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ABSTRACT

manual measurements.

BACKGROUND Changes in cardiac size, myocardial mass, cardiomyocyte appearance, and, ultimately, the function of
the entire organ are interrelated features of cardiac remodeling that profoundly affect patient outcomes.

OBJECTIVES This study proposes that the application of radiomics for extracting cardiac ultrasonic textural features
(ultrasomics) can aid rapid, automated assessment of left ventricular (LV) structure and function without requiring

METHODS This study developed machine-learning models using cardiac ultrasound images from 1,915 subjects in

3 clinical cohorts: 1) an expert-annotated cardiac point-of-care-ultrasound (POCUS) registry (n = 943, 80% training/
testing and 20% internal validation); 2) a prospective POCUS cohort for external validation (n = 275); and 3) a
prospective external validation on high-end ultrasound systems (n = 484). In a type 2 diabetes murine model,
echocardiography of wild-type (n = 10) and Leptr~/~ (n = 8) mice were assessed longitudinally at 3 and 25 weeks,
and ultrasomics features were correlated with histopathological features of hypertrophy.

RESULTS The ultrasomics model predicted LV remodeling in the POCUS and high-end ultrasound external validation
studies (area under the curve: 0.78 [95% Cl: 0.68-0.88] and 0.79 [95% Cl: 0.73-0.86], respectively). Similarly, the
ultrasomics model predicted LV remodeling was significantly associated with major adverse cardiovascular events in both
cohorts (P < 0.0001 and P = 0.0008, respectively). Moreover, on multivariate analysis, the ultrasomics probability score
was an independent echocardiographic predictor of major adverse cardiovascular events in the high-end ultrasound
cohort (HR: 8.53; 95% Cl: 4.75-32.1; P = 0.0003). In the murine model, cardiomyocyte hypertrophy positively correlated
with 2 ultrasomics biomarkers (R? = 0.57 and 0.52, Q < 0.05).

CONCLUSIONS Cardiac ultrasomics-based biomarkers may aid development of machine-learning models that provide

American College of Cardiology Foundation.

ver the past decades, echocardiography has
distinguished itself for its safety, power,
and versatility with progressive improve-
ments in image quality, anatomic definition, physio-
logic data, and the breadth of applications. One of the
most spectacular developments has been the minia-
turization of cardiac ultrasound devices with the
development of point-of-care ultrasound (POCUS)

an expert-level assessment of LV structure and function. (J Am Coll Cardiol 2022;80:2187-2201) © 2022 by the

applications. POCUS can augment the physical exami-
nation, improve medical decision making, and guide
the appropriate use of downstream cardiac ultrasound
imaging using high-end ultrasound systems." Howev-
er, until recently, most POCUS assessments have
been semiqualitative because the steps for gated
morphometric measurements on a small screen are
cumbersome, time-intensive, and difficult to
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ABBREVIATIONS
AND ACRONYMS

DICOM = Digital Imaging and
Communications in Medicine
[standard]

HF = heart failure
IVS = interventricular septum

LDLGLE = large dependence
low gray level emphasis

LGLE = low gray level
emphasis

LV = left ventricle

LVEF = left ventricular ejection

standardize. In this regard, the recent use of
artificial intelligence-based principles may
aid automated image acquisition and mea-
surements.” However, most artificial intelli-
gence platforms for classifying disease-
identifying patterns in echocardiography
have relied on deep-learning techniques that
are inherently a “black-box,” causing uncer-
tainty regarding how they operate and, ulti-
mately, how they come to decisions.

SEE PAGE 2202

Mathematical and statistical approaches

fraction

LVMI = left ventricular mass

index

MACE = major adverse cardiac

events

PLAX = parasternal long axis

POCUS = point-of-care

ultrasound

have recently been developed to extract
many features from radiological images.
These “radiomic” approaches typically eval-
uate the size, shape, and textural elements
with highly interpretable spatial information
on pixel or voxel distribution and patterns.?
As a result, with radiomics, quantification
occurs not only at the level of individual
pixels but also takes into consideration the statistical
distribution over a larger region of interest, allowing
this technique to quantify not only macroscopic pat-

terns seen by an expert but also those beyond what is
observable by the human eye. In cardiovascular im-
aging, radiomics has been examined through either
cardiac magnetic resonance or computed tomogra-
phy.* As a unique extension of radiomics to ultra-
sound images, “ultrasomics” is the application of
statistical modeling of pixels with ultrasound im-
ages.” Although ultrasound texture and backscatter
properties can identify myofiber geometry and
orientation,® little is known about the role of modern
ultrasomics approaches for extracting cardiac textural
properties,” and no studies to date have explored
ultrasomics signatures in cardiac POCUS images.
This study investigated whether cardiac ultra-
somics can be used as an imaging biomarker to detect
left ventricular (LV) remodeling. Our objectives were
as follows. 1) We aimed to develop a machine-
learning model using ultrasomics features. This
allowed us to create a probability score and associate
ultrasomics biomarkers with conventional imaging
features of LV remodeling (eg, hypertrophy, chamber
enlargement, reduction in ejection fraction). Because
LV remodeling indices are not standardized for
POCUS, we specifically investigated whether the
textural properties could aid the high-throughput
expert-level screening of LV remodeling without
requiring manual measurements. 2) We extended our
POCUS model to high-end cardiac ultrasound systems
to assess the incremental value of ultrasomics bio-
markers over quantitative echocardiographic markers
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of LV remodeling. 3) Finally, using a preclinical mu-
rine type 2 diabetes model, we investigated whether
ultrasomics features of significance used in the
machine-learning model were correlated with car-
diomyocyte geometry and thus represented unique
tissue-level information related to LV remodeling.

