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Abstract—Over the years, deep learning approaches have
shown significant i mprovement i n v arious i mage understanding
tasks. However, analysis of high resolution images still remains a
major challenge. Apart from the huge computational resources
required for such images, the large image sizes make it difficult
to extract effective contextual information needed for important
tasks, such as classification, s egmentation, o r c lustering o f such
images. In this work, we address the challenge of high resolution
image classification u sing a n ew d iscriminative p atch selection
approach. We embed our patch selection approach inside a novel
classification f ramework, s upporting p otential u se o f different
pre-trained learning models. We show results on a high resolution
image dataset, namely, gigapixel whole slide tissue images for
cancer tumors. We demonstrate the performance of the proposed
approaches using comparative analysis with state-of-the art
methods on this dataset.

Index Terms—whole-slide image, WSI classification, patch-
based classification, h igh r esolution i mage c lassification, struc-
tured random sampling, GBM-LGG

I. INTRODUCTION

With improvements in sensing, storage, communication, and
computing technologies, digital images and video are now
ubiquitous. Thus, the analysis of very high resolution images
has found applications in various fields, f rom biomedicine
(medical image analysis, including histopathological images)
to transportation (analysis of road or rail surfaces), to energy
and gas (analysis of seismic images), to land use and land
transformation (analysis of remote sensing and satellite im-
ages). In this work our focus is on efficient c lassification of
very high resolution histopathological medical images such as
gigapixel whole-side images which are widely used for cancer
diagnosis [7], [20]-[22]. Depending on the specific applica-
tion, one basic approach to handling high resolution images is
simply to treat them just like any other image, that is, apply
an analysis technique directly on the high resolution image to
perform the required analysis. However, given the image sizes,
this may pose a significant computational problem, especially
at very high resolutions, and thus a significant p roblem for
low-resource environments.

An alternative is to perform patch-based analysis of the
high resolution image by dividing the image into patches,
and then applying the analysis technique on each patch. The
key question becomes how we combine the results from each
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patch to make an overall decision about the original image.
Answering this question requires a consideration of three
primary challenges in patch-based image classification. (1)
Label Inconsistency: Typically, what is available is the image
label, while the actual ground truth labels for the patches
are often unknown. Thus, patch labels are not necessarily the
same as the true image label. (2) Manual patch annotation:
Manual patch labeling is very time consuming, expensive, and
potentially error prone. New labels will be required with each
change in patch size. The large image sizes also implies that
many patches may need to be considered, depending on the
patch size. (3) Errors in patch-level prediction: Automated
prediction of patch labels may not be very accurate, which
can affect the final decision obtained by combining these
patch-level results. Given these problems, simple direct fusion
methods, for instance, majority vote, or weighted combinations
may not be robust, and may not always work well. Another
major issue is the huge computational resources that may be
needed. Even with the patch-based approach, without a careful
consideration, the analysis may still require significant overall
computational resources, making it infeasible to analyze these
high resolution WSIs in low-resource environments. Consider
for example, the WSI images in our data set, with sizes in
the range of 6000 x 7350 to 195215 x 90991 pixels. For the
training set, using patch sizes of 300 x 300 we have a total
of 39.6M patches, generated from 842 WSIs. (See Table I
under experiments). This requires about 5.53 days to fine-
tune a ResNet50 pre-trained model for one epoch on a single
Titan RTX GPU. For 50 epochs, this would require 275 days.
Efficiency in the overall processing is therefore paramount for
this type of application.

In this work, we compute image-level class labels from
the potentially erroneous patch-based labels in three gen-
eral steps. First, we perform pre-processing on the image,
and use structured sampling (when needed) to reduce the
image regions to be involved in later analysis. Second, we
use deep learning models to extract features, and use an
information-theoretic framework to identify and eliminate non-
discriminative patches. Patch re-labelling is performed (as
needed) by analyzing the patch neighborhood spatial coher-
ence. Third, by considering larger spatial regions, we perform
final class-label prediction for the original high-resolution
image using learning-based decision fusion on the refined
patch results. Our patch-based image classification is inspired



by the work in [7]. However, our structured patch sampling,
patch-label refinement steps, and our specific attention to
spatial relationships in the image contrast our approach from
those of [7], where they neither refined the patch labels,
nor considered regional information in their analysis. A key
innovation in our work is how the patch selection algorithm is
embedded in an iterative classification framework, involving
the use of potentially different pre-trained learning models
in extracting features from the patches. Efficiency in the
approach is achieved via the steps of preprocessing, structured
sampling, and the use of plug-and-play pre-trained CNN
models. Beyond efficiency, this use of plug-and-play pre-
trained models simplifies our approach, and also makes it more
general. Performance can be improved by simply slotting in
more powerful models.

