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patch to make an overall decision about the original image.

Answering this question requires a consideration of three

primary challenges in patch-based image classification. (1)

Label Inconsistency: Typically, what is available is the image

label, while the actual ground truth labels for the patches

are often unknown. Thus, patch labels are not necessarily the

same as the true image label. (2) Manual patch annotation:
Manual patch labeling is very time consuming, expensive, and

potentially error prone. New labels will be required with each

change in patch size. The large image sizes also implies that

many patches may need to be considered, depending on the

patch size. (3) Errors in patch-level prediction: Automated

prediction of patch labels may not be very accurate, which

can affect the final decision obtained by combining these

patch-level results. Given these problems, simple direct fusion

methods, for instance, majority vote, or weighted combinations

may not be robust, and may not always work well. Another

major issue is the huge computational resources that may be

needed. Even with the patch-based approach, without a careful

consideration, the analysis may still require significant overall

computational resources, making it infeasible to analyze these

high resolution WSIs in low-resource environments. Consider

for example, the WSI images in our data set, with sizes in

the range of 6000 × 7350 to 195215 × 90991 pixels. For the

training set, using patch sizes of 300 × 300 we have a total

of 39.6M patches, generated from 842 WSIs. (See Table I

under experiments). This requires about 5.53 days to fine-

tune a ResNet50 pre-trained model for one epoch on a single

Titan RTX GPU. For 50 epochs, this would require 275 days.

Efficiency in the overall processing is therefore paramount for

this type of application.

In this work, we compute image-level class labels from

the potentially erroneous patch-based labels in three gen-

eral steps. First, we perform pre-processing on the image,

and use structured sampling (when needed) to reduce the

image regions to be involved in later analysis. Second, we

use deep learning models to extract features, and use an

information-theoretic framework to identify and eliminate non-

discriminative patches. Patch re-labelling is performed (as

needed) by analyzing the patch neighborhood spatial coher-

ence. Third, by considering larger spatial regions, we perform

final class-label prediction for the original high-resolution

image using learning-based decision fusion on the refined

patch results. Our patch-based image classification is inspired
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I. INTRODUCTION

With improvements in sensing, storage, communication, and

computing technologies, digital images and video are now

ubiquitous. Thus, the analysis of very high resolution images

has found applications in various fields, f rom biomedicine

(medical image analysis, including histopathological images)

to transportation (analysis of road or rail surfaces), to energy

and gas (analysis of seismic images), to land use and land

transformation (analysis of remote sensing and satellite im-

ages). In this work our focus is on efficient c lassification of

very high resolution histopathological medical images such as

gigapixel whole-side images which are widely used for cancer

diagnosis [7], [20]–[22]. Depending on the specific applica-

tion, one basic approach to handling high resolution images is

simply to treat them just like any other image, that is, apply

an analysis technique directly on the high resolution image to

perform the required analysis. However, given the image sizes,

this may pose a significant computational problem, especially

at very high resolutions, and thus a significant p roblem for

low-resource environments.

An alternative is to perform patch-based analysis of the

high resolution image by dividing the image into patches,

and then applying the analysis technique on each patch. The

key question becomes how we combine the results from each
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by the work in [7]. However, our structured patch sampling,

patch-label refinement steps, and our specific attention to

spatial relationships in the image contrast our approach from

those of [7], where they neither refined the patch labels,

nor considered regional information in their analysis. A key

innovation in our work is how the patch selection algorithm is

embedded in an iterative classification framework, involving

the use of potentially different pre-trained learning models

in extracting features from the patches. Efficiency in the

approach is achieved via the steps of preprocessing, structured

sampling, and the use of plug-and-play pre-trained CNN

models. Beyond efficiency, this use of plug-and-play pre-

trained models simplifies our approach, and also makes it more

general. Performance can be improved by simply slotting in

more powerful models.

II. RELATED WORK

In recent years deep multiple instance learning based ap-

proaches such as application of patch-based classification of

WSIs using convolutional neural networks (CNNs) have shown

promising results for cancer classification [7], [20]–[23], [25],

[26]. Researchers investigated attention based MIL using CNN

for WSI classification [2], [10], [12]–[14], [24], [27], [28].

Del Amor et al. [1] proposed an inductive transfer learning

framework able to perform both ROI selection and malignant

prediction in spitzoid melanocytic lesions using WSIs. Yao et

al. [24] proposed a method called, Deep Attention Multiple

Instance Survival Learning (DeepAttnMISL) by introducing

both siamese multiple instance fully connected network (MI-

FCN) and attention-based multiple instance learning (MIL)

pooling to efficiently learn imaging features from the WSI

and then aggregate WSI-level information to patient-level.

