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Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial

ancestors over 100 Mya. The genomic basis of the unique physiological and ecological Significance

traits enabling these species to thrive in diverse marine habitats remains largely unknown.

Additionally, many populations have drastically declined due to anthropogenic activities Sea turtle populations have

over the past two centuries, and their recovery is a high global conservation priority. We undergone recent global declines.
generated and analyzed high-quality reference genomes for the leatherback (Dermochelys We analyzed de novo assembled
coriacea) and green (Chelonia mydas) turtles, representing the two extant sea turtle genomes for both extant sea turtle
families. These genomes are highly syntenic and homologous, but localized regions of families through the Vertebrate
noncollinearity were associated with higher copy numbers of immune, zinc-finger, and Genomes Project to inform their

olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odor-
ants greatly expanded in green turtles. Our findings suggest that divergent evolution of
these key gene families may underlie immunological and sensory adaptations assisting
navigation, occupancy of neritic versus pelagic environments, and diet specialization.
Reduced collinearity was especially prevalent in microchromosomes, with greater gene

conservation and evolutionary
biology. These highly conserved
genomes were differentiated by
localized gene-rich regions of

content, heterozygosity, and genetic distances between species, supporting their critical divergence, particularly within
role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories microchromosomes, suggesting
starkly contrasted between species, indicating that leatherback turtles have had a low that these genomic elements play
yet stable effective population size, exhibit extremely low diversity compared with other key functional roles in the
reptiles, and harbor a higher genetic load compared with green turtles, reinforcing evolution of sea turtles and
concern over their persistence under future climate scenarios. These genomes provide possibly other vertebrates. We
invaluable resources for advancing our understanding of evolution and conservation e e e

best practices in an imperiled vertebrate lineage. dissimilar evolutionary histories

impact standing genomic diversity
and genetic load, and are critical to

marine turtle | gene evolution | conservation genomics | genetic diversity | demographic history

Sea turtles recolonized marine environments over 100 Mya (1, 2) and are now one of the consider when using these metrics
most widely distributed vertebrate groups on the planet (3). Leatherback turtles to assess adaptive potential and
(Dermochelys coriacea) represent the only remaining species of the family Dermochelyidae, extinction risk. Our results also
which diverged from the Cheloniidae (hard-shelled sea turtles) about 60 Mya (4). Unique demonstrate how reference
morphological (Fig. 14) and physiological traits allow leatherback turtles to exploit cool, genome quality impacts inferences
highly productive pelagic habitats (5, 6), while green turtles (Chelonia mydas) and other of comparative and conservation

hard-shelled species largely inhabit warmer nearshore habitats following an early pelagic
life stage. Most previous research in this group has focused on organismal and ecological
adaptations (7), but the genomic basis of traits that differentiate or unite these species is
not well understood.

Anthropogenic pressures have caused substantial population declines in sea turtles, with
contemporary populations representing mere fractions of their historical abundances
(8, 9). Although sea turtles spend most of their life in the ocean, they also exhibit long-  11ic article is a PNAS Direct Submission.
distance migrations to natal rookeries for terrestrial reproduction (7, 10, 11). Consequently,  opyright © 2023 the Author(s). Published by PNAS.
they are threatened by human activities in both terrestrial and marine environments, ~ This article is distributed under Creative Commons
including direct harvest of meat and eggs (12), fisheries bycatch (13), coastal development (Acttcr'Bb;'_t,llocr:\‘NS;Commerc'al'NODenvat'ves Hcense 4.0
(14, 15), pollution (16), disease (17), and climate change (18, 19), which is exacerbated "To whom correspondence may be addressed. Email
by their temperature-dependent mechanism of sex determination (TSD) altering popu-  bbentley@umass.edu, ~ mazzoni@izw-berlin.de, ~ or
lation dynamics (20, 21). The IUCN lists most sea turtle species as vulnerable or endan- ~ 'kemoreske@umass.edu.
gered, and while decades of conservation efforts have fueled positive trends for some
populations (22), others continue to decline (23). In particular, leatherback turtles have ;?ti;sf’/ztxxwfgzgasizsrgs/fffgg;’i ;r;fl‘/)g:;t I;? oggl/i;iazt.
undergone extensive declines (>95% in some populations) over the last century (24-27), 2201076120/-/DCSupplemental.
including the extirpation of the Malaysian nesting population (28). Leatherback turtle  Ppublished February 7, 2023.

genomics analyses that need to be
considered in their application.
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(A) Green turtle (C. mydas); photo credit: NOAA NMFS PIFSC under USFWS Permit #TE-72088A-3, and leatherback turtle (D. coriacea); photo credit: Ricardo

Tapilatu. (B) Dot plot showing regions with an identity greater than 0.5 across the entire genomes of green (red) and leatherback (blue) turtles. (C) Gene synteny
and collinearity among leatherback turtle (blue), green turtle (red), Chinese pond turtle (Mauremys reevesii; green), pond slider turtle (Trachemys scripta; purple)
and Goode's thornscrub tortoise (Gopherus evgoodei; yellow). Each bar represents chromosomes with respective numbers, and gray lines represent homolog

gene connections.

recovery is impeded by relatively low hatching success compared
with other sea turtle species (29). In contrast, many green turtle
populations have recently increased following conservation actions
(22), but their continued recovery remains threatened by anthro-
pogenic activities and high incidence of the neoplastic disease
fibropapillomatosis (FP), a viral-mediated tumor disease that dis-
proportionately impacts this species (30).

