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Abstract
Correlated shape features involving nearby objects often contain important anatomic information. However, it is difficult to
capture shape information within and between objects for a joint analysis of multi-object complexes. This paper proposes
(1) capturing between-object shape based on an explicit mathematical model called a linking structure, (2) capturing shape
features that are invariant to rigid transformation using local affine frames and (3) capturing Correlation of Within- and
Between-Object (CoWBO) shape features using a statistical method called NEUJIVE. The resulting correlated shape features
give comprehensive understanding ofmulti-object complexes fromvarious perspectives. First, these features explicitly account
for the positional and geometric relations between objects that can be anatomically important. Second, the local affine frames
give rise to rich interior geometric features that are invariant to global alignment. Third, the joint analysis of within- and
between-object shape yields robust and useful features. To demonstrate the proposed methods, we classify individuals with
autism and controls using the extracted shape features of two functionally related brain structures, the hippocampus and the
caudate. We found that the CoWBO features give the best classification performance among various choices of shape features.
Moreover, the group difference is statistically significant in the feature space formed by the proposed methods.

Keywords Joint shape representations · Multi-object shape analysis · Local reference frames · Shape classification · S-reps

1 Introduction

Joint shape analysis of multi-object complexes in the human
body can often yield additional insights relative to sin-
gle object analysis. Especially interesting is to understand
positional and geometric relations between multiple brain
structures (Bossa & Olmos, 2007)—the positional relations
include relative pose and orientation between the two objects,
while the geometric relations include local shape captured
using geometric properties such as boundary curvature. In the
development ofAutismSpectrumDisorder (ASD), for exam-
ple, multiple brain subcortical structures can together have
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morphological variation due to the disorder. There has been
a number of research projects on the association between
the development of ASD and single objects (e.g., the hip-
pocampus)morphology.Yet, few of these projects reveals the
positional and geometric relations between the brain struc-
tures in ASD.

The challenges of extracting the positional and geomet-
ric relations between 3D anatomic objects come from many
directions. First, instead of correlations between global mor-
phological measures (e.g., volume-to-volume correlations),
the brain structures interrelate in a subtle way and in local
regions (Hazlett et al., 2017). This requires not only sensitive
shape representations that can well capture local shape fea-
tures but also good correspondences across samples. Second,
the anatomically important interrelations between objects are
often non-linear. The average of two-object complexes, for
example, is by no means the concatenation of two aver-
ages of single objects. Third, such interrelations between
objects can hardly be extracted via the analysis of the con-
catenated single objects because the concatenation can ignore
the interrelations between objects. Fourth, it is difficult to
separate geometric from positional relations in multi-object
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complexes due to the difficulties of alignment (see e.g.,
Gollmer et al., 2012.

To address the above difficulties, this paper proposes
a geometric model that explicitly captures within- and
between-object shape of two-object complexes. In such a
complex there exist two parallel disjoint objects. In this set-
tingwithin-object features refer to single object information–
including position, width, and orientation of an object; while
between-object features refer to the above-mentioned rela-
tions. The features of the model are examined in a statistical
analysis to find significant correlation that forms the basis of
classification and hypothesis testing.

The geometric model is based on skeletal representations
(s-reps) of single objects (Liu et al., 2021). In addition to
within-object shape features provided by each s-rep, we also
focus on how two s-reps link to each other. The link fea-
tures are designed to capture both positional and geometric
relations between the two objects, as described below.

To obtain desirable link features, we propose a modified
version of the linking flow given by Damon and Gasparovic
(2017). The key idea is to create a smooth mapping from
skeletons to an external linking surface that is formed to
bisect the two boundaries. Our linking flow takes in two s-
reps and outputs a link vector field defined on each s-rep.
From a link vector field, we sample discrete link vectors
that have good correspondences across a population. These
link vectors provide between-object link features, including
(1) the link distances (i.e., lengths of link vectors) between
a skeleton and the external linking surface and (2) the
directions of the link vectors. Link lengths can capture the
positional relation between the two objects, while the link
directions can capture the relations of local geometry. This
paper explores and exploits the above link features in statis-
tical analysis. Different from the Damon-Gasparovic linking
flow, our method yields a smooth non-branching external
linking surface between the objects (the hippocampus and
the caudate) in our dataset. Such consistent topology allows
us to have link vectors in good correspondences across a
population, which is specially advantageous in 3D anatomic
shape analysis where the between-object shape often varies
dramatically.

Moreover, using local affine frameswe capture geometric
features that are invariant to rigid transformations yet are sen-
sitive to local deformations. Fitting local affine frames allows
us to extract differential geometry of an s-rep. We map s-rep
features to these local affine frames to obtain shape features
that are invariant to rigid transformations of the multi-object
complex.Not only forwithin-object shape features, the affine
frames can be also used in capturing between-object shape
features that are invariant to rigid transformations.

Finally, we jointly analyze within- and between-object
shape features using a statistical method called NEUJIVE
(Liu et al., 2022), yielding Correlation of Within- and

Between-Object (CoWBO) shape features. While between-
object shape can vary much more dramatically than within-
object shape, ourmethod can reveal the correlation regardless
of the different variability of the two.

The proposed methods (illustrated in Fig. 1) show statisti-
cal advantages in classifying autism vs. non-autism with the
shape of subcortical structures including the hippocampus
and the caudate. We found that the CoWBO features made
from (1) s-rep features of the hippocampus and (2) link fea-
tures between the hippocampus and the caudate yield the best
classification performance among various choices of shape
features. In addition to the application, our contributions in
methodology can be summarized as follows.

1. We proposed explicitly capturing positional and geo-
metric relations between objects with modified linking
structures.

2. We proposed using affine frame fields on s-reps. These
affine frame fields are fitted via a deformation-based
method to better characterize the geometry of objects.
We map within- and between-object shape features to the
fitted local affine frames such that the shape features are
invariant to rigid transformations.

3. We proposed joint analysis of within- and between-object
shape features using NEUJIVE. We found that the result-
ing correlated shape features give good performance in
classifying ASD vs. non-ASD.

The remainder of this paper is organized as follows. In
Sect. 2 we describe geometric and statistical models that are
relevant to this paper. Section3 discusses the joint analysis
of within- and between-object shape features, which yields
the CoWBO features. Then in Sect. 4 we detail the between-
object shape features based on a modified linking flow. In
Sect. 5 we detail within- and between-object shape features
using local affine frames. In Sect. 6 we evaluate our proposed
methods. Section7 discusses our contributions and potential
future work in this research direction.