Maksoud et al. [14] presented a method for selective use

of high resolution processing based on the confidence of

predictions on downscaled WSIs. Lu et al. [13] presented

an approach named clustering-constrained-attention multiple-

instance learning (CLAM) that uses attention-based learning

to identify subregions of high diagnostic value to accurately

classify whole slides. Lu et al. [12] combined transfer learning

and weakly supervised multitask learning to enable a single,

unified predictive model to be efficiently trained on tens of

thousands of gigapixel WSIs. Li et al. [10] proposed a multiple

instance learning based method for WSI classification that

does not require localized annotation. The method uses a novel

MIL aggregator that models the relationships between the

instances in a dual-stream architecture with trainable distance

measurement. It is built on self-supervised contrastive learning

and adopts a pyramidal fusion mechanism for multiscale WSI

features.

In this work, instead of focusing on developing another

novel CNN model specific to WSI classification, we inves-

tigate whether we can reuse the already existing popular

CNN models for WSI classification. We construct a general

multiple-instance learning based WSI classification framework

by using off-the-shelf models and repurpose them for this

specific classification task. We focus on providing a general

framework for efficient, yet effective, CNN-based WSI classi-

fication approaches in this work.

The main contributions of this paper are three-fold: (1)

We present methods for novel preprocessing and structured

random sampling for efficient, yet reliable, analysis of very

high resolution images; (2) We develop an iterative classifi-

cation framework that can combine the power of potentially

different pre-training models in classifying high resolution

WSIs; (3) We introduce an information theoretic model for

patch discrimination and a learning-based region-aware fusion

for effective classification of high resolution histopathological

images.

III. METHODOLOGY

For a given high resolution image, the key steps in our

patch based classification approach are as follows: (1) efficient

pre-processing and structured sampling; (2) iterative patch-

based classification, using a bank of deep learning models; (3)

identification and elimination of non-discriminative patches;

(4) final learning-based patch decision fusion, using a region-

based analysis. Below, we described the general framework,

and key components in this framework.

A. Proposed Framework

Fig. 1 shows the proposed patch-based classification frame-

work. For a given input image I , we first divide the image

into non-overlapping patches. Then, we perform patch pre-

processing, and structured patch sampling. The output will be

a set of patches P = {p1, p2, . . . , pN}. Using fine-tuned CNN

model A from a bank of pre-trained models (PM), we extract

features from each patch in set P , and then perform an initial

classification (block SA) for each patch, for instance using

softmax. Then we pass the softmax prediction, along with

neighborhood information η and optimum set of thresholds

τ∗ to the patch selection (PS) stage (see below). After

patch selection, we obtain the set of discriminative patches

Q = {q1, q2, . . . , qM}, where Q ⊂ P . Using fine-tuned CNN

model B we extract features from the selected patches in Q.

We note that, the CNN models could be the same (symmetric)

or different (asymmetric) at the two steps, i.e., we could have

B = A, or B �= A. Because of the neighborhood nature of

the patch selection process, the overall discrimination ability

of the patches could change with each set of selected patches.

Thus, the two steps can be done iteratively, such that we

stop the iteration when we observe little or no difference

between the selected patches from one iteration to the next.

The features from the final selected patches at the last iteration

(using model B, the last CNN model) are then dimensionally

compressed using PCA and passed to a classification module

(block SB), such as a Random Forest (RF ) or Support Vector

Machines (SVM ) for final patch level classification. The

image-level classification is then performed through a region-

based analysis on the individual patch results, the results of

which are then fed to a learning-based region-aware fusion

scheme. (This is the LRF block in the figure). The outcome of
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Fig. 1. Workflow diagram for proposed patch-based classification framework.
Notations: PSS: preprocessing and structured sampling; P: output patches
after preprocessing and sampling; PM: bank of pretrained CNN models, SA:
Initial patch classification; SB : second patch classification; PS: patch selec-
tion using information-theoretic identification of non-discriminative patches;
Q: output patches after discrimanative patch selection; LRF: learning-based
and region-based patch decision fusion; G: learned region-based attributes;
ψ(): final image-level classification; CK : predicted output class

the LRF block is then used for final image-level classification

of the input WSI.