Genomic data have been instrumental in advancing under-
standing of species’ evolutionary histories and ecological adapta-
tions (31-33), and providing critical information for conservation
management (34-37). However, this research has been hampered
in taxa where genomic resources remain limited. In particular, the
lack of high-quality reference genomes, which are essential for
accurate comparative evolutionary analyses (38, 39) and robust
estimates of a range of metrics to inform conservation biology
such as inbreeding, hybridization, disease susceptibility, genetic
load, and adaptation (36, 40, 41), impede this work in threatened
species. A draft genome for the green turtle was assembled almost
a decade ago (42), and provided important insights into turtle
evolution. However, errors, gaps, misassemblies, and fragmenta-
tion in draft genomes can lead to spurious inferences, potentially
masking signals of interest (38, 43) and impeding effective man-
agement strategies (41). Well-annotated, chromosomal-level ref-
erence genomes can resolve these issues, improving our
understanding of the genomic underpinnings of ecological and
evolutionary adaptations (39, 44). For example, high-quality
genomes with accurate annotations have enabled examination of
gene changes associated with recolonization of the marine envi-
ronment by terrestrial vertebrates, including the loss of olfactory
receptor (OR) gene families (32, 45). Comparative genomic anal-
yses have also demonstrated adaptive diversity in genes underlying
reptilian immunity (46), and high-quality genomes have provided
key insights into mammalian disease susceptibility (33, 47, 48).
Equivalent investigations are critical for sea turtles, with diseases
such as FP adversely impacting populations across the globe (30),
information on immune genes is needed for devising effective
conservation strategies (49).

We assembled chromosome-level reference genomes for leath-
erback and green turtles as part of the Vertebrate Genomes Project
(VGP), and leveraged these resources to address questions centered

20f12 https://doi.org/10.1073/pnas.2201076120

around evolutionary history and conservation. Specifically, we
provide insights into the genomic underpinnings of phenotypic
traits that separate and unite these two species by examining
genome synteny and regions of divergence. Given the contrasting
recent population trends of these two species, we additionally used
whole genome resequencing data of individuals representative of
global populations to compare key conservation-relevant metrics,
including patterns of diversity and deleterious variants, and recon-
structed demographic histories to inform assessments of future
vulnerability. These genomes represent two of the most contiguous
reptilian genomes assembled to date, and our results provide a
foundation for further hypothesis-driven investigations into the
evolutionary adaptation and conservation of this imperiled verte-
brate lineage.

Results

Genome Quality. Reference genomes for the leatherback and
green turtles were generated using four genomic technologies
following the VGP pipeline v1.6 (39), with minor modifications
(see Methods). A total of 100% of the leatherback and 99.8%
of the green turtle assembled sequences were placeable within
chromosomes. The assembled genomes were near full-length
(~2.1 GB), with annotations of all 28 known chromosomes
for both species, composed of 11 macrochromosomes (>50
Mb) and 17 microchromosomes (<50 Mb) (S Appendix, Table
S1 and Fig. S1). These genomes are among the highest quality
genomes assembled for nonavian reptiles to date in terms of both
contiguity and completeness (Dataset S1), with the leatherback
turtle assembly representing the first reptile genome where all
scaffolds were assigned to chromosomes. Scaffold N50s were high
for both genomes (ST Appendix, Table S1). We annotated 18,775
protein-coding genes in the leatherback and 19,752 in the green
turtle genomes (see below for analysis of these gene differences).
For the leatherback and green turtles, 96.9% and 97.5% of these
genes were supported at >95% of their length from experimental
evidence and/or high-quality protein models from related species
(see Methods). The numbers of protein-coding genes are within the
range of other reptiles (Dataset S1) and include 97.7% and 98.2%
complete BUSCO copies for leatherback and green turtles based
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on Sauropsida models (50), which are similar to or higher than all
other assembled reptilian genomes to date (S Appendix, Fig. S2).

Genome Architecture. Despite diverging over 60 Mya (4),
leatherback and green turtles show extremely high genome
synteny and collinearity (Fig. 1 B and C and SI Appendix, Figs.
S6 and S7), with Progressive CACTUS revealing 95% sequence
identity across the length of the genomes (57 Appendix, Table S3).
After multiple rounds of manual curation to correct artifacts of
misassemblies, few large structural rearrangements between the
two species remained, including inversions of up to 7 Mb on
chromosomes 12, 13, 24, and 28 (S Appendix, Fig. S6). The high
collinearity between species included near-complete end-to-end
contiguous synteny for nine of 28 chromosomes (57 Appendix,
Fig. S6). The remaining 19 chromosomes exhibited at least one
small region of reduced collinearity (RRC) between the species,
with RRC:s representing a total of ~83.4 Mb (-3.9%) and ~110.5
Mb (~5.2%) of the leatherback and green turtle genome lengths,
respectively. Eight chromosomes exhibited small RRCs (0.1 to
3 Mb), and 11 contained RRCs that were between 3 and 18
Mb in length (Fig. 2 A-D and Dataset S3). Analyses of coding
regions revealed a similar pattern of strong collinearity between
the two species (Fig. 1C and SI Appendix, Fig. S6), particularly
within the macrochromosomes, which contain more than 80% of
the total length of the genomes. The two genomes also displayed
similar percentages of repetitive elements (REs), which were
almost exclusively transposable elements (TEs) and unclassified
repeats (SI Appendix, Fig. S8). The landscape of TE superfamily
composition over evolutionary time was also similar between the
two species, with the exception of REs with low Kimura values
(<5%), which appeared at a higher frequency in the leatherback
turtle genome (see SI Appendix, section I for full analyses).

Gene Families and Gene Functional Analysis. Gene function
analysis of localized RRCs revealed that most contained genes
with higher copy numbers in the green turtle compared with the
leatherback (Fig. 2 A-D and Dataset S3). Nineteen chromosomes
had RRCs with higher gene copy numbers in the green turtle,
and of these, ten contained genes associated with immune system,
olfactory reception, and/or zinc-finger protein-coding genes. Many
of the same gene families were also detected as high-diversity exonic
regions via separate, independent analyses (S/ Appendix, section 1),
reinforcing their importance in the divergent evolution of these
species. In addition to localized RRC:s, higher gene copy numbers
in the green turtle occurred in many gene orthologous groups
(orthogroups) across the entire genome, and generally in variable
multicopy genes (Fig. 2 Fand G). Copy number variation accounted
for most of the nearly one thousand more genes annotated in
the green turtle genome relative to the leatherback (Fig. 2 F and
G and ST Appendix, Table S1). We detected no evidence of collapsed
multicopy genes in the leatherback turtle assembly across multiple
analyses (see Methods and SI Appendix, Table S4), supporting this
as a biological signal rather than technical artifact of the assemblies.