2 Background

In this sectionwefirst review two geometricmodels onwhich
this paper is based. The two models are (1) s-reps, which
are skeletal representations capturing rich geometric features
within single objects (see Sect. 2.1) and (2) linking structures
that capture how neighboring objects relate to each other (see
Sect. 2.2).

Instead of capturing features in a global coordinate sys-
tem, we extract shape features with respect to local frames,
which allow us among other things to represent the shape
in a way insensitive to rigid transformations of multi-object
complexes. To this end, Sect. 2.3 discusses the method of
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Fig. 1 Illustration of generating CoWBO features in two-object com-
plexes. We extract s-rep features x from fitted s-reps (Liu et al., 2021).
Then we fit a Local Affine Frame (L. A. F.) field on each skeleton (see
Sect. 5). The s-rep features are mapped to the L. A. F. via linear map-
ping Ai , where i indexes the sample. Given the neighboring s-reps, we
extract link features from the modified linking flow ψ , as discussed in

Sect. 4. Likewise, these link features are mapped to the L. A. F., produc-
ing between-object features invariant to rigid transformations. Finally,
we extract the joint variation from the transformedwithin- and between-
object features (denoted as X and Y , respectively), forming CoWBO
features; see Sect. 3 (Color figure online)

local orthonormal frames, which inspires ourmethod of local
affine frames in Sect. 5.1.

Last, we review a statisticalmethod, calledNEUJIVE, that
can jointly analyze multi-object shape data (see Sect. 2.4). In
this paper, we use NEUJIVE to extract the correlation of
within-object shape variation and between-object link varia-
tion.

2.1 Skeletal Representations (S-reps)

Interiors of objects provide richer and more robust fea-
tures than boundaries, especially in anatomic shape analysis,
where it is difficult to obtain accurate boundaries. Figure 2
(left) gives an example caudate boundary whose tail (high-
lighted with the red circle) is corrupted. Such a corruption
can make this sample misleading or even useless in anatomic
shape analysis. In such scenarios we can still obtain robust
shape features by making use of the interior geometry of the
object (see e.g., Fig. 2 right).

To explore and exploit interiors of objects, Damon
(Damon, 2003, 2004) has developed mathematics of general
skeletal representations, paving the way for statistical shape
analysis with skeletal representations. Pizer et al. (Siddiqi
& Pizer, 2008; Pizer et al., 2020) took advantage of those
mathematical conditions and developed “discrete s-reps” (d-
s-reps or s-reps). There, an s-rep consists of a skeletal sheet
and connection vectors (“spokes”) pointing from the skeletal
sheet to the boundary of an object.

The skeletal sheet can be understood as a deflated bound-
ary. Strictly, a skeletal sheet is a discrete set that can be
stratified into (1) a positive side that connects with one half

of the object, (2) a negative side that connects with the other
half of the object and (3) an edge curve that bounds the two
sides. Because each side is a smooth openmanifold (i.e., with
no boundaries within each stratum), we can differentiate geo-
metric entities (e.g., spokes) defined on each side. As such,
the skeletal points on the two sides are also called smooth
skeletal points.

Using the method of Liu et al. (2021), we can map
the geometry of the skeletal sheet to that of the boundary
with non-crossing spokes. As opposed to methods based
on a “boundary-to-skeleton” mapping (Serra, 1986; Saha
et al., 2016), Liu’s method automatically fits s-reps to non-
branching objects (e.g., the hippocampus, the caudate, etc.)
so that the fitted s-reps can provide good correspondence
across a population. The essence of that method is to fit
a skeletal representation with desirable topology (i.e., non-
branching topology) to target objects. A fitted s-rep gives rise
to a smooth mapping, so-called radial flow, from the skele-
ton to a set of level surfaces of radial flow (see e.g., the right
figure in Fig. 2). The radial distances are measured as frac-
tions (i.e., τ ∈ [0, 1]) of spokes’ lengths. That radial flow
acts as a shape function describing the shape of an object,
including the interior and the boundary of the object. Those
non-crossing spokes can also be understood as basis vectors
of the shape function, providing rich shape features of an
object.

The rich shape features from spokes with good corre-
spondence have shown to be useful in previous research
on anatomic shape analysis. Specifically, s-reps have shown
promise in many tasks including classification (Hong et al.,
2016), segmentation (Vicory, 2016) and hypothesis testing
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Fig. 2 Left: a caudatewith partially corrupted boundary (highlighted by
the red circle) from SPHARM-PDM (Styner et al., 2006). The bound-
ary of the caudate is shown as a translucent triangular mesh. The fitted
skeleton of this caudate gives more robust geometric features, as shown

in yellow. Right: The level surfaces of the radial flow of an s-rep of
a caudate. These level surfaces describe the interior geometry of the
object (Color figure online)

(Schulz et al., 2016; Taheri & Schulz, 2022). Moreover,
compared to the point distribution model (e.g., Styner et al.,
2006), shape features from s-reps give more statistically effi-
cient representations of a population of anatomic objects, as
demonstrated in Tu et al. (2018) and Pizer et al. (2022).

2.2 Linking Structures

We aim to capture positional and geometric relations that
are anatomically important. For example, a pair of abutting
objects has close relations in terms of local geometry on
their boundaries (Krishna, 2021). Additionally, the variation
of each single object should be constrained by the non-
penetration condition. Instead of analyzing separate objects,
it is useful to explicitly analyze within- and between-object
shape.

Many existing research projects (Gollmer et al., 2012;
Akhoundi-Asl & Soltanian-Zadeh, 2007; Schwarz et al.,
2010; Gori et al., 2017) have obtained implicit between-
object relations through statistical analysis of a population
of data. However, those relations often ignore important
and consistent variation patterns due to sampling bias. Also,
there exists research on spatial relations based on fuzzy sets
(Bloch, 2005), convolutional activations (Qi et al., 2019)
and lingusitic variables (e.g., e.g., Mota & Sridharan, 2018).
However, such methods cannot provide good localized cor-
respondence for statistical analysis of a population; see (Liu,
2022) for more details.

To capture between-object shape features, Damon and
Gasparovic (see Damon & Gasparovic, 2017) have pro-
posed linking structures that can be built upon general
skeletal structures and hence specifically upon s-reps. In
essence, the researchers regard between-object relations as
shape features of the between-object space (i.e., the bounded
complementary space of multiple objects). Accordingly, the
linking structures are equivalent to skeletal representations
of the between-object shape. The computation of an s-rep
linking structure involves multiple neighboring objects, each
of which has a fitted s-rep. First, a target object of interest is

selected. Then, each spoke in the target object is extended to
potentially intersect other extended candidate spokes. Each
intersected pair (including the target spoke and a candidate
spoke) is associated with an extension. Finally, the linking
spoke is selected among all the candidate spokes for which
the extension is minimum.