II. RELATED WORK

In recent years deep multiple instance learning based ap-
proaches such as application of patch-based classification of
WSIs using convolutional neural networks (CNNs) have shown
promising results for cancer classification [7], [20]-[23], [25],
[26]. Researchers investigated attention based MIL using CNN
for WSI classification [2], [10], [12]-[14], [24], [27], [28].
Del Amor et al. [1] proposed an inductive transfer learning
framework able to perform both ROI selection and malignant
prediction in spitzoid melanocytic lesions using WSIs. Yao et
al. [24] proposed a method called, Deep Attention Multiple
Instance Survival Learning (DeepAttnMISL) by introducing
both siamese multiple instance fully connected network (MI-
FCN) and attention-based multiple instance learning (MIL)
pooling to efficiently learn imaging features from the WSI
and then aggregate WSI-level information to patient-level.
Maksoud et al. [14] presented a method for selective use
of high resolution processing based on the confidence of
predictions on downscaled WSIs. Lu et al. [13] presented
an approach named clustering-constrained-attention multiple-
instance learning (CLAM) that uses attention-based learning
to identify subregions of high diagnostic value to accurately
classify whole slides. Lu et al. [12] combined transfer learning
and weakly supervised multitask learning to enable a single,
unified predictive model to be efficiently trained on tens of
thousands of gigapixel WSIs. Li et al. [10] proposed a multiple
instance learning based method for WSI classification that
does not require localized annotation. The method uses a novel
MIL aggregator that models the relationships between the
instances in a dual-stream architecture with trainable distance
measurement. It is built on self-supervised contrastive learning
and adopts a pyramidal fusion mechanism for multiscale WSI
features.

In this work, instead of focusing on developing another
novel CNN model specific to WSI classification, we inves-
tigate whether we can reuse the already existing popular
CNN models for WSI classification. We construct a general
multiple-instance learning based WSI classification framework
by using off-the-shelf models and repurpose them for this
specific classification task. We focus on providing a general
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framework for efficient, yet effective, CNN-based WSI classi-
fication approaches in this work.

The main contributions of this paper are three-fold: (1)
We present methods for novel preprocessing and structured
random sampling for efficient, yet reliable, analysis of very
high resolution images; (2) We develop an iterative classifi-
cation framework that can combine the power of potentially
different pre-training models in classifying high resolution
WSIs; (3) We introduce an information theoretic model for
patch discrimination and a learning-based region-aware fusion
for effective classification of high resolution histopathological
images.

III. METHODOLOGY

For a given high resolution image, the key steps in our
patch based classification approach are as follows: (1) efficient
pre-processing and structured sampling; (2) iterative patch-
based classification, using a bank of deep learning models; (3)
identification and elimination of non-discriminative patches;
(4) final learning-based patch decision fusion, using a region-
based analysis. Below, we described the general framework,
and key components in this framework.

A. Proposed Framework

Fig. 1 shows the proposed patch-based classification frame-
work. For a given input image I, we first divide the image
into non-overlapping patches. Then, we perform patch pre-
processing, and structured patch sampling. The output will be
a set of patches P = {p1,p2,...,pn}. Using fine-tuned CNN
model A from a bank of pre-trained models (PM), we extract
features from each patch in set P, and then perform an initial
classification (block S4) for each patch, for instance using
softmax. Then we pass the softmax prediction, along with
neighborhood information 7 and optimum set of thresholds
7% to the patch selection (PS) stage (see below). After
patch selection, we obtain the set of discriminative patches
Q={q,q9,.--,90m}, where Q C P. Using fine-tuned CNN
model B we extract features from the selected patches in Q.
We note that, the CNN models could be the same (symmetric)
or different (asymmetric) at the two steps, i.e., we could have
B = A, or B # A. Because of the neighborhood nature of
the patch selection process, the overall discrimination ability
of the patches could change with each set of selected patches.
Thus, the two steps can be done iteratively, such that we
stop the iteration when we observe little or no difference
between the selected patches from one iteration to the next.
The features from the final selected patches at the last iteration
(using model B, the last CNN model) are then dimensionally
compressed using PCA and passed to a classification module
(block Sp), such as a Random Forest (RF’) or Support Vector
Machines (SV M) for final patch level classification. The
image-level classification is then performed through a region-
based analysis on the individual patch results, the results of
which are then fed to a learning-based region-aware fusion
scheme. (This is the LRF block in the figure). The outcome of



