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a b s t r a c t 

In this paper, we propose hybrid data-driven ROM closures for fluid flows. These new ROM 

closures combine two fundamentally different strategies: (i) purely data-driven ROM clo- 

sures, both for the velocity and the pressure; and (ii) physically based, eddy viscosity data- 

driven closures, which model the energy transfer in the system. The first strategy consists 

in the addition of closure/correction terms to the governing equations, which are built 

from the available data. The second strategy includes turbulence modeling by adding eddy 

viscosity terms, which are determined by using machine learning techniques. The two 

strategies are combined for the first time in this paper to investigate a two-dimensional 

flow past a circular cylinder at Re = 50 , 0 0 0 . Our numerical results show that the hybrid 

data-driven ROM is more accurate than both the purely data-driven ROM and the eddy 

viscosity ROM. 

© 2023 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

Full order models (FOMs) are computational models that are obtained by using classical numerical methods, such as 

the finite element or the finite volume methods. The FOM computational cost is prohibitively high for many important 

engineering, environmental, and biomedical applications that require repeated turbulent flow simulations, such as those in 

Stabile et al. [1] . 

Reduced order models (ROMs), presented in Benner et al. [2–4] , Rozza et al. [5–7] , and applied to finite-volume schemes

in Haasdonk and Ohlberger [8] , Carlberg et al. [9] , can reduce the FOM computational cost by orders of magnitude. ROMs

can be built by using different methodologies, such as least-squares Petrov–Galerkin projection [10] or Galerkin projection 

[11–14] . In this paper, we consider the class of Galerkin-ROMs (G-ROMs), which are ROMs constructed by using a Galerkin

method. The standard methodology consists in the construction of a set of basis functions (modes) for the velocity and 

pressure fields, { ϕ 1 , . . . , ϕ r } and { χ1 , . . . , χq } , respectively, such that the unknown solution can be approximated as a linear

combination of these basis functions: u (x, t) = 

∑ r 
i =1 a i (t) ϕ i (x ) , p(x, t) = 

∑ q 
i =1 

b i (t) χi (x ) . The G-ROM consists in the reso-

lution of a dynamical system, which is obtained by projecting the governing equations onto the space spanned by these 
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modes. The ROM basis is a data-driven basis, which is built by available FOM snapshots. In this paper, we use the proper

orthogonal decomposition (POD) [15] to build the ROM basis. We note, however, that other approaches can be used (see, 

e.g., Hesthaven et al. [16] , Quarteroni et al. [17] ). The resulting G-ROM is a system of equations in which the unknowns are

the coefficients (a i ) 
N u 
i =1 

and (b i ) 
N p 
i =1 

appearing in the reduced fields expressions. For example, for the incompressible Navier–

Stokes equations, the G-ROM can be written as follows: {
a t = f (a , b) , 
h (a , b) = 0 , 

(1) 

where a (t) := (a 1 (t ) , . . . , a r (t )) 
T and b(t) := (b 1 (t ) , . . . , b q (t )) 

T , and f and h denote the ROM operators. 

ROMs are often built by using a few modes. In the marginally-resolved modal regime, where the number of ROM basis

functions allows a moderately accurate representation of the main features of the underlying dynamics, G-ROMs can yield 

acceptable approximations. However, in the case of turbulent flow applications, hundreds or even thousands of ROM modes 

are often required to obtain a good approximation of the flow dynamics. Therefore, in those cases (i.e., in the under-resolved

regime), low-dimensional G-ROMs generally yield inaccurate approximations. 

Different stabilization approaches have been studied in the past years in order to avoid the stability issues and to increase

the ROM accuracy [12,18–20] . 

In this paper, in the marginally-resolved and, especially, under-resolved regimes, in order to increase the accuracy of the 

standard G-ROM (1) while maintaining an acceptable computational cost, the ROM approach is integrated with data-driven 

techniques. One popular approach is to add closure/correction terms to the reduced formulation. To this end, one can use a

purely data-driven approach, which exploits only the available FOM data to build new terms that model the contribution of 

the modes neglected in the ROM formulation. The new reduced system with purely data-driven terms is the following: {
a t = f (a , b) + τu (a , b) , 
h (a , b) + τp (a , b) = 0 . 

(2) 

The terms τu and τp are evaluated by solving a least squares problem that minimizes the difference between the model 

form of the correction terms and the exact correction terms, which are evaluated by using the available FOM data [21–24] .

The technique used to compute the correction terms takes inspiration from the operator inference approach [25–28] . In 

[21] , the purely data-driven approach was applied for the first time to the pressure Poisson formulation (PPE-ROM), leading 

to the introduction of the novel pressure correction term, τp . This strategy has significantly increased the accuracy of the 

pressure field approximation. 

To construct the ROM correction terms, a different strategy is the physically-based data-driven approach. This strategy 

consists of two steps: In the first step, one postulates a physical model form for the ROM correction term. For example,

to approximate turbulent flows, one can postulate an eddy viscosity model. In the second step of the physically-based 

data-driven strategy, one solves a least squares problem to determine the optimal parameters in the ROM correction term, 

e.g., the eddy viscosity coefficient. The physically-based data-driven strategy was used in Hijazi et al. [29] , where the FOM

utilizes a Reynolds averaged Navier–Stokes (RANS) approach [30] and an eddy viscosity model is leveraged to close the FOM 

system [31–33] . To enforce FOM-ROM model consistency, a turbulence model was also introduced at a ROM level in Rebollo

et al. [34] and in Hijazi et al. [29] , where an eddy viscosity reduced order model (EV-ROM) is built. In the EV-ROM, the

eddy viscosity reduced field is expressed as a linear combination of eddy viscosity modes νt (x, t) = 

∑ N νt 
i =1 

g i (t) ηi (x ) , where

{ η1 , . . . , ηN νt 
} are the eddy viscosity modes. The model introduced in Hijazi et al. [29] can be expressed as follows: {

a t = f ( a , b, g ) , 
h ( a , b, g ) = 0 . 

(3) 

The vector of eddy viscosity coefficients g := (g 1 (t) , . . . , g N νt 
) can be obtained from the velocity vector of coefficients a by

using either interpolation or regression techniques. 

The main aim of this paper is to propose a novel hybrid data-driven ROM that is constructed by combining the two

fundamentally different strategies outlined above: purely data-driven and physically-based data-driven techniques. The new 

hybrid data-driven ROM can be written as follows: {
a t = f (a , b, g ) + τu (a , b) , 
h (a , b) + τp (a , b, g ) = 0 . 

