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Abstract. We propose a new physics guided machine learning (PGML) paradigm that leverages
the variational multiscale (VMS) framework and available data to dramatically increase the accu-
racy of reduced order models (ROMs) at a modest computational cost. The hierarchical structure of
the ROM basis and the VMS framework enable a natural separation of the resolved and unresolved
ROM spatial scales. Modern PGML algorithms are used to construct novel models for the interaction
among the resolved and unresolved ROM scales. Specifically, the new framework builds ROM oper-
ators that are closest to the true interaction terms in the VMS framework. Finally, machine learning
is used to reduce the projection error and further increase the ROM accuracy. Our numerical ex-
periments for a two-dimensional vorticity transport problem show that the novel PGML-VMS-ROM
paradigm maintains the low computational cost of current ROMs while significantly increasing the
ROM accuracy.
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1. Introduction. The behavior of physical systems can be generally described
by physical principles (e.g., conservation of mass, momentum, and energy) together
with constitutive laws. The resulting models are often mathematically formulated
as partial differential equations (PDEs) (e.g., the Navier--Stokes equations). Solving
them allows prediction and analysis of the system's dynamics. The applicability of
analytical methods for solving PDEs is usually limited to simple cases with special
geometry and under severe assumptions. In practice, numerical approaches (e.g., fi-
nite difference, finite volume, spectral, and finite element methods) are utilized to
discretize the governing equations and approximate the values of the unknowns cor-
responding to a given grid. For turbulent flows, we need to deal with an exceedingly
large number of degrees of freedom due to the existence of a wide range of spatio-
temporal scales to be resolved. Although such models, called here full order models
(FOMs), are capable of providing very accurate results, they can be computation-
ally demanding. Therefore, FOMs become impractical for applications that require
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B284 AHMED ET AL.

multiple forward evaluations with varying inputs (e.g., flow control [42, 53, 64], op-
timization [9, 12, 16, 22, 46, 61, 89], and digital twinning [14, 30, 31, 44, 63, 82]) or
studies requiring several simulations like computational-aided clinical trials [83].

Reduced order models (ROMs) are defined as computationally light surrogates
that can mimic the behavior of FOMs with sufficient accuracy [2, 48, 65, 80, 81].
Projection-based ROMs have gained significant popularity in the past few decades
due to the increased amounts of collected data (either from actual experiments or nu-
merical simulations) as well as the development of system identification tools [17, 79].
Of particular interest is the combination of proper orthogonal decomposition (POD)
and Galerkin projection, which has been a powerful driver for ROM progress [2]. The
process comprises an offline stage and an online stage. The offline stage starts with
the collection of data corresponding to system realizations (called snapshots) at dif-
ferent time instants and/or parameter values. With these data sets, POD provides
a hierarchy of basis functions (or modes) that capture the maximum amount of the
underlying system's energy (defined by the data variance). The offline stage is con-
cluded by performing a Galerkin projection of the FOM operators onto the subspace
spanned by a truncated set of POD modes to obtain a system of ordinary differential
equations (ODEs) representing the Galerkin ROM (GROM). Although this offline
stage can be extremely expensive, the resulting GROM can be utilized during the on-
line deployment phase to efficiently predict the system's behavior at parameter values
and/or time instants different from those in the data preparation process.

The GROM framework has been successful in many applications (e.g., [2, 7, 13, 27,
32, 41, 52, 66, 88]), especially those dominated by diffusion mechanisms or periodic
dynamics. Those are often referred to as systems with a solution manifold that is
characterized by a small Kolmogorov n-width [3, 60]. In the POD context, this
means that the dynamics can be accurately represented by a few modes. However,
for convection-dominated flows with strong nonlinearity, the Kolmogorov n-width is
often large with a slow decay, which hinders the linear reducibility of the underlying
system.

The repercussions of a Galerkin truncation and projection are twofold. First, the
span of the retained POD basis functions does not necessarily provide an accurate
representation of the solution, and it gives rise to the projection error [4, 8, 73]. Sec-
ond, the interactions between the truncated and the retained modes can be significant.
These interactions are ignored in the Galerkin projection step, and consequently the
GROM cannot in general capture the dynamics of the resolved modes accurately.
This introduces a closure error [1, 29, 40, 55, 62, 67, 68, 69, 71, 86, 87]. A variety
of approaches have been proposed to quantify the error incurred by the approximate
solution from different ROM techniques [24, 25, 56].

Several efforts have been devoted to address the closure problem. A recent survey
covering a plethora of physics-based and data-driven ROM closure methodologies can
be found in [2]. The closure problem has been historically related to the stabilization
of the ROM solution, drawing roots from large eddy simulation (LES) studies, where
the truncated small scales are thought of as having diffusive effects on the larger scales.
Balajewicz and Dowell [10] proposed a subspace rotation technique where a new set of
basis functions is constructed as a superposition of a larger set of POD basis functions
(i.e., a mixture of large energetic and small dissipative modes). This technique has
been applied to the incompressible [10] and compressible [11] Navier--Stokes equations.

Another approach to effectively accounting for the dissipative effects of the trun-
cated low energy-containing modes is through the eddy viscosity-based frameworks
[33]. Nonetheless, it was found that introducing eddy viscosity to all resolved scales
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PGML-VMS REDUCED ORDER MODELING B285

can unnecessarily contaminate the dynamics of the largest scales. To mitigate this
problem, the variational multiscale (VMS) method, which was proposed by Hughes's
group [35, 36, 37] in the finite element setting (see, e.g., [21, 43] for a survey), was
utilized to add eddy viscosity dissipation to only a portion of the ROM resolved scales
in [38, 39, 86]. A data-driven version of VMS (DD-VMS) has been recently proposed
in [50], where the effects of the truncated modes on the GROM dynamics are not
restricted to be diffusive.

In the present study, we transform the DD-VMS [45, 50] and provide an alterna-
tive modular framework by utilizing machine learning (ML) capabilities. We stress
that this is a fundamental change in which the standard DD-VMS regression is re-
placed by ML in order to better account for closure effects. Therefore, the proposed
neural network approach is essentially different from the regression-based DD-VMS
[50]. In particular, the DD-VMS ansatz of a quadratic polynomial closure model
is relieved by utilizing the deep neural network (DNN) functionality with memory
embedding. We also leverage the long short-term memory (LSTM) variant of recur-
rent neural networks (RNNs) to approximate scale-aware closures. In essence, the
use of LSTM encompasses a non-Markovian closure, supported by the Mori--Zwanzig
formalism [18, 19, 20, 49, 90].

Moreover, we adopt the physics guided machine learning (PGML) framework in-
troduced in [57, 58, 59] to reduce the uncertainty of the output results. In particular,
we exploit concatenation layers informed by the VMS-ROM arguments to enrich the
neural network architecture and constrain the learning algorithm to the manifold of
physically consistent solutions. Finally, for problems with a large Kolmogorov n-
width, we utilize the nonlinear POD (NLPOD) methodology [5] to reduce the projec-
tion error without affecting the computational efficiency, by learning the correlations
among the small unresolved scales to provide far fewer latent space variables. We
also perform a numerical investigation of the proposed strategies (ML-VMS-ROM,
PGML-VMS-ROM, and PGML-VMS-NLPOD-ROM), with a particular focus on the
locality of scale interactions, which is a cornerstone of the VMS framework.

The rest of the paper is organized as follows: We briefly describe the reduced
order modeling methodology by the nexus of POD and Galerkin projection in sec-
tion 2. The relevant background information and notation for the VMS approach are
given in section 3. The use of the PGML methodology to provide reliable predic-
tions is explained in section 4, while the NLPOD approach is discussed in section 5.
The proposed PGML-VMS-NLPOD framework is tested for the parametric unsteady
vortex-merger problem, which exemplifies convection-dominated flow systems. Re-
sults and discussions are presented in section 6, followed by the concluding remarks
in section 7.

2. Reduced order modeling. A Newtonian incompressible fluid flow in a do-
main \Omega \subset Rd, where d defines the spatial dimension (i.e., d\in \{ 2,3\} ), can be described
by the Navier--Stokes equations (NSE). We note that the improper treatment of the
pressure term has been shown to yield inaccuracies and instabilities in the result-
ing ROM [54]. In order to eliminate the pressure term, we consider the NSE in the
vorticity-vector potential formulation. This formulation is widely popular for model-
ing vortex transport phenomena (e.g., wake modeling [15]). In particular, we consider
the two-dimensional (2D) case where the vector potential is reduced to the stream-
function as follows:

(2.1)
\partial t\omega  - \nu \Delta \omega + (\bfitu \cdot \nabla )\omega = 0 in \Omega \times [0, T ],

\Delta \psi + \omega = 0 in \Omega \times [0, T ],
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B286 AHMED ET AL.

where \omega (\bfitx , t) and \psi (\bfitx , t) denote the vorticity and streamfunction fields, respectively,
for \bfitx \in \Omega and t \in [0, T ], while \nu stands for the kinematic viscosity (diffusion coeffi-
cient). In dimensionless form, \nu represents the reciprocal of the Reynolds number,
Re. The velocity vector field \bfitu (\bfitx , t) is related to the streamfunction as follows:

(2.2) \bfitu =\nabla \bot \psi , \nabla \bot = [\partial y, - \partial x]T .

By using (2.2), equation (2.1) can be further rewritten as follows:

(2.3) \partial t\omega  - \nu \Delta \omega + J(\omega ,\psi ) = 0 in \Omega \times [0, T ],

where J(\cdot , \cdot ) denotes the Jacobian operator, which is defined as follows:

(2.4) J(\omega ,\psi ) =
\partial \omega 

\partial x

\partial \psi 

\partial y
 - \partial \omega 

\partial y

\partial \psi 

\partial x
.

The vorticity-streamfunction of the NSE, also known as the vorticity transport
equation, inherently satisfies the incompressibility constraint. In addition, it mitigates
the odd-even decoupling problem of the NSE when a collocated grid is used. Equation
(2.3) is equipped with an initial condition and boundary conditions on \Gamma := \partial \Omega . For
convenience and simplicity of presentation, we shall assume the following conditions:

(2.5)
IC : \omega (\bfitx ,0) = \omega 0(\bfitx ) in \Omega ,

BC : \psi (\bfitx , t) = 0,
\partial \psi 

\partial \bfitn 
= 0 in \Gamma \times [0, T ].

In the remainder of this section, we describe the construction of the projection-based
ROM of the vorticity transport equation. This includes the use of POD to approxi-
mate the solution (subsection 2.1), followed by the Galerkin method, where the FOM
operators in (2.1) are projected onto the POD subspace to define the GROM (sub-
section 2.2).

2.1. Proper orthogonal decomposition. We consider a collection of sys-
tem realizations defined by an ensemble of vorticity fields \{ \omega (\bfitx , t0), \omega (\bfitx , t1), . . . ,
\omega (\bfitx , tM - 1)\} . These are often called snapshots and come from either experimental
measurements or numerical simulations of (2.1) or (2.3) using any of the standard
discretization schemes (e.g., finite element, finite difference, or finite volume meth-
ods). Without loss of generality, we assume that these snapshots are sampled at
equidistant M (> 1) time instants with tm = m\Delta t, where m = 0,1, . . . ,M  - 1 and
\Delta t = T

M - 1 . We note that, in general, these snapshots can correspond to different
types of parameters (e.g., operating conditions, physical properties, and geometry).