Fig. 1. Workflow diagram for proposed patch-based classification framework.
Notations: PSS: preprocessing and structured sampling; P: output patches
after preprocessing and sampling; PM: bank of pretrained CNN models, S 4:
Initial patch classification; Sp: second patch classification; PS: patch selec-
tion using information-theoretic identification of non-discriminative patches;
Q: output patches after discrimanative patch selection; LRF: learning-based
and region-based patch decision fusion; G: learned region-based attributes;
¥(): final image-level classification; C'i: predicted output class

the LRF block is then used for final image-level classification
of the input WSL

B. Efficient processing

1) Preprocessing: Usually whole-slide histopathological
images have a lot of blank regions surrounding the tissue
image. So when patches are extracted, some of the patches
are may not have texture or may be marginally covering part
of the tissue sample.

Thus, during our structured random sampling step (dis-
cussed below), we have to make sure that we only select “non-
blank™ patches. In order to do this, we at first perform Canny
edge detection on the patch, then label the connected regions.
By definition, two pixels are considered to be connected when
they are neighbors and have the same value. In an image patch,
they can be neighbors either in a 1- or 2-connected sense.
For our case, a single orthogonal hop is used to consider
a pixel as a neighbor. For each identified region within the
patch we calculate the area and sum these up to get the total
area of the connected regions within the patch. We calculate
this “area of connected regions” (denoted A;.:4;), and create a
frequency distribution of A;,;4;. Finally, we check each bin of
the distribution and decide on an appropriate threshold which
we use to filter out the blank (or mostly blank) patches.

2) Structured sampling: Given the very high resolution of
the WSIs (images in the TCGA cancer datasets range from
6,000 x 7,350 to 195,215 x 90,991), extracting relatively
small-sized patches creates a huge number of such patches for
each image (even after pre-processing). This makes the model
training computationally very expensive. Thus, we needed to
develop a sampling strategy that could effectively select a
smaller number of patches to represent the image without
losing too much information about the spatial correlation in the
original high resolution image. This requires us to determine
an effective number of patches, and appropriate patch size,
both of which will depend on the original image size. To
decide on the patch sample size of a whole-slide image, we
used two approaches. The first is a simple approach using a
fixed number of patches, for instance, 100 patches per image
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(ppi). The second is an adaptive approach depending on the
image size, using the Cochran’s formula [3] for sample size
calculation with a known population size:

2*p(1—p)

e2

Zzp(l—p))

n= (1)
I+ ( e2N

where n is the sample size (number of patches), e is the
desired level of precision (i.e. the margin of error), p is
the (estimated) proportion of the population which has the
attribute in question. The value of z is found in a Z table.
N is the known population size. Armed with the number
of patches, we still have to decide on the most effective
way to determine exactly which patches will be selected to
make up the number. Given the unconstrained nature of the
shape of a tissue sample, and the existence of blank and non-
informative patches, to properly sample the slice we have to
develop a strategy that takes more samples from regions where
informative patches are available and avoid taking samples
from non-informative regions. A stratified random sampling
[8] is too costly because it will take uniform samples from each
strata regardless of the utility of the patches for classification.
Thus, we propose to use an adaptive approach, where we
divide the image into grids or cells of size Ln X Ln, where,
n is the computed sample size from Equation (1), and r and
¢ denote the respective number of rows and columns in the
image. Initially, for each grid, we randomly select one non-
blank patch whose centroid lies within the grid. Given the
preprocessing step, it is possible to find a grid that contains
only blank patches. Thus, if after a single iteration over the
image we do not reach a total of n patches (i.e., some grids
had only blank patches), then we consider only cells that have
produced a non-blank patch to get the remaining patches. This
structured sampling strategy provides two advantages: (1) it
ensures a more uniform spatial distribution of the randomly
selected patches over the entire image; (2) it avoids selection
of the blank patches (as determined by the threshold on
Ayotar), which thus ensures that selected patches will be from
informative regions in the high resolution image; (3) maintains
the general spatial coherence among the selected patches.
Algorithm 1 (Fig. 2) captures this adaptive structured sampling
strategy.