Olfactory receptors (ORs) represented the largest orthogroups
in both genomes, and differences in copy numbers were connected
to many of the identified RRCs. All OR class I genes were clustered
at the beginning of chromosome 1, and the green turtle had higher
copy numbers in this region (Fig. 2 A-D). This area also contained
a cluster of OR class I genes in at least three additional testudinid
species (S Appendix, Fig. $10), and is the only divergent region
across the very large chromosome 1 in the turtles analyzed. In
contrast, OR class II genes were spread across several chromosomes
in both sea turtle species, with higher copy numbers again in the

green turtle found within RRC:s (Fig. 2 B-D). The instability and

PNAS 2023 Vol.120 No.7 e2201076120

rapid evolution of OR gene numbers in turtles is further illustrated
in the expansion-contraction analysis of orthogroups (Fig. 2E and
Dataset S6 A-D), which showed that OR class I genes underwent
a modest contraction in the ancestral sea turtle lineage, followed
by an expansion in the green turtle but a further contraction in the
leatherback turtle. Similar trends were detected for OR class II
genes, but with a greater magnitude of contraction in the ancestral
sea turtle lineage followed by a further contraction for the leather-
back turtle and only a small expansion for the green turtle (Fig. 2E).

Another important RRC (RRC14) encompassed the major
histocompatibility complex (MHC), which plays a critical role in
vertebrate immunity and is particularly relevant to sea turtle con-
servation due to the threat of FP and other diseases (32). In addi-
tion to the MHC region, this RRC includes several copies of OR
class II genes, zinc-finger protein-coding genes and other genes
involved with immunity, such as butyrophilin subfamily members
and killer cell lectin-like receptors (Fig. 2D and Dataset S3).
Invariably, the green turtle carried higher numbers of all the mul-
ticopy genes present in RRC14. RRCs on other chromosomes
similarly showed increased levels of zinc-finger protein genes in
the green turtle, including the RRCs labeled 6A, 11A, 14A, and
28 (Dataset S3). In particular, zinc-finger protein genes were
highly prevalent on chromosomes 14 and 28 in both sea turtles,
representing more than 50% of all the protein domains present
on these chromosomes (S/ Appendix, Fig. S11). Finally, all but
three genes with known roles in TSD in reptiles (Dataset S7) were
located as single-copy genes within both sea turtle genomes, with
homologous copies located in the same region of the chromosomes
in both species (see ST Appendix, section 1 for full analyses).

Macro and Microchromosomes. Microchromosomes contained
significantly higher proportions of genes than macrochromosomes
(Fig. 3 Aand B; green turtle: F, ,5) = 16.46, < 0.01; leatherback
turtle: F, 55, = 16.35, P < 0.01), and gene content was strongly
positively correlated with GC content (8] Appendix, Flg S13;
green turtle R* = 0.81, P < 0.01; leatherback turtle R* = 0.87,
P < 0.01). These patterns were particularly apparent in small
(<20 Mb) microchromosomes, where GC content reached 50%,
compared with the 43 to 44% genome-wide averages. Within
chromosome groups, larger proportions of multicopy genes were
generally associated with higher total gene counts (green turtle:
R?* 0.84, P < 0.01; leatherback turtle: R* = 0.92, P < 0.01),
and chromosomes with the highest multicopy genes numbers
had increased proportions of RRCs (Fig. 3 A and B; green turtle:
= 0.69, P < 0.01; leatherback turtle: R* = 0.81, 2 < 0.01).
Mean genetic distances for single-copy regions between the two
sea turtles were also higher in small microchromosomes (0.053)
compared with both intermediate (>20 Mb) microchromosomes
(0.047), and macrochromosomes (0.045) (Fig. 3C; F, ,5, = 21.98,
P <0.01). However, examination of intermediate microchromo-
some and macrochromosome RRCs revealed elevated genetic
distances in these regions that approached the values observed in
small microchromosomes (S Appendix, Table S5). Genetic dis-
tances were also 51gn1ﬁcantly positively correlated with heterozy-
goslty (green turde: R"= 0.97, P < 0.01; leatherback turtle
=0.97, P < 0.01), Wthh was significantly higher in small
mlcrochromosomes for both species (Fig. 3D; green turtle: F,
5= 15.72, P < 0.01; leatherback turtle: F, ,5) = 5.09, P < 0.05).

Genome Diversity. Genome-wide nucleotide diversity was almost
a magnitude of order lower in leatherback compared with green
turtles (mean repeat masked 7 = 2.86 x 10~ and 2.46 x 107,