In POD, we seek a low-dimensional basis \{ \phi 1, \phi 2, . . . , \phi R\} that optimally approx-
imates the space spanned by the snapshots in the following sense [33]:

(2.6)
min

\Biggl\langle \bigm\| \bigm\| \bigm\| \bigm\| \omega (\cdot , \cdot ) - R\sum 
k=1

\bigl( 
\omega (\cdot , \cdot ), \phi k(\cdot )

\bigr) 
\phi k(\cdot )

\bigm\| \bigm\| \bigm\| \bigm\| 2
\Biggr\rangle 
,

subject to \| \phi \| = 1,
\bigl( 
\phi i(\cdot ), \phi j(\cdot )

\bigr) 
= \delta ij ,

where \langle \cdot \rangle denotes an average operation with respect to the parametrization, (\cdot , \cdot ) is an
inner product, and \| \cdot \| is the corresponding norm. For example, an ensemble average
based on temporal snapshots can be defined as follows:

(2.7) \langle \omega \rangle = 1

M

M - 1\sum 
m=0

\omega (\cdot , tm).
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PGML-VMS REDUCED ORDER MODELING B287

The snapshots represent the approximation of the quantity of interest on a specific
grid. For example, a realization of the vorticity field at a given time can be arranged in
a column vector \bfitomega \in RN , where N is the number of grid points. It can be shown that
solving the optimization problem (2.6) amounts to solving the following eigenvalue
problem [84]:

(2.8) D\Phi =\Phi \Lambda ,

where the entries of the diagonal matrix \Lambda and the columns of \Phi represent the eigen-
pairs of the spatial autocorrelation matrix D\in RN\times N with entries defined as

(2.9)
\bigl[ 
D
\bigr] 
ij
=

\biggl\langle 
\bfitomega (\bfitx i, \cdot )\bfitomega (\bfitx j , \cdot )

\biggr\rangle 
,

where \bfitomega (\bfitx i, \cdot ) is the ith entry of \bfitomega . For fluid flow problems, the length of the vec-
tor \bfitomega is often large, which makes the eigenvalue problem in (2.8) computationally
challenging.

Sirovich [74, 75, 76] proposed a numerical procedure, known as the method of
snapshots , to reduce the computational cost of solving (2.8). This approach is efficient,
especially when the number of collected snapshotsM is much smaller than the number
of degrees of freedom (i.e., M \ll N), as it reduces the N \times N eigenvalue problem in
(2.8) to anM\times M problem. The spatial autocorrelation matrix D\in RN\times N is replaced
by the temporal snapshot correlation matrix K \in RM\times M with entries defined as
follows:

(2.10)
\bigl[ 
K

\bigr] 
ij
=

1

M

\biggl( 
\omega (\cdot , ti), \omega (\cdot , tj)

\biggr) 
.

The following eigenvalue problem is thus considered:

(2.11) Kvk = \lambda kvk,

where vk is the kth eigenvector of K and \lambda k is the associated eigenvalue. To obtain
the hierarchy of the POD basis, the eigenpairs are sorted in descending order by their
eigenvalues (i.e., \lambda 1 \geq \lambda 2 \cdot \cdot \cdot \geq \lambda M \geq 0). Finally, the POD basis functions can be
computed as a linear superposition of the collected snapshots as follows [84]:

(2.12) \phi k(\cdot ) =
1\surd 
\lambda k

M - 1\sum 
m=0

[vk]m\omega (\cdot , tm),

where [vk]m denotes the mth component of vk. It can be verified that the basis
functions in (2.12) are orthonormal (i.e., (\phi i(\cdot ), \phi j(\cdot )) = \delta ij), where \delta ij is the Kronecker
delta.

The POD eigenvalues define the contribution of each mode toward the total vari-
ance in the given snapshots. In practice, the selection of the number of POD modes
is often informed by an analysis of the eigenvalue spectrum. In this regard, a metric
that evaluates the quality of a given set of retained modes in representing the system
is the relative information content (RIC) [2], defined as follows:

(2.13) RIC(k) =

\sum k
l=1 \lambda l\sum M
l=1 \lambda l

,

where k is the POD index at which modal truncation takes place. The selection of
truncation level (i.e., value of R) is defined in such a way that the corresponding RIC

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

1/
23

 to
 9

5.
25

3.
20

8.
12

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



B288 AHMED ET AL.

value is within an acceptable range (e.g., larger than 90\%). We also note that the
same POD algorithm and analysis can be applied considering parameters other than
time. In this case, the temporal correlation matrix is substituted by a generalized
parameter correlation matrix.

2.2. Galerkin projection. The GROM starts by the Galerkin truncation step,
making use of the optimality criterion in (2.6) as follows:

(2.14) \omega (\bfitx , tm)\approx \omega R(\bfitx , tm) =
R\sum 

k=1

ak(tm)\phi k(\bfitx ),

where \{ ak\} Rk=1 are the time-varying modal coefficients (weights), known as generalized
coordinates . The optimal values of these coefficients are defined by the true projection
of the FOM trajectory onto the corresponding POD basis function as follows:

(2.15) ak(tm) =
\bigl( 
\omega (\cdot , tm), \phi k(\cdot )

\bigr) 
.

Since the vorticity and streamfunction are related to each other by the kinematic
relationship \Delta \psi = - \omega (see (2.1)), the basis functions (\theta k(x, y)) for the streamfunction
can be obtained from those of the vorticity as follows:

(2.16) \nabla 2\theta k(\bfitx ) = - \phi k(\bfitx ), k= 1,2, . . . ,R.

Moreover, the reduced order approximations of the vorticity and streamfunction can
share the same temporal coefficients ak(t),

(2.17) \psi (\bfitx , tm)\approx \psi R(\bfitx , tm) =
R\sum 

k=1

ak(tm)\theta k(\bfitx ).

We note that the resulting set of streamfunction basis functions from (2.16) are not
necessarily orthonormal.

Next, the vorticity \omega and streamfunction \psi fields in (2.3) are replaced by their
approximation \omega R and \psi R from (2.14) and (2.17) as follows:

(2.18)

\partial t

\Biggl[ 
R\sum 

k=1

ak(t)\phi k(\bfitx )

\Biggr] 
 - \nu \Delta 

\Biggl[ 
R\sum 

k=1

ak(t)\phi k(\bfitx )

\Biggr] 

+ J

\Biggl( \Biggl[ 
R\sum 

k=1

ak(t)\phi k(\bfitx )

\Biggr] 
,

\Biggl[ 
R\sum 

k=1

ak(t)\theta k(\bfitx )

\Biggr] \Biggr) 
= 0.

Since the Laplacian \Delta and Jacobian J(\cdot , \cdot ) are spatial operators, and the summation
and differentiation operations commute, (2.18) can be rewritten as follows (with a
slight change of indices):

(2.19)
R\sum 
i=1

\.ai(t)\phi i(\bfitx ) - \nu 
R\sum 
i=1

ai(t)\Delta \phi i(\bfitx ) +
R\sum 
i=1

R\sum 
j=1

ai(t)aj(t)J
\bigl( 
\phi i(\bfitx ), \theta j(\bfitx )

\bigr) 
= 0.

Now, the Galerkin projection step comes into play by defining the POD test subspace
\bfitX R as follows:

(2.20) \bfitX R := span\{ \phi 1, \phi 2, . . . , \phi R\} .

Then, (2.3) with \omega and \psi replaced by \omega R and \psi R, respectively, is projected onto the
POD space \bfitX R. This yields the GROM of the vorticity transport equation: Find
\omega R \in \bfitX R such that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PGML-VMS REDUCED ORDER MODELING B289

(\partial t\omega R, \phi ) - \nu (\Delta \omega R, \phi ) +
\bigl( 
J(\omega R,\psi R), \phi 

\bigr) 
= 0 \forall \phi \in \bfitX R.(2.21)

Next, taking the inner product of (2.19) with an arbitrary basis function \phi k yields
the following (we drop the independent variable for clarity):

R\sum 
i=1

\.ai

\biggl( 
\phi i, \phi k

\biggr) 
\underbrace{}  \underbrace{}  

\.ak

 - \nu 
R\sum 
i=1

ai

\biggl( 
\Delta \phi i, \phi k

\biggr) 
\underbrace{}  \underbrace{}  

linear term

+
R\sum 
i=1

R\sum 
j=1

aiaj

\biggl( 
J
\bigl( 
\phi i, \theta j

\bigr) 
, \phi k

\biggr) 
\underbrace{}  \underbrace{}  

nonlinear term

= 0.(2.22)

Note that the first term reduces \.ak thanks to the orthonormality property of the POD
basis functions. Equation (2.22) can be rearranged as follows:

(2.23) \.ak = \nu 
R\sum 
i=1

Ak,iai +
R\sum 
i=1

R\sum 
j=1

Bk,i,jaiaj ,

which can be written in the so-called tensorial form

(2.24) \.\bfita =A\bfita + \bfita \top B\bfita ,

where \bfita (t) \in RR is the vector of unknown coefficients \{ ak\} Rk=1, while A \in RR\times R and
B \in RR\times R\times R are the matrix and tensor corresponding to the linear and nonlinear
terms, respectively. It should be noted that the tensorial form eliminates the depen-
dence of GROM on N (the number of FOM degrees of freedom). Due to the quadratic
nonlinearity, the cost of solving (2.24) scales with R3. Other techniques for projection-
based ROMs often employ hyper-reduction techniques to enable quick simulations.
For further discussion on benchmarking tensorial ROM and hyper-reduction meth-
ods for various problems with different complexities, we refer the interested reader to
[23, 77].

The Galerkin truncation step restricts the approximation of the vorticity field to
live in a low-rank subspace\bfitX R (R\ll N), which might not capture all the relevant flow
structures. Therefore, a projection error is introduced. Furthermore, the Galerkin
projection step enforces the dynamics of the ROM to be defined using only the scales
supported by \bfitX R. Nonetheless, due to the coupling between different modes, the
unresolved scales (i.e., the scales modeled by \{ \phi k\} k\geq R+1) influence the dynamics of
the resolved scales (i.e., the scales modeled by \{ \phi k\} k\leq R). By neglecting these mutual
interactions, the GROM becomes incapable of accurately describing the dynamics of
the retained modes, which is usually referred to as the closure problem [2].

The projection error and closure error are illustrated in Figure 1 for a toy system
whose full-rank linear expansion can be represented with 3 modes as follows:

(2.25) \omega (x, t) = a1(t)\phi 1(x) + a2(t)\phi 2(x) + a3(t)\phi 3(x).

Assuming that the FOM is written in the form

(2.26) \.\omega = F (\omega ),

the dynamics of \{ ak\} 3k=1 can be described as \.ak = (F (\omega ), \phi k). Thus, the FOM tra-
jectory can be written as follows:

(2.27)

\left[  \.a1
\.a2
\.a3

\right]  =

\left[  f1(a1, a2, a3)f2(a1, a2, a3)
f3(a1, a2, a3)

\right]  .
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B290 AHMED ET AL.

Fig. 1. Representation of the repercussions of modal truncation onto the ROM solution. The
solid black curve denotes the FOM trajectory, assuming that the full rank expansion is defined by a1,
a2, and a3. The solid blue curve defines the projection of the FOM trajectory onto a 2D subspace.
The vertical dashed blue lines refer to the projection or representation error. Note that evaluating
a1 and a2 still requires the knowledge of the FOM trajectory (i.e., a1, a2, and a3) at every point.
In practice, we only have information regarding the resolved variables (i.e., a1 and a2), so the
contribution of a3 towards the dynamics of a1 and a2 is neglected. This yields a closure error,
denoted by the dashed red lines.

In other words, evolving \{ ak\} 3k=1 using (2.27) and reconstructing \omega with (2.25) recov-
ers the FOM field (equivalent to solving (2.26) using standard discretization schemes).
For the sake of demonstration, we suppose that we retain only 2 modes in the ROM
approximation. This corresponds to removing the third row in (2.27) as follows:

(2.28)

\biggl[ 
\.a1
\.a2

\biggr] 
=

\biggl[ 
f1(a1, a2, a3)
f2(a1, a2, a3)

\biggr] 
.