(4) 

Machine learning techniques are exploited to find the eddy viscosity coefficients in (4) , training a fully-connected neural 

network from the full order data. 

To our knowledge, this is the first time that a purely data-driven strategy for both the velocity and the pressure, and a

physically-based eddy viscosity data-driven strategy are combined. A similar approach has been used in Mou [35] . We note,

however, that the approach in Mou [35] is different from the approach used in the present study in two significant aspects:

first, a data-driven correction term is used in this paper, but not in Mou [35] ; second, the physically-based data-driven

correction terms are different: regression based mixing length in Mou [35] , and machine learning based eddy viscosity in

the current study. 
2 
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In this paper, the new hybrid data-driven ROM (4) is compared to (i) the purely data-driven ROM (2) proposed in Ivagnes

et al. [21] , and (ii) the physically-based data-driven ROM (3) proposed in Hijazi et al. [29] . The three ROMs are tested and

compared on the classical case study of a turbulent flow around a cylinder. The numerical results show that the new data-

driven ROM (4) yields more accurate velocity and pressure approximations than both the purely data-driven ROM (2) and 

the physically-based data-driven ROM (3) . 

These results support the following two conclusions, which are similar to those in Mou [35] : adding a physically-based

(eddy viscosity) correction term improves the accuracy of the purely data-driven ROM. Furthermore, adding purely data- 

driven velocity and pressure correction terms improves the accuracy of the physically-based data-driven ROM. Thus, our 

numerical investigation suggests that a hybrid data-driven ROM closure strategy is more accurate than both a purely data- 

driven closure and a physically-based data-driven closure. 

The rest of the paper is organized as follows: Section 2 is dedicated to a brief overview of the FOM used and imple-

mented in the C++ open source software OpenFOAM . In Section 3 , the standard G-ROM framework is recalled, specifying

the two approaches used in the numerical investigation (the supremizer and pressure Poisson approaches). Sections 4 and 

5 summarize the purely data-driven ROMs and physically-based data-driven ROMs, respectively. Section 6 is dedicated to the 

presentation of the new hybrid data-driven ROM, and Section 7 presents the results of the numerical simulations in terms 

of relative errors of the pressure and velocity reduced fields with respect to the full order results. Finally, Section 8 presents

the conclusions of our study and outlines future research directions. 

2. Full order model (FOM) 

As a mathematical model, we use the Navier–Stokes Equations (NSE) for incompressible flows. The fluid domain is � ∈ R 
d 

with d = 2 or 3, � the domain’s boundary, t ∈ [0 , T ] the time, u = u (x , t) the flow velocity vector field, p = p(x , t) the pres-

sure scalar field normalized by the fluid density, and ν the fluid kinematic viscosity. The strong form of the incompressible

NSE is the following: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

∂u 
∂t 

= −∇ · (u � u ) + ∇ · ν
(∇u + (∇u ) T 

)
− ∇p in � × [0 , T ] , (5a) 

∇ · u = 0 in � × [0 , T ] , (5b) 

+ boundary conditions on � × [0 , T ] , (5c) 

+ initial conditions in (�, 0) . (5d) 

The full order solutions of (5) are computed by using the software OpenFOAM , which employs a finite volume discretiza-

tion of the system [36,37] . 

The full order problem uses the U-RANS (unsteady RANS equations) approach. This approach is based on the Reynolds 

decomposition, proposed by Reynolds [30] , which decomposes each flow field in its mean and its fluctuating part. The RANS

equations are obtained by taking the time-average of the NSE in (5) . In the resulting system, it is important to include a

closure model for the Reynolds stress tensor. The closure model considered in this paper is an eddy viscosity model that

is based on the Boussinesq hypothesis. Specifically, the SST κ − ω model is used to close the RANS system. This model is

based on the inclusion of two transport equations that describe two additional variables: the kinetic energy, κ , and the
specific turbulent dissipation rate, ω. The SST κ − ω model is presented in Kolmogorov [32] in the standard formulation, 

and in Menter [38] in the SST formulation. The extended RANS model including the SST κ − ω equations can be found in

Hijazi et al. [29] . 

3. The POD-Galerkin ROMs 

In this section, a brief overview of the standard POD-Galerkin ROM techniques is provided. 

After the offline stage is performed, all the FOM snapshots, i.e., the FOM solutions for different time instants { t j } N T j=1 
, are

collected. The POD is then applied on the full order snapshot matrices: 

S u = { u (x , t 1 ) , . . . , u (x , t N T ) } ∈ R 
N h u ×N T , S p = { p(x , t 1 ) , . . . , p(x , t N T ) } ∈ R 

N h p ×N T , 

where N 
h 
u and N 

h 
p are the numbers of degrees of freedom for the velocity and pressure fields, respectively. 

The ROM construction uses the following different stabilization approaches for the velocity-pressure coupling [21] : 

(1) the SUP-ROM approach, in which additional supremizer modes for the velocity space are introduced in order to fulfill 

the inf-sup condition [39–42] ; 

(2) the PPE-ROM approach, in which the pressure Poisson equation replaces the continuity equation [41,43–45] . 

In the two formulations, the velocity and pressure POD spaces are assembled as follows: 

V 
u 
POD = span { [ φi ] 

N u 
i =1 

, [ s (χi )] 
N sup 
i =1 

} , V 

p 
POD 

= span { [ χi ] 
N p 
i =1 

} , (6)

where N u � N 
h 
u and N p � N 

h 
p , and [ φi ] 

N u 
i =1 

and [ χi ] 
N p 
i =1 

are the velocity and pressure POD modes, respectively. The supremizer

modes (s i ) 
N sup 
i =1 

= s (χi ) 
N sup 
i =1 

are additional modes introduced in the SUP-ROM approach in order to fulfill the inf-sup condition 

[41] . 
3
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For each pressure basis function, the corresponding supremizer element can be found by solving the following problem: {
�s i = −∇p i in �, 

s i = 0 on ∂�. 
(7) 

The velocity POD space can be enriched either with an exact or with an approximated approach [40] . In the exact ap-

proach, the problem (7) is solved for each pressure basis function χi and each solution is added to the velocity space. In

the approximated approach, the problem (7) is solved for each pressure snapshot p(x , t i ) 
N T 
i =1 

, which yields the following

supremizer snapshot matrix: 

S sup = { s (x , t 1 ) , . . . , s (x , t N T ) } ∈ R 
N h u ×N T . 