METHODS

CLINICAL POPULATION AND STUDY DESIGN. We
included 1,915 subjects, of whom 1,702 had adequate
echocardiographic parasternal long-axis echocardi-
ography image quality as defined by a reader’s ability
to identify endocardial borders in the single end-
diastolic frame extracted from Digital Imaging and
Communications in Medicine (DICOM) videos. This
resulted in 1,218 POCUS and 484 high-end ultrasound
images available to develop and validate the
ultrasomics pipeline. We grouped the patients into
3 distinct cohorts: 1) an expert-annotated registry of
POCUS (n = 943) used for model development; 2) a
prospective external validation of the model using
POCUS (n = 275); and 3) an external validation of the
model on images obtained using a high-end ultra-
sound system (n = 484) (Central Illustration). Valida-
tion of the machine-learning model using high-end
ultrasound systems was intended to explore the
performance of the POCUS image-derived ultra-
somics model on conventional indices of LV
remodeling obtained using quantitative measure-
ments (including Doppler- and tissue Doppler-
based assessments), which are only standardized
for high-end ultrasound systems. Refer to the
Supplemental Methods for more details including
the reasons for referral for echocardiography
(Supplemental Table 1). Clinical data were used to
calculate the 10-year risk of incident symptomatic
heart failure (HF) with the use of the ARIC
(Atherosclerosis Risk In Communities) HF risk
score, which has demonstrated utility in risk
stratification® and assessing the incremental value
of novel LV remodeling and functional phenotypes
for predicting cardiovascular events.® All studies
were in accordance with the ethical standards of
the institutional and national research committee
and with the 1964 Helsinki Declaration. All partic-
ipants provided written consent. Participants were
included regardless of gender, race, ethnicity, or
other demographic factors.

ECHOCARDIOGRAPHY ANALYSIS AND DICOM
SEGMENTATION. The complete list of ultrasound
devices is included in Supplemental Figure 1 and
the procedures used in collecting echocardiographic
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Cardiac point-of-care ultrasound (POCUS) was acquired in participants (n = 943) from a single parasternal long axis (PLAX) end-diastolic DICOM [Digital Imaging and
Communications in Medicine] image. We developed an ultrasomics-based machine-learning algorithm to predict left ventricular (LV) structural and functional changes
(primary outcome) (80% of the ASE-REWARD [American Society of Echocardiography: Remote Echocardiography With Web-based Assessments for Referrals at a
Distance] participants, n = 754) and assessed its performance in an internal validation (20% of the ASE-REWARD participants, n = 189) and 2 prospective external
validation POCUS (n = 275) and high-end ultrasound equipment (n = 484) cohorts. The ultrasomics prediction probabilities were also used for prospective prediction
of major adverse cardiac events (MACE) (secondary outcome). Subsequently, common ultrasomics features of importance were investigated in a murine model of type
2 diabetes mellitus (n = 10 wild-type, n = 8 diabetic) to correlate our ultrasomics biomarkers with histological evidence of cardiomyocyte hypertrophy (biomarker
discovery). IVS = interventricular septum; LDLGLE = large dependence low gray level emphasis; LGLE = low gray level emphasis; LVc = left ventricular chamber;
PW = posterior wall.

data for each study are provided online on our
GitHub repository (qahathaway/Cardiac_Remode-
ling_Radiomics).'® The segmentation package echocv
was implemented in Python (version 2.7, Python
Software Foundation) (Figure 1A). We adapted the
software to identify individual regions within the
parasternal long-axis (PLAX) LV, including the inter-
ventricular septum (IVS), LV chamber, and posterior
wall. Both the extracted frame (original image) and
the region-of-interest segmentation (mask image)
were used for texture-based feature analyses
(Figure 1B). All DICOM frames were acquired during
end-diastole, which is defined as the ventricle at its
largest volume occurring shortly before the mitral

valve closes and the mitral annulus descends.
The N for the study represents unique individuals,
with only a single end-diastolic frame evaluated
per patient (refer to Supplemental Methods for
additional details).

MORPHOMETRY AND TEXTURE-BASED FEATURE
EXTRACTION. PyRadiomics (version 3.0.1, Python
Software Foundation) and SimpleITK (version 2.0.2,
Insight Software Consortium) were executed in Py-
thon (version 3.8.7) to allow for feature extraction of
ultrasomics features. All single, end diastolic DICOM
images were converted to the same aspect ratio/size.
For feature

extraction, featureextractor() from
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FIGURE 1 Methodology of Automated Image Processing and Machine-Learning Implementation
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matrix; NGTDM = neighborhood gray tone difference matrix.