C. Iterative patch selection and classification

1) Discriminative patch selection and patch relabeling: A
fundamental step in our approach is the patch selection stage
(denoted as PS in Fig. 1). Each patch provides a contribution
to the decision on the class of the input image, for instance,
using a simple majority vote on the predicted patch labels.
Let P(U) = {pv(1),pu(2),...,pu(c),...,pu(|C])} denote
the predicted class probability distribution for patch U, where
C' is the number of image classes. For a given image patch U,
the class probabilities P(U) = {py(c)}cec are obtained from
the output of softmax. Traditionally, the class with the highest
probability is chosen as the predicted class for the patch.
However, this simple decision can lead to misclassifications,



Require: grid_size, patch_size,img_size, patch_list
Ensure: sampled_patch_list
1. ppi < get_sample_size(patch_size,img_size)

Then, for the patch U, we compute the mean and standard
deviation of the Jensen-Shannon divergence between U and
every other patch in its neighborhood viz:

2: ppc +— ppi/grid_size

3: cell_positions < get_cell_positions(img_size, grid_size) pu = |J\/\ Z JSD(P PV)) (5
4: grpd_patches < ... VeN

5. grp_patches_by_cell(patch_list, cell_positions) 1 )

6: for cell_patches < grpd_patches do ou = \/M Z (by = JSD(P(U), P(V))) (6)
7. while patch_count < ppc do VeN

8: id < random_sample(cell_patches) where A denotes the patch neighborhood for patch U. If
9: is_blank + blank_check(cell_patchlid]) puy < 7,, we say that patch U is coherent with its neighbors.
10: if not is_blank then Similarly, if oy < 7, it means that the patch neighborhood
11: sampled_patch_list.append(cell_patchlid]) for patch U is coherent (i.e., all the neighbors have similar
12: end if differences with U). Here again, 7, and 7, are two thresholds.
13:  end while Thus, for the complex patch, if its neighborhood is coherent,

—
»

end for{If ppi is not met, we repeat the process, by
uniformly sampling from cells that have produced ppc
samples, thus ignoring cells with mostly blank patches.}

Fig. 2. Algorithm 1: Algorithm for structured random sampling

especially, if the class probabilities are not well separated.
Further, because decisions are patch-based, it becomes more
difficult to train the system on the basis of global labels for
the original high resolution image. Thus, before we use the
predicted label for patch U in the overall decision, we check
if the classification result for patch U is discriminative enough
to be used. First, we compute the class entropy for patch U:

= log( 1(C)> @)

We the patch if (maox{pU(c)} -
ce

mag?{pU(c)}) < 71, or if H(U) > 7y. Here, max2 is a

ce

function that returns the second largest value in a set, and 7p

and 7y are thresholds. If the patch is not complex, we simply
assign it the class label: L(U) = ¢* = argmaxz{py(c)}. For a
€Cc

say is complex

complex patch, we then consider its spatical coherence with its
neighborhood. First, we perform the above patch complexity
check on each patch in the neighborhood. If less than half of
the patches in the neighborhood are found to be complex, we
proceed with the spatial coherence analysis. If not, (i.e., more
than half of the patches in the neighborhood are complex),
we say the patch is non-discriminative, and thus do not use
it further for classification of the image. For neighborhood
coherence analysis, we use the Jensen-Shannon divergence [4]
between U and its neighbors. For two probability distributions
A and B, the Jensen-Shannon divergence is given by:
JSD(A,B)= 1 D(AIIQ) + sD(BIQ) O
where Q = (A + B), and D(A||Q) is the Kullback-Leibler
(KL) divergence [4] between two distributions, given by:

<)

Q(e)

IC|

D(A||Q) = ZA

“4)
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we assign it the class label (L(U)) using the dominant class in
its neighborhood. Similar to patch complexity, we determine
the dominant class as follows:

v* = av;%%zx{p(L(V))} (7
if maz{p(L(V))} —maz2{p(L(V))} = 7z ®

where p(L(V')) denotes the probability of label L(V') (the
predicted label for patch V) in the neighborhood, and 77, is a
threshold. Then, we assign patch U the label of this dominant
class in its neighborhood: L(U) = L(vx). If the neighborhood
is not coherent, or there is no dominant class label, we can’t
rely on information from the neighborhood. Thus, we say
the patch is non-discriminative, and remove it from further
analysis. For patch selection, a set of thresholds (7) — defined
above — are determined during training. At first the thresholds
are initialized based on empirical observations. Then, the
selection of optimal set of thresholds 7+ = {7, Ts, T\, 7o, T1.}
is based on patch level classification performance.

