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Abstract—In recent years, increasing numbers of electronic con-
trol units (ECUs), programmable logic controllers (PLCs), and
other types of programmable electronics have been deployed
into cyber-physical systems. While such progress increased pro-
ductivity and product quality, it also introduces vulnerabilities
to both hardware and software. This study proposes a data-
driven approach to monitoring the electric waveforms of the
power network of cyber-physical systems for attack and fault
detection and diagnosis. In terms of methodology, most studies
focus on classification, which only allows for classification of
known attacks or faults. While new attacks could be detected,
they cannot be properly diagnosed as a new attack would be
forced into one of the existing classifiers, thus leading to an
incorrect diagnosis. This study proposes using clustering to
detect and diagnosis anomalies. Specifically, it proposes using
two dimensional unsupervised shapelets (2D u-shapelets) for
clustering. U-shapelets are short time series with discriminatory
capabilities that can be automatically extracted from a data
set. This study is the first of a two phase study to incorporate
dynamic clustering with u-shapelets. The advantage of this long
term approach allows a system to notify systems users of a new
type of attack or fault, which can later be labelled. Thus, the
system can learn to identify new anomalies. Extensive evalua-
tions are conducted to study the algorithm performance,such as
the performance metrics vs the number of clusters and anomaly
types, and the effectiveness for novel adversarial attacks on such
systems.
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1. INTRODUCTION

As the presence of cyber-physical systems grows, so does the
likelihood of cyber-attacks on these systems. The Colonial
Pipeline shutdown is just one recent example. Modern cyber-
physical systems, often referred to as operational technology
(OT) in industry, have external communication capabilities that
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are increasingly networked to take advantage of advances in
Industry 4.0 advanced capabilities including digital engineer-
ing, industrial 10T, data analytics, digitization, and integration
of the cyber-physical value chain. These communications
capabilities increase potential fault and cyber-attack vectors,
even in air gapped networks. Industry has growing security
concerns that a STUXNET style attack on its cyber-physical
systems could degrade or damage their capability to provide
services and support. In addition to critical infrastructure,
manufacturing systems for the aerospace industry are also an
area of concern.

To our knowledge, limited studies have been done on using
the information embedded in electrical signals for cyber-threat
detection in cyber-physical systems such as manufacturing
systems. Some cyber-threats including integrity attacks may
not be observed in the cyber-space alone and can only be
discovered through inter-dependency analysis of multiple
cyber and physical signals. Thus, there is a significant
opportunity in exploring physical signals, together with
cyber signals, to advance cyberspace security and trustworthy
research and design. While there is a plethora of potential
cyber-attacks, this study utilizes attacks that directly affect
the operation of the electrical machines and its components.
In addition to detecting anomalies in a system, diagnosing
them is also important. An ideal system should be able to
distinguish attacks from faults and should be able to identify
the type of each. The attacks considered in this work are
data injection attack (DIA), coordinated DIAs, and replay
attacks. Additionally, open circuit and short circuit faults
are utilized. This study proposes a data-driven approach
to monitoring the electric waveforms of the power network
of cyber-physical systems for attack and fault detection and
diagnosis. In terms of methodology, most studies focus on
classification, which only allows for classification of known
attacks or faults. While new attacks could be detected, they
cannot be properly diagnosed as a new attack would be forced
into one of the existing classifiers, thus leading to an incorrect
diagnosis. This study proposes using (unsupervised) clustering
to detect and diagnosis anomalies. It is the first step in a
two phase study that proposes using a dynamic clustering
algorithm that can automatically create a new cluster in the
diagnosis phase in the case of an attack that does not fit well
into a current cluster. The advantage of this approach allows a
system to notify systems users of a new type of attack or fault,
which can later be labelled. Thus, the system can learn to
identify new anomalies. Extensive evaluations are conducted
to study the algorithm performance,such as the performance
metrics vs the number of clusters and anomaly types, and the



effectiveness for novel adversarial attacks on such systems.