(A) Parasternal long-axis (PLAX) end-diastolic Digital Imaging and Communications in Medicine, DICOM, images were acquired from point-of-care ultrasound (POCUS)
and high-end ultrasound equipment. Semantic segmentation of the left ventricle was performed using automated segmentation software to accurately define the
interventricular septum (IVS) (green), left ventricular chamber (LVc) (gray), and posterior wall (PW) (orange) and to extract ultrasomics first-order, morphometric, and
texture-based features. (B) The application of ultrasomics extraction involved using the original image and the mask layer derived from the automated segmentation
algorithm. GLCM = gray level cooccurrence matrix; GLDM = gray level dependence matrix; GLRLM = gray level run length matrix; GLSZM = gray level size zone

PyRadiomics was used in 2 dimensions. Settings
defined for extraction, including the ultrasomics
features, binwidth, resampled pixel spacing, inter-
polator, label definition, and other parameters, are
included online on our GitHub repository.'®

MACHINE-LEARNING ALGORITHM. Following feature
extraction through PyRadiomics, the IVS, LV cham-
ber, and posterior wall features were compiled
together, resulting in first-order-, shape-, and
texture-based measurements for each region of
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FIGURE 2 Ultrasomics Machine-Learning Model for Predicting Features of LV Remodeling (Primary Outcome)
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Area under the receiver-operating characteristic curves are shown for patients in the (A) 20% internal validation, (B) external validation (POCUS), and (C) external
validation (high-end) groups. To understand how the ultrasomics probability score could predict individual indices of LV remodeling, the score was applied to the
external validation (high-end) cohort for (D) concentric hypertrophy, (E) eccentric hypertrophy, and (F) heart failure with reduced ejection fraction (<40%).

Abbreviations as in Figure 1.

interest, totaling 261 features (Figure 1A). As a pre-
processing step, data from each ultrasomics feature
(Supplemental Figure 2A) were normally distributed
within each cohort, implementing the cumulative
distribution function. The cumulative distribution
function standardizes the data across a scale of 0-1 for
all features (Supplemental Figure 2B). Differences in
feature distribution are dependent on acquisition
settings (Supplemental Figures 2A and 2B). Addi-
tional information on the ultrasomics features
implemented in the study is included in the

Supplemental Appendix. Machine-learning was per-
formed using BigML (BigML, Inc).

A mixed supervised/unsupervised model was
implemented through BigML’s AutoML platform,
including 10-fold cross-validation. Data were split
into training/testing (80%, n = 754) and internal
validation (20%, n = 189) when assessing the expert-
annotated registry of POCUS participants. The inter-
nal validation, external validation (POCUS), and
external validation (high-end) data sets were applied
as holdout data sets. The prediction probabilities are



https://doi.org/10.1016/j.jacc.2022.09.036
https://doi.org/10.1016/j.jacc.2022.09.036
https://doi.org/10.1016/j.jacc.2022.09.036
https://doi.org/10.1016/j.jacc.2022.09.036

2192 Hathaway et al

Assessing Cardiac Remodeling by Ultrasound

TABLE 1 External Validation (POCUS) Participants Classified as Having
LV Remodeling or No Remodeling
Lv deling No deling

(n=23) (n = 252) P Value
Age, y 65.2 (61.5-68.9) 58.7 (57.1-60.3) 0.0215
Male 5(23.8) 83 (35.5) 0.3440
Body mass index, kg/m? 34.7 (33.1-36.3) 30.0 (29.0-30.9) 0.001
Systolic blood pressure, mm Hg 156 (150-162) 129.7 (128-132) <0.0001
Diastolic blood pressure, mm Hg 87.1 (83.4-90.8) 77.91 (76.7-79.2) <0.0001
Oxygen saturation, % saturation 96 (96-97) 96 (96-97) 0.7881
Congestive heart failure 2 (8.70) 6 (2.38) 0.1376
Myocardial infarction 4 (17.4) 6 (2.38) 0.0056
Atrial fibrillation 1(5.00) 16 (6.58) 1.000
Cerebral vascular accident 1(4.35) 1(0.41) 0.1652
Diabetes 5(21.7) 43 (17.5) 0.5750
Hyperlipidemia 12 (54.6) 117 (48.0) 0.6577
Chronic obstructive pulmonary disease 2 (9.52) 8 3.32) 0.1864
Valvular disease, moderate-severe 1(4.35) 5 (1.98) 0.4109
Right ventricular hypertrophy 1(4.35) 8 (3.28) 0.5612
Values are mean (95% Cl) or n (%). Two-sided Student's t-test was implemented for normally distributed data.
Normality testing was performed using the Shapiro-Wilk test. The Mann-Whitney U test was applied for non-
Gaussian distributed data. Two-sided Fisher exact test was used to assess categorical data in the form of con-
tingency tables. All data were considered statistically significant if P < 0.05.

LV = left ventricular; POCUS = point-of-care ultrasound.

on a 0-1 scale. This was used as a continuous
(ultrasomics probability score) or as a binary outcome
(with any value =0.5 indicating a “positive” [ie, pres-
ence of remodeling] outcome and a value <0.5 indi-
cating a “negative” outcome). Optimal cutoff values
for each feature were generated in the training phase of
the model and applied to the batch prediction, un-
changed, to evaluate the holdout data. The outcomes
were classified as primary or secondary outcomes.
Primary outcome. A broad definition of remodeling
(any change in the heart’s size, shape, and function)"
was used to conduct large-scale association mining
between the cardiac ultrasomics features and echo-
cardiographic markers of cardiac remodeling. This
included: 1) structural changes (LV hypertrophy), LV
dilation, or left atrial dilation); or 2) functional
changes (subjectively or objectively measured left
ventricular ejection fraction [LVEF] <50% and/or
presence of wall motion abnormalities).

Secondary outcome.In the external validation
(POCUS and high-end) cohorts, we associated the
ultrasomics probability score with major adverse
cardiac events (MACE). The patients were prospec-
tively followed up for standardized composite end-
points of all-cause mortality and hospitalizations (HF
or cardiovascular causes)."”