B. Efficient processing

1) Preprocessing: Usually whole-slide histopathological

images have a lot of blank regions surrounding the tissue

image. So when patches are extracted, some of the patches

are may not have texture or may be marginally covering part

of the tissue sample.

Thus, during our structured random sampling step (dis-

cussed below), we have to make sure that we only select “non-

blank” patches. In order to do this, we at first perform Canny

edge detection on the patch, then label the connected regions.

By definition, two pixels are considered to be connected when

they are neighbors and have the same value. In an image patch,

they can be neighbors either in a 1- or 2-connected sense.

For our case, a single orthogonal hop is used to consider

a pixel as a neighbor. For each identified region within the

patch we calculate the area and sum these up to get the total

area of the connected regions within the patch. We calculate

this “area of connected regions” (denoted Atotal), and create a

frequency distribution of Atotal. Finally, we check each bin of

the distribution and decide on an appropriate threshold which

we use to filter out the blank (or mostly blank) patches.

2) Structured sampling: Given the very high resolution of

the WSIs (images in the TCGA cancer datasets range from

6, 000 × 7, 350 to 195, 215 × 90, 991), extracting relatively

small-sized patches creates a huge number of such patches for

each image (even after pre-processing). This makes the model

training computationally very expensive. Thus, we needed to

develop a sampling strategy that could effectively select a

smaller number of patches to represent the image without

losing too much information about the spatial correlation in the

original high resolution image. This requires us to determine

an effective number of patches, and appropriate patch size,

both of which will depend on the original image size. To

decide on the patch sample size of a whole-slide image, we

used two approaches. The first is a simple approach using a

fixed number of patches, for instance, 100 patches per image

(ppi). The second is an adaptive approach depending on the

image size, using the Cochran’s formula [3] for sample size

calculation with a known population size:

n =
z2p(1−p)

e2

1 + ( z
2p(1−p)
e2N )

(1)

where n is the sample size (number of patches), e is the

desired level of precision (i.e. the margin of error), p is

the (estimated) proportion of the population which has the

attribute in question. The value of z is found in a Z table.

N is the known population size. Armed with the number

of patches, we still have to decide on the most effective

way to determine exactly which patches will be selected to

make up the number. Given the unconstrained nature of the

shape of a tissue sample, and the existence of blank and non-

informative patches, to properly sample the slice we have to

develop a strategy that takes more samples from regions where

informative patches are available and avoid taking samples

from non-informative regions. A stratified random sampling

[8] is too costly because it will take uniform samples from each

strata regardless of the utility of the patches for classification.

Thus, we propose to use an adaptive approach, where we

divide the image into grids or cells of size r√
n
× c√

n
, where,

n is the computed sample size from Equation (1), and r and

c denote the respective number of rows and columns in the

image. Initially, for each grid, we randomly select one non-

blank patch whose centroid lies within the grid. Given the

preprocessing step, it is possible to find a grid that contains

only blank patches. Thus, if after a single iteration over the

image we do not reach a total of n patches (i.e., some grids

had only blank patches), then we consider only cells that have

produced a non-blank patch to get the remaining patches. This

structured sampling strategy provides two advantages: (1) it

ensures a more uniform spatial distribution of the randomly

selected patches over the entire image; (2) it avoids selection

of the blank patches (as determined by the threshold on

Atotal), which thus ensures that selected patches will be from

informative regions in the high resolution image; (3) maintains

the general spatial coherence among the selected patches.

Algorithm 1 (Fig. 2) captures this adaptive structured sampling

strategy.

C. Iterative patch selection and classification

1) Discriminative patch selection and patch relabeling: A

fundamental step in our approach is the patch selection stage

(denoted as PS in Fig. 1). Each patch provides a contribution

to the decision on the class of the input image, for instance,

using a simple majority vote on the predicted patch labels.

Let P (U) = {pU (1), pU (2), . . . , pU (c), . . . , pU (|C|)} denote

the predicted class probability distribution for patch U , where

C is the number of image classes. For a given image patch U ,

the class probabilities P (U) = {pU (c)}c∈C are obtained from

the output of softmax. Traditionally, the class with the highest

probability is chosen as the predicted class for the patch.