Approximating \omega with just two modes results in losing the flow structures that are
contained in the truncated mode (the vertical direction in Figure 1), which yields the
projection error. Furthermore, we note that f1 and f2 are usually functions of a1, a2,
and a3 for systems with strong nonlinearity and coupling between different modes.
However, during ROM deployment, we do not usually have information regarding
the unresolved dynamics (a3 in this example). Thus, in GROM, the effects of the
truncated scales on the resolved scales are assumed to be negligible, as follows:

(2.29)

\biggl[ 
\.a1
\.a2

\biggr] 
=

\biggl[ 
f1(a1, a2,0)
f2(a1, a2,0)

\biggr] 
.

We denote the reference trajectory described by (2.28) as the true projection, which is
related to (2.15). This defines the best low-rank approximation that can be obtained
for a given number of modes, assuming we have access to the whole set of FOM scales.
The difference between the GROM trajectory (corresponding to solving (2.29)) and
the true projection trajectory represents the closure error. In the present study, we
address both the closure error and the projection error. First, to tackle the closure
problem, we leverage the VMS framework outlined in section 3 to develop the PGML
methodology in section 4. Then, we utilize the NLPOD approach in section 5 to
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PGML-VMS REDUCED ORDER MODELING B291

reduce the projection error by learning a compressed latent space that encapsulates
some of the truncated flow structures.

3. Variational multiscale method. The variational multiscale (VMS) meth-
ods are general numerical discretizations that significantly increase the accuracy of
classical Galerkin approximations in under-resolved simulations, e.g., on coarse meshes
or when not enough basis functions are available. The VMS framework, which was
proposed by Hughes and coworkers [35, 36, 37], has made a profound impact in many
areas of computational mechanics (see, e.g., [21, 43] for a survey).

To illustrate the standard VMS methodology, we consider a general nonlinear
PDE as follows:

(3.1) \.\omega = F (\omega ),

whose weak (variational) form is

(3.2) ( \.\omega ,\phi ) = (F (\omega ), \phi ) \forall \phi \in \bfitX ,

where F is a general nonlinear function and \bfitX is an appropriate test space. To build
the VMS framework, we start with a sequence of hierarchical spaces of increasing
resolutions: \bfitX 1, \bfitX 1 \oplus \bfitX 2, \bfitX 1 \oplus \bfitX 2 \oplus \bfitX 3, . . . . Next, we project system (3.1) onto
each of the spaces \bfitX 1, \bfitX 2, \bfitX 3, . . . , which yields a separate equation for each space.
From a computational efficiency point of view, the goal is to solve for the \omega component
that lives in the coarsest space (i.e., \bfitX 1), since this yields the lowest-dimensional
system:

(3.3) ( \.\omega ,\phi ) = (F (\omega ), \phi ) \forall \phi \in \bfitX 1.

However, system (3.3) is not closed since its right-hand side involves \omega components
that do not belong to \bfitX 1 (i.e., \omega 2 \in \bfitX 2, \omega 3 \in \bfitX 3, . . . ):

(3.4) (F (\omega ), \phi ) = (F (\omega 1, \omega 2, \omega 3, . . . ), \phi ), \forall \phi \in \bfitX 1.

Thus, the VMS closure problem needs to be solved. That is, (3.4) needs to be
replaced with an equation that involves only terms that belong to \bfitX 1. In general,
the VMS system in (3.3) equipped with an appropriate closure model (i.e., a model
with components in \bfitX 1 that captures the interaction between \omega 1 and the scales in
\bfitX 2,\bfitX 3, . . .) yields an accurate approximation of the \bfitX 1 component of \omega .

The POD procedure in subsection 2.1 yields a hierarchy of orthogonal basis func-
tions, sorted by their contribution to the total energy. Therefore, it provides a natural
fit to the VMS framework. Next, we illustrate the adoption of VMS in GROM set-
tings to define a multilevel VMS ROM. In particular, we detail the two-scale and the
three-scale VMS ROMs, while further extensions become straightforward.

3.1. Two-scale VMS ROM. The two-scale VMS (VMS-2) ROM utilizes two
orthogonal spaces, \bfitX 1 and \bfitX 2, defined as follows:

(3.5)
\bfitX 1 := span\{ \phi 1, \phi 2, . . . , \phi R\} ,
\bfitX 2 := span\{ \phi R+1, \phi R+2, . . . , \phi N\} ,

where \bfitX 1 represents the span of the resolved ROM scales and \bfitX 2 is the span of the
unresolved scales. Thus, \omega can be written as follows:

(3.6) \omega =
R\sum 

k=1

ak\phi k +
N\sum 

k=R+1

ak\phi k = \omega R\underbrace{}  \underbrace{}  
resolved

+ \omega \prime \underbrace{}  \underbrace{}  
unresolved

,
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B292 AHMED ET AL.

where \omega R \in \bfitX 1 is the resolved ROM component of \omega , while \omega \prime \in \bfitX 2 is the unresolved
component of \omega . Using this decomposition, (3.3) can be rewritten as follows:

(3.7)
\bigl( 
\.\omega R, \phi k

\bigr) 
=

\bigl( 
F (\omega R), \phi k

\bigr) 
+

\biggl[ \bigl( 
F (\omega ), \phi k

\bigr) 
 - 

\bigl( 
F (\omega R), \phi k

\bigr) \biggr] 
\underbrace{}  \underbrace{}  

VMS-2 closure term

\forall k \in \{ 1, . . . ,R\} .

The bracketed term in (3.7) is the VMS-2 closure term, which models the interaction
between the ROM modes and the discarded modes. Since the unresolved component
of \omega , \omega \prime , is not available during the online deployment stage, it is not possible to
exactly compute the closure term in practical settings. Instead, the closure term can
be approximated using a generic function G(\omega R) as follows:

(3.8)
\bigl( 
G(\omega R), \phi k)\approx 

\bigl( 
F (\omega ), \phi k

\bigr) 
 - 

\bigl( 
F (\omega R), \phi k

\bigr) 
,

and the VMS-2 ROM can be written as

(3.9)
\bigl( 
\.\omega R, \phi k

\bigr) 
=

\bigl( 
F (\omega R), \phi k

\bigr) 
+

\bigl( 
G(\omega R), \phi k).

The form and parameters of G will be defined in section 4.

3.2. Three-scale VMS ROM. The locality of modal interactions is a corner-
stone of the VMS framework. It states that neighboring modes have more mutual
interactions than those who are far apart in the energy spectrum. For this reason, it
is natural to distinguish between neighboring and far modes when closure modeling is
performed. To this end, the flexibility of the hierarchical structure of the ROM space
is leveraged to perform a three-scale decomposition of \omega , leading to a three-scale VMS
(VMS-3) ROM, which aims at increasing the VMS-2 ROM accuracy.

To construct the VMS-3 ROM, we first build three orthogonal spaces, \bfitX 1, \bfitX 2,
and \bfitX 3, as follows:

(3.10)

\bfitX 1 := span\{ \phi 1, \phi 2, . . . , \phi r\} ,
\bfitX 2 := span\{ \phi r+1, \phi r+2, . . . , \phi R\} ,
\bfitX 3 := span\{ \phi R+1, \phi R+2, . . . , \phi N\} .

Compared to the decomposition into resolved and unresolved scales in subsection 3.1,
\bfitX 1 now represents the large resolved ROM scales, \bfitX 2 represents the small resolved
ROM scales, and \bfitX 3 denotes the unresolved ROM scales. With these definitions, \omega 
can be written as follows:

(3.11)

\omega =
r\sum 

k=1

ak\phi k +
R\sum 

k=r+1

ak\phi k +
N\sum 

k=R+1

ak\phi k

= \omega L\underbrace{}  \underbrace{}  
large resolved

+ \omega S\underbrace{}  \underbrace{}  
small resolved

+ \omega \prime \underbrace{}  \underbrace{}  
unresolved

.

This is similar to (3.6) with \omega R = \omega L+\omega S . To construct the VMS-3 ROM, we project
system (3.1) onto each of the spaces \bfitX 1 and \bfitX 2, as follows:

\bigl( 
\.\omega L, \phi k

\bigr) 
=

\bigl( 
F (\omega L + \omega S), \phi k

\bigr) 
+

\Bigl[ \bigl( 
F (\omega ), \phi k

\bigr) 
 - 

\bigl( 
F (\omega L + \omega S), \phi k

\bigr) \Bigr] 
, k= 1, . . . , r,

(3.12)

\bigl( 
\.\omega S , \phi k

\bigr) 
=

\bigl( 
F (\omega L + \omega S), \phi k

\bigr) 
+

\Bigl[ \bigl( 
F (\omega ), \phi k

\bigr) 
 - 

\bigl( 
F (\omega L + \omega S), \phi k

\bigr) \Bigr] 
, k= r+ 1, . . . ,R.

(3.13)
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PGML-VMS REDUCED ORDER MODELING B293

Although the two bracketed terms in (3.12) and (3.13) defining the VMS-3 clo-
sure terms look similar, they have different roles. To understand this, let us con-
sider the different types of modal interactions involved in these equations. For exam-
ple, the (low-index: k = 1, . . . , r) large scales (\omega L) interact with the (medium-index:
k = r + 1, . . . ,R) small resolved scales (\omega S) and the (high-index: k = R + 1, . . . )
unresolved scales (\omega \prime ). However, the interactions between the resolved large scales
and the unresolved scales are assumed to be negligible as compared to those between
the resolved large scales and the resolved small scales (according to the VMS prin-
ciple of locality of modal interactions). Therefore, the bracketed term in (3.12) (for
k = 1, . . . , r) basically models the contribution of the interactions between the large
resolved scales and the small resolved modes, neglecting the contribution from the
higher index truncated modes. On the other hand, the bracketed term in (3.13) (for
k = r + 1, . . . ,R) models the interaction between the (medium-index) small resolved
and the (high-index) unresolved ROM modes. This allows great flexibility in choosing
the structure of the different VMS ROM closure terms. This concept is investigated
numerically in section 6.

4. Physics guided machine learning. In this section, the VMS-2 and VMS-3
closure terms defined in section 3 are approximated using only the information in the
resolved scales. Specifically, we utilize a purely data-driven approach to compute the
parameters of the closure models. However, instead of relying on heuristics or ad hoc
arguments to define the specific structure of the closure model (as in the standard
DD-VMS [50]), we exploit the capabilities of a deep neural network (DNN) in ap-
proximating arbitrary functions. In particular, we use the long short-term memory
(LSTM) variant of recurrent neural networks (RNNs), which has shown substantial
success in data-driven modeling of time series [26, 34, 72]. We emphasize that, to mit-
igate well-known drawbacks of data-driven modeling (e.g., sensitivity to noise in input
data), the VMS ROM framework utilizes data to model only the VMS ROM closure
operators, but all the other ROM operators are built by using classical Galerkin pro-
jection. Thus, our VMS ROM framework incorporates ``data-driven closure"" rather
than ``data-driven modeling"" for the resolved scales.