A POD modal decomposition is then applied to the snapshot matrix in order to obtain the supremizer POD modes (ηi ) 
N sup 
i =1 

[41] . In this paper, we adopt the approximated procedure, since it significantly reduces the computational cost of the offline

phase. The reduced velocity and pressure fields are expressed as follows: 

u (x , t) ≈ u r (x , t) = 

N u + N sup ∑ 

i =1 

a i (t) φi (x ) , p(x , t) ≈ p r (x , t) = 

N p ∑ 

i =1 

b i (t) χi (x ) , (8)

where N sup = 0 for the PPE-ROM approach. 

In the remainder of this section, we outline the SUP-ROM ( Section 3.1 ) and PPE-ROM ( Section 3.2 ) approaches. 

3.1. SUP-ROM 

In the supremizer approach, performing a Galerkin projection of the momentum Eq. (5a) onto the velocity modes, and 

of the continuity Eq. (5b) onto the pressure modes, the following dynamical system is obtained: {
M ̇ a = ν(B + B T ) a − a T Ca − Hb + τ

(∑ N BC 
k =1 

(U BC ,k D 
k − E k a ) 

)
, 

Pa = 0 , 
(9) 

where a and b are the vectors of the coefficients associated to the velocity and pressure modes, respectively. 

The matrices appearing in the system are defined as follows: 

(M ) i j = (φi , φ j ) L 2 (�) , (P ) i j = (χi , ∇ · φ j ) L 2 (�) , (B ) i j = (φi , ∇ · ∇φ j ) L 2 (�) , 

( B T ) i j = (φi , ∇ · (∇φ j ) 
T ) L 2 (�) , (C ) i jk = (φi , ∇ · (φ j � φk )) L 2 (�) , (H ) i j = (φi , ∇χ j ) L 2 (�) . 

Remark 3.1. We highlight that the POD modes, as they are linear combination of snapshots, are piecewise constant func- 

tions. However, it is possible to compute second order operators using the same FV procedure used at the FOM level. We

refer to Moukalled et al. [36] for details. 

The term τ
(∑ N BC 

k =1 
(U BC ,k D 

k − E k a ) 
)

in (9) is a term used to enforce the Dirichlet boundary conditions in the reduced 

order model [29,46] . We call �D the Dirichlet boundary, which is composed by different parts, �D 1 
, �D 2 

, ..., �D K 
. 

In particular, N BC is the number of velocity boundary conditions we would like to impose on the parts of the Dirichlet

boundary where velocity has at least one non-zero component; U BC ,k is the velocity non-zero component at the k th part of

the Dirichlet boundary. 

τ is a penalization factor which is tuned by a sensitivity analysis on the specific problem considered [29,46] . In general,

bigger values of the penalization factor lead to a stronger enforcement of the boundary conditions. 

The matrices E k and vectors D 
k are defined as follows: 

(E k ) i j = (φi , φ j ) L 2 (�D k 
) , (D 

k ) i = (φi ) L 2 (�D k 
) , for all k = 1 , . . . , N BC . 

3.2. PPE-ROM 

In the pressure Poisson approach, the continuity Eq. (9) is replaced by the Poisson equation for pressure, obtained by 

taking the divergence of the momentum equation. The dynamical system is obtained by projecting the momentum equa- 

tion and the pressure Poisson equation on the velocity and pressure modes, respectively: {
M ̇ a = ν(B + B T ) a − a T Ca − Hb + τ

(∑ N BC 
k =1 

(U BC,k D 
k − E k a ) 

)
, 

Db + a T Ga − νNa − L = 0 . 
(10) 

The matrices M , B , B T , C , H , D 
k , and E k in system (10) are the same as the corresponding matrices in (9) . The additional

matrices are defined as follows: 

(D ) i j = (∇ χi , ∇ χ j ) L 2 (�) , (G ) i jk = (∇χi , ∇ · (φ j � φk )) L 2 (�) , 

(N ) i j = (n × ∇ χi , ∇ φ j ) L 2 (�) , (L ) i j = (χi , n · R t ) L 2 (�) , 

where vector n is the normal unitary vector to the domain boundary �. 
4
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4. Data-driven VMS-ROMs 

We consider the data-driven variational multiscale ROM ( DD-VMS-ROM ) framework [21] , in which different correc- 

tion/closure terms are introduced in the formulations of SUP-ROM (9) and PPE-ROM (10) . The DD-VMS-SUP-ROM approach 

( Section 4.1 ) includes only velocity correction terms, whereas the DD-VMS-PPE-ROM approach ( Section 4.2 ) includes both

pressure and velocity correction terms. 

For the sake of simplicity, in this section we will consider the following notation for the coefficient vectors for velocity

and pressure: 

a = (a i ) 
r 
i =1 , b = (b i ) 

q 
i =1 

, 

where r is the reduced number of modes for velocity ( r = N u in the PPE-ROM approach, r = N u + N sup in the SUP-ROM

approach), and q is the reduced number of modes for pressure ( q = N p ). We will also consider r tot = r + q . 

4.1. DD-VMS-SUP-ROM 

The reduced formulation for the supremizer approach adopted in Ivagnes et al. [21] is the following: {
M ̇ a = ν(B + B T ) a − a T Ca − Hb + τ

(∑ N BC 
k =1 

(U BC,k D 
k − E k a ) 

)
+ τu (a ) , 

Pa = 0 . 
(11) 

The velocity correction term appearing in (11) is modeled as follows: 

τu (a ) = 
˜ A a + a T ˜ B a , (12) 

where ˜ A is a matrix and ˜ B is a three-dimensional tensor. The operators ˜ A and ˜ B are constructed by solving an optimization 

problem that minimizes the difference between the exact correction term, τexact 
u , and a correction term ansatz, τansatz 

u : 

min 
˜ A ∈ R r×r , 
˜ B ∈ R r ×r ×r 

M ∑ 

j=1 

|| τexact 
u (t j ) − τansatz 

u (t j ) || 2 L 2 (�) , (13) 

where M time instances are considered to build the correction term and the term τexact 
u (t j ) is computed starting from the

snapshots coefficient vectors a 
snap 

d 
(t j ) and a 

snap 
r (t j ) , defined as follows: 

a snap 
d i 

(
t j 
)

= 

(
u d 

(
t j 
)
, φi 

)
L 2 ( �) 

∀ i = 1 , . . . , d � r, 

a snap r i 

(
t j 
)

= 

(
u r 

(
t j 
)
, φi 

)
L 2 ( �) 

∀ i = 1 , . . . , r. 

The value d is the number of modes used to build the exact correction term. 