While the Damon-Gasparovic linking structures between
s-reps provide a means of relating the geometry of nearby
objects, it is challenging to use these linking structures in
statistical analysis of 3D multi-object complexes. Due to
relaxation of the Blum conditions (Liu et al., 2021), spokes
in s-reps may have no candidate links at all, yielding incon-
sistent empty links across a population of s-reps. In addition,
the self-linking spokes (see Sect. 4) that are two linked spokes
from the same object introduce inconsistent branching topol-
ogy of between-object shape, which can harm the quality
of correspondences across a population. Such self-linking
spokes often are associated with dents on a boundary. We,
therefore, regard them as inappropriate links in analyzing
between-object relations. In Sect. 4 we develop a modified
version of the Damon-Gasparovic linking structure for sta-
tistical analysis of multi-object complexes.

2.3 Local Orthonormal Reference Frames

In many traditional research projects, the above geometric
models are establishedwithin a global coordinate system (see
e.g., Hong, 2019; Miolane et al., 2021; Vicory et al., 2018).
Those geometric features are sensitive to rigid transforma-
tions including translation and rotation. Such sensitivity can
hardly be removed in multi-object shape analysis because
of the difficulty of aligning multi-object complexes. In this
regard, local reference frames show promise of extracting
shape features that are insensitive to rigid transformations
in object recognition (Guo et al., 2013), shape matching
(Petrelli & Di Stefano, 2011) and registration (Yang et al.,
2016; Lei et al., 2017; Malassiotis & Strintzis, 2007).

Our team’s previous research (see Pizer et al., 2022; Taheri
& Schulz, 2022) has used local frames in describing within-
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object geometry though this paper shows them also to be
of use in describing between-object geometry. Those local
frames are orthonormal frames defined in the interior of
objects. Specifically, Pizer et al. (2022) parametrized the inte-
rior of an object using coordinates with respect to the spine,
which is the skeleton of the skeletal sheet. Like a 2D skeleton
that dwells in the quasi-medial place of a closed surface, the
spine is a 1D curve that dwells in the quasi-medial place of
the 2D skeletal sheet. In Pizer’s work, a spine is parametrized
by a cyclic variable θ , radial distance on the skeleton from
the spine is specified by the parameter τ1, and radial distance
from the skeleton is specified by the parameter τ2. Accord-
ingly, an orthonormal local frame consists of (1) a unit vector
̂∇τ1 (on the skeleton) that points away from the spine (2) a
unit vector̂∇τ2 that points away from the skeleton and (3)
the cross product of the two vectors, i.e., ̂∇θ =̂∇τ2 ×̂∇τ1.
Geometrically, the direction ̂∇θ (on the skeleton) accounts
for circulating the skeletal edge curve in a counter-clock-wise
way.

Moreover, the rotation between those frames captures dif-
ferential geometry within and across level surfaces of radial
flow. Pizer’s local frame field of a target object can be
obtained by deforming a template object (e.g., an ellipsoid)
along with its local orthonormal frames. Because this defor-
mation can produce non-orthonormal frames in the target
object, an orthonormalization step is needed. As a result, the
orientations of these orthonormalized frames are determined
by local geometry at the frames’ origins.

In our work, we realized that the above local orthonormal
frames can not fully capture geometric differences within
and between objects. As a comparison, non-orthonormal
frames resulting from the aforementioned deformation can
give more expressive geometric features, as discussed in
Sect. 5.

2.4 Non-Euclidean Joint and Individual Variation
Explained

Because ASD simultaneously affects multiple brain struc-
tures, the correlated shape features between multiple brain
structures should yield important information of the devel-
opment ofASD.Also, because thesemultiple brain structures
can be differently affected in terms of spatial scales, the
correlated shape features should be effectively obtained via
multi-block data analysis (see e.g., Feng et al., 2013;Hardoon
et al., 2004; Lock et al., 2018), as opposed to the analysis
of the concatenation of multiple objects. However, many of
the existing methods (e.g., Angle-based Joint and Individ-
ual Variation Explained or AJIVE) assume data in various
blocks live in Euclidean space. This assumption can fail in
the analysis of shape data.

Considering the non-Euclidean properties of shape data,
Liu et al. (2022) have proposed a statistical method, called

Non-EUclidean Joint and Individual Variation Explained or
NEUJIVE, for extracting shape correlation. There, shape
descriptors of an object form a block of data (i.e., a data
matrix). NEUJIVE takes in multiple blocks and outputs (1)
joint components that capture the correlated shape features
between objects, (2) individual components that capture the
shape variation specific to each object and (3) residual com-
ponents. These components together form comprehensive
understanding of multi-object shape variation.

There are two critical steps in NEUJIVE. First, NEUJIVE
converts each (pre-)shape space to a Euclidean space. As
a result, each (pre-)shape can be represented as a vector in
Euclidean space. This step is called Euclideanization. Sec-
ond, NEUJIVE uses an existing Euclidean method AJIVE
(Feng et al., 2018) to extract the joint components and indi-
vidual components within the multiple Euclidean spaces.
The joint components represent correlated features between
objects, living in a low dimensional Euclidean subspace.

Though NEUJIVE yields statistical correlation from a
population of data, the resulting between-object geome-
try is ignored in the analysis. The statistical analysis does
not guarantee the non-penetration condition between the
nearby objects. An explicit modeling of the geometric rela-
tion between objects is needed because it can not only give
a direct understanding of between-object geometry, but also
can respect the non-penetration condition.

In this paper,wepropose forming thewithin- andbetween-
object shape features as two blocks of data. The joint analysis
of these twoblocks viaNEUJIVE, yieldingCoWBOfeatures,
leads to comprehensive analysis of multi-object complexes,
as discussed below.

3 CoWBO Features: Correlation of Within-
and Between-Object Features

As noted above, the joint analysis of multi-object com-
plexes gives comprehensive understanding of the population.
This paper focuses on the joint analysis of within- and
between-object geometry via NEUJIVE (see Sect. 2.4). In
using NEUJIVE, we formulate within- and between-object
shape features as two input blocks of data.