However, this simple decision can lead to misclassifications,
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Require: grid size, patch size, img size, patch list
Ensure: sampled patch list

1: ppi ← get sample size(patch size, img size)
2: ppc ← ppi/grid size
3: cell positions ← get cell positions(img size, grid size)
4: grpd patches ← . . .
5: grp patches by cell(patch list, cell positions)
6: for cell patches ← grpd patches do
7: while patch count < ppc do
8: id ← random sample(cell patches)
9: is blank ← blank check(cell patch[id])

10: if not is blank then
11: sampled patch list.append(cell patch[id])
12: end if
13: end while
14: end for{If ppi is not met, we repeat the process, by

uniformly sampling from cells that have produced ppc
samples, thus ignoring cells with mostly blank patches.}
Fig. 2. Algorithm 1: Algorithm for structured random sampling

especially, if the class probabilities are not well separated.

Further, because decisions are patch-based, it becomes more

difficult to train the system on the basis of global labels for

the original high resolution image. Thus, before we use the

predicted label for patch U in the overall decision, we check

if the classification result for patch U is discriminative enough

to be used. First, we compute the class entropy for patch U :

H(U) =
∑
c

pU (c) log

(
1

pU (c)

)
(2)

We say the patch is complex if (max
c∈C

{pU (c)} −
max2
c∈C

{pU (c)}) ≤ τp or if H(U) ≥ τH . Here, max2 is a

function that returns the second largest value in a set, and τP
and τH are thresholds. If the patch is not complex, we simply

assign it the class label: L(U) = c∗ = argmax
c∈C

{pU (c)}. For a

complex patch, we then consider its spatial coherence with its

neighborhood. First, we perform the above patch complexity

check on each patch in the neighborhood. If less than half of

the patches in the neighborhood are found to be complex, we

proceed with the spatial coherence analysis. If not, (i.e., more

than half of the patches in the neighborhood are complex),

we say the patch is non-discriminative, and thus do not use

it further for classification of the image. For neighborhood

coherence analysis, we use the Jensen-Shannon divergence [4]

between U and its neighbors. For two probability distributions

A and B, the Jensen-Shannon divergence is given by:

JSD(A,B) =
1

2
D(A||Q) +

1

2
D(B||Q) (3)

where Q = 1
2 (A+ B), and D(A||Q) is the Kullback-Leibler

(KL) divergence [4] between two distributions, given by:

D(A||Q) =

|C|∑
c=1

A(c) log

(
A(c)

Q(c)

)
(4)

Then, for the patch U , we compute the mean and standard

deviation of the Jensen-Shannon divergence between U and

every other patch in its neighborhood, viz:

μU =
1

|N |
∑
V ∈N

JSD(P (U), P (V )) (5)

σU =

√
1

|N |
∑
V ∈N

(μU − JSD(P (U), P (V )))
2

(6)

where N denotes the patch neighborhood for patch U . If

μU ≤ τμ, we say that patch U is coherent with its neighbors.

Similarly, if σU ≤ τσ , it means that the patch neighborhood

for patch U is coherent (i.e., all the neighbors have similar

differences with U ). Here again, τμ and τσ are two thresholds.

Thus, for the complex patch, if its neighborhood is coherent,

we assign it the class label (L(U)) using the dominant class in

its neighborhood. Similar to patch complexity, we determine

the dominant class as follows:

v∗ = argmax
V ∈N

{p(L(V ))} (7)

if max
V ∈N

{p(L(V ))} −max2
V ∈N

{p(L(V ))} ≥ τL (8)

where p(L(V )) denotes the probability of label L(V ) (the

predicted label for patch V ) in the neighborhood, and τL is a

threshold. Then, we assign patch U the label of this dominant

class in its neighborhood: L(U) = L(v∗). If the neighborhood

is not coherent, or there is no dominant class label, we can’t

rely on information from the neighborhood. Thus, we say

the patch is non-discriminative, and remove it from further

analysis. For patch selection, a set of thresholds (τ ) – defined

above – are determined during training. At first the thresholds

are initialized based on empirical observations. Then, the

selection of optimal set of thresholds τ∗ = {τp, τH , τμ, τσ, τL}
is based on patch level classification performance.