Remark 4.1. We remark that the value of d can be chosen as the rank of the snapshots matrix. However, in order to decrease

the computational cost of the offline stage, we chose a value which is smaller than the rank of the snapshots matrix, but

considerably bigger than the reduced number of modes considered, as pointed out in Xie et al. [22] . 

The exact correction term for velocity is evaluated as follows: 

τu 
exact (t j ) = 

(
−(a snap 

d 
(t j )) T C d a 

snap 

d 
(t j ) 

r 
)

−
(
−(a snap r (t j )) 

T Ca snap r (t j ) 
)
, 

where the tensor C d ∈ R 
d ×d ×d is defined in the following way: 

C d i jk = 

(
φi , ∇ · (φ j � φk ) 

)
L 2 (�) 

. 

The correction term ansatz is evaluated as in (12) , but starting from a 
snap 
r (t j ) at each time step j: 

τu 
ansatz (t j ) = 

˜ A a snap r (t j ) + (a snap r (t j )) 
T ˜ B a snap r (t j ) . (14) 

The optimization problem (13) is rewritten as a least squares problem following a procedure similar to that used in Pe-

herstorfer and Willcox [25] and presented in detail in Ivagnes et al. [21] and Ivagnes [47] . 

A different way to find ˜ A and ˜ B , introduced in Mohebujjaman et al. [23] , is that of solving a constrained least squares

problem, inheriting the physical properties of the exact tensors: 

min 
˜ A ∈ R r×r , 
˜ B ∈ R r ×r ×r , 

a T ̃  A a ≤0 , 
a T (a T ̃  B a )=0 

M ∑ 

j=1 

|| τu 
exact (t j ) − τu 

ansatz (t j ) || 2 L 2 (�) . (15) 

As shown in Ivagnes et al. [21] , Mohebujjaman et al. [23] , the constrained method can yield better results than the uncon-

strained method in the marginally-resolved regime. 
5
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4.2. DD-VMS-PPE-ROM 

In this section, the pressure data-driven model developed in Ivagnes et al. [21] is briefly recalled. The continuity equa-

tion at the reduced level is replaced by the pressure Poisson equation. This formulation allows for the introduction of novel

pressure correction terms in the reduced system: {
M ̇ a = ν(B + B T ) a − a T Ca − Hb + τ

(∑ N BC 
k =1 

(U BC,k D 
k − E k a ) 

)
+ τu (a , b) , 

Db + a T Ga − νNa − L + τp (a , b) = 0 . 
(16) 

In [21,47] , different ansatzes are analyzed for the correction terms τu and τ p . The formulation which is chosen in this paper

is the one in which a unique least squares problem is solved to find all the purely data-driven terms. 

As the exact correction term in the optimization problem, we consider the following: 

τexact 
tot (t j ) = 

(
τexact 
u (t j ) , τ

exact 
p (t j ) 

)∀ j = 1 , . . . , M . (17) 

The exact correction corresponding to τp includes the contribution of two different terms: 

τexact 
p (t j ) = τexact 

D 
(t j ) + τexact 

G 
(t j ) = 

= 

(
D d b 

snap 

d 
(t j ) 

q 
)

− Db snap q (t j ) + (a snap 
d 

(t j )) T G d a 
snap 

d 
(t j ) 

r − (a snap r (t j )) 
T G a snap r (t j ) , 

where the matrix D d and tensor G d are defined as follows: 

D d i j 
= (∇ χi , ∇ χ j ) L 2 (�) , G d i jk 

= (∇ χi , ∇ · (φ j � φk )) L 2 (�) , i, j, k = 1 , . . . , d. 

The ansatz considered in this paper is the following: 

τansatz 
tot (t j ) = 

˜ J A ab 
snap 

(t j ) + ( ab 
snap 

(t j )) 
T ˜ J B ab 

snap 
(t j ) , (18) 

where the matrices ˜ J A ∈ R 
(r+ q ) ×(r+ q ) and ˜ J B ∈ R 

(r+ q ) ×(r+ q ) ×(r+ q ) , and the vector ab 
snap (t j ) = (a snap r (t j ) , b 

snap 
q (t j )) ∈ R 

r+ q . The
final correction that is inserted in the reduced system (16) is divided into two vectors: 

˜ J A ab + ab 
T ˜ J B ab = ( τu , τ p ) , where τu ∈ R 

N u , τ p ∈ R 
N p . (19) 

Finally, the following optimization problem is solved: 

min 
˜ J A ∈ R r tot ×r tot ;

˜ J B ∈ R r tot ×r tot ×r tot 

M ∑ 

j=1 

|| τexact 
tot (t j ) − τansatz 

tot (t j ) || 2 L 2 (�) . (20) 

5. Eddy viscosity ROMs 

The ROMs described in Section 4 do not include turbulence treatment inside the formulation. Different models have been 

used in fluid applications to simulate the turbulent behaviour. In this paper, turbulence is included at the full order level

by using a particular type of eddy viscosity model, the SST κ − ω model, which adds to the RANS equations the transport

equations for κ and ω. 

At the reduced order level, an approximation of the eddy viscosity terms can be included in equations by introducing a

reduced order version of the eddy viscosity [29] , as follows: 

νt (x , t) ≈ νt r (x , t) = 

N νt ∑ 

i =1 

g i (t) ηi (x ) , 

where ηi (x ) is the i th eddy viscosity mode evaluated through a POD procedure and g i (t) the corresponding coefficient. 

Adding the turbulence terms to the SUP-ROM (9) , the new dynamical system can be written as follows: {
M ̇ a = ν(B + B T ) a − a T Ca + g T (C T1 + C T2 ) a − Hb + τ

(∑ N BC 
k =1 

(U BC ,k D 
k − E k a ) 

)
, 

Pa = 0 , 
(21) 

where the new matrices appearing are defined as: 

(C T1 ) i jk = (φi , η j ∇ · ∇φk ) L 2 (�) , 

(C T2 ) i jk = (φi , ∇ · η j (∇φk ) 
T ) L 2 (�) . 