2) Learning-based image level fusion: The final step is
image-level label prediction for the high resolution WSI using
the results of the above patch-level analysis (denoted as LRF
in Fig. 1). As noted previously, one way to do this will
be to perform a simple majority vote, using the patch level
classification results. A key observation is that, in addition to
the individual label for each patch, the distribution of patch
labels within a neighborhood might play a major role in
determining the actual label of the larger image. For instance,
errors in the patch-based labels could be corrected based on
information from other nearby patches. Given the size of the
high resolution images, rather than simple majority vote, we
consider the nearby patches within regions in the image, and
then use a learning-based decision fusion to predict the class
of the original high resolution image. For image regions, we
simply divide the image into spatial regions, for instance 9
regions (by dividing the original image into 3 horizontal x
3 vertical regions). The number and size of a region will
typically depend on the size of the original high resolution
image. Although image regions also capture some spatial
relations in the image, we note that image regions are generally
larger than patch neighborhoods, as used previously above. Let



P(R;) = {pr.(c)} ., denote the predicted class probability
distribution for the ¢-th region, R;. For each region R;, we
compute the distribution P(R;) using the predicted class label
for each surviving discriminative patch in the region. Then,
using P(R) = {P(R;)}i=1,2,...,|r| the set of class distributions
from all the regions, we train a simple classifier, such as
a support vector machine (SVM), random forest, or simple
multilayer perceptron (MLP) for final label predication for the
original image.

IV. EXPERIMENTS AND RESULTS
A. Setup and Implementation

Datasets: We use a combined subset of the Glioblastoma
(GBM) and Low-Grade Glioma (LGG) cancer dataset from
The Cancer Genome Atlas (TCGA) [19]. This subset was also
used by Hou et al. [7]. It contains 842 WSIs in training set and
222 in test set'. The train-test are divided with non-overlapping
patient id. A brief summary of the dataset is shown in Table
I. This data subset has six subtypes of Glioma, namely,
Glioblastoma (GBM), Oligodendroglioma (OD), Oligoastro-
cytoma (OA), Diffuse astrocytoma (DA), Anaplastic astro-
cytoma (AA), Anaplastic oligodendroglioma (AO). Of these
six subtypes, five are classified as Low-Grade Glioma (LGG),
namely, OD,0A,DA,AA, and AO. More detailed description
of these cancer subtypes are presented in [7]. The combination
of GBM, LGG, and large image sizes makes this dataset very
unique and not investigated much by other researchers. We
wanted to further investigate the challenge of using this high-
resolution dataset.

TABLE I
INFO ON TCGA GBM-LGG DATASET USED IN OUR EXPERIMENTS

Train Test Total
No. of WSIs 842 222 1064
Avg. WSI res. 69953 x 51058 67322 x 47298 -
Max. WSI res. 195215 x 90991 | 181941 x 86057 -
Min. WSI res. 6000 x 7350 12000 x 16391 -
No. of patches 39.6M IM 48.60M
Avg. PPI 47047.9 41544.0 -
Max PPI 196950 173316 -
Min PPI 456 2106 -
Est. train time (1 5.53 days - -
epoch)?

“Estimated time is based on training time calculated for 100ppi trainset
shown in Table VIII

Structured Random Sampling w/ blank detection: For each
patch we compute A4, the total area of connected regions.
Using Asotqr We place the image patches into 20 bins. Fig. 3
shows sample patches from some of the bins, and how A;tq;
provides an effective indicator of blank or non-blank patches.
Cases with Aypiq; = 0 or Asprqr =1 accounted for about 25%
of the patches. Figure 4 shows the distribution of A4 for a
sample WSI. We can see the high frequency of “blank patches”
in bin 0. We used 300 x 300 size patches, since the pre-trained
CNN models used for our experiments accepted input images
of size 224 x 244 or 299 x 299. Using Cochran’s formula

'We used 217 test images as we found 5 images missing in the downloaded
TCGA manifest.
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Bin =0, Atgt=0

Bin = 4, Ay =5166

Bin = 10, At =13206

Bin = 15, Ay1=19883 Bin = 20, Ay =26242

Fig. 3. Sample patches from eight bins of the Ay,sq; histogram. Ayyiqr

provides a good indicator of potential blank patches. Lower values indicate
mare likelihand ta he hlank

Histogram of total area in patches
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Fig. 4. Frequency distribution of all patches of a sample WSI based on “total
area of connected regions”, shown in 20 bins. A high number of patches with
0 total area can be observed.

(Eqn. (1)) we compute the number of patches needed for
each image. Since we took the nearest 100th value larger than
the calculated number of patches sample, the actual number
of patches ranged between 100 to 400. After this step, the
result of the structured random sampling with blank detection
reduced the training set from 39,614,333 to 329,059 patches
(0.8% of the original training set) and test set from 9,015,053
to 82,970 patches (0.9% of the original test set). A 5 x 5 grid
is used to perform the structured random sampling.