JACC VOL. 80, NO. 23, 2022
DECEMBER 6, 2022:2187-2201

MURINE MODEL OF TYPE 2 DIABETES. The biological
basis of ultrasomics features were assessed in a pre-
clinical model of type 2 diabetes. Wild-type (FVB/NJ)
and type 2 diabetic (FVB/NJ Lepr?®*/+ [Db/Db]) male
and female mice were evaluated in the study.
Homozygous (FVB/NJ Leprd®*/*) diabetic mice were
obtained through breeding FVB/NJ Lepr?®*/~ hetero-
zygous mice. All animal studies, including animal
housing, sedation, euthanasia, and experimentation,
were approved by the West Virginia University Ani-
mal Care and Use Committee. In addition, all studies
conformed to the current National Institutes of
Health Guidelines for the Care and Use of Laboratory
Animals manual. Echocardiography was performed at
3 and 25 weeks of age in both wild-type and diabetic
groups. LIFEx (version 6.52.0, LifeX Software) was
used for manually tracing LV segments, including the
IVS, LV chamber, and posterior wall. Refer to the
Supplemental Methods for more details.

MURINE HISTOLOGY. Histology was performed by
HistoWiz Inc using a standard operating procedure
and fully automated workflow. A standard longitu-
dinal section through both ventricles was made
from the base to the apex of the heart from whole
heart samples and was intended to reveal the ven-
tricles, atria, base, septum, apex, and papillary
muscle, thereby achieving histopathological sections
mirroring the ultrasound imaging. Refer to the
Supplemental Methods for more details.

AVAILABILITY OF DATA AND MATERIALS. Raw data,
including data generated through PyRadiomics, is
made available in the XLSX files accompanied by
the manuscript. In addition, source code for the
machine-learning algorithm is included on our
GitHub repository.'°

STATISTICAL ANALYSIS. GraphPad Prism (version
9.2.0, GraphPad Software), R (version 4.0.3, R Foun-
dation), and Python (version 3.8.7) were used for
statistical analyses. A 2-sided Student’s t-test was
implemented to assess 2 continuous variables for
normally distributed data. Normality testing was
performed using the Shapiro-Wilk test. The Mann-
Whitney U test was applied for non-Gaussian
distributed data. A 2-sided Fisher exact test was
applied to assess categorical data in the form of con-
tingency tables. A 1-way analysis of variance was used
for >1 group of continuous variables, where specified.

For the primary outcome analysis, the ultrasomics
probability score was used as an input to the receiver-
operating characteristic curve following calibration
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(Supplemental Figure 2C). Calibration was achieved
through isotonic regression calibration using the
R package rfUtilities (version 2.1-5). Significance of
receiver-operating characteristic area under the
curves was determined with the Wilson/Brown
method."?

For the secondary outcome analysis, the time-to-
event assessment for the binary machine-learning-
predicted groups was performed using Kaplan-Meier
analysis implementing the Gehan-Breslow-Wilcoxon
test to determine significance between groups and
generate log-rank P values. The Mantel-Haenszel test
was used to calculate the HR. The Cox proportional-
hazards regression model was implemented in time-
to-event univariate analysis of the ARIC HF risk
score, echocardiographic variables, and ultrasomics
probability score. Multivariate analysis with the
generation of C-statistic values was performed
through the survival (version 3.2-13) package in R.
The net reclassification index and integrated
discrimination index were calculated using the R
package PredictABEL (version 1.2-4).

For the biomarker validation analysis, R?, used as a
measure of goodness of fit, was calculated in Graph-
Pad Prism. The false discovery rate was set at 0.05
and Q values generated from the 2-stage, step method
described by Benjamini et al'* for 261 features per
cohort. Intraclass correlation coefficients were
calculated through the degree of consistency for
intra-rater and inter-rater reliability in MedCalc
(version 20.114, MedCalc Software).

All data were considered statistically significant
if the P value, or Q value, were =0.05 (P < 0.05 or
Q < 0.05), which is denoted with an asterisk, *. Data
are reported as the mean with the 95% CI when not
explicitly indicated. Supporting information for the
statistical analyses and statistical packages employed
in the study can be found in the Supplemental
Methods.

RESULTS

PREDICTION OF THE PRIMARY OUTCOME:
LV REMODELING. The details regarding the inter-
nal validation results (Figure 2A) are presented in
Supplemental Table 2. Model generalizability was
confirmed using the external validation (POCUS)
cohort (AUC: 0.78; 95% CI: 0.68-0.88) (Supplemental
Table 3, Figure 2B) and external validation (high-
end) (AUC: 0.79; 95% CI: 0.73-0.86)
(Supplemental Table 3, Figure 2C). The demographic

cohort

and clinical risk factors for participants with and
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or No Remodeling

TABLE 2 External Validation (High-End) Participants Classified as Having LV Remodeling

