-5 1.12e-04 2.26e—4 3.10e-4 4.13e—4

ROM lengthscales §; and §,) is not as important in the EFR-ROM case
as in the ML-ROM case.

To investigate whether a higher percentage of filtering yields a
higher sensitivity of the optimal EFR-ROM parameter y, we increase
the y value. Specifically, we choose y = 6 x 1072, i.e., 6% filtering at

10

with respect to changes in r than the optimal EFR-ROM1 y values.
Indeed, although the EFR-ROM2 y values vary, their order of magnitude
generally stays constant.

Overall, the results in Tables 5-6 show that the EFR-ROM’s param-
eter y sensitivity is higher for EFR-ROM1 than for EFR-ROM2 when
a high percentage of filtering is used in the EFR-ROM algorithm. As
expected, when a low percentage of filtering is used, both EFR-ROM1
and EFR-ROM2 display a relatively low y sensitivity.



C. Mou et al.

Nuclear Engineering and Design 412 (2023) 112454

——ML-ROM2

102
10°

Fig. 7. ML-ROM energy spectrum for a = 6 x 107*.

Based on the results in Figs. 8-11 and in Tables 5-6, we conclude
that the EFR-ROM investigation in this section yields qualitative results
that are similar to those yielded by the ML-ROM investigation in
Section 4.3.

4.5. Numerical results: Computational cost

In Table 7, we list the online CPU time (in seconds) for ML-ROM1,
ML-ROM2, EFR-ROM1, and EFR-ROM?2 for different r values. We note
that, as expected, as we increase the ROM dimension, r, the CPU time
increases. We emphasize, however, that this increase in CPU time is
modest for all the r values considered. Furthermore, we note that the

11

CPU time of all four ROMs and all six r values is on the same order
of magnitude, i.e., @(10%). Given that the online CPU time of the LES
model used to generate the data for the ROM basis construction is
©(10%) (Eroglu et al., 2017; Rebholz et al., 2017a), we obtain speedup
factors on the order of 9(10°) for all the ROMs.

5. Conclusions and outlook

In this paper, we proposed a novel ROM lengthscale definition.
This new ROM lengthscale, denoted §,, was constructed by using
energy distribution arguments. Specifically, we balanced the ROM and
FOM energy content with the energy content in the 6, and A scales,
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Table 7 We compared the new energy-based ROM lengthscale, §,, with a
ML-ROM and EFR-ROM CPU time (in seconds) for different r values. standard dimensionality-based ROM lengthscale, denoted §,. To this
" 4 8 16 32 40 50 end, we used these two ROM lengthscales to build two mixing-length
ML-ROM1 2.83e2 2.86e2 2.93e2 3.06e2 3.16e2 3.20e2 ROMs (ML-ROMs) and two evolve-filter-relax ROMs (EFR-ROMs) in
ML-ROM2 2822 2832 3022  3.07¢2 3122  3.3le2 which all the other parameters were the same. We investigated the four
EFR-ROM1 2.79e2  2.86e2 2.93e2  3.04e2  3.16e2 3.25e2 resulting ML-ROMs and EFR-ROMs in the numerical simulation of the
EFR-ROM2 2.83e2 2.87e2 2.91e2 3.16e2 3.11e2 3.22e2

respectively, where s is the FOM mesh size. We emphasize that the
novel ROM lengthscale, §,, is fundamentally different from the current
ROM lengthscales, which are built by using dimensional arguments.

turbulent channel flow at Re, = 395.

The numerical results of our investigation yielded the following
conclusions:

1. The new energy-based ROM lengthscale, §,, was significantly
(two orders of magnitude) larger than the standard ROM length-
scale, ;. As a result, the ML-ROMs and EFR-ROMs based on the

12
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Fig. 10. Second-order EFR-ROM statistics for y = 8 x 1072,

new ROM lengthscale were significantly more stable than the
ML-ROMs and EFR-ROMs based on the standard ROM length-
scale.

. The new energy-based ROM lengthscale displayed the correct
asymptotic behavior with respect to the ROM dimension, where-
as the standard dimensionality-based ROM lengthscale did not.
Indeed, as r increased, the §, magnitude remained relatively
unchanged. In contrast, as r increased, the §, magnitude de-
creased by almost one order of magnitude. We emphasize that
6, displayed the natural asymptotic behavior expected from a
ROM lengthscale: As r increased toward its maximal value, §,
approached the mesh size, 4 (i.e., the minimum spatial scale that
can be approximated with the given FOM data). Furthermore,
as r approached its minimal value (i.e., 1), §, approached the
computational domain characteristic lengthscale, L (i.e., the
maximum spatial scale that can be approximated with the given
FOM data). We believe that 6,’s adaptivity with respect to the
ROM dimension, r, is important in realistic settings where using
the FOM data to determine an optimal ROM lengthscale may not
be possible. Indeed, as the ROM dimension is changed according
to the user’s needs, §, adapts to the new setting automatically,
without the user’s intervention.

. The ML-ROM parameters based on the new energy-based ROM
lengthscale were less sensitive (i.e., more robust) with respect
to changes in the ROM dimension (r) than the ML-ROMs param-
eters based on the standard dimensionality-based ROM length-
scale. The EFR-ROM parameters based on the new lengthscale

13

were less sensitive with respect to changes in r than the EFR-
ROMs parameters based on the standard lengthscale when a
significant percentage of filtering was performed. For a low fil-
tering percentage, as expected, the EFR-ROM parameters based
on the two lengthscales displayed a relatively low sensitivity.
In this setting, the standard lengthscale yielded less sensitive
parameters than the new lengthscale.

We note that the importance of advanced closure models for tur-
bulent heat flux in nuclear research was recently emphasized in Fiore
et al. (2022). An example of this type of strategy is the introduction
of transport equations for statistics, which enable the computation of
thermal lengthscales and timescales, as described in Manservisi and
Menghini (2014). The use of lengthscales to develop new ROMs for nu-
clear engineering problems is a relatively new concept. The numerical
assessment of the new energy-based ROM lengthscale yielded encour-
aging results. We plan to further investigate this ROM lengthscale in
new settings. For example, we will study the new ROM lengthscale in
the construction of other types of ROMs, e.g., LES ROMs (Wang et al.,
2012; Xie et al., 2017). Furthermore, we plan to investigate the effect
of the FOM resolution (e.g., mesh size and LES filter radius) on the
corresponding ROM lengthscale results. We also intend to leverage the
new energy-based lengthscale to develop scale-aware ROM strategies
that are better suited for flow-specific applications. Finally, we plan to
formulate our method using reinforcement learning (San et al., 2022)
to discover latent underlying physics-specific lengthscale dynamics in
an adaptable manner.
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