2. BACKGROUND AND RELATED WORKS

Power electronics converters are becoming more vulnerable
to cyber/physical attacks due to their growing penetration
in Internet of Things (IoT) enabled applications including
the smart manufacturing and smart grids [1]. Due to the
lack of cyber awareness in power electronics community [1],
it becomes more urgent to develop cyber/physical attack
detection and identification strategies for power electronics
converters in many safety-critical applications since these
malicious attacks can lead to a catastrophic failure and
substantial economic loss if not detected in the early stage.

Attacks are studied in applications which are intensively
dependent on power electronics converters, including power
grids with voltage support devices [2], distribution systems
with solar farms [3], with power electronics driven HVAC
(Heating, ventilation, and air conditioning) systems [4], and
microgrids [5, 6]. However, they mostly focus on either
analyzing or detecting cyber attacks affecting grid level
stability, functionality and operational costs. In [7], a model-
based method was developed to detect data integrity attacks on
automation generation control of transmission systems. In [3],
a physical-law based detection was developed to detect false
data attacks which attempt to reduce the output power of solar
energy in distribution systems. In [4], a secure information
flow framework was developed for 118-bus distribution net-
work with power electronics driven HVAC system. In [8],
a physics-based, cooperative mechanism was developed to
detect stealthy attacks in DC microgrids with a number of
DC-DC converters, which can bypass most of observer-based
detection methods. In [9], a physics-based framework to detect
false-data injection attacks in DC microgrids with a number
of DC-DC converters. While power electronics converters are
included in their cyber security monitoring frameworks, they
are designed to detect one particular type of grid-level cyber
attacks but those on the devices (power electronics converters)
are not studied. Thus, their cyber security framework is not
applied to (1) cyber attack detection on power electronics
converters, which might affect the performance of power
electronics converters; and (2) the root cause identification
when a variety of attacks occur.

Data-driven approaches are gaining increased attention in
recent years due to the advancements in sensing and computing
technologies [10-12]. They show great potentials in detect-
ing and identifying complicated cyber and physical attacks.
Shapelets are a concept that was introduced by Koegh and
Ye in [13]. “Time series shapelets are small, local patterns
in a time series that are highly predictive of a class” [14].
Shapelets have primarily been used in time series classification
[14]. The concept of u-shapelets were introduce by Zakira
et. al. in [14]. This study utilizes the concept of “good
enough” shapelets that was introduced by Ulanova et. al. in
[15]. The u-shapelet extraction algorithm used in this study is a
modified version of the Random Local Search (RLS) algorithm
developed by Meng and Pu in [16]. While u-shapelets have
been demonstrated to be effective with time series, to our
knowledge, they have only been used with univariate time
series. The short term goal of this study is to demonstrate the
utility of shapelets [13] in the detection and diagnosis of cyber-
attacks and faults in the analysis of electrical waveforms. In
addition, we will attempt to do so with multivariate time series
using a modification to u-shapelets call 2D u-shapelets. These
2d u-shapelets are incorporated into a modified version of the

RLS algorithm. Long term, the goal is to combine u-shapelets
with dynamic clustering and to do so in a streaming/online
fashion. By dynamic clustering, we mean clustering that does
not have a fixed number of clusters. At present, there is a
dynamic clustering algorithm called Dynamic clustering for
tracking evolving environments (DyClee) [17], with some
modifications, that fits our long term goals and approach.

U-shapelets have demonstrated features that make them useful
for clustering. First, they can ignore irrelevant data [15] [16].
Second, u-shapelets are designed to work well with time series
in which the objects of interest in the data are of different
lengths [15] [16]. Third, u-shapelets can separate data that
belongs two one class from all other data that does not belong
in that class [14] [15]. A “good enough” shapelet concept
developed by [14]. Lastly, u-shapelets can be selected from
time series data without human intervention [14].