Specifically, in a population of n samples, assume each
sample has two non-penetrating objects. We use X ∈ R

d1×n

to denote the feature matrix from n s-reps of an object;
this feature space can be embedded in a d1-dimensional
Euclidean space. Likewise, we use Y ∈ R

d2×n to denote the
between-object feature matrix from the n samples; this fea-
ture space can be embedded in a d2-dimensional Euclidean
space. Also, we use J (·, ·) to denote the operation of extract-
ing the correlated features by NEUJIVE. Altogether, the
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CoWBO features are written as

J (X ,Y ) ∈ R

r×n, (1)

where r is the dimension of the joint variation subspace, in
which the correlated features are extracted. The dimension
r is determined by NEUJIVE depending on the degree to
which X and Y are correlated. We only choose the within-
object shape features of a target object because in our target
problem the shape features of the other object havedistracting
factors and thus would harm the performance of statistical
tasks.

CoWBO features represent how the within- and between-
object shape jointly vary. These correlated shape features are
often in a rather low dimensional feature space, as compared
to the original feature space of either X or Y . Moreover,
CoWBOfeatures cangive robust estimationof the correlation
despite that between-object shape canvarymoredramatically
than within-object shape.

As we will show in Sect. 6, we classify two groups of
samples using CoWBO features. Sections4 and 5 detail the
methods for generating block Y and X in eq. (1).

4 Modified Linking Flow Captures
Between-Object Shape Features

At first sight of multi-object complexes humans’ eyes tend to
pay more attention to relations between objects rather than
to the details on each boundary (see Siddiqi & Pizer, 2008,
Chapter 1). Inspired by this psychological study, we propose
in this section a modified version of the Damon-Gasparovic
linkingflow,which focusesmore on between-object relations
than on boundary details of individual objects.

We will use a 2D example to illustrate the modification
we propose. As shown in Fig. 3 left, the Damon-Gasparovic
method (Damon, 2019) can develop self-links that are formed
by two spokes from the same object, as highlighted in the
gray box. Such self-links are found in notable dent regions.
Because these self-links are barely relevant to between-object
relations and because they are inconsistent across a popula-
tion, we modify such links to be less sensitive to boundary
details (e.g., dents), as highlighted on the right of Fig. 3.

In the following, Sect. 4.1 first gives a formal definition of
our modified linking flow. Then we describe the method and
algorithmof themodified linkingflow. Finally,wediscuss the
properties of our linking flow. Section4.2 discusses between-
object shape features that are extracted from the modified
linking flow.

4.1 Modified Linking Flow

Modified linkingflowaims to relate the geometry frommulti-
ple objects, focusing on how the objects link with each other.
The flow leads to an external linking surface that is analogous
to a skeletal representation of between-object space.

Definition. Our modified linking flow ψ is defined as a
smooth bijective mapping from a skeletonM to the external
linking surface L between two objects, i.e.,

ψ : M �→ L. (2)

In our modified linking flow, the resulting external linking
surface is a smooth non-branching surface. Given a skele-
tal point p ∈ M, the image ψ(p) ∈ L of p is called a
link point. Accordingly, the vector pointing from p to ψ(p)
is called a link vector, whose magnitude and direction are
called a link length and a link direction, respectively. The
following approach can construct a mapping ψ such that (1)
the mapping ψ is well-defined everywhere on an s-rep; i.e.,
ψ(p) ∈ L,∀p ∈ M and (2) the external linking surface
contains no self-linking and is one-to-one.

Approach. Our method for constructing a desirable map-
ping ψ for every two-object complex has 3 steps (illustrated
in Fig. 4):

1. Find regularly linked spokes using the method given by
Damon (2019), as described below;

2. Infer the mapping ψ from the regularly linked spokes;
3. Apply the mapping ψ to the skeleton.

A pair of regularly linked spokes is formed by two spokes
from the s-reps of two objects; the two spokes link at a place
between the two objects. Specifically, in a complex of two
objects �1 and �2, let s1 and s2 denote1 two spokes that are
in the objects �1 and �2, respectively. The directions of the
two spokes are u1 and u2; the end points of the two spokes are
y1 and y2. The two spokes are candidate linked spokes only if
there exists a non-negative scalar t such that the extensions
of the two spokes lie outside the objects and intersect at their
endpoints, i.e.,

y1 + tu1 = y2 + tu2, s.t . t ≥ 0, (3)

where t denotes the equal lengths of the extension of the two
spokes.

That intersection point, also called a link point, y1 + tu1
(or equivalently, y2 + tu2) is on the external linking surface.
Importantly, there can exist zero or many candidate spokes
in �1 and �2 that link to s1, satisfying eq. (3) with different
extensions t . A linking point is the one where the length “t”

1 We use bold letters to denote vectors in this paper.
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Fig. 3 Simulated links between
two 2D objects. Compared to
the Damon-Gasparovic linking
structure (left), our modified
linking structure (right) changes
the link properties to avoid
self-linking, as shown in the
gray boxes (Color figure online)

Fig. 4 Illustration of the algorithm for modified linking structures; see Algorithm 1 for more details (Color figure online)

for the pair of specific candidate linked spokes is minimal
among all candidate linking points involving either of the
given pair of spokes.

Next, we infer the mapping ψ using the regularly linked
spokes found by the above method. Let S1 denote a set of
regularly linked spokes in �1. The skeletal points of S1 give
a subset ̂M of the skeleton M. In addition, the link points
of S1 give a subset ̂L of the external linking surface L. We
use the Thin Plate Spline (TPS) algorithmwith landmarks on
̂M and ̂L to derive a diffeomorphism ψ : ̂M �→ ̂L, thereby
avoiding the many-to-one links in the Damon-Gasparovic
method produced by self-links; see themiddle panel in Fig. 4.

Last, we apply ψ to the complement of ̂M to form a
smooth external linking surface L. By doing so, we have a
link pointψ(p) for every skeletal point p ∈ M. Algorithm 1
gives the detailed algorithm.

Algorithm 1 Modified linking flow
Require: A pair of s-reps fitted to two nearby objects.
1: Select one object as the target object.
2: Compute the Damon-Gasparovic linking structure P (see Damon,

2019, Section 4) for the target object.
3: Create an empty set S1 = ∅ of pairs of points.
4: for each link l in P do
5: if l regularly links to another object then

Add the two ends of l to S1.
6: end if
7: end for
8: Apply TPS to infer deformation ψ using pairs of points in S1.
9: Apply ψ to all skeletal points on M of the target object.
10: return the result of ψ(M).