2) Learning-based image level fusion: The final step is

image-level label prediction for the high resolution WSI using

the results of the above patch-level analysis (denoted as LRF
in Fig. 1). As noted previously, one way to do this will

be to perform a simple majority vote, using the patch level

classification results. A key observation is that, in addition to

the individual label for each patch, the distribution of patch

labels within a neighborhood might play a major role in

determining the actual label of the larger image. For instance,

errors in the patch-based labels could be corrected based on

information from other nearby patches. Given the size of the

high resolution images, rather than simple majority vote, we

consider the nearby patches within regions in the image, and

then use a learning-based decision fusion to predict the class

of the original high resolution image. For image regions, we

simply divide the image into spatial regions, for instance 9
regions (by dividing the original image into 3 horizontal ×
3 vertical regions). The number and size of a region will

typically depend on the size of the original high resolution

image. Although image regions also capture some spatial

relations in the image, we note that image regions are generally

larger than patch neighborhoods, as used previously above. Let
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P (Ri) =
{
pRi

(c)
}
c∈C

denote the predicted class probability

distribution for the i-th region, Ri. For each region Ri, we

compute the distribution P (Ri) using the predicted class label

for each surviving discriminative patch in the region. Then,

using P (R) = {P (Ri)}i=1,2,...,|R| the set of class distributions

from all the regions, we train a simple classifier, such as

a support vector machine (SVM), random forest, or simple

multilayer perceptron (MLP) for final label predication for the

original image.

IV. EXPERIMENTS AND RESULTS

A. Setup and Implementation

Datasets: We use a combined subset of the Glioblastoma

(GBM) and Low-Grade Glioma (LGG) cancer dataset from

The Cancer Genome Atlas (TCGA) [19]. This subset was also

used by Hou et al. [7]. It contains 842 WSIs in training set and

222 in test set1. The train-test are divided with non-overlapping

patient id. A brief summary of the dataset is shown in Table

I. This data subset has six subtypes of Glioma, namely,

Glioblastoma (GBM), Oligodendroglioma (OD), Oligoastro-

cytoma (OA), Diffuse astrocytoma (DA), Anaplastic astro-

cytoma (AA), Anaplastic oligodendroglioma (AO). Of these

six subtypes, five are classified as Low-Grade Glioma (LGG),

namely, OD,OA,DA,AA, and AO. More detailed description

of these cancer subtypes are presented in [7]. The combination

of GBM, LGG, and large image sizes makes this dataset very

unique and not investigated much by other researchers. We

wanted to further investigate the challenge of using this high-

resolution dataset.
TABLE I

INFO ON TCGA GBM-LGG DATASET USED IN OUR EXPERIMENTS

Train Test Total
No. of WSIs 842 222 1064
Avg. WSI res. 69953× 51058 67322× 47298 -
Max. WSI res. 195215× 90991 181941× 86057 -
Min. WSI res. 6000× 7350 12000× 16391 -
No. of patches 39.6M 9M 48.6M
Avg. PPI 47047.9 41544.0 -
Max PPI 196950 173316 -
Min PPI 456 2106 -
Est. train time (1
epoch)a

5.53 days - -

aEstimated time is based on training time calculated for 100ppi trainset
shown in Table VIII

Structured Random Sampling w/ blank detection: For each

patch we compute Atotal, the total area of connected regions.

Using Atotal we place the image patches into 20 bins. Fig. 3

shows sample patches from some of the bins, and how Atotal

provides an effective indicator of blank or non-blank patches.

Cases with Atotal = 0 or Atotal =1 accounted for about 25%

of the patches. Figure 4 shows the distribution of Atotal for a

sample WSI. We can see the high frequency of “blank patches”

in bin 0. We used 300×300 size patches, since the pre-trained

CNN models used for our experiments accepted input images

of size 224 × 244 or 299 × 299. Using Cochran’s formula

1We used 217 test images as we found 5 images missing in the downloaded
TCGA manifest.

Fig. 3. Sample patches from eight bins of the Atotal histogram. Atotal

provides a good indicator of potential blank patches. Lower values indicate
more likelihood to be blank

Fig. 4. Frequency distribution of all patches of a sample WSI based on “total
area of connected regions”, shown in 20 bins. A high number of patches with
0 total area can be observed.

(Eqn. (1)) we compute the number of patches needed for

each image. Since we took the nearest 100th value larger than

the calculated number of patches sample, the actual number

of patches ranged between 100 to 400. After this step, the

result of the structured random sampling with blank detection

reduced the training set from 39,614,333 to 329,059 patches

(0.8% of the original training set) and test set from 9,015,053

to 82,970 patches (0.9% of the original test set). A 5× 5 grid

is used to perform the structured random sampling.