respectively; ts 55 = 36.9, P < 0.001; Fig. 44 and S/ Appendzx,
Figs. $15-S17 and Table S7). Despite having largely similar gene
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Fig. 2. (A-D) Dotplots (identity values; dark green = 1 to 0.75, green = 0.75 to 0.5, orange = 0.5 to 0.25 and yellow = 0.25 to 0) showing four of the regions with
reduced collinearity (RRC) identified within chromosomes and associated with higher copy numbers of immune system (IS), ORs, or zinc finger domain genes
in the green turtle relative to leatherback turtle (see also S/ Appendix, Fig. S6 and Tables S3-S5 and Dataset S3 for full details of all RRCs). RRC positions are
marked with gray squares on the dot plots (Left; with leatherback turtle on the X-axes and green turtle on the Y-axes) and gene collinearity maps (Right) for each
chromosome highlighting the connections among specific gene families in different colors. (E) Gene family evolution of ORs class | (red) and class Il (black) for
amniote phylogeny. Gene numbers are presented on the nodes and gain/loss along each branch are presented below branches. Small scale bar represents
substitutions/site, and big scale bar represents divergence times (MA). The blue dashed line shows the estimated divergence between the two sea turtle families.
(F) Number of unique and shared orthogroups and single- and multicopy genes between the two sea turtles (coding genes including genes with rearrangement).
The boxes outlined in black denote shared orthogroups, with the higher multicopy in the green turtle due to greater gene copies within orthogroups. (G)
Comparison of gene counts between both species per multigenic orthogroup, depicting only those orthogroups where both species have different numbers of
genes and a minimum number of five genes for one of the species. Bubbles above the diagonal represent higher counts for the green turtle and below for the
leatherback turtle. The size of the bubbles represents the number of orthogroups with the same gene count combination.

using similar methods (53, 54). Finally, within both spec1es,
heterozygosuy was lower in coding regions (mean 7t = 2.77 x 10~
and 2.18 x 17 for leatherback and green turtles, Fig. 44) relative
to noncoding regions (mean 7 = 3.18 x 10~ 4 and 2.64 x 107,
leatherbacks: [t = -8.9, P < 0.01] and greens: [t = —30.9,
P < 0.01]), as expected from selection pressures driving higher
sequence conservation in these functional genomic regions.

content identified in the annotation, this strong pattern was also
observed in coding regions (Fig. 44; tss, = 37.7, P < 0.001),
such that leatherback turtles possess much less standing
functional variation, possibly impacting their adaptive capacity
to future novel environmental conditions. The strikingly low
genomic diversity of leatherback turtles is also less than almost
all other reptile species examined (S Appendix, Fig. S19; but see
ref. 51), including Chelonoidis abingdonii, where low diversity
has been considered a contributing factor to their extinction
(52). Contrastingly, genomic diversity of the green turtle fell
in the midrange for reptiles, as well as for mammals examined

Runs of Homozygosity (ROH). In addition to lower genome-
wide heterozygosity, leatherbacks had a greater total number of
ROHs (>50 kb) than green turtles (mean Npoy = 4,510 and
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829, respectively), as well as a greater total aggregate length of the
genome in ROH (range =26.1 to 45.5% in leatherback turtles;
1.8 to 17.7% in green turtles). The mean length of ROHs was
also significantly higher in leatherback (Lo = 183.9 kb) compared
with green turtles (Lo = 154.9 kb) (t74594) = -8.85, P < 0.01).
Length distribution breakdown showed that leatherbacks have a
higher aggregate length of all categories of ROHs relative to the
green turtles (Fig. 4B and ST Appendix, Fig. $22). Short ROHs (50
to 500 kb) had the highest total aggregate length in leatherbacks,
with a mean aggregate length of 597 Mb (Fig. 4B), suggesting
long-term low population sizes in the leatherback turtle.

Within species, overall ROH distributions were generally sim-
ilar between samples representative of different populations for
leatherback turtles, although individuals from the Northwest
Atlantic and East Pacific populations displayed slightly higher
total aggregate lengths of ROHs than those from the West Pacific
population, primarily due to greater aggregate lengths of medium
and long ROHs (Fig. 4B). Among green turtles, the aggregate
length of ROHs in all categories were generally small and similar
across individuals, with the clear exception of the genome refer-
ence sample that originated from the Mediterranean population.
This individual displayed higher numbers and lengths of long
ROHs (>1 Mb) compared with all other green turtles (n = 50
compared with <5, and aggregate length = 74 Mb compared with
<4 Mb), suggesting higher levels of recent inbreeding relative to
the other green turtle populations represented in our dataset.

PNAS 2023 Vol.120 No.7 e2201076120

Comparative analyses mapping this individual to the two previous
green turtle assemblies failed to detect these long ROHs
(SI Appendix, Fig. S23), demonstrating the importance of highly
contiguous reference genomes for detecting biologically important
patterns using this conservation-relevant metric.

Genetic Load. Coding region variants with predicted high (e.g.,
stop-codon gain or loss) or moderate impacts were significantly
more common in leatherback compared with green turtles
(Fig. 4C; high-impact variants: t 5 = -65.7, P < 0.001; moderate
impact variants: ty5;) = -29.5, P < 0.001). Conversely, low-impact
and modifier (i.e., variants predicted to cause negligible impacts)
variants were significantly more common in green turtles (Fig. 4C;
low-impact variants: t;5 gg = 4.0, P < 0.01; modifier variants: ts 3
=31.8, P<0.001). The missense-to-silent mutation ratio was also
higher in leatherbacks than green turtles (¢ 9, = -72.3, P < 0.001;
mean = 0.99 and 0.70), further suggesting that genetic load is
higher in the leatherback turtles. Within species, there was limited
variation between individuals for all variant categories (Fig. 4C).

Demographic History. Pairwise Sequential Markovian Coalescence
(PSMC) analyses indicated different historical effective population
sizes (V) between the two sea turtle species (Fig. 4D). NN, for all
leatherback turtle populations represented in our dataset have
been relatively small and sustained over time, ranging in size from
approximately 2,000 to 21,000 over the last 10 My, up until the
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Last Glacial Maximum (LGM) and at the lower end of this range
for most of the last 5 My. This pattern is consistent between all
individuals examined, with similar timings and magnitudes of
N, fluctuations until recent history (Fig. 4D). In contrast, green
turtles have experienced wider variation and a higher overall

60of 12 https://doi.org/10.1073/pnas.2201076120

N, in general, fluctuating between approximately 50,000 and
125,000, until the late Pleistocene, with estimates varying by
population (Figs. 4D and SI Appendix, Fig. S24). While N, for
leatherback turtles is relatively low, it modestly increased prior to
the Eemian warm period (Fig. 4D [B]), followed by a subsequent
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decrease during this period until the LGM (Fig. 4D [A]) when all
populations exhibit sharp spikes in /V, possibly due to interocean
gene flow following warming after the LGM. In contrast, green
turtles generally displayed three distinct peaks in N, (Fig. 4D),
associated with ocean connectivity changes following the closure
of the Tethys Sea [D], during the Pleistocene period [C], and
prior to the Eemian warming period (Fig. 4D [B]). While the
patterns of V, are broadly similar within green turtles, the timing
and magnitude of these fluctuations varied between populations

(SI Appendix, Fig. S24).