Fine-tuning CNNs: We experimented with a bank of 4 pop-
ular CNN models that have been pre-trained on the ImageNet
dataset, namely, Resnet50 [5], InceptionV3 [18], VGGI16
[17], and VGG19BN [17]. These are respectively finetuned
using the input dataset. We used data augmentation to further
increase the training set. We use pre-trained models provided
by the Pytorch [16] library. Stochastic gradient descent with
cross-entropy loss is used to fine-tune. Learning rate was
initialized at 0.001 and reduced by 0.1 when validation loss
plateaus; momentum was set to 0.9. We ran the fine-tuning for
50 epochs. Dataset was divided into train and test sets using the
80-20 split. For data augmentation, at first image is resized to



fit the pre-trained model, then affine transformation is applied
such as, rotation (within 15 degrees), translation (within 0.1 in
both horizontal and vertical directions), scaling (0.9 to 1.1) and
shear (up to 1.1). Along with this, horizontal flip was randomly
applied and finally patch was normalized to 0.5 mean and 0.5
standard deviation in all 3-channels. We randomly cropped
the required CNN input size from 300 x 300 patches during
training, and applied center crop at testing stage.

Building the neighborhood patch matrix: To determine
the neighboring patches we use the centroid of the patches
and their Euclidean distance to each other. Usually a patch
can have 8 adjacent neighbors, but, because of the possible
elimination of blank patches, these neighbors can be further
away. For this, reason we use an incremental search radius
from the centroid of the patch under consideration to search
the neighborhood patches. Initially, search radius r = Czv/2
where x = height or width of the square patch and C' is a
multiplicative factor. If a candidate neighbor patch centroid
distance d < r, it is considered as neighboring patch. We
iterate through all the patches of the image until we get the 8
neighborhood patches, if not we increase the value of C' by 1
(initially C' = 1), which increases the search radius, and then
we search again. We keep incrementing search radius until
C = \/I2 + I} or at least 8 neighbors are found, where [
is the WSI in consideration, I,, and [}, denotes its width and
height, respectively.

Optimal threshold search for patch selection: For all
patches in the training set, the entropy H(U), probability
difference, patch complexity, mean and standard deviation of
Jensen-Shannon divergence are calculated and stored in indi-
vidual lists. Then entropy threshold 74 is determine from the
90th percentile of the entropy. Similarity, 7p is selected from
the 10th percentile. Mean and standard deviation threshold of
Jensen-Shannon divergence, 7,, and 7, and patch complexity
(dominant patch) threshold 77, is determined from a set of 5
percentile values {10, 25, 50, 75,90}. Based on these threshold
variations, 1 X 1 x 5 x 5 x 5 = 125 different patch selection
combinations are generated. Among them, the top performing
thresholds are determined empirically, by their performance in
patch-level classification using the training datasets.

B. Results

1) Overall Result: Table II shows comparative assessment
of our methods with the state-of-the-art. In the tables, “rgn”
is used to denote region. Though there are quite some recent
work on binary classification on this dataset, we could not find
a lot of recent work on multi-class classification using this
dataset. However, because of the unique classification chal-
lenge presented by this dataset (specially LGG cancer types),
we chose to work with this database. We can observe that
for binary classification our proposed method produced the
best accuracy of 98%. For 6-class classification we obtained
competitive mAP and top-1 accuracy compared to EM-CNN-
LR [7]. These are very significant results, especially in the
context of limited resource environments (our methods are
based on just 0.8% of the training set).
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TABLE 11
PERFORMANCE ON GBM-LGG DATASET. NOTE THAT OUR PROPOSED
METHODS USED ONLY 0.8% OF ORIGINAL TRAINING DATA.

Method Top-1 acc [ mAP
GBM vs LGG
FocAtt-MIL-DN [9] 0.89 -
ResNet50+SAM+Contrast(SMILE) [11]¢ 0.88 -
CNN-DS [6] 0.91 -
EM-CNN-LR [7] 0.97 -
Spatial & morphological filters [15] 0.85 -
Chance 0.50 -
ResNet50+VGG16+9rgn, (ours) 0.98 -
6-class classification
EM-CNN-LR [7] 0.77 0.85
VGG16+VGG16+9rgn,100ppi (ours) 0.74 0.84
ResNet50+VGG16+9rgn, (ours) 0.73 0.82

4Method in [11] used 3 classes (GBM, A and O) instead of two.