When a PPE approach is considered, the FOM momentum and Poisson equation, according to the RANS turbulent model, 

are written in the following way: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

∂ u 

∂t 
+ ∇ · ( u � u ) = ∇ ·

[
−p I + (ν + νt ) 

(∇ u + (∇ u ) T 
)]

in � × [0 , T ] , 

�p = −∇ · (∇ · ( u � u )) + ∇ ·
[∇ ·

(
νt 

(∇ u + (∇ u ) T 
))]

in �, 

+ Boundary Conditions on � × [0 , T ] , 

+ Initial Conditions in (�, 0) . 
6 
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Consequently, the dynamical system (10) takes the following form: {
M ̇ a = ν(B + B T ) a − a T Ca + g T (C T1 + C T2 ) a − Hb + τ

(∑ N BC 
k =1 

(U BC ,k D 
k − E k a ) 

)
, 

Db + a T Ga − g T (C T3 + C T4 ) a − νNa − L = 0 , 
(22) 

where: 

(C T3 ) i jk = (∇ χi , η j ∇ · ∇ φk ) L 2 (�) , (C T4 ) i jk = (∇χi , ∇ · η j (∇φk ) 
T ) L 2 (�) . 

In the dynamical systems defined in (21) and (22) , the number of unknowns is N u + N sup (in (21) ) and N u (in (22) ) for

velocity, N p for pressure, and N νt for the eddy viscosity. However, the number of equations is N u + N sup + N p in (21) and

N u + N p in (22) . Thus, there are more unknowns than equations and the systems are not closed for both the supremizer and

the Poisson approach. In order to close the systems, the eddy viscosity coefficients [ g i (t)] 
N νt 
i =1 

can be computed considering

the mapping g = f (a ) through either interpolation or regression techniques. 

In the first approach, the reduced eddy viscosity coefficients are interpolated with radial basis functions [4 8,4 9] . This

technique was exploited in Hijazi et al. [29] , following the POD-I approach [50–52] . In the regression approach, which is the

one used in this paper, the reduced eddy viscosity coefficients are computed starting from the velocity coefficients [ a i ] 
N u 
i =1 

through a feed-forward fully-connected neural network [47] . The neural network considered has two hidden layers of sizes 

256 and 64, the activation function is ReLU , and the learning rate used for training is 1 e − 5 . The loss function minimized in

the training process is the difference between the output of the neural network ( g NN = f NN (a ) ) and the values of the known

coefficients of the eddy viscosity field ( g = (g i ) 
N νt 
i =1 

), which are found from the POD procedure. 

6. Hybrid data-driven ROMs 

This section introduces the hybrid data-driven approach. The new formulation fuses the purely data-driven and 

physically-based data-driven strategies presented in Sections 4 and 5 , respectively. The reduced system following the 

supremizer approach is expressed as follows: {
M ̇ a = ν(B + B T ) a − a T Ca + g T (C T1 + C T2 ) a − Hb + τ

(∑ N BC 
k =1 

(U BC ,k D 
k − E k a ) 

)
+ τu (a ) , 

Pa = 0 , 
(23) 

where: 

τu (a ) = 
˜ A a + a T ˜ B a . (24) 

Considering the pressure Poisson approach, the reduced system is written in the following way: {
M ̇ a = ν(B + B T ) a − a T Ca + g T (C T1 + C T2 ) a − Hb + τ

(∑ N BC 
k =1 

(U BC ,k D 
k − E k a ) 

)
+ τu (a , b) , 

Db + a T Ga − g T (C T3 + C T4 ) a − νNa − L + τ p (a , b) = 0 , 
(25) 

where, as described in Section 4.2 , the correction terms are: 

τtot = ( τu (a , b) , τ p (a , b) ) = 
˜ J A ab + ab 

T ˜ J B ab . (26) 

Remark 6.1. We highlight that there is an interplay between the two data-driven techniques used in the hybrid model: 

• The coefficient vector a (t) is computed at time t by solving a system in which both purely and physically data-driven

closure terms appear. For example, in the hybrid data-driven PPE-ROM model: {
˙ a (t) = f (a (t ) , b (t ) , g (t )) + τu (a (t ) , b (t )) 
h (a (t) , b (t) , g (t)) + τp (a (t) , b (t)) = 0 . 

(27) 

The computed coefficient vector a is then given as input to the neural network and used to predict the eddy viscosity

reduced field ( g (t + 1) = f (a (t)) ). 
• The computed g (t + 1) is then used to solve (27) at time t + 1 and find a (t + 1) and b (t + 1) , and so on. 

7. Numerical results 

The case study considered to test the data-driven ROMs described in Sections 4 –6 is an unsteady flow past a circular

cylinder. The case is studied in two dimensions and the mesh used has 11644 cells. The mesh and the boundary conditions

set for velocity and pressure are displayed in Fig. 1 [29] . The diameter of the cylinder is D = 1m , the fluid kinematic viscosity

ν = 1 × 10 −4 m 
2 s −1 , and the velocity at the inlet is horizontal and fixed: U in = 5 m s −1 . 

For the offline stage, the software OpenFOAM is used to obtain the full order fields, using the unsteady solver pimpleFoam

and the κ − ω model for the turbulence treatment. The pimpleFoam solver is based on a PIMPLE approach for pressure 

velocity coupling with under-relaxation technique, which consists of the coupling of a SIMPLE [53] and a PISO strategy [54] .

In the offline simulations, we consider one FOM snapshot every 0.004 s starting from instant 79.992 from the beginning of
7 
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Fig. 1. The mesh used in simulations (left) and the mesh zoomed around the cylinder (right), with the corresponding boundary conditions. 

Table 1 

Time windows considered for numerical results. 

Tests Corresponding subsections T offline T correction T online 

1 7.1, 7.2, 7.3 20 s 2 s 8 s 

2 7.4 2 P ∼ 1 . 78 s P ∼ 0 . 89 s 8 P ∼ 7 . 12 s 

 

 

 

 

 

 

 

 

 

 

the simulation. Since the time step of the full order simulation is set to 0.0 0 02 s, we are using undersampling , taking one

snapshot every 20 time steps. 

Then, the POD is performed. The POD modes for the velocity, pressure, and supremizer fields are extracted from the 

numerical data, making use of the library ITHACA-FV [41,44,55] . 

The simulations for the online ROM procedure are computed in a dedicated Python script, and both the SUP-ROM and 

the PPE-ROM approaches are tested. 

We also specify that the time windows selected to perform the offline and online stages influence the performance of 

the proposed ROMs. We denote the time intervals as follows: 

• T offline : the time window used to collect the snapshots to compute the POD and the reduced operators; 
• T corrections : the time interval used to compute the purely data-driven terms; 
• T online : the time window used to perform the online reduced order simulations. 

In particular, we will analyze the settings specified in Table 1 . Moreover, the time intervals in Test 2 are selected taking

into account the Strouhal number, namely the frequency of vortex shedding. Indeed, in Table 1 P ∼ 0 . 89 s refers to one flow

period. The selection of T offline = 2 P and T corrections = P represents a good choice to obtain accurate results in the reduced

order simulations, as extensively explained in Ivagnes et al. [21] . 