4.1. ML-VMS ROM. The VMS-2 ROM in (3.9) can be rewritten as follows:

(4.1) \.\bfita = \bfitf (\bfita ) + \bfitc (\bfita ),

where \bfita = [a1, a2, . . . , aR]
T \in RR is the vector of coefficients for the resolved

POD modes, \bfitf (\bfita ) = [(F (\omega R), \phi 1), (F (\omega R), \phi 2), . . . , (F (\omega R), \phi R)] represents the
Galerkin projection of the FOM operators onto the POD subspace, and \bfitc (\bfita ) =
[c1, c2, . . . , cR]

R \in RR is the vector of the closure (correction) terms, i.e., ck =
(G(\omega R), \phi k). In the present study, we use DNN to represent the closure model, i.e.,
\bfitc (\cdot ) \approx \pi \theta (\bfita ), where \theta denotes the parameterization of the LSTM. The general func-
tional form of the DNN models used for temporal forecasting can be written as follows:

(4.2)
h(n) = fhh (\bfita 

(n),h(n - 1)),

\bfitc (n) = foh(h
(n)),

where \bfita (n) := \bfita (tn) \in RR is the vector of modal coefficients at time tn and \bfitc (n) \in 
RR is the corresponding closure term, defining the input and output of the DNN,
respectively. In (4.2), h \in RH represents the hidden-state of the neural network, fhh
and foh the hidden-to-hidden and hidden-to-output mappings, respectively, and H the
dimension of the hidden state.
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B294 AHMED ET AL.

The Mori--Zwanzig formulation [28, 55, 78, 85, 91] shows that non-Markovian
terms are required to account for the effects of the unresolved scales on the resolved
scales. Thus, the closure operators are modeled as functions of the time history of
the resolved scales. We emphasize that employing a non-Markovian closure model is
a key feature of the proposed PGML-VMS-ROM that is in stark contrast with the
DD-VMS in [45, 50], which considers only the Markovian effects.

For memory embedding, we let \bfitc be a function of the short time history of the
resolved POD coefficients, i.e., \bfitc (n)(\cdot )\approx \pi \theta (\bfita 

(n),\bfita (n - 1), . . . ,\bfita (n - \tau )) = \pi \theta (\bfita 
(n):(n - \tau )),

where \tau defines the length of the time history of \bfita that is required for estimating the
closure term. The LSTM allows modeling non-Markovian processes while mitigating
the issue with vanishing (or exploding) gradient by employing gating mechanisms. In
particular, the hidden-to-hidden mapping fhh is defined using the following equations:

(4.3)

g
(n)
f = \sigma f (Wf [h

(n - 1),\bfita (n)] + bf ),

g
(n)
i = \sigma i(Wi[h

(n - 1),\bfita (n)] + bi),

\~s(n) = tanh(Ws[h
(n - 1),\bfita (n)] + bs),

s(n) = g
(n)
f \odot s(n - 1) + g

(n)
i \odot \~s(n),

g(n)
o = \sigma o(Wo[h

(n - 1),\bfita (n)] + bo),

h(n) = g(n)
o \odot tanh (s(n)),

where gf ,gi,go \in RH are the forget gate, input gate, and output gate, respectively,
with the corresponding Wf ,Wi,Wo \in RH\times (H+R) weight matrices, and bf ,bi,bo \in 
RH bias vectors. s \in RH is the cell state with a weight matrix Ws \in RH\times (H+R) and
bias vector bs \in RH . Finally, \sigma is the sigmoid activation function, and \odot denotes the
elementwise multiplication.

We stack l LSTM layers to define the hidden states, followed by a fully connected
layer with a linear activation function to represent the hidden-to-output mapping.
Thus, the ML-VMS-2 closure model can be written as

(4.4) \bfitc (n) \approx \scrL (\cdot ) \circ h(n)
l (\cdot ) \circ h(n):(n - \tau )

l - 1 (\cdot ) \circ \cdot \cdot \cdot \circ h(n):(n - \tau )
1 (\cdot ) \circ \scrI (\bfita (n):(n - \tau )),

where \scrL (\cdot ) represents the output layer with linear activation, and \scrI (\cdot ) denotes the
input layer. Note that each of the internal LSTM layers (i= 1,2, . . . , l - 1) produces

a sequence of hidden states h
(n):(n - \tau )
i , while the the lth layer passes only the hidden

state at the final time h
(n)
l to the output layer. A mean squared error loss function

can be defined to evaluate the performance of LSTM as follows:

(4.5) loss=
1

Nbatch

Nbatch\sum 
n=1

R\sum 
k=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigl( F (\omega (n)), \phi k
\bigr) 
 - 

\bigl( 
F (\omega 

(n)
R ), \phi k

\bigr) 
 - \bfitc 

(n)
k

\bigm\| \bigm\| \bigm\| \bigm\| 2

2

,

and a minimization algorithm is used to optimize the weight and biases described in
(4.3).

In order to make use of the locality of modal interactions, the VMS-3 ROM is
written as

(4.6)

\biggl[ 
\.\bfita L

\.\bfita S

\biggr] 
= \bfitf (\bfita ) +

\biggl[ 
\bfitc L(\bfita )
\bfitc S(\bfita )

\biggr] 
,

where two separate terms are dedicated to model the closure for the resolved large
scales and resolved small scales. For the ML-VMS-3, the closure terms are defined as
follows:
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PGML-VMS REDUCED ORDER MODELING B295

(4.7)

\bfitc 
(n)
L \approx \pi L,\theta (\bfita 

(n):(n - \tau ))

\approx \scrL 
L
(\cdot ) \circ h(n)

lL
(\cdot ) \circ h(n):(n - \tau )

l - 1L
(\cdot ) \circ \cdot \cdot \cdot \circ h(n):(n - \tau )

1L
(\cdot ) \circ \scrI (\bfita (n):(n - \tau )),

\bfitc 
(n)
S \approx \pi S,\theta (\bfita 

(n):(n - \tau ))

\approx \scrL 
S
(\cdot ) \circ h(n)

lS
(\cdot ) \circ h(n):(n - \tau )

l - 1S
(\cdot ) \circ \cdot \cdot \cdot \circ h(n):(n - \tau )

1S
(\cdot ) \circ \scrI (\bfita (n):(n - \tau )).

Since we are using two separate LSTM neural networks to model \bfitc L and \bfitc S , the
corresponding loss functions are defined as follows:

(4.8)

lossL =
1

Nbatch

Nbatch\sum 
n=1

r\sum 
k=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigl( F (\omega ), \phi k\bigr)  - \bigl( 
F (\omega L + \omega S), \phi k

\bigr) 
 - \bfitc 

(n)
L,k

\bigm\| \bigm\| \bigm\| \bigm\| 2

2

,

lossS =
1

Nbatch

Nbatch\sum 
n=1

R\sum 
k=r+1

\bigm\| \bigm\| \bigm\| \bigm\| \bigl( F (\omega ), \phi k\bigr)  - \bigl( 
F (\omega L + \omega S), \phi k

\bigr) 
 - \bfitc 

(n)
S,k

\bigm\| \bigm\| \bigm\| \bigm\| 2

2

.

We note that we have more flexibility in ML-VMS-3 than in ML-VMS-2. Hence, it is
possible to make richer descriptions of the interactions between large resolved, small
resolved, and unresolved scales.

4.2. PGML-VMS ROM. Critical aspects that should be considered during
the adoption of ML-based approaches include their reliability, robustness, and trust-
worthiness. Previous studies [57, 58, 59] have reported high levels of uncertainty in the
predictions of vanilla-type ML methods, especially for sparse data and incomplete gov-
erning equations regimes. In order to mitigate this issue, we utilize the physics-guided
machine learning (PGML) paradigm to incorporate known physical arguments and
constraints into the learning process. In particular, we exploit a modular approach to
modify the neural network architectures through layer concatenation to inject physical
information at different points in the latent space of the given DNN. This adaptation
improves the performance during both the training and the deployment phases and
results in significant reduction in the uncertainty levels of the model prediction, as we
demonstrate in section 6.

In the PGML framework, the features extracted from the physics-based model
are embedded into the generic ith intermediate hidden layer along with the latent
variables. In order to build the PGML-VMS framework, we consider the Galerkin
projection of the governing equations onto different POD modes to define the physics-
based features (since they are derived from physical principles). Thus, the PGML-
VMS-2 closure model can be written as

(4.9)
\bfitc (n) \approx \scrL (\cdot ) \circ h(n)

l (\cdot ) \circ \cdot \cdot \cdot \circ \scrC 
\biggl( 
h
(n):(n - \tau )
i (\cdot ),\bfitf (n):(n - \tau )

\biggr) 
\circ h(n):(n - \tau )

i - 1 (\cdot )

\circ \cdot \cdot \cdot \circ h(n):(n - \tau )
1 (\cdot ) \circ \scrI (\bfita (n):(n - \tau )),

where \scrC (\cdot , \cdot ) represents the concatenation operation, and \bfitf (n):(n - \tau ) is the time history
of projecting the FOM operators onto the truncated POD subspace. We highlight that
there is no significant computational load for the calculation of \bfitf :=A\bfita +\bfita \top B\bfita , since
A and B are already precomputed.

A schematic illustration of the PGML adaptation of the standard LSTM archi-
tecture is depicted in Figure 2. In this figure, 3 LSTM layers are used (i.e., l = 3),
followed by a dense layer to provide the mapping from hidden state to the closure
terms. The physics-based features are injected into the LSTM latent space after two
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Fig. 2. Illustration of the PGML methodology with concatenated LSTM layers. In this figure,
a time history of 2 time-steps is used while physics-based features (yellow circles in the figure) are
injected into the LSTM latent space after the second hidden layer (i= 2).

hidden layers. One of the main advantages of the novel PGML framework in Figure 2
is its modularity and simplicity. For example, based on the level of fidelity and our
confidence in the injected features, we can promptly change the layer at which we
embed them.

Finally, the PGML-VMS-3 closure models can be written as

(4.10)

\bfitc 
(n)
L \approx \scrL 

L
(\cdot ) \circ h(n)

lL
(\cdot ) \circ \cdot \cdot \cdot \circ \scrC 

\biggl( 
h
(n):(n - \tau )
iL

(\cdot ),\bfitf (n):(n - \tau )
L

\biggr) 
\circ h(n):(n - \tau )

i - 1L
(\cdot )

\circ \cdot \cdot \cdot \circ h(n):(n - \tau )
1L

(\cdot ) \circ \scrI (\bfita (n):(n - \tau )),

\bfitc 
(n)
S \approx \scrL 

S
(\cdot ) \circ h(n)

lS
(\cdot ) \circ \cdot \cdot \cdot \circ \scrC 

\biggl( 
h
(n):(n - \tau )
iS

(\cdot ),\bfitf (n):(n - \tau )
S

\biggr) 
\circ h(n):(n - \tau )

i - 1S
(\cdot )

\circ \cdot \cdot \cdot \circ h(n):(n - \tau )
1S

(\cdot ) \circ \scrI (\bfita (n):(n - \tau )).

Note that in (4.10), we enjoy higher flexibility in choosing the physics-based features
injected for each of the large- and small-scale closure models. For instance, in the
present study, we benefit from the locality of modal interactions by embedding the
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GROM GROM

PGMLPGML

Encoder LSTM Propagator

NLPOD

Decoder

Fig. 3. Schematic representation of the PGML-VMS-3 model for the large and small resolved
scales, combined with NLPOD for enhanced field reconstruction. We note that PGML-VMS-3 is built
upon a GROM for the first R modes and mitigates the closure error (i.e., the effect of the truncated
scales on the resolved scales). In a complementary fashion, NLPOD implements an equation-free
model for the truncated scales to reduce the projection error (i.e., the effect of the truncated scales
on the flow field reconstruction).

Galerkin propagator of only a few relevant neighboring modes (i.e., \bfitf 
L

and \bfitf 
S
in

(4.10)), rather than including all of them in the LSTM learning (i.e., \bfitf in (4.9)).