Our modification makes use of regularly linked spokes
to modify both the self-linking and unlinked spokes such
that two-object complexes consistently yield non-branching

smooth external linking surfaces. This consistency allows
us to extract between-object shape features with good cor-
respondences. Also, because the modified linking flow is
derived from regularly linked spokes of two objects, the
mapping ψ can capture positional and geometric relations
between objects. In order to represent these relations for sta-
tistical analysis, we discretize the link vector field and extract
corresponding link features from the discrete link vectors, as
described below.

4.2 Link Vectors and Between-Object Shape
Features

Like spokes in an s-rep (see Sect. 2.1), link vectors can be
understood as a discretized vector field defined on a smooth
manifold (i.e., the skeletonM). To facilitate statistical anal-
ysis, these link vectors should be sampled to have good
correspondences across a population.

To this end,we sample link vectors at each skeletal point in
a discrete s-rep.These link vectors havegood correspondence
because the base manifold is sampled with good correspon-
dence. Each s-rep is deformed from an s-rep of a similar
ellipsoid. The skeletal points are sampled with respect to the
relative positions within the ellipsoid. Such consistent dis-
cretization of skeletons gives good correspondences across
samples.

As we apply TPS to produce link vectors (see Algorithm 1
steps 8 and 9), the interpolated link vectors can have direc-
tions different from the spokes associated at the skeletal
points. Nevertheless, the link directions we used include the
interpolated ones. In addition to the link directions, we also
extract the magnitudes of the link vectors that represent dis-
tances between a skeleton and the external linking surface.
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In order to obtain statistical correlation with within-object
shape, it is useful to Euclideanize between-object shape fea-
tures in NEUJIVE. The Euclideanization of between-object
shape features should consider both Euclidean variables (i.e.,
log link lengths) and non-Euclidean directional data (i.e.,
link directions). For the link lengths, we convert these non-
negative scalar values to Euclidean variables distributed in
R with the log map (Tu et al., 2018). For the directional data
that live on a unit 2-sphere, we use Principal Nested Spheres
(Jung et al., 2012) to convert the data into Euclidean coordi-
nates.

A subtlety of these features is their sensitivity to positions
and orientations of objects. To overcome this problem, we
capture between-object shape features in local affine frames
to achieve invariance properties, as described below.

5 Local Affine Frames on Skeletal
Representations

It is often challenging to align objects for analysis of geo-
metric features, especially when there are multiple objects in
every sample. For a population of multi-object complexes,
aligning individual objects can sacrifice between-object rela-
tions, while aligning the combination of multiple objects can
bias the analysis of individual objects.

To address the above dilemma, this section describes geo-
metric features that are with respect to local affine frames,
as described in Sect. 5.1. These features, including within-
and between-object shape features (see Sect. 5.2), are insen-
sitive to rigid transformations. Importantly, because the local
affine frames for each instance of an object are fitted using a
consistent deformation from an ellipsoid, they also capture
local geometry which is useful in distinguishing the shape.

5.1 Local Affine Frames

In this paper, a local affine frame refers to a general frame
centered at a point on a 2D surface. Such a frame consists
of 3 basis vectors that are not necessarily orthogonal to each
other. Moreover, the 3 frame vectors are not necessarily of
unit lengths.

Specifically, at each skeletal point, we have an affine frame
that allows us to map features at the skeletal point to this
local frame. Let x ∈ R

3 be a unit directional vector (e.g., a
spoke’s direction) associated with a skeletal point p; assume
x is represented in global coordinates. An affine frame at p
can be represented as a matrix A ∈ R

3×3. In a special case
where this frame is an orthonormal frame, the matrix A is an
orthogonal matrix of determinant 1. Generally, we can map
the directional feature x into the local affine frame via

x′ = Ax, (4)

Fig. 5 Fitted local affine frames on the skeleton of a hippocampus. The
skeleton is shown as the orange surface. At each skeletal point, there is
an affine frame consisting of a τ1, θ and normal vector (see the zoomed
picture above). The vectors of τ1 and θ are not necessarily orthonormal
vectors (Color figure online)

where x′ ∈ R

3 is a feature vector that is insensitive to rigid
transformations.

Tobetter capture geometry of objects,we take into account
the following objectives in constructing local affine frames
on s-reps:

1. the origins of these local frames should have good corre-
spondences across samples;

2. the basis vectors of local frames within a sample should
reflect within-object geometry;

3. the basis vectors of local frames across samples should
capture geometric difference.

As skeletal points in s-reps provide good correspondence
across a population, the first objective can be satisfied by
fitting a local frame at each skeletal point in an s-rep. The sec-
ond and third objectives are achieved by fitting local frames
via a deformation-based method as follows. We choose an
ellipsoid as a template shape which is deformed into an
object. Then we construct orthonormal local frames (see
Sect. 2.3) on the ellipsoidal s-rep. We construct a diffeomor-
phism via TPS to deform this template s-rep to the s-rep of
each target object, mapping skeletal points on the ellipsoidal
s-rep to corresponding skeletal points on the target s-rep.
Such a deformation stretches and rotates the orthonormal
frame vectors of every local frame, resulting in basis vectors
of a local affine frame.

In a single 3D object like a hippocampus (see Fig. 5), the
transformation between our affine frames is achieved by a
linear operator that combines the rotation and the stretching
of basis vectors. In Sect. 6.4 we demonstrate that the local
geometry captured by local affine frames is useful in classi-
fying the ASD and non-ASD groups.
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An affine frame field is promising in multi-object shape
analysis not only because it captures geometric features
within objects invariant to rigid transformations, but also
because it enriches between-object shape features, as detailed
in the following.

5.2 Within- and Between-Object Shape Features in
Local Affine Frames

Due to the above methods, there are 3 geometric entities
associated with each skeletal point in an s-rep: a spoke, a
link vector and an affine frame. To obtain geometric features
that are invariant to rigid transformations, we map vectors
at each skeletal point into the respective local affine frame
using the linear transformation eq. (4).

Within-object shape features from spokes include the
skeletal points, the spokes’ lengths and directions. To make
the coordinates of skeletal points independent of the coor-
dinate system, we convert the global coordinates of skeletal
points into the coordinates relative to the skeletal center’s
local frame. Moreover, we map the spoke direction unit vec-
tors to the local frames at the tails of the associated spokes.
In order to retain the unit length of the projected directional
vector, we normalize the three coordinates of x′. Likewise,
we map the link features from the link vectors to the local
affine frames at the tails of the associated link vectors.

The resulting within- and between-object shape features
are sent to X and Y , respectively, in eq. (1) for the joint analy-
sis. InNEUJIVE, theEuclideanization ofwithin-object shape
features is the same with the Euclideanization of between-
object shape features, as discussed in Sect. 4.2.