TABLE III
GBM-LGG DATASET CLASSIFICATION RESULTS (TOP-1 ACCURACY) AT
PIPELINE STAGE PSS+S 4 (I.E. BEFORE PATCH SELECTION).

CNN Model | Patch level Image level

Resnet50 0.679 0.694

InceptionV3 0.637 0.657

VGG16 0.679 0.718

VGG19BN 0.678 0.694
TABLE IV

GBM-LGG DATASET CLASSIFICATION RESULTS (TOP-1 ACCURACY) AT
PIPELINE STAGE PSS+S 4 +PS+Sp (I.E. AFTER PATCH SELECTION, BUT
BEFORE REGION-BASED ANALYSIS). FOR BREVITY, ONLY RESULTS FROM
THE TOP PERFORMING MODELS ARE SHOWN

CNN Model | CNN Model | Patch- Image-
A B level level
Resnet50 Resnet50 0.679 0.708
InceptionV3 InceptionV3 0.637 0.671
VGG16 VGG16 0.681 0.732
VGG19bn VGG19bn 0.678 0.718
ResNet50 VGG16 0.679 0.718
ResNet50 VGG19bn 0.679 0.713
Inceptionv3 VGG16 0.680 0.727
VGG19bn VGGI16 0.680 0.727
TABLE V

CLASSIFICATION RESULTS (TOP-1 ACCURACY) AFTER COMPLETE

PIPELINE RUN OF THE FRAMEWORK: PSS+S 4+PS+S g+LRF.
CNN Model A | CNN Model B | Region Accuracy
type
Resnet50 VGGI16 I-region 0.722
Resnet50 VGGI16 4-region 0.727
Resnet50 VGGI16 9-region 0.713
VGGI16 VGGI16 I-region 0.727

2) Ablation Study: We perform ablation study in two parts,
(1) effect of the framework before patch selection, this focuses
on PSS + S4 stage of the pipeline (see Fig. 1), and (2)
effect of the framework after patch selection, this focuses on
PSS+S54+ PS+ Sp stage of the pipeline. Tables III, IV and
V show the results of our ablation studies where we inspect the
classification performance at different stages of the proposed
framework.

Effect of PSS + Sa: Table III shows the baseline perfor-
mance right after structured random sampling is done and
models are fine-tuned using the sampled dataset. Image level



results are obtained using majority vote. Random Forest classi-
fier was trained using the CNN features to get the results. This
step of PSS is key to efficiency as it resulted in a reduction of
the required training data to just 0.8% of the original training
set (See Table VI, 400ppi). This allowed us to fine tune the
CNN model in 50 epochs where each epoch took about 3, 276
seconds (as compared to 5.53 days — see Table VIII). We will
compare this result with performance after patch selection.
Effect of PSS + Sa + PS + Sg: Table IV shows the result
further down the framework where patch selection is applied,
but without the decision fusion step. We observe that classifi-
cation has improved, at both patch level and image level. This
indicates that discriminative patch selection has further im-
proved the results. Also, notice that using different CNNs after
patch selection (asymmetric case) can be a useful technique,
for instance, using ResNet50+VGG16 and VGG19bn+VGG16
in the pipeline gives us close to the best result.

Effect of PSS + Sa +PS + Sg + LRF: Finally, Table V
shows the entire run of the framework with the result of
learning-based decision fusion. We can observe the improve-
ment both in patch and image level classification at each stage,
which justifies the contribution of that specific module to the
framework. The use of different combination of off-the-shelf
models can produce classification accuracy at different rates,
but the overall improvement in accuracy is consistent.

3) Computational requirements: A major consideration in
this work is computational efficiency — given the huge data
sizes involved in analyzing WSIs. The challenge is to develop
effective deep learning approaches that can perform well in
terms of analysis results, while still remaining cost effec-
tive, with low resource requirements. As noted earlier, our
results above were achieved using just about 0.8% sampled
patches from the entire training set (when adaptive (structured)
sampling strategy is applied). Our training set has 329,059
patches, where the original training set has 39,614,333 patches.
Below, we check whether this sampled dataset provides an
effective representation of the original dataset, and analyze
the required space and time (execution time) for the proposed
method. We vary the sample size by increasing or decreasing
the Cochran factor (Eqn. (1)), by multiplying with a constant
value. Table VI shows the sizes for the training sets created by
applying this method. After that, we run our framework using
ResNet50 at S 4 and VGG16 at Sg modules, Table VII shows
the results. We can notice that as the sample size increases
the classification accuracy increases, but after about 400ppi it
stops increasing. This indicates that a good representative set
of samples have been obtained, at 400ppi.