Fine-tuning CNNs: We experimented with a bank of 4 pop-

ular CNN models that have been pre-trained on the ImageNet

dataset, namely, Resnet50 [5], InceptionV3 [18], VGG16

[17], and VGG19BN [17]. These are respectively finetuned

using the input dataset. We used data augmentation to further

increase the training set. We use pre-trained models provided

by the Pytorch [16] library. Stochastic gradient descent with

cross-entropy loss is used to fine-tune. Learning rate was

initialized at 0.001 and reduced by 0.1 when validation loss

plateaus; momentum was set to 0.9. We ran the fine-tuning for

50 epochs. Dataset was divided into train and test sets using the

80-20 split. For data augmentation, at first image is resized to
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fit the pre-trained model, then affine transformation is applied

such as, rotation (within 15 degrees), translation (within 0.1 in

both horizontal and vertical directions), scaling (0.9 to 1.1) and

shear (up to 1.1). Along with this, horizontal flip was randomly

applied and finally patch was normalized to 0.5 mean and 0.5

standard deviation in all 3-channels. We randomly cropped

the required CNN input size from 300 × 300 patches during

training, and applied center crop at testing stage.

Building the neighborhood patch matrix: To determine

the neighboring patches we use the centroid of the patches

and their Euclidean distance to each other. Usually a patch

can have 8 adjacent neighbors, but, because of the possible

elimination of blank patches, these neighbors can be further

away. For this, reason we use an incremental search radius

from the centroid of the patch under consideration to search

the neighborhood patches. Initially, search radius r = Cx
√
2

where x = height or width of the square patch and C is a

multiplicative factor. If a candidate neighbor patch centroid

distance d ≤ r, it is considered as neighboring patch. We

iterate through all the patches of the image until we get the 8

neighborhood patches, if not we increase the value of C by 1

(initially C = 1), which increases the search radius, and then

we search again. We keep incrementing search radius until

C =
√
I2w + I2h or at least 8 neighbors are found, where I

is the WSI in consideration, Iw and Ih denotes its width and

height, respectively.

Optimal threshold search for patch selection: For all

patches in the training set, the entropy H(U), probability

difference, patch complexity, mean and standard deviation of

Jensen-Shannon divergence are calculated and stored in indi-

vidual lists. Then entropy threshold τH is determine from the

90th percentile of the entropy. Similarity, τP is selected from

the 10th percentile. Mean and standard deviation threshold of

Jensen-Shannon divergence, τμ and τσ , and patch complexity

(dominant patch) threshold τL, is determined from a set of 5

percentile values {10, 25, 50, 75, 90}. Based on these threshold

variations, 1 × 1 × 5 × 5 × 5 = 125 different patch selection

combinations are generated. Among them, the top performing

thresholds are determined empirically, by their performance in

patch-level classification using the training datasets.

B. Results

1) Overall Result: Table II shows comparative assessment

of our methods with the state-of-the-art. In the tables, ”rgn”

is used to denote region. Though there are quite some recent

work on binary classification on this dataset, we could not find

a lot of recent work on multi-class classification using this

dataset. However, because of the unique classification chal-

lenge presented by this dataset (specially LGG cancer types),

we chose to work with this database. We can observe that

for binary classification our proposed method produced the

best accuracy of 98%. For 6-class classification we obtained

competitive mAP and top-1 accuracy compared to EM-CNN-

LR [7]. These are very significant results, especially in the

context of limited resource environments (our methods are

based on just 0.8% of the training set).

TABLE II
PERFORMANCE ON GBM-LGG DATASET. NOTE THAT OUR PROPOSED

METHODS USED ONLY 0.8% OF ORIGINAL TRAINING DATA.

Method Top-1 acc mAP
GBM vs LGG

FocAtt-MIL-DN [9] 0.89 -
ResNet50+SAM+Contrast(SMILE) [11]a 0.88 -
CNN-DS [6] 0.91 -
EM-CNN-LR [7] 0.97 -
Spatial & morphological filters [15] 0.85 -
Chance 0.50 -
ResNet50+VGG16+9rgn, (ours) 0.98 -

6-class classification
EM-CNN-LR [7] 0.77 0.85
VGG16+VGG16+9rgn,100ppi (ours) 0.74 0.84
ResNet50+VGG16+9rgn, (ours) 0.73 0.82

aMethod in [11] used 3 classes (GBM, A and O) instead of two.

TABLE III
GBM-LGG DATASET CLASSIFICATION RESULTS (TOP-1 ACCURACY) AT

PIPELINE STAGE PSS+SA (I.E. BEFORE PATCH SELECTION).