Definition 1: A time series 7 is a finite sequence of real-
valued numbers ¢; on s = 1,2,...,n. This number n is the
length of T'. [16]

Definition 2: Subsequences S; ; denote segments ¢;,t;41, ...,
t;+1—1 of T starting at position ¢ with length [, for 1 <i <n
and1 <[ <n-—i+1.[16]

Definition 3: An unsupervised shapelet (u-shapelet) Sisa
subsequence that can divide a dataset D into two groups, D 4

and Dp. The distance between S and any time series in group

D 4 is much smaller than sdist between S and any time series
in Dp. [16] [needs modification for this project].

Definition 4: An orderline is a vector of subsequence dis-

tances sdist(S , T;) between a u-shapelet candidate S and all
time series 7T; in the dataset. [15]

Definition 5: A gap score is a separation measure between
D 4 and Dpg on the orderline where [14]:

gap = uB-ocB—(pA + o A) (1)

A “good enough” shapelet concept developed by [15] is
described as follows:

Definition 6: Let the best u-shapelet in the dataset have a gap
score of npes; and the left part of its orderline contain a set of
time series D y4,.s:. We call a u-shapelet having a gap score
Ngood and containing the same set of time series on the left
part of its orderline D4 004 = Da,est as a good enough u-
shapelet if it has the following property: there is no u-shapelet
candidate with a gap score of 14y > Ngooq and left part of
its orderline D 4, such that (DA ny # Da,est) [14].

Definition 7. The distance map [14] DIS is a matrix
containing the distance between all u-shapelets and all time
series within D. [16]

Note that the distance map is used as input to a clustering
algorithm.

3. ALGORITHM AND SYSTEM DESIGN

In this work, we study both detection and diagnosis by
analyzing electrical waveforms. This study uses u-shapelets
and a simple anomaly detection algorithm for detection and
u-shapelets with clustering for diagnosis. Once the detection



algorithm detects an anomaly, data is then sent to the clustering
algorithm for diagnosis.

Threat Model

Power converters in the cyber-physical system are connected
to the power network and the cyber network to simulate an
integrated system. Given this setup, it is possible for malicious
actors to compromise the integrity of the converter controllers
via the communications network. This set up is also potentially
vulnerable to an insider threat that has direct access to the
controllers. Two simple attacks are performed on the PV
converter sensors, a data injection attack (DIA) and a replay
attack. For a coordinated DIA, multiple converter sensors are
targeted simultaneously. There has been a multitude of studies
on these types of integrity attacks on cyber-physcial system
with some of the most recent being [18] [19] [9] [20] [21]
[22]. For these attacks, the vector feedback signal is denoted

as Y and the compromised sensor measurements as Y. For the
PV converter, there is Y = [y, ipy, Ude, i 1, te)? [23]. The
attack duration is denoted as T, = [ts,t.], where t, and ¢,

represent the start and end time of attack, respectively. Then,
the DIA can be expressed as

Ve _ Y(t>7 t €Ta
Yit) = {y «Y(t)+e t €T, @

where v and e are unknown attack signals. Replay attacks

are expressed as 57(7&) =Y during 7}, where Y represents a
prerecorded set of the past sensor signals.

Table 1: Definition of cyber-physical threats

Intrusion type Location Name
Single DIA 1y (3-phase) Al ... A8
1y (1-phase and 2-phase) A9 ... Al6
Coordinated DIA  {if,uc, g}, {if, uc} Al7 ... A24
{ipv, Upv } A25 ... A28
Replay attack 1y (3-phase) A29, A30
Short-circuit fault ~ High Voltage Line Phase A FS1, FS2
HV Line Phase AB FS3 ... FS7
HV Line Phase AC FS§ ... FS12
HV Line Phase ABC FS13 ... FS15
Open-circuit fault PMW IGBT FO1 ... FO4

In addition to the cyber-attacks previously mentioned, open
circuit and short circuit faults were included in the model.