Discussion

Divergence in Localized RRCs and Microchromosomes amidst
High Global Genome Synteny. The ancestral lineage leading to
leatherback and green turtles diverged over 60 Mya (4), giving
rise to species that are adapted to dissimilar habitats, diets, and
modes of life. Despite high overall levels of genome synteny
between the species, RRCs and small microchromosomes
were associated with higher concentrations of multicopy gene
families, as well as heightened nucleotide diversity and genetic
distances between species, suggesting that these genomic
elements may be important sources of variation underlying
phenotypic differentiation. Higher heterozygosity despite richer
gene content in the microchromosomes suggests that these
regions accumulate variation and may have a high adaptation
value. Though our results here do not demonstrate direct
causality, we have identified candidate regions and gene families
that can be targeted in further studies quantifying evidence for
positive selection and their roles in sea turtle adaptation and
speciation.

The high global stability of macro- and microchromosomes
between sea turtle families aligns with recent work showing similar
patterns across reptiles, including birds, emphasizing the impor-
tance of microchromosomes in vertebrate evolution (55). Higher
evolutionary rates in microchromosomes have been documented
in intraspecific (56) and interspecific (57) avian studies, so it is
possible that the characteristics of microchromosomes and RRCs
we observed are not unique to sea turtles, but rather, are prevalent
among vertebrates. The mechanisms driving these patterns are not
well-understood, but could be related to higher recombination
rates in micro- compared with macrochromosomes (58) that result
in higher nucleotide diversity and lower haplotype sharing. Once
generated, balancing selection may play a role in maintaining
variation in these gene-dense regions, but more work is needed
across taxa to determine the broad support for these hypotheses.
'The prevalence of localized genomic differentiation and underlying
mechanisms among other closely or more distantly related verte-
brate groups has yet to be widely evaluated due to a lack of equiv-
alent quality genomic resources, but this is rapidly changing. Our
detailed analyses of RRCs, microchromosomes, and their associ-
ated genes were only possible due to the high-quality of the assem-
bled genomes because these analyses can be sensitive to genome
fragmentation and misassemblies (39). For example, the RRCs
and many microchromosomes could not be detected using the
draft green turtle genome due to fragmentation and sequence gaps
(SI Appendix, Figs. S3 and S4). As chromosomal-level genomes
across all vertebrate lineages become available, our work provides
a roadmap for identifying genomic regions harboring contrasting
expansion/contractions of gene families and diversity levels. For
taxa with highly conserved genomes like sea turtles, analyses of
RRCs and microchromosomes are likely important to understand
their divergent evolutionary histories and the phenotypic connec-
tions of the genes within them.

PNAS 2023 Vol.120 No.7 e2201076120

Contrasting Sensory and Immune gene Evolution between Sea
Turtle Families. Sea turtles have complex sensory systems and
can detect both volatile and water-soluble odorants, which are
imperative for migration, reproduction, and identification of prey,
conspecifics, and predators (59-63). However, leatherback and
green turtles occupy dissimilar ecological niches, depending on
different sensory cues. While leatherback turtles almost exclusively
inhabit the pelagic environment posthatching, performing
large horizontal and vertical migrations to seek out patches of
gelatinous prey (64), green turtles recruit to neritic coastal and
estuarine habitats as juveniles, and can have highly variable diets
(65, 66). Sea turtle nasal cavity morphology also differs between
species, with leatherback turtle cavities relatively short, wide, and
more voluminous than chelonids (67-69), suggesting reduced
requirements for olfactory reception. OR genes encode proteins
used to detect olfactory cues, with the number of genes correlated
with the number of detectable odorants (70), and linked to the
chemical complexity of the inhabited environment (71). The two
major groups of ORs in amniotic vertebrates are separated by
their affinities with hydrophilic molecules (class I) or hydrophobic
molecules (class II) (72). Class I OR genes may be particularly
important in aquatic adaptation (32), and expansions of class I
ORs in testudines, including green turtles, have been previously
reported. However, the accuracy of these estimates for complex
gene families using short-read assemblies has been uncertain
because they may be prone to misassembly (32, 42, 73). We
detected an additional 93 class I OR genes in our green turtle
genome compared with those reported in the draft green turtle
genome (42), suggesting they can be erroneously collapsed in
short-read assemblies. Our reconstruction of both classes of OR
gene evolution throughout the sea turtle lineage revealed that after
ancestral contractions, gene copy evolution diverged in opposite
directions between the two sea turtles. The greater loss of class
IT compared with class I OR genes in the ancestral sea turtle
lineage likely reflects relaxed selection for detection of airborne
odorants, as has been observed in other lineages that recolonized
marine environments (74). However, as sea turtles continue to
use terrestrial habitats for reproduction, they may need to retain
some of these capabilities, which could explain why the observed
contraction was weaker than those in exclusively marine species
(e.g., the vaquita Phocaena sinus; Fig. 2E).