CNN Model Patch level Image level
Resnet50 0.679 0.694
InceptionV3 0.637 0.657
VGG16 0.679 0.718
VGG19BN 0.678 0.694

TABLE IV
GBM-LGG DATASET CLASSIFICATION RESULTS (TOP-1 ACCURACY) AT

PIPELINE STAGE PSS+SA+PS+SB (I.E. AFTER PATCH SELECTION, BUT

BEFORE REGION-BASED ANALYSIS). FOR BREVITY, ONLY RESULTS FROM

THE TOP PERFORMING MODELS ARE SHOWN

CNN Model
A

CNN Model
B

Patch-
level

Image-
level

Resnet50 Resnet50 0.679 0.708
InceptionV3 InceptionV3 0.637 0.671
VGG16 VGG16 0.681 0.732
VGG19bn VGG19bn 0.678 0.718
ResNet50 VGG16 0.679 0.718
ResNet50 VGG19bn 0.679 0.713
Inceptionv3 VGG16 0.680 0.727
VGG19bn VGG16 0.680 0.727

TABLE V
CLASSIFICATION RESULTS (TOP-1 ACCURACY) AFTER COMPLETE

PIPELINE RUN OF THE FRAMEWORK: PSS+SA+PS+SB+LRF.

CNN Model A CNN Model B Region
type

Accuracy

Resnet50 VGG16 1-region 0.722
Resnet50 VGG16 4-region 0.727
Resnet50 VGG16 9-region 0.713
VGG16 VGG16 1-region 0.727

2) Ablation Study: We perform ablation study in two parts,

(1) effect of the framework before patch selection, this focuses

on PSS + SA stage of the pipeline (see Fig. 1), and (2)

effect of the framework after patch selection, this focuses on

PSS+SA+PS+SB stage of the pipeline. Tables III, IV and

V show the results of our ablation studies where we inspect the

classification performance at different stages of the proposed

framework.

Effect of PSS+ SA: Table III shows the baseline perfor-

mance right after structured random sampling is done and

models are fine-tuned using the sampled dataset. Image level
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results are obtained using majority vote. Random Forest classi-

fier was trained using the CNN features to get the results. This

step of PSS is key to efficiency as it resulted in a reduction of

the required training data to just 0.8% of the original training

set (See Table VI, 400ppi). This allowed us to fine tune the

CNN model in 50 epochs where each epoch took about 3, 276
seconds (as compared to 5.53 days – see Table VIII). We will

compare this result with performance after patch selection.

Effect of PSS+ SA +PS+ SB: Table IV shows the result

further down the framework where patch selection is applied,

but without the decision fusion step. We observe that classifi-

cation has improved, at both patch level and image level. This

indicates that discriminative patch selection has further im-

proved the results. Also, notice that using different CNNs after

patch selection (asymmetric case) can be a useful technique,

for instance, using ResNet50+VGG16 and VGG19bn+VGG16

in the pipeline gives us close to the best result.

Effect of PSS+ SA +PS+ SB + LRF: Finally, Table V

shows the entire run of the framework with the result of

learning-based decision fusion. We can observe the improve-

ment both in patch and image level classification at each stage,

which justifies the contribution of that specific module to the

framework. The use of different combination of off-the-shelf

models can produce classification accuracy at different rates,

but the overall improvement in accuracy is consistent.

3) Computational requirements: A major consideration in

this work is computational efficiency – given the huge data

sizes involved in analyzing WSIs. The challenge is to develop

effective deep learning approaches that can perform well in

terms of analysis results, while still remaining cost effec-

tive, with low resource requirements. As noted earlier, our

results above were achieved using just about 0.8% sampled

patches from the entire training set (when adaptive (structured)

sampling strategy is applied). Our training set has 329,059

patches, where the original training set has 39,614,333 patches.

Below, we check whether this sampled dataset provides an

effective representation of the original dataset, and analyze

the required space and time (execution time) for the proposed

method. We vary the sample size by increasing or decreasing

the Cochran factor (Eqn. (1)), by multiplying with a constant

value. Table VI shows the sizes for the training sets created by

applying this method. After that, we run our framework using

ResNet50 at SA and VGG16 at SB modules, Table VII shows

the results. We can notice that as the sample size increases

the classification accuracy increases, but after about 400ppi it

stops increasing. This indicates that a good representative set

of samples have been obtained, at 400ppi.