Problem Setup

The aim of the study to use data-driven anomaly detection
to identify the cyber-attacks and physical faults utilizing the
electrical waveform data. An assertion is that if we have
sequential observations at the k;;, time instant, as follows:

X(k) = [Ua(k)7 Ub (k)7 Uc(k)v Ia(k)7 Ib (k)7 IC (k)]T (3)
where U,, U, U, and 1,, I, I. are the 3-phase voltage [V]
and current [A] in the PCC node. A time-series data set can

be formulated as

X = [x(k—N¢+1),x(k—N¢+2), ..., x(k)], Ny € N. (4)

Then, the problem of data-driven anomaly detection at &y,
time instant is to detect and cluster cyber-attacks, short-circuit
faults, and open-circuit faults by using X, as shown in Fig. 2.

Our study uses clustering for diagnosis and separates anomaly
detection as a separate algorithm. Data is fed to the anomaly
detection algorithm first, and once it detects an anomaly, that
data is sent to a clustering algorithm.

The study uses the raw sensor data and the Fast Fourier
Transform to extract the frequency, magnitude, phase angle,
and the total harmonic distortion (THD). These in turn are used
to extract frequency domain residuals. In total, 15 features
were extracted.

Based on the magnitudes of the three phase current and the
three phase current, a residual is calculated for each. This
residual for the current is 12,,,1 and this residual for voltage is
Rm2~

The frequency residuals were calculated for each of the three
phase currents and each three phase voltage. These residuals
were calculated from the distance between the fundamental
frequency and the observed frequency. A tolerance of 0.5
Hz for current and 0.2 Hz for voltage was set in accordance
with industry standards. The frequency residuals for current
are represented as Ry c1, Ry c2, Ry c3 and the frequency

residuals for voltage are represented as 2y 1, Ry 2, and
Rf7V3‘

The THD residuals were also calculated for each of the three
phase currents and each three phase voltage. The maximum
THD allowed was set to 5% in accordance with industry
standards. The frequency residuals for current are represented
as T'y,c1, T'c2, T'c3 and the frequency residuals for voltage

are represented as T’y 1, T'yvo, and Ty 3.

Lastly, a time series feature, Mean Current Vector (MCV),
was extracted from the three phase current. It is represented
as Py

2D U-Shapelet Extraction

In this section, we will discuss our contribution, which is the
2D u-shapelet concept. Additionally, this section will describe
the primary u-shapelet algorithms that we chose to build on
and improve.

In previous research, u-shapelets have been utilized only
for univariate time series data and are represented as a 1D
vector. Our research is concerned with multivariate time
series data and unsupervised clustering. There has been
some research with shapelets and multivariate time series with
classification [24] [25] [26]. One method considered for u-
shapelet extraction of multivariate data is to simply utilize one
of the existing algorithms for each feature in time series. So for
a dataset with 10 features, said algorithm would have to be run
10 times, once for each feature. For large datasets with lots of
features, u-shapelet extraction would be very time consuming.
The idea behind 2D u-shapelets is to consider them as a stack
of 1D vectors. Subsequences of a time series would be treated
in the same manner. In this approach, matrix comparisons are
used instead of distance measures to determine “’likeness” or
“distance” between a 2D u-shapelet and 2D subsequence of
a time series. In this study, the Frobenius norm was chosen
due to its ease of computation and frequency of use. The
equation below is used in place of our chosen algorithms



distance measure, the Random Local Search Algorithm (RLS)
[16]. For our variation or RLS, s represents a shapelet and 7T’
represents a subequence of 7" with a length equal to s. The
Frobenius norm of matrix A is represented || A || ¢

| Ts |le — [Is |l

d-
I's lIp

®

This approach should be effective where the features are

correlated, since a change in state should affect all features.

So in the case of 3-phase voltage and 3-phase current (and

features derived from them), all features should be correlated.