5. Nonlinear POD. In sections 3 and 4, we have addressed the closure problem.
That is, we corrected the GROM dynamics by approximating the effects of modal
interactions between resolved and unresolved scales to accurately predict the dynamics
of the retained ROM modes. However, the reconstructed flow field is still restricted
to the span of the first R POD basis functions, as given in (2.14). Nonetheless,
for convection-dominated flows, the important flow structures generally span a large
number of modes. Thus, truncating the solution beyond a small number of modes
results in a large projection error. In other words, the component \omega \prime =

\sum N
k=R+1 ak\phi k

that cannot be approximated by the resolved POD basis becomes significant.
In this section, we adapt the nonlinear POD (NLPOD) framework, introduced in

[5], to model the unresolved part of the field. Figure 3 presents a schematic represen-
tation of the PGML-VMS-3 model for the large and small resolved scales combined
with NLPOD for enhanced field reconstruction. Note that, although both the PGML-
VMS-3 and the NLPOD aim at increasing the ROM accuracy, they target different
error sources: the PGML-VMS-3 aims at mitigating the closure error, whereas the
NLPOD aims at alleviating the projection error.

The NLPOD methodology is based on combining POD with autoencoder (AE)
techniques from ML to learn a latent representation of the POD expansion. It lever-
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ages the predefined hierarchy of POD basis functions, which satisfy the conservation
laws and physical constraints, together with the capabilities of DNN to reveal the
nonlinear correlations between the modes. Rather than using the NLPOD for the
compression of the total set of POD coefficients, we constrain it to learn a few la-
tent variables, which represent only the unresolved scales. To construct the NLPOD,
we first define \bfitb = \{ ak\} Kk=R+1 corresponding to an almost full-rank POD expansion,
where K \leq N can be defined using the RIC spectrum (e.g., RIC(K)\geq 99.99\%). The
goal is utilize the nonlinear mapping capabilities of DNNs to learn a compressed rep-
resentation of those K  - R POD coefficients. In what follows, \bfitz = \{ zk\} qk=1 refers to
the learned compression, where q denotes the dimension of the AE latent space and
q\ll K so that an auto-regressive model can be constructed efficiently to evolve \bfitz in
time.

The AE starts with an encoding process that involves applying a series of nonlinear
mappings onto the input data to shrink the dimensionality down to a bottleneck layer
representing the low rank or latent space embedding. An inverse mapping from the
latent space variables to the same input is performed by another set of nonlinear
mappings, defining the decoding part. For the NLPOD, the encoder and decoder can
be represented as follows:

(5.1) Encoder \eta : \bfitb \in RK - R \mapsto \rightarrow \bfitz \in Rq, Decoder \zeta : \bfitz \in Rq \mapsto \rightarrow \bfitb \in RK - R,

and they are trained jointly to minimize the following objective function:

(5.2) \scrJ =

Ntrain\sum 
n=1

\| \bfitb (n)  - (\eta \circ \zeta )(\bfitb (n))\| ,

where Ntrain is the number of training samples.
In order to temporally propagate \bfitz , we can use any of the regression tools, in-

cluding sparse regression, Gaussian process regression, Seq2seq algorithms, temporal
fusion transformers, and auto-regression methods. In the present study, we use LSTM
architectures that are similar to the ones used in section 4 to learn the one time-step
mapping from \bfitz (n) to \bfitz (n+1), as follows:

(5.3) \bfitz (n+1) \approx \scrL (\cdot ) \circ h(n)
l (\cdot ) \circ h(n):(n - \tau )

l - 1 (\cdot ) \circ \cdot \cdot \cdot \circ h(n):(n - \tau )
1 (\cdot ) \circ \scrI (\bfitz (n):(n - \tau )).

Note that the number of layers, l, and the length of time history, \tau , are not necessarily
equal to those in section 4. Moreover, the LSTM and AE can be trained either
jointly or separately. In the present study, we train them separately for the sake of
simplicity and to facilitate the NLPOD combination with other time series prediction
tools.

Before moving to the numerical experiments, we summarize the proposed frame-
work, which has two main objectives: (1) to reduce the closure error, which rises due
to the difference between (F (\omega ), \phi k) and (F (\omega R), \phi k); and (2) to reduce the projection
error, which rises due to the difference between \omega and \omega R.
1. For the first objective (the closure error), we use ML-based models to learn the

correction term (i.e., (F (\omega ), \phi k) - (F (\omega R), \phi k)) as a function of the coefficients of
the POD expansion. The training data for input are (\omega ,\phi k), and those for the
output are (F (\omega ), \phi k) - (F (\omega R), \phi k).
Recently, there has been an increase in discourse regarding the trustworthiness of
ML-based approaches in physics-based computations, and it is commonly accepted
that incorporating physical knowledge into the ML models is essential to ensure
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PGML-VMS REDUCED ORDER MODELING B299

their reliability. For example, the governing equations can be embedded by adding
physics-based penalty terms to the data-based loss function, and certain symme-
tries and invariances can be enforced through the neural network by customized
architectures. The current work explores another approach (i.e., PGML) that we
believe is simpler, flexible, and effective, especially when the known physics is in-
complete. In particular, we identify certain features and information from physics
and perform feature engineering to enrich the neural network with this information.
We refer to the GROM as a physics-based model since it employs an orthogonal
projection of the PDE operators onto the POD basis functions. Thus, the resulting
GROM ( \.\bfita = A\bfita + \bfita \top B\bfita ) inherits the underlying dynamics from the FOM and
has a polynomial structure. The linear and quadratic terms correspond to the
dissipation and convective terms in the NSE, respectively. We take advantage of
this physics-based ROM and use the projected propagator (A\bfita + \bfita \top B\bfita ) as an
additional feature in the PGML-based closure. In addition, we find that adding
these features at intermediate layers (rather than the first layer) of the neural
network (similar to skip-connection architectures) yields improved results. For
training the PGML closure, we now have both (\omega ,\phi k) and (F (\omega R), \phi k) as inputs.
However, the data-based part (i.e., (\omega ,\phi k)) is fed to the first layer while the the
physics-guided part (F (\omega R), \phi k) is skip-connected to an intermediate layer. The
output of the neural network is the correction term (F (\omega ), \phi k) - (F (\omega R), \phi k).

2. For the second objective (the projection error), we learn the POD expansion co-
efficients in \omega K =

\sum K
i=1 ai\phi i for the terms beyond i = R (where K > R). When

K \gg R, building an autoregressive model to evolve ai(t)
K
i=R+1 to ai(t+\Delta t)

K
i=R+1

is found to be fragile in practice, and the training process becomes cumbersome.
Therefore, we first use an autoencoder model to learn a compressed representation
zi

q
1=1 for ai

K
i=R+1, where q \ll K. Then, we build an LSTM-based autoregressive

model to evolve zi(t)
q
1=1 to zi(t+\Delta t)

q
1=1, where the decoder part can be finally

used to recover ai(t+\Delta t)
K
i=R+1 from zi(t+\Delta t)

q
1=1.

Finally, it is worth noting that our proposed framework maintains the Galerkin
POD at its heart and constructs nonlinear ML-based corrections to separately ad-
dress the associated closure and representation errors. This is in contrast to other
methodologies that learn a nonlinear low-dimensional map altogether (e.g., [47]). Our
choice has been motivated by the following:
\bullet It is more feasible to perform rigorous analysis of the accuracy, consistency, con-

vergence, and stability of linear space methods (e.g., Galerkin methods) than
nonlinear space techniques (e.g., ML approaches). Since our framework is based
on POD and Galerkin projection in its core, it is still possible to apply similar
mathematical tools to analyze it (see [45] for a first step in this direction).

\bullet Galerkin POD models have been widely accepted in industry, which makes the
introduction of correction techniques more appealing than replacing existing
methodologies altogether. This is particularly important given the rapid ad-
vancement in ML algorithms as it would be impractical to keep replacing the
whole framework to adopt a new algorithm. Furthermore, our framework is quite
modular in the sense that the core Galerkin POD model is fixed while the compli-
mentary ML techniques can be easily replaced and/or combined with other tools.
For instance, a transformer can be used as a drop-in replacement for the LSTM
without changing its POD core.

\bullet The VMS framework has strong support from computational mechanics studies,
and the present study is only a small step towards leveraging the richness of
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B300 AHMED ET AL.

VMS algorithms to boost ROM developments. In particular, the VMS framework
equips the ROM practitioner with a high level of flexibility in adopting different
correction schemes to address various error sources.

6. Results and discussion. In this section, we perform a numerical investiga-
tion of the proposed PGML-VMS-ROMmethodologies (with and without the NLPOD
extension) using the 2D vortex merger problem [70], governed by the following vor-
ticity transport equation:

(6.1) \partial t\omega + J(\omega ,\psi ) =
1

Re
\Delta \omega in \Omega \times [0, T ].

We consider a spatial domain of dimensions (2\pi \times 2\pi ) with periodic boundary
conditions. The flow is initialized with a pair of corotating Gaussian vortices with
equal strengths centered at (x1, y1) = (5\pi /4, \pi ) and (x2, y2) = (3\pi /4, \pi ) as follows:

(6.2) \omega (x, y,0) = exp
\bigl( 
 - \rho 

\bigl[ 
(x - x1)

2 + (y - y1)
2
\bigr] \bigr) 

+ exp
\bigl( 
 - \rho 

\bigl[ 
(x - x2)

2 + (y - y2)
2
\bigr] \bigr) 
,

where \rho is a parameter that controls the mutual interactions between the two vortical
motions, set at \rho = \pi in the present study. For the FOM simulations, we consider a
regular Cartesian grid resolution of 256\times 256 (i.e., \Delta x=\Delta y= 2\pi /256), with a time-
step size of 0.001. Vorticity snapshots are collected every 100 time-steps for t\in [0,30],
totaling 300 snapshots. The evolution of the vortex merger problem at selected val-
ues of the Reynolds number is depicted in Figure 4, which illustrates the convec-
tive and interactive mechanisms affecting the transport and development of the two
vortices.

In terms of POD analysis, we use R = 6, which captures more than 90\% of the
total variance in the snapshot data, to define the total number of resolved scales. For
the three-scale VMS investigation, we split the resolved modes into 2 resolved large
scales (i.e., r = 2) and 4 resolved small scales. For the NLPOD study, we find that
K = 20 corresponds to near full-rank approximation of the flow field at all values of
the Reynolds number. This is illustrated by the plot of the RIC values as a function
of the number of POD modes at Re = 3000 in Figure 5.

Following a systematic approach, in subsection 6.1, we first present our com-
putational results for ML-VMS-2 and PGML-VMS-2 to quantitatively demonstrate
the benefit of incorporating the physics guided machine learning approach. We then
present the results for PGML-VMS-3 to highlight the flexibility and accuracy gain of
the three-scale approach. Finally, in subsection 6.2, we reveal the additional role of
the NLPOD approach by illustrating the performance of the PGML-VMS-3+NLPOD
approach. The codes to reproduce the results in this section are publicly available as
a GitHub repository [6].

6.1. Multilevel VMS closure for resolved scales. We store data correspond-
ing to Re\in \{ 500,750,1000, . . . ,3000\} (in increments of 250), but we use only the data
collected at Re \in \{ 500,750,1000\} for neural network training, while the remaining
data are reserved for testing purposes. For each value of the Reynolds number, we
store 300 snapshots, which results in 900 samples for the offline training phase. In
addition, 20\% of these samples (randomly selected) are excluded from the training
for validation and comparison of neural network architecture designs (e.g., number
of layers and LSTM cells). For the ML-VMS frameworks, we use two LSTM layers
with a hidden state (h) dimensionality of 20 and hyperbolic tangent activation. For
the PGML-VMS cases, we add an extra LSTM layer (i.e., a total of 3 layers) and
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Fig. 4. Samples of temporal snapshots of the vorticity field for the vortex merger problem at
different values of the Reynolds number.

the physics-based features are passed to the first hidden layer. The Adam optimizer
with default settings (e.g., learning rate = 10 - 3) and batch size of 32 is used for the
training.