The results of the high-fidelity simulations are compared to the results obtained by solving the reduced order dynamical 

systems with or without the data-driven terms and considering the parameter τ = 10 0 0 , which was introduced in system

(9) . 

More specifically, the results are evaluated in terms of the percentage errors of the reduced pressure and velocity fields 

with respect to the correspondent high-fidelity fields, evaluated at each time step, in the L 2 norm. Since the projection of the

full order solution on the reduced POD space is the best possible result that can be achieved with a given number of modes,

the solution of the reduced system cannot improve with respect to that projection. For this reason, the percentage errors 

with respect to the projection of the full order solution on the reduced POD space are used in the numerical investigation.

The percentage errors with respect to the full order fields at each jth time step are evaluated in the following way: 

ε f ull u (t j ) = 

|| u 
abs 
r (x , t j ) − u 

abs 
d 

(x , t j ) || L 2 (�) 

|| u 
abs 
d 

( x , t j ) || L 2 (�) 

, ε f ull p ( t j ) = 

|| p r ( x , t j ) − p d (x , t j ) || L 2 (�) 

|| p d ( x , t j ) || L 2 (�) 

, (28) 

where the following quantities are considered: 

• the reduced velocity and pressure fields: 

u r (x , t j ) = 

r ∑ 

i =1 

a i (t j ) φi (x ) , p r (x , t j ) = 

q ∑ 

i =1 

b i (t j ) χi (x ) , 

where the coefficients a i (t j ) and b i (t j ) are the solutions of the dynamical systems (29) (in the supremizer approach) and

(30) (in the Poisson approach); 
• the approximated full order fields of velocity and pressure, which are evaluated starting from the first d modes, where 

d = 100 when a supremizer approach is considered, and d = 50 when a pressure Poisson approach is considered. Such a

term reads 

u d (x , t j ) = 

d ∑ 

i =1 

a snap 
i 

(t j ) φi (x ) , p d (x , t j ) = 

d p ∑ 

i =1 

b snap 
i 

(t j ) χi (x ) . 

100 50 
We remark that when the supremizer approach is considered, { φi } i =51 
= { s i (χi ) } i =1 

are the supremizer modes. 

8 
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Considering the supremizer approach, the most general form for the dynamical system solved at each time step is the 

following: ⎧ ⎨ 

⎩ 

M ̇ a i = ν(B + B T ) a 
i − (a i ) T Ca i − Hb i + c u τu (a i , b i ) + 

+ c t 
(
(g i ) T (C T 1 + C T 2 ) a 

i 
)
+ τ

(∑ N BC 
k =1 

(U BC ,k D 
k − E k a i ) 

)
at each i = 1 , . . . , M , 

Pa i = 0 at each i = 1 , . . . , M , 

(29) 

where M is the total number of time steps in the online phase. 

Considering the pressure Poisson approach, the reduced dynamical system can be written as follows: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

M ̇ a i = ν(B + B T ) a 
i − (a i ) T Ca i − Hb i + c u τu (a i , b i ) + 

+ c t 
(
(g i ) T (C T 1 + C T 2 ) a 

i 
)
+ τ

(∑ N BC 
k =1 

(U BC ,k D 
k − E k a i ) 

)
at each i = 1 , . . . , M , 

Db i + (a i ) T Ga i − νNa i − L + c t 
(
(g i ) T (C T 3 + C T 4 ) a 

i 
)

+ 

+ c p τp (a i , b i ) = 0 at each i = 1 , . . . , M . 

(30) 

The matrices and tensors appearing in the two formulations are specified in Sections 3 –5 . In systems (29) and (30) , the

parameters c u , c p , and c t are introduced to either include or combine the different data-driven strategies in the reduced

formulation. 

For the time integration, two different approaches are used. Specifically, the time derivative ˙ a i appearing in the mo- 

mentum equation in (29) and (30) is computed following (i) an Euler first order time scheme, and (ii) an implicit second

order time scheme. It is worth remarking that the second order time scheme corresponds to the scheme implemented in 

OpenFOAM and used to solve the full order problem. 

In this section, the numerical results are analyzed with respect to three different criteria: 
Fig. 2. Percentage integral errors of the absolute value of velocity and pressure, varying the number of modes. The model is the SUP-ROM with a first 

((a), (b)) and second ((c), (d)) order time scheme. The cases represented are the following: without any data-driven term ( ); physically-based 

data-driven model ( ); purely data-driven model for the velocity ( and unconstrained and constrained, respectively); hybrid model 

( ); projection ( ). 
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• in the first part ( Section 7.1 ), the accuracy of the data-driven ROMs is analyzed by varying the number of ROM modes

between 1 and 10; 
• the second and the third parts( Sections 7.2 and 7.3 ) investigate the accuracy of the data-driven ROMs by first fixing the

number of modes to 5 for the velocity, pressure, and supremizer fields, and then varying the time. Sections 7.2 and

7.3 investigate the supremizer and the Poisson approaches, respectively; 
• the last part( Section 7.5 ) is dedicated to the graphical comparison of the velocity and pressure fields produced by the

data-driven ROMs. 

The following cases are analyzed and compared, for both the first and the second order time schemes, and for both

SUP-ROM and PPE-ROM approaches: 

• c t = c u = 0 (and c p = 0 for PPE-ROM), i.e., standard ROM without the addition of any data-driven term; 
• c t = 0 , c u = 1 (and c p = 1 in PPE-ROM), i.e., purely data-driven model; 
• c t = 1 , c u = 0 (and c p = 0 in PPE-ROM), i.e., physically-based data-driven model; 
• c t = c u = 1 (and c p = 1 in PPE-ROM), i.e., hybrid data-driven model. 

In Sections 7.2 –7.5 , the results provided by the combination of the two different data-driven techniques are compared to

those obtained in the previous works [21,29] , where only one of these two techniques is used. 

7.1. Hybrid data-driven approach in different modal regimes 

In this section, a comparison of different modal regimes is carried out for both the supremizer and the pressure Poisson

approaches. The models considered for the investigation are: 
Fig. 3. Percentage integral errors of the absolute value of velocity and of pressure, varying the number of modes. The model is the PPE-ROM with a 

first ((a), (b)) and second ((c), (d)) order time scheme. The cases represented are the following: without any data-driven term ( ); physically-based 

data-driven model ( ); purely data-driven model ( ); hybrid data-driven model ( ); projection ( ). 