Figure 1 demonstrates the concept.

Time 0 (Time 1 | Time 2 | Time 3 | Time 4 | Time 5
feature 1 1 4 3 3 4 0
feature 2 4 3 1 3 0 3
feature 3 1 2 4 2 1 2
feature 4 2 0 3 1 4 4

Figure 1: Example of a simple 2D u-shapelet

In considering options for a u-shapelet algorithm modify for
2D shapelets, the following criteria were used:

« Simple algorithms preferred over complex ones.

« Time to extract u-shapelets. The shorter the better.

o A straight forward way incorporate the 2D u-shapelet
concept.

The first study on u-shapelets was presented by Zakira et.

al. [14]. The study used a brute force approach in finding
the best u-shapelets. The algorithm essentially considers
every subsequence of every possible size in a time series
as a potential candidate and u-shapelet, although a range of
subsequence lengths can be specified. Once a valid candidate
is found, the u-shapelet and all subsequences that are similar
are dropped from the time series and the process repeats until
no more time series remain. This approach, however was
very time consuming and only proved effective with small
data sets [15] [16] [27] [28]. Ulanova et. al. introduced a
u-shapelet extraction algorithm, called Scalable U-Shapelet
(SUSh), that was up to two orders of magnitude faster than
the brute force one [15] [16]. This study also introduced the
concept of ’good enough” shapelets. The authors assert that
in any time series, regardless of size, there exists a number of
shapelets that vary in their u-shapelet score only slightly but
are ”good enough” to provide good clustering. Thus SUSh
attempts to find a number of these good enough shapelets
and then stop searching for more. This algorithm converts
the subsequences into Symbolic Aggregate Approximation
(SAX) representation. A random mask is applied to candidate
shapelets prior creating the orderline and gap scores to
determine if it is a good enough shapelet. The random masking
is done so that similar subsequences will collide with the
candidate shapelet. Too many or not enough collisions mark
a candidate as a bad candidate. While this algorithm is much

faster than its predecessor, it does have some disadvantages
[16]. First, it only searches for u-shapelets of a fixed length
[16] [15]. Second, the SAX and random masking process is
quite complicated [16].

Unsupervised Salient Subsequence Learning (USSL), an
algorithm created by Zhang et. al. [28], introduced the
concept of learned unsupervised shapelets (lu-shapelets). This
algorithm is an improvement of the Unsupervised Shapelet
Learning Model (USML) by the same authors in a previous
study [29]. It is based on an optimization model that integrates
shapelet learning, spectral analysis, pseudo-class labels, and
least-squares minimization [28]. The authors demonstrated
the effectiveness of their algorithm against a wide variety
of unsupervised time series clustering. USSL was compared
against the brute-force clustering. While SUSh was referenced,
it was not compared to USSL. The RSL algorithm, discussed
in the next section, was neither referenced nor compared to
USSL. Howeyver, since the brute-force method finds the best
u-shapelets versus the good enough u-shapelets, the brute
force method should cluster better than either RSL or SUSh.
According to the USSL study, it out performed the brute force
method by and average of %20 [28]. The time to discover
u-shapelets is not easy to compare based on these studies.

The Random Local Search algorithm developed by Meng
and Pu in [16] is an attempt to make improvements over
the SUSh algorithm. Like SUSh, RLS looks for ’good
enough” u-shapelets. It does so by using a random search.
RLS randomly searches the dataset until it finds a specified
number of candidates. It then performs local search of nearby
candidates (neighborhood) to see if a better one exists. If so,
the initial candidate is the replaced by the best candidate in the
neighborhood. Once this is complete for all initial candidates,
the resulting candidates are put in ascending order based on
their gap score. The top k candidates are then used to create a
distance map. The distance map is simply the distance of each
time series subsequence in the data set from each u-shapelet.
In the case of RLS, the length normalized euclidean distance
is used. The distance map is then used as an input into a
clustering algorithm.