First, we explore the combination of multilevel variational multiscale methods
with machine learning. Figure 6 displays the results of applying the ML-VMS-2
framework to model the closure term at Re = 3000. In particular, we run a group
of 10 LSTMs with different initializations of the neural network weights and utilize
the deep ensemble method to quantify the uncertainty in the predictions. On the
average, the ML-VMS-2 method provides accurate results compared to the GROM
results. However, the uncertainty levels, described by the standard deviation in the
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Fig. 5. RIC values as a function of the modal truncation for the vortex merger problem at
Re= 3000.
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Fig. 6. The time evolution of the first 6 modes of the vortex merger problem for Re = 3000
with the two-level VMS using ML closure, compared to the true projection and GROM (without
closure) predictions. The solid line represents the mean values (\mu ) from an ensemble of 10 different
LSTM neural networks trained with different weight initializations, while the shaded area defines the
uncertainty bounds using standard deviation (\sigma ) values. For better visualization, the shaded band is
plotted with \mu \pm 5\sigma .

ensemble predictions, are high. This is especially evident at the late time instants as
the uncertainty propagates and grows with time.

In order to increase the closure model robustness and reduce the uncertainty
levels, we apply the PGML to inject physics-based features, as detailed in section 4.
Figure 7 shows the evolution of the first 6 POD modal coefficients using the PGML-
VMS-2. We can observe a significant reduction in the uncertainty levels as depicted
by the shaded area, compared to the ML-VMS-2. It is also clear that the GROM
yields inaccurate predictions. Moreover, we can observe that the deviations of the
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Fig. 7. The time evolution of the first 6 modes of the vortex merger problem for Re = 3000
with the two-level VMS using PGML closure, compared to the true projection and GROM (without
closure) predictions. The solid line represents the mean values (\mu ) from an ensemble of 10 different
LSTM neural networks trained with different weight initializations, while the shaded area defines the
uncertainty bounds using standard deviation (\sigma ) values. For better visualization, the shaded band is
plotted with \mu \pm 5\sigma .

GROM trajectory from the true projections are larger for the high-index portion of
the resolved modes. In fact, this observation also applies to the ML-VMS-2 and
PGML-VMS-2, which provide better results for the first two or three modes than the
remaining ones.

In Figure 8, we plot the ROM propagator \.\bfita computed by the Galerkin method
(i.e., with truncation, with no access to the unresolved scales, and without correction)
against the true propagator (assuming access to all the flow scales). We find that
the GROM equations can adequately describe the dynamics of the first modes, but
fail to do so for the last modes. This can be explained by locality of information
transfer, which is one of the main concepts used in the VMS development. Such
locality indicates that the neighboring modes exhibit larger mutual interactions than
the modes that are far apart. Thus, describing the dynamics of the leading modes
requires more information from the first few scales than from the remaining scales. In
other words, the resolved scales become almost sufficient to define the propagator of
the leading modes. On the other hand, the last modes are adjacent to the unresolved
scales. Thus, the mode truncation considerably affects the dynamics of the last modes.

In order to improve the quality of the closure model, we leverage the locality
of modal interactions and apply the three-level VMS closure to correct the ROM
dynamics. The selection of r (i.e., the index at which the resolved scales are divided
into resolved large and resolved small scales) is still an open research question for
VMS-ROMs (and for the VMS framework, in general). Proof-of-concept studies show
that even an arbitrary splitting yields more accurate results. A ROM practitioner can
also follow an energy-based criterion for choosing r. For instance, by considering the
POD eigenvalue distribution, the spectrum can be divided into parts with distinct
decay rates (slopes). Furthermore, different definitions of ROM length-scales [51]
can be also considered to select r, R, and K (see Figure 3). In the present study,
we split the resolved scales into two parts: the first 2 modes represent the largest

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

1/
23

 to
 9

5.
25

3.
20

8.
12

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



B304 AHMED ET AL.

0 10 20 30
t

−5.0

−2.5

0.0

2.5

ȧ
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Fig. 8. Comparison between the ROM propagator computed by Galerkin projection (with trun-
cation, i.e., \.ak = ( - J(\omega R,\psi R) + \nabla 2\omega R, \phi k), against the true (FOM projection) propagator (i.e.,
\.ak = ( - J(\omega ,\psi ) + \nabla 2\omega ,\phi k) at Re = 3000 and for R = 6. We notice that the Galerkin projection
accurately captures the dynamics of the first modes, but a discrepancy appears at the higher-index
modes, which motivates the use of multilevel VMS closure.
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Fig. 9. The time evolution of the first 6 modes of the vortex merger problem for Re = 3000
with the three-level VMS using ML closure, compared to the true projection and GROM (without
closure) predictions. The solid line represents the mean values (\mu ) from an ensemble of 10 different
LSTM neural networks trained with different weight initializations, while the shaded area defines the
uncertainty bounds using standard deviation (\sigma ) values. For better visualization, the shaded band is
plotted with \mu \pm 5\sigma .

resolved scales, while the remaining 4 modes represent the small resolved scales. The
ML-VMS-3 predictions of the temporal dynamics for the first 6 modes are shown in
Figure 9. Compared to Figure 6, the ML-VMS-3 provides more accurate results than
the ML-VMS-2, also in terms of uncertainty levels.

Finally, the PGML-VMS-3 results are shown in Figure 10, where we can see
improved results across all the resolved scales with very low levels of uncertainty.
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Fig. 10. The time evolution of the first 6 modes of the vortex merger problem for Re = 3000
with the three-level VMS using PGML closure, compared to the true projection and GROM (without
closure) predictions. The solid line represents the mean values (\mu ) from an ensemble of 10 different
LSTM neural networks trained with different weight initializations, while the shaded area defines the
uncertainty bounds using standard deviation (\sigma ) values. For better visualization, the shaded band is
plotted with \mu \pm 5\sigma .

500 1000 1500 2000 2500 3000
Re

10−3

10−2

10−1

100

M
S

E

in–sample out–of–sample

GROM

ML–VMS–2

ML–VMS–3

PGML–VMS–2

PGML–VMS–3

Fig. 11. Mean squared error (MSE) between the true values of modal coefficients and the pre-
dictions of GROM, ML-VMS-2, ML-VMS-3, PGML-VMS-2, and PGML-VMS-3.

The mean squared error (MSE) between the true projection values of the resolved
scales and the prediction of the ROM with and without various closure models is
shown in Figure 11. We can see that the VMS closure provides at least one order of
magnitude better predictions than the baseline GROM. Moreover, the PGML-VMS is
superior to the ML-VMS, especially for Reynolds numbers that are not included in the
LSTM training. This can be attributed to the fact that PGML employs physics-based
features derived from the governing equations, resulting in improved extrapolatory
capabilities of the overall model. Finally, the three-level variant of VMS provides

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

1/
23

 to
 9

5.
25

3.
20

8.
12

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



B306 AHMED ET AL.

0 2 4 6
x

0

2

4

6
y

FOM

0 2 4 6
x

0

2

4

6

y

True Projection

0 2 4 6
x

0

2

4

6

y

GROM

0 2 4 6
x

0

2

4

6
y

PGML–VMS–3

Fig. 12. Comparison between the FOM vorticity field at the final time (i.e., t = 30) and the
reconstruction from true projection (i.e., optimal reconstruction), GROM, and PGML-VMS-3. Note
that the PGML-VMS-3 field is very similar to the true projection field, which implies that the closure
error is minimized. However, there are clear differences between the FOM and PGML-VMS-3
results, which suggest a significant projection error in the PGML-VMS-3 model.

more accurate ROMs than VMS-2, making use of the locality of information transfer
to build more localized closure models.

6.2. NLPOD for unresolved scales. The reconstructed vorticity fields from
GROM, true projection, and PGML-VMS-3 at the final time (i.e., t = 30) for
Re = 3000 are visualized in Figure 12. We can see that the GROM field is signif-
icantly inaccurate. In contrast, the PGML-VMS-3 vorticity field is very close to the
true projection field. This suggests that the PGML-VMS-3 is successful in providing
accurate closure terms in such a way that the resulting ROM trajectory converges
to the best linear approximation with 6 modes. Nonetheless, compared to the FOM
solution, it is clear that 6 POD modes are not enough to capture all the relevant
flow structures, especially at large Reynolds numbers. On the other hand, building a
projection-based ROM with an increased number of modes will result in an undesired
higher computational burden.

In order to tackle this limitation, we apply the NLPOD methodology from section
5 to learn a latent space representation of important unresolved scales. We find that
the value K = 20 corresponds to RIC \geq 99.99\%, so we consider \bfitb = \{ ak\} 20k=7 \in R14

in the NLPOD extension. We use the NLPOD to learn a rank-2 compression of the
resolved scales, i.e., \bfitz = \{ zk\} 2k=1 \in R2. We use a total of 9 hidden feedforward layers
to define the autoencoder. The first 4 layers with a hyperbolic tangent activation
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Fig. 13. Comparison between the FOM vorticity field at the final time (i.e., t = 30) for Re =
3000 and the reconstruction from true projection (i.e., optimal reconstruction) at two different values
of modal truncation, as well as the predictions of the PGML-VMS-3 for the dynamics of the first 6
modes, augmented with NLPOD for the following 14 modes (i.e., a total of K = 20 modes) to reduce
the projection error.

function define the encoder starting with 128 neurons in the first layer, followed by
64 neurons in the second layer, then 32 neurons in the third layer, and 8 neurons in
the fourth layer. The fifth layer represents the bottleneck, corresponding to \bfitz , with 2
neurons and a linear activation function. The decoder architecture is the same as the
encoder, but in reverse order (i.e., starting from 8 neurons in the sixth layer up to 128
neurons in the ninth layer). The input and output layers have the same dimension,
K. Figure 13 displays the reconstructed vorticity fields at the final time from the true
projection of the FOM field onto the first 6 and the first 20 POD modes. We notice
that the FOM flow scales can be adequately captured by the subspace spanned by
the first 20 POD modes. Furthermore, the plots clearly show that the combination
of PGML-VMS-3 for the first 6 modes and NLPOD for the subsequent 14 modes
(i.e., a total of 20 modes) provides improved field reconstruction. We highlight that
the computational overhead of the online deployment of the PGML-VMS closure and
NLPOD is negligible compared to solving the projection-based ROM with 6 modes.

The CPU times for different portions of the FOM and ROMs are listed in Table 1.
For the ROMs, we can see that the majority of the time is spent training the neural
networks during the offline stage. We note that this time can be significantly reduced
by considering parallel training algorithms that make use of distributed hardware
facilities. We also notice that the three-level VMS framework takes about twice the
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Table 1
Comparison of the CPU times for the offline and online stages for FOM and ROMs. Note

that the PGML-VMS-3+NLPOD model yields a level of accuracy which is comparable to the GROM
(R = 20) model with only a fraction of computational overhead (i.e., with a total computational
online execution time of 63.876 s for the PGML-VMS-3+NLPOD model).