Table VIII provides information on the time it takes to run
each of the modules. We use a single Nvidia Titan RTX GPU
(on a 40 core Intel (R) Xeon 2.29GHz machine) to run all the
fine-tunings and feature extractions. This table provides a com-
parative measure of how fast the time requirement increases
as the sample size increases, which indicates the necessity
of this framework when computational resources are limited,
or we need fast execution. Image as unit means the time it
requires to process all the patches of an image. Threshold
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combination time is the processing time required for one out
of 125 combinations in patch selection module. Image feature
construction/threshold combination, is the time required to
construct an image feature using the region based fusion
method. Notice that, apart from the PSS module, all other steps
are measurement for training phase. We can observe that, the
major bottleneck is the CNN training time followed by LRF
step. Table IX provides an analysis on memory requirement of
the framework as we handle a larger set of patches per image
in train and test set. Each 300 x 300 patch size is considered
182kb on average. Memory requirement is measured (in bytes)
at each section for each unit. Image as unit means the total
memory it requires to process all the patches of an image.
The total size of parameters used and buffer size is used to
calculate memory for the CNNs. We use the size of the input
and output variables and threshold combinations to calculate
the memory requirement at PS and LRF stages.

TABLE VI
TRAINING SET SIZES FOR THE DIFFERENT SAMPLE SIZES PER WSI.
Sample size | Cochran factor | percentage of | No. of patches
original trainset | (train)?
100ppi 25 0.2 82,719
200ppi 5 0.4 165,442
400ppi 1 0.8 329,059
800ppi 2 1.6 643,318

“Note that, WSIs do not always produce the same number of samples
because of blank patch removal (PSS stage).
TABLE VII
Top-1 ACCURACY FOR RESNET50+VGG16+X-RGN METHODS USING 4
DIFFERENT SAMPLE SIZES ON A COMMON TESTSET (400PPI)

LRF | 100ppi | 200ppi | 400ppi | 800ppi
1-rgn 0.64 0.66 0.72 0.68
4-rgn 0.65 0.66 0.73 0.68
9-rgn 0.65 0.67 0.71 0.68
TABLE VIII
TIME MEASURED (IN SECONDS) AT EACH STAGE OF THE FRAMEWORK.
Module Unit of measure | 100ppi | 200ppi | 400ppi | 800ppi
PSS image 34.0 46.3 54.1 74.5
Sa (RN50) 1 epoch 1015 1802 3276 6211.3
PS thresh. combi. 1.5 33 6.6 13.8
Sp (VGG16) | 1 epoch 1225 2107 4196 7599
LRF(1-rgn) image feat. const. 4.6 9.1 20.5 36.3
/ thresh comb.
LRF(4-rgn) image feat. const. 443 168.2 771.2 2488.8
/ thresh comb.
LRF(9-rgn) image feat. const. 43.6 161.8 758.2 2488.3
/ thresh comb.

V. CONCLUSION

We presented a general framework for patch-based high
resolution image classification, specifically for whole-slide
images, that has shown promising results. Our proposed
framework adopts a domain specific spatial sampling strategy
with blank patch detection, and identifies and selects dis-
criminative patches using an information-theoretic approach.
It then embeds the selected patches in a novel classification
framework which supports feature extraction from a bank of
potentially different fine-tuned learning models. Using this
approach we studied four different off-the-shelf CNN models



TABLE IX
MEMORY REQUIREMENT (IN MB) AT EACH STAGES OF THE FRAMEWORK.
Module Unit of mea- | 100ppi | 200ppi | 400ppi | 800ppi
sure
PSS image 18.2 36.4 72.8 145.6
S 4 (RN50) param size + 97.7 97.7 97.7 97.7
buffer size®
PS input + output, 1.7 234 45.5 67.5
thresh. comb.
Sp (VGGI16) | param size + 527.8 527.8 527.8 527.8
buffer size
LRF input + output, 32 6.4 12.6 25.2
thresh. comb.

“Note that, memory usage of CNNs are computed based on parameter size
and buffer size when a single patch is taken as input. Size of feature vector
is ignored which is small compared to the parameter size.

in the framework and were able to classify a cancer glioma
dataset, which showed better or competitive results with state-
of-the art methods. We have achieved comparable results just
by using a tiny fraction of the dataset (0.8% of the original
training set). The use of off-the-shelf pre-trained models makes

our

framework easily extensible to use more sophisticated

models which can improve the results further. Our future work
includes investigating the effectiveness of this framework for
other types of deep learning models such as transformers and
graph convolutional networks.
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