LV Remodeling Normal
(n = 45) (n =439) P Value
Demographic and clinical features
Age, y 59.9 (55.8-63.9) 48.9 (47.4-50.5) <0.0001
Male 29 (64.4) 193 (44.0) 0.0114
Body mass index, kg/m? 36.4 (33.9-38.9) 31.7 (30.8-32.6) 0.00m
Systolic blood pressure, mm Hg 136 (130-142) 128 (127-130) 0.0072
Diastolic blood pressure, mm Hg 78.1 (74.7-81.6) 77.2 (76.1-78.1) 0.5628
NYHA functional classes of
heart failure
|
1] 1.66 (1.41-1.91) 1.38 (1.31-1.44) 0.0053
n
I\
Congestive heart failure 7 (15.6) 15 (3.42) 0.0022
Coronary artery disease 24 (53.3) 98 (22.3) <0.0001
Atrial fibrillation 1(2.22) 2 (0.46) 0.2543
Cerebral vascular accident 4 (8.89) 27 (6.16) 0.5168
Diabetes 14 (31.1) 82 (18.7) 0.0749
Hyperlipidemia 39 (86.7) 244 (55.6) <0.0001
Chronic obstructive pulmonary 9 (20.0) 43 (9.79) 0.0439
disease
ARIC heart failure risk score, 8.66 (6.95-10.4) 4.21 (3.56-4.85) <0.0001
10-y predicted®
Echocardiographic features
Left ventricular mass index, g/m? 94.6 (86.6-102) 71.2 (69.0-73.4) <0.0001
Left ventricular diameter, 50.2 (47.8-52.7) 45.2 (44.7-45.7) <0.0001
diastole, mm
Left ventricular end-diastolic 126 (112-141) 95.2 (92.5-97.9) <0.0001
volume, mL
Left atrial end diastolic volume 40.1 (36.7-43.5) 22.6 (21.8-23.3) <0.0001
index, mL/m?
Left ventricular ejection 56.8 (53.1-60.5) 60.9 (60.2-61.7) 0.0017
fraction, %
Average €', cm/s 7.63 (6.98-8.28) 9.90 (9.59-10.2) <0.0001
Average E/e' ratio 12.4 (10.5-14.3) 8.97 (8.58-9.35) <0.0001
Mitral valve E/A ratio 1.12 (0.99-1.47) 1.21 (1.16-1.25) 0.7874
Wall motion score index 114 (1.04-1.24) 1.04 (1.02-1.06) 0.0057
Pulmonary hypertension 8 (25.0) 14 (3.88) <0.0001
Valvular disease, moderate-severe 4 (8.89) 15 (3.42) 0.0896

Values are mean (95% CI) or n (%). 2-sided Student's t-test was implemented for normally distributed data.
Normality testing was performed using the Shapiro-Wilk test. The Mann-Whitney U test was applied for
non-Gaussian distributed data. Two-sided Fisher exact test was used to assess categorical data in the form of
contingency tables. All data were considered statistically significant if P < 0.05. °The ARIC heart failure risk score
was calculated with 462 patients, removing the 22 patient with known congestive heart failure.

ARIC = Atherosclerosis Risk In Communities; LV = left ventricular; NYHA = New York Heart Association.

without LV remodeling in the external validation
(POCUS) (Table 1) and external validation (high-end)
(Table 2) cohorts are provided. Using quantitative
measurements obtained on the high-end ultrasound
equipment we also ascertained the model’s ability in
predicting specific patterns of LV remodeling, which
included concentric hypertrophy (LV hypertrophy)

(Figure 2D), eccentric hypertrophy (LV dilation)
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FIGURE 3 Ultrasomics Machine-Learning Model for Predicting MACE (Secondary Outcome)
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Time-to-event prediction of major adverse cardiac events (MACE) for the (A) external validation (point-of-care ultrasound [POCUS]) (HR:
7.60; 95% Cl: 3.27-17.90; P = 0.0001) and (B) external validation (high-end) (HR: 2.35; 95% Cl: 1.23-4.47; P = 0.0008) groups. The dotted
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TABLE 3 Univariate and Multivariate Analysis of Clinical, Echocardiographic, and Ultrasomics Features
Multivariate Multivariate
Univariate (Echo) (Echo + Clinical)®
HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value

Demographic and clinical features

ARIC heart failure risk score, 10-y predicted” 1.00 (1.00-1.10) 0.0520 1.02 (0.97-1.06)  0.4397
Echocardiographic features

Valvular disease, moderate-severe 5.80 (2.70-12.0) <0.0001  4.08 (1.83-9.12) 0.0006

Left ventricular mass index, g/m? 1.01 (1.01-1.03) 0.0437 1.01 (1.00-1.02) 0.0724 1.01 (0.99-1.02) 0.4153

Left ventricular end-diastolic volume, mL 1.00 (1.00-1.00) 0.0960

Left atrial end-diastolic volume index, mL/m?  0.98 (0.94-1.02) 0.3009

Left ventricular ejection fraction 1.05 (1.00-1.10) 0.0322 1.05 (1.01-10.9) 0.0091 1.01(0.97-1.06)  0.5479

Average €/, cm/s 1.09 (0.91-1.30) 0.3372

Average E/e' ratio 1.05 (0.99-1.11) 0.1234

Mitral valve E/A ratio 0.57 (0.21-1.58) 0.2793

Wall motion score index 1.76 (0.28-10.9) 0.5441

Pulmonary hypertension 2.00 (0.73-5.60) 0.1800

Ultrasomics probability score 46.8 (5.03-434) <0.0001 14.8 (4.19-65.3)  <0.0001  8.53 (4.75-32.1)  0.0003
The Mantel-Haenszel test was used to calculate the HR. All data were considered statistically significant if P =< 0.05. °The ARIC heart failure risk score was calculated with 462
patients, removing the 22 patients with known congestive heart failure.

ARIC = Atherosclerosis Risk In Communities; Clinical = demographic and clinical features; Echo = echocardiographic features.

(Figure 2E), reduced EF (Figure 2F), LV dilation
(Supplemental Figure 3A), and left atrial dilation
(Supplemental Figure 3B).