The primary candidates were the SUSh, RLS, and the USSL.
Incorporating 2D shapelets was a rather simple modification
for both SUSh and RLS, however this was not so for USSL.
In fact, we attempted a version with SUSh in addition to
RLS. The SAX and random masking process caused issues
with collisions as a means to test the discriminatory ability
of candidate u-shapelets. In a 2D matrix, collisions were
very rare. So rare that the algorithm rarely found a good
candidate. Increasing the number of masks did not show
much improvement until the number of mask reached roughly
half the number of values in the matrix. At his point, there
were concerns that any candidate shapelets would not have
any discriminatory ability. Thus the SUSh approach with 2D
u-shapelets was dropped and we continued with the RLS only.

Our algorithm is a modification of the RLS, where 1D
shapelets on univariate data are replaced with 2D shapelets
of multivariate data. Additionally, the length normalized
Euclidean distance metric used in the original RLS is replaces
by our Frobenius norm comparison metric discussed above.

Anomaly Detection and Clustering with 2D U-Shapelet

To demonstrate the efficacy of 2D u-shapelets, it was decided
to use a simple algorithm. A basic K Nearest Neighbors
(KNN) was used in this study.



For clustering, K-Means was chosen because it was commonly
used in other u-shapelet studies for clustering and because it
is a rather simple and well known.

The main purpose of this work is to demonstrates that our
proposed 2D u-shapelets are effective approach to detect
anomalies and separate them into different clusters, even with

the simple KNN and K-means machine learning methods.

Advanced methods can further improve the accuracy and
performance.

4. EXPERIMENTS AND EVALUATIONS
Experiment setup

The model and data used in this study is based on a testbed
model co-developed by the Intelligent Power Electronics
Electric Machine Lab and the Sensorweb Research Lab at the
University of Georgia (UGA) for generating electric waveform
data. Data from this testbed is reffered to in this study as the
UGA dataset. The model consists of seven solar panels, seven
first stage DC/DC converters, seven second stage DC/AC

converters and a transformer. The model is depicted in Fig.

1. An OPAL-RT testbed connected to an IEEE 37-bus power
grid is used to create a real-time model. OPAL-RT and an
embedded field-programmable gate array (eFPGA) were used
to create the seven sets of PV converters. Each PV converter
grid voltage is set to 1500V and the grid side LCL rated voltage
is set to 480V. Notice that, the power electronics networks of
manufacturing system have similar characteristics.

Data Set for Training, and Testing

The dataset contains 49 files, each with 30 seconds of normal
data and 10 seconds of anomaly data. The data is the raw

sensor data composed of 3-phase current and 3-phase voltage.

Each set has 800,000 samples total (20,000 samples per
second). Only one anomaly per file. This data was appended
together in two sets, one for training and one for testing. See
Table 2 for the breakdown of each dataset. Thus a very large
dataset of 1,881,600,000 samples was created. This sets up
a situation where the random search has a 75% chance to
jump into a section of normal data. To reduce the time of find
u-shapelets and to increase the chance of the random search
finding shapelets within anomaly data, a condensed dataset
used only for shapelet extraction was created. We selected
1.75 seconds of data from at least one file of each anomaly
which contained 0.25 seconds of normal data and 1.5 seconds
of the anomaly.

From these sets, the raw data is down-sampled to 2,000
samples per second. Then 15 features are extracted and this
extracted dataset is referred to as the 15-Features set. These
features and 2D u-shapelets extracted from these features were
then used as inputs into the selected models for comparison.

Table 2: Number of Each Type of Anomaly in Dataset

Anomaly Type # Training  # Testing
Single DIA 12 4
Coordinated DIA 9 3

Replay attack 1 1
Short-circuit fault 11 4
Open-circuit fault 3 1

Set Totals 36 13
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Figure 2: Schematic diagram of the PEC-enabled PV farm.