6 Experiments

This section demonstrates our proposed methods using a
database of infants’ MRI brain images, consisting of two
groups of infants. Section6.1 describes the images from these
twogroups. InSect. 6.2,we show the between-object link fea-
tures in two-object complexes, including the hippocampus
and the caudate. We collect such link features and within-
object s-rep features, pooling the two groups. These pooled
features form two data blocks, as discussed in Sect. 3. Then
we apply NEUJIVE to the two blocks. Section6.3 shows
(1) the generalizability of a linear classifier learned on our
proposed features and (2) the statistical significance of the
group difference found in our feature space. To demonstrate
the benefit from local affine frames, Sect. 6.4 describes the
features from local affine frames and shows the classifica-
tion results using these features. Finally, Sect. 6.5 lays out
an extensive comparison of classification performance using
various features of multi-object complexes.

6.1 Data

We test our proposed methods using MR images from the
Infant Brain Imaging Study (IBIS) network (St John et al.,
2016). The data we are using involve 176 6-months-old
infants. Among these infants, there are 34 of the children
who were diagnosed as autistic later and 142 of these who
were shown not to have developed autism.

Among various subcortical structures, the left hippocam-
pus and the left caudate nucleus were segmented. Then these
segmented surfaces were fitted with triangular meshes using
SPHARM-PDM (Styner et al., 2006). As described in Liu
et al. (2021), we fit an s-rep to every triangular mesh. In
the resulting s-rep, we have 72 smooth skeletal points and
24 skeletal edge points. A smooth skeletal point is associ-
ated with two spokes pointing toward two sides of an object,
while an edge point is associated with a fold spoke pointing
away along the tangent direction of the skeleton.

6.2 Visualization of Between-Object Shape Features
fromModified Linking Structures

Between-object shape features from modified linking
structures are link features defined on objects’ skeletons.
Each skeletal point is associated with a spoke length, a spoke
direction, a link length and a link direction. To discount the
object widths in the links, we show the extensions of spokes
(i.e., the values of t’s in eq. (3)), subtracting the spoke length
from the link length at a skeletal point. Though the extensions
are distances from the boundary to the external linking sur-
face, we canmap such scalar features onto the corresponding
skeletal points, as shown in Fig. 6.

In Fig. 6 the top row shows the extensions as heat maps
on skeletons of the hippocampus (bottom) and of the cau-
date (top) in 5 autistic cases. These heat maps share similar
patterns: (1) because the caudate bends away from the hip-
pocampus, the links in the head and the tail have smaller
extensions than the links in the body, and (2) because the
caudate and the hippocampus are not perfectly parallel to
each other – one side of the caudate is farther from the hip-
pocampus than the other side, the extensions gradually vary
from the near side to the far side of the caudate skeletons. The
bottom row shows the link directions in the same 5 autistic
cases. While these directions can be slightly different from
spokes’ directions, the results suggest that the link vectors
smoothly swing along the skeletons.

6.3 Classify AutismVersus Non-autismwith
Two-Object Complexes

In this section, we show the results from classifying ASD
vs. non-ASD using the shape of the hippocampus and
of the caudate. Specifically, we intend to investigate the
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Fig. 6 Linking features of 5 caudate-hippocampus pairs: a–e. The
transparent surfaces are the caudate (above) and the hippocampus
(below). Top row: spoke extensions (in mm) from a boundary to the
external linking surface. The heat maps on the skeletons show the val-

ues of spoke extensions. Bottom row: link directions of link vectors at
discrete skeletal points, shown as the arrows in magenta. The skeletons
are shown as blue surfaces (Color figure online)

generalizability of a linear classifier trained in our proposed
feature space. To this end, we train the classifier with vary-
ing training data size and evaluate the corresponding test
performance. Moreover, we investigate the statistical signif-
icance of the group difference using our proposed features.
We perform hypothesis testing with a large number (1000)
of permutations to avoid bias of sampling.

We start our methods from SPHARM-PDM models of
objects. Each sample in the dataset contains a triangularmesh
of a left hippocampus and that of a left caudate. We fit s-reps
to these surface meshes, extracting the within-object shape
features xi ∈ R

d1×1 for the i th sample (see Sect. 5.2). Then
we develop the modified linking structure of each sample,
extracting the between-object shape features yi ∈ R

d2×1 (see
Sects. 4.2 and 5.2). In developing the modified linking struc-
ture, we interpolate the s-reps using the method in Liu et al.
(2021) to have a moderate number (about 51) of regular links
in every sample. This operation is similar to smoothing the
external linking surface because an even finer interpolation
tends to “overfit” the shape of individual objects. Finally, we
apply NEUJIVE to extract the correlated shape features of
X = {xi } and Y = {yi } (see Sect. 3), where i = 1, · · · , 176.
We set the initial ranks for both X and Y in NEUJIVE as
10, resulting in the joint shape feature matrix. Following
the post-feature-selection idea (Liu et al., 2022), we perform
classification and hypothesis testing using that featurematrix
as follows.

Classification. We train and test a linear classifier called
Distance Weighted Discrimination (DWD) (Marron et al.,
2007) within our proposed feature space.We randomly select

k samples from 34 autistic samples and k samples from 142
non-autistic samples to form the training dataset. The remain-
ing are used as the test data. To avoid the bias introduced by
the partitioning of training and test data, we perform 1000
random partitions and classifications for each k. From these
1000 experiments, we obtain an average test Area Under
Curve2 (AUC).

To evaluate the generalizability of the classifier. We vary
k from k = 6 (20% of the total autism samples) to k = 27
(80% of the total autism samples). The resulting average
test AUCs of the various k’s are shown in the rightmost
panel of Fig. 7. In this figure the outperforming (top) curve
results from the CoWBO features. The other two features
are obtained similarly to the above process but using differ-
ent blocks in NEUJIVE. Specifically, for NEUJIVE-Sreps
we use the correlated features of (1) the s-reps features of
the hippocampus and (2) the s-reps features of the caudate.
ForNEUJIVE-PDMswe use the correlated features of (1) the
SPHARM-PDMs of the hippocampus and (2) the SPHARM-
PDMs of the caudate.

As we vary the training size, we note (1) that our features
can learnuseful patterns of theASDversus the non-ASDeven
in a small data size, e.g., when the training sample size is 20%
and (2) that the increase of the test performance is monotonic
with the increase of training data size, which is superior to the
classification using NEUJIVE-Sreps and NEUJIVE-PDMs
features that are solely from within-object shape features.