Offline CPU time [s] Online CPU time [s]

POD basis 0.646 FOM 1860.056

GROM operators 0.246 GROM (R= 6) 20.226
ML-VMS-2 training 71.641 ML-VMS-2 (R= 6) 32.289

ML-VMS-3 training 148.057 ML-VMS-3 (R= 6) 45.055

PGML-VMS-2 training 65.324 PGML-VMS-2 (R= 6) 33.358
PGML-VMS-3 training 139.863 PGML-VMS-3 (R= 6) 51.545

NLPOD training (AE) 111.543 NLPOD (R= 6,K = 20) 12.331

NLPOD training (LSTM) 85.234 GROM (R= 20) 604.427

0 1× 10−4 2× 10−4 3× 10−4 4× 10−4 5× 10−4 6× 10−4
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Fig. 14. Pareto front plot for the mean squared error in the reconstructed vorticity field from
different ROM approaches (compared to the FOM snapshots) versus the online CPU time.

time taken by the two-level VMS due to the use of two distinct neural networks,
which doubles the training and testing time. Nonetheless, we see that considerable
computational gains are achieved compared to the FOM, by offloading most of the
expensive computations to the offline stage, which results in computationally light
models that can be used efficiently in the online stage. In addition, Figure 14 depicts
the Pareto front diagram of the MSE of reconstructed vorticity field from different
ROM approaches (compared to the FOM snapshots) versus the online CPU time. We
can see that the GROMs with (R=6) and (R=20) correspond to the tails on the
plot with the highest MSE and lowest CPU time on the right and the lowest MSE
and highest CPU time on the left, respectively. We also observe that the costs of the
ML and PGML frameworks are of the same order, which implies that incorporating
physics-based features into the neural network latent space comes with negligible
overheads.
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7. Conclusions and future work. We propose a hybrid hierarchical learn-
ing approach for the reduced order modeling of nonlinear fluid flow systems. The
core component of the proposed method comprises a multilevel variational multiscale
(VMS) framework for the natural separation of the resolved modes of different length
scales and unresolved modes. We develop a modular physics-guided machine learning
(PGML) paradigm through the concatenation of neural network layers to enable the
convergence of the ROM trajectory of resolved scales to the optimal low-rank approx-
imation. We use the projection of the governing equations onto the POD modes as
physics-based features to constrain the output to a manifold of the physically realiz-
able solutions.

For a vorticity transport problem with high Reynolds numbers, we numerically
demonstrate that this injection of physical information yields more robust and reliable
ROM closures with reduced uncertainty levels. Moreover, we showcase the benefits of
exploiting the locality of information transfer by building a three-level VMS, which
centers around the scale-separation of the resolved modes into large resolved scales
and small resolved scales. The numerical results show that the VMS-3 provides sig-
nificant flexibility in defining the closure terms and is superior to the classical VMS-2
model used in previous studies. Finally, to decrease the projection error, we adapt
the nonlinear proper orthogonal decomposition approach to learn a latent space rep-
resentation of the unresolved ROM scales that yield a near-full rank approximation
of the flow field.

Further investigations are required to optimize the layer(s) at which physics-based
features are injected in the PGML framework. For example, we can add the injection
at multiple points in the latent space, rather than at a single point. Moreover, we may
fuse various information from different models by repeating the concatenation oper-
ator for each piece of information. It is worth noting that advanced hyperparameter
tuning approaches for the automated design of neural network architectures (e.g., us-
ing genetic algorithms) can be utilized to find the optimal layer(s) to inject the physics
into the PGML architectures. In the present study, the ML-VMS, PGML-VMS, and
NLPOD components of the hybrid framework are treated separately. In other words,
the training of each neural network takes place independently of other neural net-
works in the framework. In a follow-up study, we plan to explore the simultaneous
training of these neural networks to ensure that these models are integrated seam-
lessly in the computational workflow. Finally, the truncated scales that are recovered
by NLPOD can be further embedded in the PGML-VMS architecture to improve the
approximation of the closure model.

REFERENCES

[1] S. E. Ahmed, S. Pawar, O. San, and A. Rasheed, Reduced order modeling of fluid flows: Ma-
chine learning, Kolmogorov barrier, closure modeling, and partitioning , in AIAA Aviation
2020 Forum, AIAA, 2020, 2946.

[2] S. E. Ahmed, S. Pawar, O. San, A. Rasheed, T. Iliescu, and B. R. Noack, On closures
for reduced order models---a spectrum of first-principle to machine-learned avenues , Phys.
Fluids, 33 (2021), 091301.

[3] S. E. Ahmed and O. San, Breaking the Kolmogorov barrier in model reduction of fluid flows ,
Fluids, 5 (2020), 26.

[4] S. E. Ahmed, O. San, A. Rasheed, and T. Iliescu, A long short-term memory embedding
for hybrid uplifted reduced order models , Phys. D, 409 (2020), 132471.

[5] S. E. Ahmed, O. San, A. Rasheed, and T. Iliescu, Nonlinear proper orthogonal decomposition
for convection-dominated flows , Phys. Fluids, 33 (2021), 121702.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

1/
23

 to
 9

5.
25

3.
20

8.
12

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



B310 AHMED ET AL.

[6] S. E. Ahmed, O. San, A. Rasheed, T. Iliescu, and A. Veneziani, Physics Guided Machine
Learning for Variational Multiscale Reduced Order Modeling: Python Codes , https://
github.com/Shady-Ahmed/PGML-VMS-NLPOD, 2022.

[7] I. Akhtar, A. H. Nayfeh, and C. J. Ribbens, On the stability and extension of reduced-order
Galerkin models in incompressible flows , Theoret. Comput. Fluid Dyn., 23 (2009), pp.
213--237.

[8] D. Amsallem and B. Haasdonk, PEBL-ROM: Projection-error based local reduced-order mod-
els, Adv. Model. Simul. Eng. Sci., 3 (2016), pp. 1--25.

[9] D. Amsallem, M. Zahr, Y. Choi, and C. Farhat, Design optimization using hyper-reduced-
order models, Struct. Multidiscip. Optim., 51 (2015), pp. 919--940.

[10] M. Balajewicz and E. H. Dowell, Stabilization of projection-based reduced order models of
the Navier-Stokes , Nonlinear Dynam., 70 (2012), pp. 1619--1632.

[11] M. Balajewicz, I. Tezaur, and E. Dowell, Minimal subspace rotation on the Stiefel man-
ifold for stabilization and enhancement of projection-based reduced order models for the
compressible Navier-Stokes equations , J. Comput. Phys., 321 (2016), pp. 224--241.

[12] P. Benner, E. Sachs, and S. Volkwein, Model order reduction for PDE constrained optimiza-
tion, in Trends in PDE Constrained Optimization, Springer, Cham, 2014, pp. 303--326.

[13] L. Bertagna and A. Veneziani, A model reduction approach for the variational estimation
of vascular compliance by solving an inverse fluid-structure interaction problem , Inverse
Problems, 30 (2014), 055006.

[14] S. Boschert and R. Rosen, Digital twin---the simulation aspect , in Mechanic Futures,
Springer, New York, 2016, pp. 59--74.

[15] R. E. Brown and A. J. Line, Efficient high-resolution wake modeling using the vorticity
transport equation , AIAA J., 43 (2005), pp. 1434--1443.

[16] T. Bui-Thanh, K. Willcox, O. Ghattas, and B. van Bloemen Waanders, Goal-oriented,
model-constrained optimization for reduction of large-scale systems , J. Comput. Phys., 224
(2007), pp. 880--896.

[17] K. Carlberg, M. Barone, and H. Antil, Galerkin v. least-squares Petrov-Galerkin projection
in nonlinear model reduction , J. Comput. Phys., 330 (2017), pp. 693--734.

[18] A. J. Chorin and O. H. Hald, Stochastic Tools in Mathematics and Science , Surveys Tutorials
Appl. Math. Sci. 1, Springer-Verlag, New York, 2009.

[19] A. J. Chorin, O. H. Hald, and R. Kupferman, Optimal prediction and the Mori-Zwanzig
representation of irreversible processes , Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 2968--
2973.

[20] A. J. Chorin, O. H. Hald, and R. Kupferman, Optimal prediction with memory , Phys. D,
166 (2002), pp. 239--257.

[21] R. Codina, S. Badia, J. Baiges, and J. Principe, Variational multiscale methods in compu-
tational fluid dynamics , in Encyclopedia Computational Mechanics, 2nd ed., Wiley, New
York, 2018, pp. 1--28.

[22] J. Degroote, J. Vierendeels, and K. Willcox, Interpolation among reduced-order matrices
to obtain parameterized models for design, optimization and probabilistic analysis , Inter-
nat. J. Numer. Methods Fluids, 63 (2010), pp. 207--230.

[23] G. Dimitriu, R. \c Stef\u anescu, and I. M. Navon, Comparative numerical analysis using
reduced-order modeling strategies for nonlinear large-scale systems , J. Comput. Appl.
Math., 310 (2017), pp. 32--43.

[24] M. Drohmann and K. Carlberg, The ROMES method for statistical modeling of reduced-
order-model error , SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 116--145, https://doi.
org/10.1137/140969841.

[25] B. A. Freno and K. T. Carlberg, Machine-learning error models for approximate solutions
to parameterized systems of nonlinear equations , Comput. Methods Appl. Mech. Engrg.,
348 (2019), pp. 250--296.

[26] F. A. Gers, D. Eck, and J. Schmidhuber, Applying LSTM to time series predictable through
time-window approaches , in Neural Nets WIRN Vietri-01, Springer, New York, 2002, pp.
193--200.

[27] M. Girfoglio, A. Quaini, and G. Rozza, A POD-Galerkin reduced order model for a LES
filtering approach , J. Comput. Phys., 436 (2021), 110260.

[28] A. Gouasmi, E. J. Parish, and K. Duraisamy, A priori estimation of memory effects in
reduced-order models of nonlinear systems using the Mori-Zwanzig formalism , Proc. R.
Soc. A Math. Phys. Eng. Sci., 473 (2017), 20170385.

[29] A. Gupta and P. F. Lermusiaux, Neural closure models for dynamical systems , Proc. R. Soc.
A, 477 (2021), 20201004.

[30] S. Haag and R. Anderl, Digital twin-proof of concept , Manuf. Lett., 15 (2018), pp. 64--66.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

1/
23

 to
 9

5.
25

3.
20

8.
12

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://github.com/Shady-Ahmed/PGML-VMS-NLPOD
https://github.com/Shady-Ahmed/PGML-VMS-NLPOD
https://doi.org/10.1137/140969841
https://doi.org/10.1137/140969841


PGML-VMS REDUCED ORDER MODELING B311

[31] D. Hartmann, M. Herz, and U. Wever, Model order reduction a key technology for digital
twins, in Reduced-Order Modeling (ROM) for Simulation and Optimization, Springer, New
York, 2018, pp. 167--179.

[32] S. Hijazi, G. Stabile, A. Mola, and G. Rozza, Data-driven POD-Galerkin reduced order
model for turbulent flows , J. Comput. Phys., 416 (2020), 109513.

[33] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, Turbulence, Coherent Structures,
Dynamical Systems and Symmetry , Cambridge University Press, Cambridge, UK, 2012.

[34] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, Deep learning with long short-term
memory for time series prediction , IEEE Commun. Mag., 57 (2019), pp. 114--119.

[35] T. J. Hughes, G. R. Feij\'oo, L. Mazzei, and J.-B. Quincy, The variational multiscale
method---a paradigm for computational mechanics , Comput. Methods Appl. Mech. En-
grg., 166 (1998), pp. 3--24.

[36] T. J. Hughes, L. Mazzei, and K. E. Jansen, Large eddy simulation and the variational
multiscale method , Comput. Vis. Sci., 3 (2000), pp. 47--59.

[37] T. J. Hughes, A. A. Oberai, and L. Mazzei, Large eddy simulation of turbulent channel
flows by the variational multiscale method , Phys. Fluids, 13 (2001), pp. 1784--1799.

[38] T. Iliescu and Z. Wang, Variational multiscale proper orthogonal decomposition: Convection-
dominated convection-diffusion-reaction equations , Math. Comp., 82 (2013), pp. 1357--
1378.