The strong class I OR expansion in the green turtle may be
related to its distribution in complex neritic habitats and variable
diet, requiring detection of a high diversity of waterborne odor-
ants, while the continued loss of ORs in the leatherback turtle
could be a consequence of its more specialized diet and the lower
chemosensory-complexity of pelagic habitats. Although leather-
back turtles can detect chemical cues from their prey, sensory
experiments have indicated that visual cues are more important
for food recognition in this species (75, 76). Additionally, while
the precise mechanisms underpinning philopatry in sea turtles
remain unclear, green turtles are thought to use olfactory cues to
reach specific natal nesting beaches following long-distance nav-
igation guided by magnetoreception (61, 63). In contrast, leath-
erback turtles exhibit more ‘straying’ from natal rookeries than
other species, and such relaxed philopatry may be related to
reduced reliance on olfactory cues to hone in on specific beaches.

Diversity within the highly complex MHC region is a key com-
ponent in the vertebrate immune response to pathogens, with
greater gene copy numbers and heterozygosity linked to lower
disease susceptibility (77). While both sea turtle species contained
most of the core MHC-related genes, the green turtle had more
copies of genes involved in adaptive and innate immunity. Pathogen
prevalence and persistence is often greater in neritic habitats than
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open ocean habitats (78), so green turtles may be exposed to higher
pathogen loads and diversity than leatherback turtles (79).
However, reptilian immune systems are understudied compared
with other vertebrates, with few studies of MHC genes conducted
in turtles (80). Thus, it is not yet understood how immune gene
diversity translates into disease susceptibility or ecological adap-
tation in sea turtles, which is critical for their conservation as FP
continues to threaten population recoveries around the globe (30).
Although this viral-mediated tumor disease occurs in all sea turtle
species, prevalence and recovery greatly vary between and within
species, making it plausible that harboring certain genes, copy
numbers, or specific alleles may play important roles in disease
dynamics. Despite decades of research on this disease (30) only
one study on the immunogenomic factors governing FP suscep-
tibility or resilience has been conducted (81), in part due to difhi-
culty in accurately quantifying hypervariable and complex MHC
loci with short-read sequencing technologies (82). Our reference
genomes now enable studies to accurately interrogate these com-
plex gene families to advance our fundamental understanding of
immune gene evolution in testudines.

Differential Genomic Diversity and Demographic Histories.
Genomic diversity is a critical metric for evaluating extinction risk
and adaptive potential to environmental perturbation (83-85),
with heterozygosity positively correlated with individual fitness
(see reviews by refs. 86 and 87). Understanding the causes and
consequences of genomic diversity is imperative for leatherback
turtles in particular, where contemporary populations have sharply
declined due to human activities (25). The exceptionally low
genomic diversity observed in leatherback turtles broadly aligns
with previous estimates (88, 89), but our PSMC and ROH results
indicate that this is likely a consequence of long-term low effective
population sizes and historical bottleneck events, rather than
losses during recent population declines. This is consistent with
mitochondrial analyses suggesting that contemporary populations
radiated from a small number of matriarchal lineages within a
single refugium following the Pleistocene (89). In contrast, higher
heterozygosity, limited ROHs, and larger, more variable historical
N, in green turtles likely reflects radiation from many refugia and
frequent admixing of populations (90).

Regardless of the causes of current genomic diversity levels, the
amount of standing variation can have important implications for
species’ future persistence (91), especially given the adaptive capac-
ity likely required to keep pace with rapid anthropogenic global
change. Although genome-wide diversity estimation does not
require high-quality reference genomes, they enable deeper exam-
ination of diversity patterns relevant to conservation. The use of
our reference genomes demonstrated that diversity is very low
within coding regions of leatherback turtle genomes, indicating
limited standing functional variation that may have implications
for their adaptive potential to novel conditions. Additionally,
leatherback turtles exhibited a higher genetic load compared with
green turtles, and this signal was consistent across all samples,
regardless of population. Leatherback turtles have substantially
lower hatching success compared with other sea turtle species (29),
potentially related to the heightened genetic load and low hete-
rozygosity (92, 93), and may combine with other factors to slow
population recoveries despite conservation efforts. However, other
species with low diversity have rebounded following population
declines and/or appear to have purged deleterious alleles through
long-term low population sizes (94-96), thereby limiting the
impacts on viability (54, 94, 97). Although our results of greater
genetic load despite long-term low 2V, suggest this is not the sce-
nario for leatherback turtles, further in-depth research on these
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topics enabled by the presented reference genomes will clarify
these relationships for leatherback and other sea turtle species to
guide conservation recommendations.

Although patterns of diversity, genetic load, and demographic
histories were generally consistent within species, ROH analyses
revealed a striking exception of the green turtle reference individ-
ual from the Mediterranean. This isolated population has under-
gone severe decline over the last century due to human exploitation
(98), and our results indicate that consequent inbreeding is likely
occurring, which may impact recovery. The specific individual was
from the Israel green turtle rookery, estimated to have only 10 to
20 nesting females in the last decade (99, 100), but it is unclear
whether Israel is demographically isolated from other rookeries in
the region (100, 101). Further research is needed to understand
whether inbreeding is a concern only for this nesting aggregation,
or the Mediterranean population more broadly. These findings
also highlight the utility of ROH metrics even in animals with
longer generation times, and the importance of using highly con-
tiguous genomes for accurate ROH assessment to inform
conservation.