10 
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• the SUP-ROM, with and without the closure turbulence model and the extra velocity correction term; 
• the PPE-ROM, with and without the turbulence model, extra velocity correction term (in the momentum equation), and 

pressure correction term (in the pressure Poisson equation). 

The accuracy is evaluated in terms of percentage integral errors for the absolute value of velocity and pressure on a time

window of 2 s. The expressions for the overall time window L 2 errors are the following: 

∫ T 
0 ‖ u 

abs 
r 

(
x , t j 

)
− u 

abs 
d 

(
x , t j 

)‖ L 2 ( �) dt ∫ T 
0 ‖ u 

abs 
d 

(
x , t j 

)‖ L 2 ( �) dt 
× 100 , 

∫ T 
0 ‖ p r 

(
x , t j 

)
− p d 

(
x , t j 

)‖ L 2 ( �) dt ∫ T 
0 ‖ p d 

(
x , t j 

)‖ L 2 ( �) dt 
× 100 , 

where T corresponds to 2 s . The errors defined above are analyzed for all the cases for both the first and the second order

time schemes. 

The graphical results are showed in semi-logarithmic plots in Fig. 2 for the supremizer approach, and in Fig. 3 for the

Poisson approach. 

In Fig. 2 , the number of modes considered in the supremizer approach satisfies N sup > N p when N u = N p is equal to

8 , 9 , and 10, in order to avoid stability issues. From Figs. 2, 3 , one can note that the data-driven corrections have a more

significant positive effect when a small number of modes is considered; the improvement with respect to the standard 

G-ROM, especially for the pressure field, is not visible when the number of modes is larger than 8. 

In both the supremizer and the Poisson approaches, the time integration scheme plays an important role in the evalu- 

ation of the data-driven ROM accuracy. In fact, when a first order time scheme is used, the introduction of the turbulence

treatment in the formulation does not improve the results with respect to the standard ROM and the results obtained

in Ivagnes et al. [21] with the DD-VMS-ROM. This fact is particularly evident for a number of modes between 7 and 10

( Figs. 2 (a),(b) and 3 (a),(b)). 
Fig. 4. Percentage errors of the absolute value of velocity and pressure, considering N u = N p = N sup = 5 . The model is the SUP-ROM with a first ((a), (b)) 

and second ((c), (d)) order time scheme. Results include the following cases: without any data-driven term ( ); purely data-driven constrained model 

for the velocity ( ); physically-based data-driven model ( ); hybrid data-driven model ( ); projection ( ). 
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When the standard ROM is considered, the results obtained with a first-order time scheme outperform the results ob- 

tained with a second-order time scheme: this is likely due to the reduced numerical dissipation associated with the second- 

order time scheme, which makes the system more exposed to numerical instabilities. 

When the turbulence modeling is added to the reduced formulation, results improve only if we consider a second-order 

time scheme, i.e., if we have consistency with respect to the full order model. 

The analysis in the following section focuses on N u = N p = 5 (and N sup = 5 for the supremizer enrichment), i.e., in the

marginally-resolved regime. 

7.2. Comparison of data-driven VMS-SUP-ROMs 

In this section, the results of different data-driven techniques are compared for the supremizer approach for a first and 

a second order time schemes. 

For the simulations of the reduced systems (21) and (23) , the coefficients of the reduced eddy viscosity field (g i ) 
N νt 
i =1 

are computed by using a fully-connected neural network, starting from the velocity coefficients (a i ) 
N u 
i =1 

. The network is

composed of two hidden layers, the ReLU function is used as an activation function in the network, and the learning rate is

set to 10 −5 . 

The momentum equation correction term is obtained by solving the constrained optimization problem (15) , since it pro- 

vides the best performance with respect to the velocity accuracy for a low number of modes, as pointed out in Section 4.1 . 

Figure 4 (a) and (b) display the results obtained using a first order time scheme. In this case, the inclusion of a turbulence

model does not appear to have a completely positive effect on accuracy. In addition, coupling the turbulence and correction 

strategies does not lead to higher accuracy, especially when the pressure field is considered. In such a case in fact, the

hybrid method leads to worse results than in the no-correction case, as already pointed out in Section 7.1 . 

When considering a second order time discretization scheme ( Fig. 4 (c) and (d)), the results obtained with turbulence 

modeling or with both correction closure terms and turbulence terms are more accurate than the results of the standard 
Fig. 5. Percentage errors of the absolute value of velocity and pressure, considering N u = N p = 5 . The model is the PPE-ROM, with a first ((a), (b)) and 

second ((c), (d)) order time scheme. Results include the following cases: without any data-driven term ( ); purely data-driven model, for both 

velocity and pressure ( ); physically-based data-driven model ( ); hybrid data-driven model ( ); projection ( ). 
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ROM, and are close to the projection of the full order solution on the reduced POD space. In particular, in terms of accuracy

of the velocity reduced field, the results are very similar to the projected field. 

7.3. Comparison of data-driven VMS-PPE-ROMs 

In this section, the combined effect of data-driven terms and turbulence modeling is evaluated for the PPE approach for 

a simulation lasting 8 s in Fig. 5 . 

The correction terms are built starting from the first 2 s and all corrections are constructed by using the approach

detailed in Section 4.2 . 

The differences between Fig. 5 (a),(b) and (c),(d) confirm what was observed in the SUP-ROM investigation. When a first 

order scheme is used ( Fig. 5 (a) and (b)), the hybrid data-driven approach does not significantly improve the accuracy of the

eddy viscosity or purely data-driven approaches. However, when a second order time scheme is used ( Fig. 5 (c) and (d)), the

combination of turbulence modeling and corrections leads to a significantly accuracy improvement. 

Remark 7.1. Different behaviours of the reduced system in Figs. 2–5 when using a first or second order time scheme, can

be justified with the different dissipation associated with the two numerical time integration schemes. 

In fact, from the numerical examples, we deduce that, when considering a ROM which includes all the stabilizations of 

the FOM (i.e., data-driven + eddy viscosity), it is important to use the same temporal scheme employed at the FOM level

(i.e., second order scheme). In the case of a ROM with missing stabilization terms (i.e., missing eddy viscosity for example)

a first order scheme introduces additional numerical stabilization and gives a beneficial contribution. 