PREDICTION OF THE SECONDARY OUTCOME—MACE.
During a follow-up period of 6 months, 23 patients
(8.4%) from the external validation (POCUS) cohort
experienced MACE. This included 9 patients (39%)
who presented with acute coronary syndrome, 12
(52%) with developed arrhythmias (ie, ventricular
tachycardia and atrial fibrillation), and 2 (8.7%) with
HF; there were no deaths (Supplemental Table 4).
Patients predicted to have LV remodeling using the
ultrasomics probability score showed significantly
higher rates of MACE (HR: 7.6; 95% CI: 3.27-17.9;
P = 0.0001) (Figure 3A). Similarly for patients imaged
on the high-end ultrasound systems, during a follow-
up over a median period of 36 months, 48 patients
(9.9%) experienced MACE. This included 14 patients
(29%) who had noncardiac and 3 (6.3%) who had
cardiac deaths, and 6 (13%) who were hospitalized
with HF, 27 (56%) for coronary revascularization, and
1 for an arrhythmia (ie, heart block) (Supplemental
Table 4). The ultrasomics probability score showed
significantly higher rates of MACE (HR: 2.35; 95% CI:
1.23-4.47; P = 0.0008) (Figure 3B).

PROGNOSTIC VALUE OF ULTRASOMICS. From the
features present in Table 2, univariate analysis of
echocardiographic  features predicting MACE
included valvular heart disease (moderate to severe),
left ventricular mass index (LVMI), and LVEF

(Table 3). In a multivariate echocardiography model
(Table 3), the ultrasomics probability score was an
independent predictor of MACE (HR: 14.8; 95% CI:
4.19-65.3; P < 0.0001) even after adjusting for all
other univariate echocardiographic predictors. Simi-
larly, after excluding patients with known HF
(n = 22), the ultrasomics probability score was an
independent predictor of MACE (HR: 8.53; 95% CI:
4.75-32.1; P = 0.0003) in a clinical model that
included the ARIC HF risk score as a covari-
ate (Table 3).

The incremental prognostic value of the ultra-
somics probability score was assessed in nested Cox
models. For the echocardiography variables, using
LVMI as the baseline, there were no significant
changes seen with the addition of LVEF (P = 0.6716)
or presence of moderate-severe valve disease (P =
0.9854) (Figure 4A). However, a significant increase in
predictive power observed with addition
of the ultrasomics probability score (C-statistic: 0.77;
P = 0.0100) (Figure 4A). Similarly, for the clinical
multivariate model, using the ARIC HF risk score as a

was

baseline measure (Figure 4B), there were no signifi-
cant changes seen with the addition of LVMI
(P = 0.9278) and LVEF (P = 0.8951). However, a sig-
nificant increase in predictive power was observed
with addition of the ultrasomics probability score
(C-statistic: 0.71; P = 0.0374). When comparing the
final 2 nested models (ie, ARIC HF + LVMI + LVEF vs
ARIC HF + LVMI + LVEF + ultrasomics), significant
improvements were observed in the net
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FIGURE 4 Incremental Value of Ultrasomics Biomarkers
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(A) Left ventricular mass index (LVMI) was used as a baseline measurement (C-statistic: 0.62; 95% Cl: 0.54-0.70) to assess the incremental
value of adding left ventricular ejection fraction (LVEF) (C-statistic: 0.65; 95% Cl: 0.57-0.72), then presence of moderate-severe valve
disease (C-statistic: 0.65; 95% Cl: 0.57-0.72), and finally the ultrasomics probability score (C-statistic: 0.77; 95% Cl: 0.71-0.83). (B) The ARIC
(Atherosclerosis Risk In Communities) heart failure risk score was used as a baseline measurement (C-statistic: 0.60; 95% Cl: 0.52-0.67) to
assess the incremental value of adding LVMI (C-statistic: 0.60; 95% Cl: 0.53-0.68), then LVEF (C-statistic: 0.61; 95% Cl: 0.54-0.68), and
finally the ultrasomics probability score (C-statistic: 0.71; 95% Cl: 0.65-0.77). *N = 462, 22 with known congestive heart failure were
excluded in the ARIC heart failure risk score. df = degrees of freedom.

reclassification index (0.74; 95% CI: 0.46-1.03;
P < 0.0001) and integrated discrimination index
(0.07; 95% CI: 0.03-0.11; P = 0.0013) (Supplemental
Table 5).

ULTRASOMICS BIOMARKER DISCOVERY. Using the
3 diverse clinical cohorts, we developed a Venn dia-
gram for biomarker discovery.'” We first examined

the top 10 features of importance from the machine-
learning model (Figure 5A). Next, we wanted to
assess each ultrasomics feature’s contribution in
predicting LV remodeling. Using the adjusted
Q values for each feature, we generated a list of fea-
tures of importance from each cohort (Figure 5B),
revealing low gray level emphasis (LGLE) and large

dependence low gray level emphasis (LDLGLE) as the
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FIGURE 5 Machine-Learning Model and Cohort-Specific Feature Importance
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(A) The top 10 features of importance were extracted from the ultrasomics machine-learning model in the training cohort. (B) Venn diagram of common features from
all clinical cohorts with a Q value <0.05 when assessing presence of LV remodeling versus no remodeling. Imc1 = informational measure of correlation 1;

LDLGLE = large dependence low gray level emphasis; LGLE = low gray level emphasis; LRLGLE = long run low gray level emphasis; MP = maximum probability;
SDLGLE = small dependence low gray level emphasis; other abbreviations as in Figure 1.

only features shared between all clinical cohorts and
identified as potential ultrasomics biomarkers
of interest.