2 Here, theCurve refers to the Receiver Operating Characteristic curve.
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Fig. 7 Left: Hypothesis testing using the correlated shape features of
SPHARM-PDMs of the hippocampus and caudate. Middle: Hypothe-
sis testing using the correlated shape features of the hippocampal s-rep

features and the link features. Right: Average test AUCs over varying
training data size. The error bar at each point shows the standard error
of the mean (Color figure online)

Hypothesis testing. To verify if the above group differ-
ence is statistically significant, we test the (null) hypothesis
that the two groups have the samemean value in the proposed
feature space. We use a method called Direction-Projection-
Permutation (DiProPerm) (Wei et al., 2016) to perform the
hypothesis test for a large number of permutations.

We let DiProPerm generate 1000 permutations of the class
labels. The resulting test statistics (mean differences) are
shown in the left two panels of Fig. 7 as the green dots.
Specifically, themiddle panel results from the hypothesis test
using the CoWBO features. The observed statistic is shown
as the vertical dashed line, which has p-value < 0.001 and
z-score 10.074. The p-value and z-score together suggest that
the group difference is statistically significant in the feature
space formed by our geometric and statistical methods.

As a comparison, the left panel of Fig. 7 results from
another feature space that contains the correlated SPHARM-
PDM features of the hippocampus and the caudate. Both
the p-value (0.018) and z-score (2.425) suggest the group
difference there is less statistically significant.

6.4 Local Affine Frames Capture Differentiating
Local Geometry

This section demonstrates the benefit from local affine frames
in the classification problem. Because ASD affects multiple
local regions of a brain structure, geometric features across
various local regions should have different importance in
classifyingASD and non-ASD. Typically, a classifier assigns
different weights to local features to best classify the two
groups in a dataset. In our research, the projection to local
affine frames (see eq. (4)) is analogous toweighting local geo-
metric features for a better classification because the fitted
local frames can capture important local geometry between
groups.

Table 1 Test AUCs from using affine frames

Object ‖n‖ ‖n‖⊕ skeletal point

Hippocampus 0.589 (0.004) 0.634 (0.003)

Caudate 0.518 (0.003) 0.527 (0.003)

The numbers outside the parentheses are mean AUCs, while the num-
bers inside the parentheses are standard errors of the mean.

Specifically, we fit every local affine frame in an object by
deforming a local orthonormal frame in the template ellip-
soid.3 To demonstrate the local geometry captured by the
frames in the object, we focus on the deformation captured
alonĝ∇τ1 and ̂∇θ directions on the skeleton (see Sect. 2.3).
As a result of the deformation, the unit vectorŝ∇τ1 and ̂∇θ

in the template ellipsoid become general vectors∇τ1 and∇θ

in the object. The vectors ∇τ1 and ∇θ together capture local
deformation of the skeleton. We compute the cross product
n = ∇τ1 × ∇θ at every skeletal point. The length of n gives
the area of the parallelogram defined by ∇τ1 and ∇θ .

We have extracted the feature magnitude ‖n‖ at each
skeletal point, and we have used them both alone and in com-
binationwith skeletal points’ coordinates to classifyASDand
non-ASD. These coordinates are centered by subtracting the
coordinates of the skeletal center. The results are shown in
Table 1.

Table 1 reports test AUCs over 1000 random holdouts,
each of which randomly takes 80% of data as training data
and the remaining as test data. In the table header,‖n‖denotes
using the lengths as classifying features. The symbol “⊕”
denotes the concatenation of features. The last column shows
test AUCs from the classification using the concatenation of

3 We choose the ProcrustesMean ellipsoid as a template shape for each
object. We use the General Procrustes Analysis method to obtain this
Procrustes Mean of the ellipsoids resulting from Mean Curvature Flow
on each object (Dryden & Mardia, 2016).
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the lengths of n’s and the coordinates of the skeletal points
as features.

These results suggest that the cross-products of basis vec-
tors ∇τ1 and ∇θ already have some discriminatory power
(average AUC > 0.5). Moreover, this discriminatory power
is slightly boosted by adding the skeletal points at which
those local affine frames are centered.

6.5 Comparing with Various Feature Spaces

In order to investigate the difference between using within-
object and between-object shape features in classification,
we conducted extensive experiments using various sets of
features, as listed in Table 2.

In the column of Global Coordinate System (Global C.S.)
in Table 2, the points and vectors are expressed with global
coordinates after Procrustes alignment, whereas the Local
Affine Frames (L.A.F.) columns use the invariant features
described in Sect. 5.

The rows in the table compare test AUCs over 1000 ran-
dom holdouts involving various sets of features. Figure 8
illustrates some of these features. In particular, we categorize
these features into 5 groups shown in the leftmost column.
Thefirst twogroups (“Hippocampus” and “Caudate”, respec-
tively) use various choices of within-object shape features of
the hippocampus and the caudate, respectively. Each choice
is indexed with a circled number. Here, the PDMs of skele-
tons consist of 3 points sampled at every local affine frame
position; they are the origin and two other points that are
ε-distance away from the origin along the ∇θ and ∇τ1 axes.

The third group uses shape features from two-object com-
plexes. Specifically, the row “ 1© & 4© PDMs” concatenates
coordinates of SPHARM-PDMs of the hippocampus and the
caudate; the row “ 2©& 5© Spokes” concatenates spokes’ fea-
tures of the twoobjects; the row“ 3©& 6©PDMsof skeletons”
concatenates the skeletal PDMs.

The fourth group uses the resulting two-object joint
components from NEUJIVE. We tuned the initial ranks
of NEUJIVE (see Sect. 3) for each row in this group, as
described in Liu et al. (2022). The PDMs’ joint features (“ 1©
& 4© PDMs’ joint features”) refer to the NEUJIVE joint com-
ponents taking the SPHARM-PDMs of the hippocampus and
the caudate as two input blocks.

Ourmajor proposal is shown in the last group. The row“ 7©
Between-object linking features” contains the hippocampal
skeletal points and the link features sampled at these skele-
tal points. The last row results from the CoWBO features,
as discussed in Sect. 3. From this table, we have some key
observations as follows.

1. The CoWBO features give notably the best classifi-
cation performance Comparing to the result from the
spokes features of the hippocampus (0.624) and the result

from the between-object link features (0.68), the average
test AUC from the CoWBO features (0.698) increases by
about 12% and 3%, respectively. Moreover, because of
the removal of the individual and residual components
(see Sect. 3), the AUCs of using CoWBO features have
smaller Standard Errors of the Mean (SEM) compared to
those in the top 3 groups.