[39] T. Iliescu and Z. Wang, Variational multiscale proper orthogonal decomposition: Navier-
stokes equations , Numer. Methods Partial Differential Equations, 30 (2014), pp. 641--663.

[40] H. Imtiaz and I. Akhtar, Nonlinear closure modeling in reduced order models for turbulent
flows: A dynamical system approach , Nonlinear Dynam., 99 (2020), pp. 479--494.

[41] A. Iollo, S. Lanteri, and J.-A. D\'esid\'eri, Stability properties of POD-Galerkin approxi-
mations for the compressible Navier-Stokes equations , Theoret. Comput. Fluid Dyn., 13
(2000), pp. 377--396.

[42] K. Ito and S. S. Ravindran, A reduced-order method for simulation and control of fluid flows ,
J. Comput. Phys., 143 (1998), pp. 403--425.

[43] V. John, Finite Element Methods for Incompressible Flow Problems , Springer, Cham, 2016.
[44] M. G. Kapteyn, J. V. Pretorius, and K. E. Willcox, A probabilistic graphical model foun-

dation for enabling predictive digital twins at scale , Nature Comput. Sci., 1 (2021), pp.
337--347.

[45] B. Koc, C. Mou, H. Liu, Z. Wang, G. Rozza, and T. Iliescu, Verifiability of the data-driven
variational multiscale reduced order model , J. Sci. Comput., 93 (2022), pp. 1--26.

[46] Y.-d. Lang, A. Malacina, L. T. Biegler, S. Munteanu, J. I. Madsen, and S. E. Zitney,
Reduced order model based on principal component analysis for process simulation and
optimization , Energy Fuels, 23 (2009), pp. 1695--1706.

[47] K. Lee and K. T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders , J. Comput. Phys., 404 (2020), 108973.

[48] D. J. Lucia, P. S. Beran, and W. A. Silva, Reduced-order modeling: New approaches for
computational physics , Progr. Aerosp. Sci., 40 (2004), pp. 51--117.

[49] H. Mori, Transport, collective motion, and Brownian motion , Progr. Theoret. Phys., 33 (1965),
pp. 423--455.

[50] C. Mou, B. Koc, O. San, L. G. Rebholz, and T. Iliescu, Data-driven variational multiscale
reduced order models , Comput. Methods Appl. Mech. Engrg., 373 (2021), 113470.

[51] C. Mou, E. Merzari, O. San, and T. Iliescu, An Energy-Based Lengthscale for Reduced
Order Models of Turbulent Flows , preprint, https://arxiv.org/abs/2211.04404, 2022.

[52] B. R. Noack, K. Afanasiev, M. Morzy\'nski, G. Tadmor, and F. Thiele, A hierarchy of low-
dimensional models for the transient and post-transient cylinder wake , J. Fluid Mech., 497
(2003), pp. 335--363.

[53] B. R. Noack, M. Morzynski, and G. Tadmor, Reduced-Order Modelling for Flow Control ,
CSIM Internat. Centre Mech. Sci. 528, Springer, Vienna, 2011.

[54] B. R. Noack, P. Papas, and P. A. Monkewitz, The need for a pressure-term representation
in empirical Galerkin models of incompressible shear flows , J. Fluid Mech., 523 (2005),
pp. 339--365.

[55] S. Pan and K. Duraisamy, Data-driven discovery of closure models , SIAM J. Appl. Dyn.
Syst., 17 (2018), pp. 2381--2413, https://doi.org/10.1137/18M1177263.

[56] E. J. Parish and K. T. Carlberg, Time-series machine-learning error models for approximate
solutions to parameterized dynamical systems , Comput. Methods Appl. Mech. Engrg., 365
(2020), 112990.

[57] S. Pawar, O. San, B. Aksoylu, A. Rasheed, and T. Kvamsdal, Physics guided machine
learning using simplified theories , Phys. Fluids, 33 (2021), 011701.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

1/
23

 to
 9

5.
25

3.
20

8.
12

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2211.04404
https://doi.org/10.1137/18M1177263


B312 AHMED ET AL.

[58] S. Pawar, O. San, A. Nair, A. Rasheed, and T. Kvamsdal, Model fusion with physics-
guided machine learning: Projection-based reduced-order modeling , Phys. Fluids, 33 (2021),
067123.

[59] S. Pawar, O. San, P. Vedula, A. Rasheed, and T. Kvamsdal, Multi-Fidelity Information
Fusion with Concatenated Neural Networks , preprint, https://arxiv.org/abs/2110.04170,
2021.

[60] B. Peherstorfer, Breaking the Kolmogorov barrier with nonlinear model reduction , Notices
Amer. Math. Soc., 69 (2022), pp. 725--733.

[61] B. Peherstorfer, K. Willcox, and M. Gunzburger, Survey of multifidelity methods in
uncertainty propagation, inference, and optimization , SIAM Rev., 60 (2018), pp. 550--591,
https://doi.org/10.1137/16M1082469.

[62] S. M. Rahman, S. E. Ahmed, and O. San, A dynamic closure modeling framework for model
order reduction of geophysical flows , Phys. Fluids, 31 (2019), 046602.

[63] A. Rasheed, O. San, and T. Kvamsdal, Digital twin: Values, challenges and enablers from
a modeling perspective, IEEE Access, 8 (2020), pp. 21980--22012.

[64] S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD , J. Sci. Comput.,
15 (2000), pp. 457--478.

[65] C. W. Rowley and S. T. M. Dawson, Model reduction for flow analysis and control , Ann.
Rev. Fluid Mech., 49 (2017), pp. 387--417.

[66] E. W. Sachs and S. Volkwein, POD-Galerkin approximations in PDE-constrained optimiza-
tion, GAMM-Mitt., 33 (2010), pp. 194--208.

[67] O. San and T. Iliescu, Proper orthogonal decomposition closure models for fluid flows: Burg-
ers equation , Int. J. Numer. Anal. Model. Ser. B, 5 (2014), pp. 217--237.

[68] O. San and T. Iliescu, A stabilized proper orthogonal decomposition reduced-order model for
large scale quasigeostrophic ocean circulation , Adv. Comput. Math., 41 (2015), pp. 1289--
1319.

[69] O. San and R. Maulik, Extreme learning machine for reduced order modeling of turbulent
geophysical flows , Phys. Rev. E, 97 (2018), 042322.

[70] O. San and A. E. Staples, A coarse-grid projection method for accelerating incompressible
flow computations , J. Comput. Phys., 233 (2013), pp. 480--508.

[71] T. P. Sapsis and A. J. Majda, Blending modified Gaussian closure and non-Gaussian reduced
subspace methods for turbulent dynamical systems , J. Nonlinear Sci., 23 (2013), pp. 1039--
1071.

[72] S. Siami-Namini, N. Tavakoli, and A. S. Namin, The performance of LSTM and BiLSTM in
forecasting time series , in 2019 IEEE International Conference on Big Data (Big Data),
IEEE, 2019, pp. 3285--3292.

[73] J. R. Singler, New POD error expressions, error bounds, and asymptotic results for re-
duced order models of parabolic PDEs , SIAM J. Numer. Anal., 52 (2014), pp. 852--876,
https://doi.org/10.1137/120886947.

[74] L. Sirovich, Turbulence and the dynamics of coherent structures. I. Coherent structures ,
Quart. Appl. Math., 45 (1987), pp. 561--571.

[75] L. Sirovich, Turbulence and the dynamics of coherent structures. II. Symmetries and trans-
formations, Quart. Appl. Math., 45 (1987), pp. 573--582.

[76] L. Sirovich, Turbulence and the dynamics of coherent structures. III. Dynamics and scaling ,
Quart. Appl. Math., 45 (1987), pp. 583--590.

[77] R. \c Stef\u anescu, A. Sandu, and I. M. Navon, Comparison of POD reduced order strategies for
the nonlinear 2D shallow water equations , Internat. J. Numer. Methods Fluids, 76 (2014),
pp. 497--521.

[78] P. Stinis, Renormalized Mori-Zwanzig-reduced models for systems without scale separation ,
Proc. R. Soc. A Math. Eng. Sci., 471 (2015), 20140446.

[79] R. Swischuk, L. Mainini, B. Peherstorfer, and K. Willcox, Projection-based model re-
duction: Formulations for physics-based machine learning , Comput. Fluids, 179 (2019),
pp. 704--717.

[80] K. Taira, S. L. Brunton, S. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon, O. T.
Schmidt, S. Gordeyev, V. Theofilis, and L. S. Ukeiley, Modal analysis of fluid flows:
An overview , AIAA J., 55 (2017), pp. 4013--4041.

[81] K. Taira, M. S. Hemati, S. L. Brunton, Y. Sun, K. Duraisamy, S. Bagheri, S. T. Dawson,
and C.-A. Yeh, Modal analysis of fluid flows: Applications and outlook , AIAA J., 58
(2020), pp. 998--1022.

[82] F. Tao, H. Zhang, A. Liu, and A. Y. Nee, Digital twin in industry: State-of-the-art , IEEE
Trans. Ind. Inform., 15 (2018), pp. 2405--2415.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

1/
23

 to
 9

5.
25

3.
20

8.
12

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2110.04170
https://doi.org/10.1137/16M1082469
https://doi.org/10.1137/120886947


PGML-VMS REDUCED ORDER MODELING B313

[83] M. Viceconti, F. Pappalardo, B. Rodriguez, M. Horner, J. Bischoff, and F. M.
Musuamba Tshinanu, In silico trials: Verification, validation and uncertainty quantifica-
tion of predictive models used in the regulatory evaluation of biomedical products , Methods,
185 (2021), pp. 120--127.

[84] S. Volkwein, Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling , Lec-
ture Notes, University of Konstanz, 2013.

[85] Q. Wang, N. Ripamonti, and J. S. Hesthaven, Recurrent neural network closure of paramet-
ric POD-Galerkin reduced-order models based on the Mori-Zwanzig formalism , J. Comput.
Phys., 410 (2020), 109402.

[86] Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu, Proper orthogonal decomposition clo-
sure models for turbulent flows: A numerical comparison , Comput. Methods Appl. Mech.
Engrg., 237 (2012), pp. 10--26.

[87] X. Xie, M. Mohebujjaman, L. G. Rebholz, and T. Iliescu, Data-driven filtered re-
duced order modeling of fluid flows , SIAM J. Sci. Comput., 40 (2018), pp. B834--B857,
https://doi.org/10.1137/17M1145136.

[88] H. Yang and A. Veneziani, Efficient estimation of cardiac conductivities via POD-DEIM
model order reduction , Appl. Numer. Math., 115 (2017), pp. 180--199.

[89] M. J. Zahr and C. Farhat, Progressive construction of a parametric reduced-order model
for PDE-constrained optimization , Internat. J. Numer. Methods Engrg., 102 (2015), pp.
1111--1135.

[90] R. Zwanzig, Problems in nonlinear transport theory , in Systems Far from Equilibrium,
Springer, Berlin, 1980, pp. 198--225.

[91] R. Zwanzig, Nonequilibrium Statistical Mechanics , Oxford University Press, Oxford, UK, 2001.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

1/
23

 to
 9

5.
25

3.
20

8.
12

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/17M1145136

	Introduction
	Reduced order modeling
	Proper orthogonal decomposition
	Galerkin projection

	Variational multiscale method
	Two-scale VMS ROM
	Three-scale VMS ROM

	Physics guided machine learning
	ML-VMS ROM
	PGML-VMS ROM

	Nonlinear POD
	Results and discussion
	Multilevel VMS closure for resolved scales
	NLPOD for unresolved scales

	Conclusions and future work
	References