For evaluation, the u-shapelets performance in diagnosis and
detection were compared to the 15-Features used in the same
algorithms.

The algorithms involved in this study utilize some hyper-
parameters and will be discussed briefly here. The RLS
algorithm has the following: the number of u-shapelets to
evaluate (r), the number of u-shapelets to use in clustering
(k), radius of the neighbourhood search (R), the minimum
length of a u-shapelet (minlen), and the maximum length
of a u-shapelet (maxlen). After multiple runs of various
values of k from 2 to 6, £ = 2 generally provided better
results in clustering. For the neighborhood search, R was
set to 20, an approximation of the RLS’s neighborhood
calculation. The minimum and maximum lenghths were set
to 5 and 70 respectively. Multiple runs showed that shapelets
smaller in length produce better results in clustering. The best
shapelets were between 5 and 16 in length. For the KNN, the
contamination was set to 0.243, which was calculated from
the truth labels. For K-means, the number of clusters, which
is known in this case, was set to 6. Since K-means relies on
randomization of the initial centroids, the n_init parameter
was set to 50. The maximum number of iterations for a single
run (max_nit) was set to 500.

Results

Receiver operating characteristic (ROC) and Precision were
chosen for comparing the KNN detection algorithms with u-
shapelets and 15-Features. The results are in Table 3. Both
performed very well and scored closely on each metric.

Table 3: KNN Diagnosis Comparisons

Metric (average) # 15-Features  # RLS
ROC Training 0.980 0.975
ROC Testing 0.975 0.970
Precision Training  0.985 0.974
Precision Testing 0.978 0.965

Adjusted Rand Index (ARI) and Normalised Mutual Informa-
tion (NMI) were chosen for comparing the K-means clustering
algorithms with u-shapelets and 15-Features. The results are
in Table 4. Neither performed well, but the use of 15-features
fared better than the u-shapelets.



Table 4: K-means Diagnosis Comparisons

Metric (average) # 15-Features  # RLS
ARI Training 0.565 0.555
ARI Testing 0.975 0.970
NMI Training 0.413 0.315
NMI Testing 0.410 0.314

Analysis

Diagnosis performed well with RLS, 2D u-shapelets, and
KNN. This lends some hope for their viability with monitoring
of electric waveforms for diagnosis and detection. As to
the poor performance of clustering, we believe this is due
to monitoring the combined signals of seven converters at
the PCC node. At the PCC, all of the anomalies are much

different than the normal, thus they can be easily detected.

However, the differences between each type of anomaly are
not as drastic, and the differences are likely muted in the
combined signal. The fact that the features used in this study
also did not perform well with clustering lends credibility to
this assessment.
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Figure 3: KNN plot with 15-Features
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Figure 8: K-means Testing plot with 2D u-shapelets

Weakness and Issues

The 2D-shapelets did not perform as well as hoped. A
better starting point for this study probably would have been
analyzing attacks and faults at a single PV converter instead
of a combined seven. Another issues that requires further
investigation is to research more alternatives for comparing
a 2D u-shaplet to a subsequence (i.e. comparing matrices).
Initial choices were based on ease of computation, but this may
not be the best means. Also, further exploration of adapting the
USSL algorithm to learn 2D u-shapelets might improve both
the quality of the shapelets and decrease the time to extract
them.

5. CONCLUSIONS

This paper has presented a new concept of 2D u-shapelets
and attempted to demonstrate their utility with multivariate
time series data and the detection and diagnosis of cyber-
attacks and faults in electrical machine networks. Initial results
are promising for detection, but more work is required for
diagnosis. This study performed well using a simple clustering
method, KNN, using 2D u-shapelets. However, it did not
perform well in clustering with k-means. The study also
demonstrates that data-driven methods with 2D u-shapelets
have utility in anomaly detection. However, more research is
required for the utility of 2D u-shapelets with clustering.
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