While it is widely documented that environmental changes can
strongly impact species’ abundances and distributions (102-104),
following an initial decrease associated with declining tempera-
tures, N, of leatherback turtles remained relatively constant
throughout substantial temperature fluctuations in the Pleistocene.
As ectotherms, reptiles are sensitive to climatic thermal fluctua-
tions; however, leatherback turtles exhibit unique physiological
adaptations that produce regional endothermy and facilitate
exploitation of cold-water habitats (6), potentially leading them
to being less susceptible to periods of cooler temperatures. The
long-term lower /V, of leatherback turtles may be associated with
this species’ greater mass and trophic position (105). In contrast,
wide fluctuations for green turtles appear correlated with climatic
events, beginning with the closure of the Tethys Sea, which altered
ocean connectivity and represented a period of increasing temper-
atures that may have opened more suitable habitat. As tempera-
tures subsequently decreased, /V, also decreased; however,
temperature fluctuations during the Pleistocene were associated
with additional increases in /V,. While warmer temperatures pre-
sumably allowed for larger population sizes of green turtles, large
spikes in N, around the Eemian warming, particularly for the
Mediterranean individual, are likely associated with admixing of
previously isolated populations due to warm-water corridors
allowing movement between populations and ocean basins (106).
While our overall estimates and trends for both species were
broadly concordant with previous studies (89, 107, 108), a recent
study using multiple sequentially Markovian coalescent (MSMC2)
analyses found steep declines in WV, for green turtles >100,000 y
before present (108), which was not detected in our PSMC anal-
yses. Since this decline was also not detected in a prior study using
PSMC on the draft green turtle genome (107), and demographic
inferences are generally robust to genome quality (109, 110), this
is likely a consequence of the different methods, with MSMC
analyses inferring larger NV, for more ancient time scales (109).

Enabling Future Research and Conservation Applications. In
addition to the insights reported here, the reference genomes for
both extant sea turtle families provide invaluable resources to
enable a wide breadth of previously unattainable fundamental
and applied research. Combined with other forthcoming
genomes (39), comparative genomics analyses can reveal
the genomic basis for long-standing traits of interest such as
adaptation to saltwater, diving capacity, and long-distance natal
homing. Studies leveraging these reference genomes alongside
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whole-genome sequencing of archival samples can assess how
genomic erosion, inbreeding, and mutational load are linked
to population size, trajectories, and conservation measures
in global sea turtle populations. For instance, the fact that
leatherback turtles have persisted with low diversity and 2V, for
extended periods offers hope for their recovery, but given that
some populations have now been reduced to only a few hundred
individuals (111), research quantifying purging of deleterious
alleles, inbreeding depression, and adaptive capacity within
populations is urgently needed (112). We emphasize that high-
quality reference genomes are not required for all research goals,
and combined with other recent studies (109, 110, 113), our
findings provide clear guidance on when they may, or may not, be
necessary to generate accurate results to inform conservation. For
example, genome-wide diversity estimates are typically robust to
assembly quality, but detection of long ROHs can be strongly
affected. As ROH metrics are increasingly used to guide species
management plans (114-116), it is important for researchers to
understand how genome quality may impact their analyses and
inferences. Additionally, many conservation applications that
may not explicitly require whole-genome data can also directly
benefit from the utility of these reference genomes, including
the development of amplicon panels and molecular assays to
investigate TSD mechanisms and adaptive capacity under
climate change, and assessing linkages between immune genes
and disease risk. Finally, with global distributions and long-
distance migratory connectivity, sea turtle conservation requires
international collaboration that has been previously hampered
by difficulty comparing datasets between laboratories. Existing
anonymous markers (e.g., microsatellites and restriction-site
based SNP markers) can now be anchored to these genomes, and
new ones can be optimized for conservation-focused questions
and shared across the global research community, facilitating
large-scale syntheses and equitable capacity building for genomics
research. While ongoing anthropogenic impacts continue to
threaten the viability of sea turtles to persist, combined with the
critical work of reducing major threats such as fisheries bycatch
and habitat loss, these genomes will enable research that make
critical contributions to recovering imperiled populations.

Methods

Reference Sample Collections, Genome Assembly, and Annotation. Ultra-
high molecular weight DNA was isolated from blood collections, and biopsies of
internal organs for RNAwere collected opportunistically from recently deceased
or euthanized animals. Raw data were deposited into the VGP Genome Ark and
NCBI Short-Read Archive (SRA; see Data Accessibility Statement). We assembled
both genomes using four genomic technologies following the VGP pipeline v1.6
(39)with minor modifications. Short-and long-read transcriptome data (RNA-Seq
and Iso-Seq) were generated from tissues known for their high transcript diver-
sity in each species to enable accurate, species-specific annotations. These data,
plus homology-based mapping from other species, were used to annotate the
genomes using the standardized NCBI pipeline (117). We performed annotation
as previously described (39, 118), using the same RNA-Seq, Iso-Seq, and protein
input evidence for the prediction of genes in both species. Full details for all
methods are provided in S/ Appendix, section I.

Genome Quality Analysis. We used the pipeline assembly-stats from https:/
github.com/sanger-pathogens/assembly-stats to estimate scaffold N50, size distri-
butions, and assembly size. BUSCO analysis (115) and QV value estimations (116)
were conducted to assess the overall completeness, duplication, and relative qual-
ity of the assemblies. We used D-GENIES (118) with default parameters to conduct
dot plot mapping of the entire genomes and each individual chromosome to
evaluate the synteny between leatherback and green turtle genomes, and Haibao
Tang JCVI utility libraries following the MCScan pipeline (119) to verify their
contiguity. Incongruences in gene synteny blocks were manually investigated
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using Artemis Comparison Tool (120), identifying possible regions that could
be caused by artifacts during assembly, and correcting these. The final curated
assemblies were analyzed using the genome evaluation pipeline (https:/git.imp.
fu-berlin.de/cmazzoni/GEP) to obtain all final QC plots and summary statistics.

Identification and Analysis of RRCs. Using dot plots, 20 Mb windows were
visually screened to identify regions of reduced collinearity (RRCs; S/ Appendix,
Fig. S5). Several genomic features (e.g., GC content, repeat elements) were com-
pared between RRCs and equisized regions directly up- and down-stream to
determine whether these were influencing collinearity (Dataset S5). Interproscan
(119) was used to identify the functions of genes found within RRCs, and overall
GO-term proportions for each chromosome were estimated using PANTHER (120);
Sl Appendix, Fig. S25). The two sea turtle genomes were aligned using Progressive
Cactus (121, 122) to examine whether RRCs presented patterns of sequence
divergence and/or gene duplication between the species.