We also note that the model is characterized by a good extrapolation efficiency for what concerns the purely data-driven 

extra-terms. Indeed, although the corrections are constructed with data from the first 2 s, they increase the ROM accuracy 

on the interval [ T corrections , T online ] = [2 , 8] s. Finally, we point out that the instability of the second-order integration scheme

is damped by the addition of the turbulence model. 
Fig. 6. Percentage errors of the absolute value of velocity and pressure, considering N u = N p = N sup = 5 . The model is the SUP-ROM with a first-order ((a), 

(b)) and second-order ((c), (d)) time scheme. Results include the following cases: without any data-driven term ( ); purely data-driven constrained 

model for the velocity ( ); physically-based data-driven model ( ); and hybrid data-driven model ( ). 
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Fig. 7. Percentage errors of the absolute value of velocity and pressure, considering N u = N p = 5 . The model is the PPE-ROM with a first-order ((a), (b)) and 

second-order ((c), (d)) time scheme. Results include the following cases: without any data-driven term ( ); purely data-driven constrained model for 

both the velocity and the pressure ( ); physically-based data-driven model ( ); and hybrid data-driven model ( ).. 

 

 

 

 

 

 

 

 

Overall, the numerical results in this section show that adding the data-driven velocity and pressure corrections proposed 

in Ivagnes et al. [21] can significantly increase the accuracy of the turbulence ROMs proposed in Hijazi et al. [29] . 

7.4. A numerical test for time extrapolation 

This subsection is dedicated to testing the proposed numerical methods on a different set of time intervals, listed in 

Table 1 . 

Here the reduced dynamical system is solved in the interval T online = 8 P . In this way, we provide evidence of the extrap-

olation efficiency of the proposed methods, not only outside of time window T corrections , but also outside of the time interval

in which the POD snapshots are taken, T offline . 

Figures 6 and 7 display the results obtained using the supremizer and PPE approaches, respectively, where the results 

are expressed in terms of percentage errors with respect to the full order fields. 

Figures 6 and 7 show that the results obtained by reducing the intervals T offline and T corrections reproduce the trend already

observed for larger time windows in Section 7.2 and 7.3 . The hybrid data-driven techniques provide successful results for a

second-order time scheme also in the interval [ T offline , T online ] , i.e., outside the time interval where the POD snapshots are

taken. 

Moreover, the plot in Fig. 7 (d) shows that the Poisson approach outperforms the supremizer technique in terms of pres-

sure accuracy. Indeed, the hybrid data-driven method stabilizes the error of the pressure field with respect to its high fidelity

counterpart, leading to a maximum error value of ∼ 6% . 

7.5. Qualitative results 

The inclusion of correction terms and turbulence modeling in the reduced formulations is also examined from a graphical 

point of view for the SUP-ROM and PPE-ROM approaches. The results are graphically represented on the test case grid by
14 
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Fig. 8. Representation of the pressure field for the FOM, the SUP-ROM, and the PPE-ROM simulations with and without the data-driven terms. 

 

 

 

 

 

 

 

using the open-source application Paraview and the results are compared to those obtained in Ivagnes et al. [21] and Hijazi

et al. [29] . Here the test case 1 of Table 1 is taken into account and a second-order time integration scheme is used since it

provides the best results in Sections 7.2 and 7.3 . 

The POD is performed on the snapshots evaluated at the time instances within the interval [79.992,99.992] s and the 

reduced order systems (29) and (30) are solved in the interval [79.992,87.992] s, since the maximum length of the online

simulations carried out is 8 s. For this reason, all the fields are captured at the final time step of online simulations, i.e., at

87.992 s. 

The pressure and the velocity magnitude fields are displayed in Figs. 8 and 9 , respectively, for different SUP-ROM and

PPE-ROM simulations. The fields computed with the standard ROMs and those coming from the systems including the data- 

driven terms are different. In particular, the fields in panels (e) and (f) of Figs. 8 and 9 are closer to the full order fields

displayed in panel (g) of Figs. 8 and 9 , especially in the region around the cylinder. The improvement of the accuracy nearby

the circular cylinder is an important gain as it leads to a better reconstruction of the ROM lift coefficient. 
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Fig. 9. Representation of the velocity magnitude field for the FOM, the SUP-ROM, and the PPE-ROM simulations with and without the data-driven terms. 

 

8. Conclusions and outlook 

One popular way to increase the accuracy of Galerkin ROMs in the under-resolved or marginally-resolved regimes is 

adding closure or correction terms [56] . In this paper, the data-driven modeling of these correction terms, deeply analyzed 

in Ivagnes et al. [21] , was combined with turbulence modeling, using the eddy viscosity formulation developed in Hijazi 

et al. [29] . This yielded a novel hybrid data-driven closure strategy, which we tested numerically. In our numerical investi-

gation, we considered the two-dimensional flow past a circular cylinder at Re = 50 0 0 0 in the marginally-resolved regime. 

We also considered several model configurations. 

First, we tested two fundamentally different ROM pressure formulations: (i) The supremizer ROM (SUP-ROM), in which 

additional (supremizer) modes for the velocity approximation are used in order to satisfy the inf-sup condition. (ii) The pres- 

sure Poisson equation (PPE-ROM), in which the pressure approximation is determined by solving a Poisson equation instead 

of the continuity equation. 

Secondly, a comparison between a first and a second-order integration time scheme, in the resolution of the reduced 

system, was performed. In our numerical investigation, we observed that the numerical dissipation associated with the 
16 
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second-order scheme leads to a better reconstruction of the pressure and velocity fields when the novel data-driven terms 

are added. 

In conclusion, the hybrid data-driven closure strategy provides the best performance, leading to an increased accuracy of 

the reduced pressure and velocity field with respect to the high-fidelity solution, in both supremizer and Poisson approaches 

with a second-order time integration scheme. 

Outlook There are several research directions that can be investigated: 

• The combined effect of correction terms and eddy viscosity modeling is highly influenced by the nature of the test case

taken into account. The numerical method proposed was tested in this paper only in the case of a 2D turbulent flow

around a circular cylinder. Further tests with unsteady problems, with a more complex computational setting or with 3D 

grids will be analyzed in future works. 

Moreover, in this paper we analyzed two configurations for the training dataset, taking the snapshots from a large time 

interval ( 20 s in the first test) and from a small time interval ( ∼ 1 . 78 s in the second test). The proposed method provided

successful results in both cases. We also gave evidence of the good performance outside the time windows used to build

the purely data-driven correction terms and to perform the POD. 
• In this paper, the only parameter considered in the reduced order simulations is time. Thus, the matrices appearing in 

the correction terms’ ansatzes are parameter independent. An interesting task for the future would be the introduction 

of a parameter in the reduced formulation — for instance the velocity at the inlet of the domain — as in Hijazi et al. [29] .

In that case, the goal would be to express the data-driven terms as a function of both the parameter considered and the

time. 
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