MURINE MODEL OF LV REMODELING. Illustrative
examples of fixed histopathological sections, stained
with hematoxylin and eosin, and assessed using the
JavaCyte algorithm (Supplemental Methods) to trace
and measure cardiomyocyte diameters is shown in
Figure 6A. Db/Db mice displayed an increased car-
diomyocyte diameter (25.59 pm vs 21.28 pm; P =
0.0001) (Figure 6B) and myocyte disarray, identified
by a trained histopathologist, compared to control
mice. Like the clinical cohorts, ultrasomics-based
features were calculated in mice from the DICOM
PLAX echocardiography images (Figure 6C). The
clinical fusion model generated ultrasomics proba-
bility scores to identify “LV remodeling” or “no
remodeling” in mice. These probability scores strati-
fied mice with and without type 2 diabetes based on
ultrasomics signatures alone (AUC: 0.94; 95% CI:
0.85-1.00) (Figure 6D).

We also performed an independent mining of
ultrasomics features’ association with cardiomyocyte
diameter (Figure 6E). Interestingly, concordant to the
observations from the clinical cohorts, the only

2 features with an R? value >0.5 and with a
Q value <0.05 were LDLGLE and LGLE. Comparing
the feature values of LDLGLE (P = 0.0126)
(Supplemental Figure 4A) and LGLE (P = 0.0047)
(Supplemental Figure 4B) at 3 weeks and 25 weeks in
mice, we saw a statistically significant increase in the
value of the feature in aging Db/Db mice, compared to
control mice. LDLGLE (Supplemental Figure 4C) and
LGLE (Supplemental Figure 4D) were also indepen-
dent predictors of type 2 diabetes in mice. The larger
the diameter of the cardiomyocyte, the higher the
LDLGLE and LGLE values (Figure 6F).

MEASUREMENT VARIABILITY OF LDLGLE AND LGLE
AS ULTRASOMICS BIOMARKERS. Frame-to-frame
and POCUS-to-high-resolution variability in ultra-
somics values (Supplemental Table 6) revealed high
intraclass correlation coefficients (>0.90 for all) for
LDLGLE and LGLE in all measurements, respectively.
These results agree with our previous investigation
that demonstrated high consistency in cardiac ultra-
sound texture-based features despite variations in
noise and gain settings.” Stability was also confirmed
both in intra-rater and inter-rater reliability measure-
ments of both features for murine echocardiography
(Supplemental Table 6).
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FIGURE 6 Preclinical Validation of Ultrasomics Biomarkers and Correlation With Cardiomyocyte Hypertrophy
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DISCUSSION

In 3 diverse clinical cohorts, 2 employing different
generations of POCUS devices for health screening
and 1 using high-end ultrasound systems in patients
who are hospitalized, the present investigation
explored whether cardiac ultrasound texture data
(ultrasomics) are associated with LV remodeling. We
first used machine-learning techniques to construct
broad associations between ultrasomics biomarkers
and conventional imaging features of LV remodeling
(eg, hypertrophy, chamber enlargement, reduction in
EF). We illustrated that the algorithm could make
predictions without previous expert-guided annota-
tion or prerequisite measurements and can be
deployed even on POCUS, where measurements are
cumbersome. We then illustrated that the real value
of the ultrasomics biomarkers is not just in associ-
ating with conventional echocardiographic markers
of LV remodeling but in providing a new level of
prognostic information that is independent and in-
cremental to the conventional echocardiographic
variables. Thus, this algorithm is equally effective not
only for POCUS, but also provides new biomarkers of
LV remodeling that can be applied on high-end ul-
trasound systems.

The clinical diagnosis of remodeling is based on the
information collected for assessing the tissue, cham-
bers, or organ-level changes in cardiac structure and
function.''® For example, cardiac ultrasound tech-
niques have defined remodeling using measurements
that reflect any changes in global measures of cham-
ber geometry (ie, diameter, volumes, or shape), hy-
pertrophy (ie, wall thickness or global mass), or
function (ie, EF, global longitudinal strain). Alter-
ations at the tissue level are challenging to charac-
terize using cardiac ultrasound. However, in the past,
cardiac ultrasound-integrated backscatter and cyclic
variation techniques have been used to measure
changes in cardiac tissue-level structure and func-
tion."” These techniques were based predominantly
on mean signal values and showed increased vari-
ability from random noise and susceptibility to time

Hathaway et al
Assessing Cardiac Remodeling by Ultrasound

delays.'”® The recent advances in texture-based
feature extraction (cardiac ultrasound radiomics, or
ultrasomics®) may overcome some of these limita-
tions,” allowing for more robust phenotyping of car-
diac ultrasound images.

Using a biomarker discovery pathway and a reverse
translational approach, we isolated consistent
ultrasomics features and their capacity to distinguish
histopathological changes at the level of murine
cardiomyocytes. In addition, we identified the
association of ultrasomics biomarkers with changes in
LV cardiomyocyte geometry and disarray—a central
process in LV remodeling that occurs in response to
an increase in LV wall stress and accompanies
changes in chamber geometry, hypertrophy (both
concentric or eccentric), and function. The close as-
sociations observed between ultrasomics-features
and myocyte geometry in the experimental study
and the independent value in predicting adverse
events in human studies suggest a unique level of
information associated with cardiac remodeling.
Furthermore, each ultrasomics feature has a defined
mathematical construct. For example, both LGLE and
LDLGLE suggest that LV myocyte hypertrophy and
disarray result in changes in LGLE, providing
perceptible and targeted descriptions of the pathol-
ogy with the enhanced interpretability. However,
caution should be executed in extrapolating these
observations to other imaging modalities (ie,
computed tomography, positron emission tomogra-
phy, and cardiac magnetic resonance) because
ultrasomics biomarker correlations may be unique to
imaging modality and settings."®