Gene Families and Gene Functional Analysis. To estimate the timing of OR
gene family evolution in sea turtles, we used computational analysis of gene
family evolution (CAFEV5; (123). CAFE uses phylogenomics and gene family sizes
to identify expansions and contractions. We used a dataset containing 8 species
of turtle, 4 nonturtle reptiles, 3 mammals, and 1 amphibian using OrthoFinder
(124,125). OR orthogroups were grouped based on subfamily (class | and class
II; see ref. 73),and an ultrametric phylogeny was generated by gathering 1:1 ort-
hologs. We then aligned OrthoFinder amino acid sequences for each orthogroup
and generated a phylogenetic tree. See SI Appendix, section | for searches of
other specific genes.

Genetic Diversity and Demographic History. The halSnps pipeline (126) was
used to estimate genetic distance between species by computing interspecific
single variants based on alignments obtained with Progressive Cactus (121, 122).
Genetic distances were calculated for 10,000-bp windows across the genome,
where each window included only single alignments in the Cactus output.
Differences in genetic distance, gene content, GC content, and heterozygosity
between macro-, intermediate micro-, and small microchromosomes were tested
using one-way ANOVAs for each species. Regression analyses were used to test
for correlations between these measures across chromosomes.

For genome diversity, ROH, demographic history, and genetic load analyses,
we included whole-genome resequencing data for additional individuals repre-
senting multiple global populations in each species (S/ Appendix, Table Sé and
section 1). We calculated genome-wide heterozygosity using a method adapted
from (127) using 100-kb nonoverlapping windows. Heterozygosity was calculated
forthe entire genome, repeat-masked genome, exons, and nonexons. Statistical
comparisons between species were made using t tests. We subsequently applied
the heterozygosity pipeline to generate genome-wide heterozygosity for addi-
tional reptilian species sourced from NCBI SRA, where species-specific reference
genomes were available (S/ Appendix, section I).

ROHs were identified by generating a SNP-list using the analysis of next gen-
eration sequencing data [ANGSD; (128)] pipeline. ANGSD was parameterized to
output files configured for use as input for the PLINK ROH analysis (129). ROHs
were then further characterized into size classes approximately based on (130).

Estimates of deleterious allele accumulation were conducted using snpEff
(131). We estimated the impacts of variants (SNPs and INDELSs) from coding
regions using the species-specific genome annotations generated for both spe-
cies. gVCFs were generated for each individual followed by joint-genotyping using
GATK (132), allowing the reference individuals to include homozygous alleles
found in other individuals. Combined VCFs were separated for each individual
and filtered using based on depth of coverage (¥5x-2x mean coverage). snpEff
predicts variant impacts and bins them into 'high-, ‘moderate’, or 'low-' impact
categories, and outputs a list of genes that have predicted variant effects. We
ran the snpEff analysis on all individuals for both species, and compared the
percentages of each variant type between species using t tests.

PSMC(133)analyses of demographic history were employed for all individuals
for both species. We used SAMtools (134) and BCFtools (135) to call genotypes
with base and mapping quality filters of >Q30, before filtering for insert size (50
to 5,000bp) and allele balance (AB), and retaining only biallelic sites with an AB
of <0.25and >0.75. We then ran PSMC analysis using the first 10 scaffolds (84%
of total genome length). We scaled our outputs using a generation time of 30y
(51 Appendix, section 1), and a mutation rate of 1.2 x 1078 (107).

https://doi.org/10.1073/pnas.2201076120 9 of 12


http://www.pnas.org/lookup/doi/10.1073/pnas.2201076120#supplementary-materials
https://github.com/sanger-pathogens/assembly-stats
https://github.com/sanger-pathogens/assembly-stats
https://git.imp.fu-berlin.de/cmazzoni/GEP
https://git.imp.fu-berlin.de/cmazzoni/GEP
http://www.pnas.org/lookup/doi/10.1073/pnas.2201076120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2201076120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2201076120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2201076120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2201076120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2201076120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2201076120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2201076120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2201076120#supplementary-materials

Downloaded from https://www.pnas.org by UNIVERSITY OF MASSACHUSETTS AMHERST SERIALS DEPT/ACQ DEPT on February 8, 2023 from IP address 128.119.222.170.

Data Accessibility Statement. Genome assemblies have been deposited on
NCBI GenBank. The NCBI GenBank accession numbers for the leatherback turtle
assembly (rDerCor1) are GCF_009764565.3 and GCA_009762595.2 for the
annotated primary and original alternate haplotypes in BioProject PRINA561993,
and for the green turtle assembly (rCheMyd1) are GCF_015237465.2 and
GCA_015220195.2 for primary and alternate haplotypes respectively in
BioProject PRINA561941. The raw data used for assemblies are available on the
Vertebrate Genome Ark (https://vgp.github.io/genomeark/). The leatherback
turtle data generated for the purpose of assembly annotation was deposited in
the SRA under accession numbers SRX8787564-SRX8787566 (RNA-Seq) and
SRX6360706-SRX6360708 (1SO-Seq). Green turtle data generated for annotation
were deposited in SRAunder accessions SRX10863130-SRX10863133 (RNA-Seq)
and as SRX11164043-SRX11164046 (1S0-Seq). The NovaSeq 6000 DNA-Seq data
for the green turtle resequencing, including raw reads, are deposited in NCBI
(https://www.ncbi.nlm.nih.gov/) under BioProject ID: PRINA449022. All scripts
used for downstream analyses following genome assembly and annotation
have been deposited on GitHub under repository https://github.com/bpbentley/
sea_turtle_genomes.

Data, Materials, and Software Availability. All genomic data and scripts data
have been deposited in VGP GenomeArk (136, 137) Github (138).
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