Table VIII provides information on the time it takes to run

each of the modules. We use a single Nvidia Titan RTX GPU

(on a 40 core Intel (R) Xeon 2.29GHz machine) to run all the

fine-tunings and feature extractions. This table provides a com-

parative measure of how fast the time requirement increases

as the sample size increases, which indicates the necessity

of this framework when computational resources are limited,

or we need fast execution. Image as unit means the time it

requires to process all the patches of an image. Threshold

combination time is the processing time required for one out

of 125 combinations in patch selection module. Image feature

construction/threshold combination, is the time required to

construct an image feature using the region based fusion

method. Notice that, apart from the PSS module, all other steps

are measurement for training phase. We can observe that, the

major bottleneck is the CNN training time followed by LRF

step. Table IX provides an analysis on memory requirement of

the framework as we handle a larger set of patches per image

in train and test set. Each 300× 300 patch size is considered

182kb on average. Memory requirement is measured (in bytes)

at each section for each unit. Image as unit means the total

memory it requires to process all the patches of an image.

The total size of parameters used and buffer size is used to

calculate memory for the CNNs. We use the size of the input

and output variables and threshold combinations to calculate

the memory requirement at PS and LRF stages.

TABLE VI
TRAINING SET SIZES FOR THE DIFFERENT SAMPLE SIZES PER WSI.

Sample size Cochran factor percentage of
original trainset

No. of patches
(train)a

100ppi .25 0.2 82,719
200ppi .5 0.4 165,442
400ppi 1 0.8 329,059
800ppi 2 1.6 643,318

aNote that, WSIs do not always produce the same number of samples
because of blank patch removal (PSS stage).

TABLE VII
TOP-1 ACCURACY FOR RESNET50+VGG16+X-RGN METHODS USING 4

DIFFERENT SAMPLE SIZES ON A COMMON TESTSET (400PPI)

LRF 100ppi 200ppi 400ppi 800ppi
1-rgn 0.64 0.66 0.72 0.68
4-rgn 0.65 0.66 0.73 0.68
9-rgn 0.65 0.67 0.71 0.68

TABLE VIII
TIME MEASURED (IN SECONDS) AT EACH STAGE OF THE FRAMEWORK.

Module Unit of measure 100ppi 200ppi 400ppi 800ppi
PSS image 34.0 46.3 54.1 74.5

SA (RN50) 1 epoch 1015 1802 3276 6211.3
PS thresh. combi. 1.5 3.3 6.6 13.8

SB (VGG16) 1 epoch 1225 2107 4196 7599
LRF(1-rgn) image feat. const.

/ thresh comb.
4.6 9.1 20.5 36.3

LRF(4-rgn) image feat. const.
/ thresh comb.

44.3 168.2 771.2 2488.8

LRF(9-rgn) image feat. const.
/ thresh comb.

43.6 161.8 758.2 2488.3

V. CONCLUSION

We presented a general framework for patch-based high

resolution image classification, specifically for whole-slide

images, that has shown promising results. Our proposed

framework adopts a domain specific spatial sampling strategy

with blank patch detection, and identifies and selects dis-

criminative patches using an information-theoretic approach.

It then embeds the selected patches in a novel classification

framework which supports feature extraction from a bank of

potentially different fine-tuned learning models. Using this

approach we studied four different off-the-shelf CNN models
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TABLE IX
MEMORY REQUIREMENT (IN MB) AT EACH STAGES OF THE FRAMEWORK.

Module Unit of mea-
sure

100ppi 200ppi 400ppi 800ppi

PSS image 18.2 36.4 72.8 145.6
SA (RN50) param size +

buffer sizea
97.7 97.7 97.7 97.7

PS input + output,
thresh. comb.

11.7 23.4 45.5 67.5

SB (VGG16) param size +
buffer size

527.8 527.8 527.8 527.8

LRF input + output,
thresh. comb.

3.2 6.4 12.6 25.2

aNote that, memory usage of CNNs are computed based on parameter size
and buffer size when a single patch is taken as input. Size of feature vector
is ignored which is small compared to the parameter size.

in the framework and were able to classify a cancer glioma

dataset, which showed better or competitive results with state-

of-the art methods. We have achieved comparable results just

by using a tiny fraction of the dataset (0.8% of the original

training set). The use of off-the-shelf pre-trained models makes

our framework easily extensible to use more sophisticated

models which can improve the results further. Our future work

includes investigating the effectiveness of this framework for

other types of deep learning models such as transformers and

graph convolutional networks.
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