2. The hippocampal shape features give notably stronger
discriminatory power than caudate features, as seen by
comparing the corresponding rows in the “Hippocampus”
group with the “Caudate” group. Due to this observation,
we neglected within-object shape features of the caudate
in forming CoWBO features.

3. Using the hippocampal skeletal features is slightly better
than using the hippocampal boundary features. However,
this is not the case for classification using the caudate
shape.

4. Using concatenated shape features from two objects is not
very much different from using the hippocampal shape
features alone (comparing the corresponding rows in the
“Hippocampus” group with the “Two objects” group).
This is because the increased classification power that
might come from adding the weakly classifying the cau-
date features can not compensate the loss due to increasing
feature dimensions.

5. The between-object shape features (i.e., 7©) contain crit-
ical discriminatory information. Particularly, we used the
modified linking structures of the hippocampus that cap-
ture the geometric relations with its neighboring caudate,
yielding notably better classification performance than the
concatenated shape features in the “Two objects” group.

6. The global coordinates give inferior classification results
compared to coordinates with respect to local affine
frames, at least when within-object shape features are
included. Because the template ellipsoids are deformed
to each target object separately, the between-object rela-
tions are ignored in fitting local affine frames. The lack
of those relations can explain the very limited advan-
tages of using local affine frames (L.A.F. column) over
using global coordinates (Global C.S. column) in the rows
labeled “Two objects”.

7 Conclusions and Discussion

In this paper, we proposed a combination of geometric and
statistical models to analyze multi-object shape. The pro-
posed methods have been implemented in https://github.
com/ZhiyLiu/shanapy.
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Table 2 Test AUCs with
features from two-object
complexes

Features Global C.S.* L.A.F.*

Mean SEM* Mean SEM*

Hippocampus 1© SPHARM-PDM 0.591 0.097 - -

2© Spokes 0.596 0.103 0.624 0.01

3© PDMs of skeletons 0.598 0.102 0.627 0.096

Caudate 4© SPHARM-PDM 0.54 0.088 - -

5© Spokes 0.514 0.088 0.552 0.01

6© PDMs of skeletons 0.502 0.089 0.521 0.102

Two objects 1© & 4© PDMs 0.588 0.089 - -

2© & 5© Spokes 0.594 0.094 0.591 0.008

3© & 6© PDMs of skeletons 0.593 0.095 0.586 0.01

NEUJIVE 1© & 4© PDMs’ joint features 0.563 0.009 - -

2© & 5© Spokes joint features 0.552 0.01 0.631 0.007

Ours 7© Between-object linking features 0.679 0.009 0.68 0.009

2© & 7© CoWBO features 0.668 0.009 0.698 0.008

∗C.S. stands for Coordinate System
∗L.A.F. stands for Local Affine Frames
∗SEM stands for Standard Error of the Mean

Fig. 8 Various shape features of a two-object complex consisting of a
caudate (top row) and a hippocampus (bottom row). The left column
shows boundary landmarks from SPHARM-PDM (Styner et al., 2006).
The middle column shows spoke features from (Liu et al., 2021)—
including coordinates of skeletal points, unit directions of spokes and

lengths of spokes. The right column shows deformation field from an
ellipsoidal skeleton to the skeleton of a target object (the caudate or
the hippocampus). The arrows τ1 and θ indicate the deformation in two
directions (Color figure online)
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7.1 Geometric Models

The geometric models including modified linking structures
and local affine frames are beneficial in classifying ASD
and non-ASD. Especially, the classification using link fea-
tures between the hippocampus and caudate outperforms the
classification using single-object shape features by a large
margin. Our modified linking structures capture between-
object relations in multi-object complexes. The improved
classification performance suggests that the geometric rela-
tions between the hippocampus and caudate are important
in the development of ASD. Additionally, the good corre-
spondence across our linking structures allows for effective
analysis of multi-object complexes.

Moreover, in the classification using single-object shape
features, we found that the fitted local affine frames notably
boost the performance. Such a boost is due to two reasons:
first, the angles and lengths of basis vectors characterize local
geometry; second, the projection of both within-object shape
features and link features into local affine frames yields shape
features that are irrespective of poses and positions of objects.

7.2 Statistical Analysis

The joint analysis ofwithin-object s-rep features andbetween-
object link features further improved the classification per-
formance. Considering the different variability ofwithin- and
between-object shape features, we use NEUJIVE to obtain
their correlated shape features. To produce robust and gener-
alizable correlations, NEUJIVE makes use of joint variation
of the geometry of the complex data spaces in both within-
and between-object features. The resulting shape features
showed superior statistical power in hypothesis testing and
classification.

A limitation of NEUJIVE is that the test data and train-
ing data have to be pooled to construct the joint variation
subspace. This requirement slows the inference process.
However, this problem is negligible in the field of medical
image analysis where data sizes tend to be small.

7.3 FutureWork

There exist many possible directions for future work. First,
we intend to apply ourmethods to analyzemulti-object shape
variation in other diseases (e.g., Alzheimer’s Disease).

Second, while we tested our methods in two-object com-
plexes in which the two objects are almost parallel to each
other, we intend to apply our methods in analyzing other
types of between-object relations.

Third, though this paper focuses on two-object complexes,
the methods can be applied to multi-object complexes, each
of which contains more than two objects. In multi-object
complexes, it is desired to capture within-object shape of

an anchor object that is of importance in the domain (e.g.,
the hippocampus in classifying ASD). Also, the relations
between the anchor object and its neighboring objects can
be captured by the modified linking structure. The CoWBO
features of the anchor object provide a comprehensive under-
standing about the anchor object. We leave this research to
our future work.

Fourth, the modified linking structure can also be gen-
eralized to analyzing geometric relations between different
parts of an object. Take a U-shaped object as an example,
the object can be separated into two bar-shaped parts. The
within-object shape features can only extract the geometric
features within each part. However, the links between the two
parts of the object can reveal additional information than the
analysis of within-object shape. For example, it can be useful
to obtain the variation of relative positions between the two
parts.

Fifth, in addition to the above statistical analysis, ourmod-
ified linking structures can also be used in other applications.
In robotics, for example, the paths of robots should bedeliber-
ately planned so that the movement of robots will not collide
with critical objects in the environment (see e.g., He et al.,
2020). To this end, it is promising tomodel the objects with s-
reps and the between-object spacewith our linking structures.
By doing so, the path planning for robots can be efficient and
robust.
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