Our investigation details an ultrasomics-based so-
lution that was developed to allow easy interpret-
ability, stepwise implementation, and reproducible
outcomes. This includes adherence to defined pro-
tocols for conducting machine-learning research in
the biomedical sciences, such as the PRIME (Proposed
Requirements for Cardiovascular Imaging-Related
Machine-Learning Evaluation) checklist,”® assess-
ment of diverse clinical populations (ie, India
and United States), clinical settings (ie, inpatient and

FIGURE 6 Continued

(A) Hematoxylin and eosin-stained cardiac tissue from type 2 diabetic (FVB/NJ Leptr~/~ Db/Db, n = 8) and wild-type (FVB/NJ WT, n = 10) mice at 25 weeks of age.
(B) JavaCyte estimated cardiomyocyte diameter. (C) Ultrasound images in the parasternal long axis for Db/Db and WT mice for extracting ultrasomics features.

(D) Ultrasomics machine-learning model probability score for predicting murine remodeling. (E) R? regression analysis (ultrasomics features vs cardiomyocyte diameter)
with a cutoff Q value <0.05 (ie, P = 0.0013). (F) Heatmap depicting cardiomyocyte diameter (diameter), LDLGLE, and LGLE in the Db/Db and WT groups. All data were
considered statistically significant if P = 0.05, denoted with asterisk. Abbreviations as in Figures 1 and 5.




2200

Hathaway et al
Assessing Cardiac Remodeling by Ultrasound

outpatient care), and instrumentation (ie, POCUS and
high-end ultrasound systems). Additionally, our
GitHub repository'® provides instructions for allow-
ing other clinicians and investigators to apply their
ultrasomics-based data to our current machine-
learning model. The use of ultrasomics-based ap-
proaches on ultrasound images also have shown good
preservation of feature values with various noises
and gain.” Although future applications could
combine aspects of convolutional neural network and
deep learning models with ultrasomics feature
extraction for enhanced feature detection and pre-
diction, the strength of our current approach is that it
allows for quick identification of regions of interest
and gray-level changes that can motivate future
therapeutic interventions.

STUDY LIMITATIONS AND FUTURE STRATEGIES. Our
histopathological assessment only examined -car-
diomyocyte hypertrophy and disarray. There will
be added value in understanding how other
histopathological and molecular features of LV
remodeling, such as matrix remodeling and signaling
pathways correlate with ultrasomics features. Our
methodology also constitutes a single end-diastolic
PLAX view of the LV, which is a relatively common
acquisition window for POCUS. Additionally, the
orientation of the transducer to the LV in the PLAX
view (ie, 90° angle from the transducer to the LV)
makes the reflection of the ultrasound beam a supe-
rior angle for evaluating microstructural changes in
the LV.”' With decreasing reflections from the ultra-
sound beam, moving from the IVS to the posterior
wall of the LV, the posterior wall is likely to be more
obscured for ultrasomics analysis. Future approaches
may seek to apply a variety of cardiac views to
compensate for this shortcoming.

The construction of an integrated machine-
learning pipeline to assist in clinical decision mak-
ing requires a necessary set of prerequisites before
feasible implementation. For example, the algo-
rithm must provide: 1) incremental value over con-
ventional assessments; and 2) results in a clinically
relevant time frame. For the present pipeline, using
a standard 16 GB RAM operating system using its
CPU, the time to process a single DICOM image,
extract the frame of interest, collect the ultrasomics
data, standardize the values, and make predictions
would likely take 2 to 5 minutes of computational
time. As highlighted in the current study, stan-
dardization was performed within each cohort to
normalize the data based on image acquisition set-
tings. As a new DICOM video was presented to the
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machine-learning algorithm, the method of stan-
dardization would be selected based on how the
images were collected. Ultimately, larger cohorts
would be needed to replicate the findings, including
steps to implement the technique in diverse clinical
settings. The impact of variations arising from
patient-related factors affecting image quality, ma-
chine settings, acquisition, and archival techniques
are all major considerations in full, and effective,
implementation of a machine-learning algorithm.
Finally, although we evaluated composite endpoints
as efficacy measures advocated in the assessment of
isolated endpoint assessments on
cardiovascular mortality or HF hospitalization could
be more meaningful and needs to be explored in
future investigations

LV remodeling,®**

CONCLUSIONS

We have developed a pipeline that provides auto-
mated segmentation, ultrasomics-based feature
extraction, and accurate LV structural and functional
change prediction. Here we specifically highlight the
clinical affect this approach can add to cardiac
POCUS, but the use of ultrasomics biomarkers also
has the potential to enrich diagnostic strategies for
predicting LV remodeling using high-end cardiac ul-
trasound systems. Furthermore, in both the hospital
and community settings, ultrasomics biomarkers may
provide a method to automatically interpret changes
in the LV myocardium without requiring manual
measurements, thereby increasing throughput,
efficiency, and widespread portability of cardiac
ultrasound technology.
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PERSPECTIVES

COMPETENCY IN PATIENT CARE AND PROCEDURAL
SKILLS: Machine-learning could automate extraction and
interpretation of images obtained by POCUS to facilitate

screening for myocardial structural and functional remodeling
without expert guidance.

TRANSLATIONAL OUTLOOK: Future initiatives could employ
this technology to identify subclinical pathology earlier in the
course of cardiac disease.
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