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BACKGROUND Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echo-

cardiographic parameters using guideline-driven recommendations to identify severe disease.

OBJECTIVES The purpose of this preliminary study was to explore novel data-driven approaches to delineate phe-

notypes of MR severity that benefit from surgery.

METHODS The authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to

integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n ¼ 243; development cohort) and

Canada (n ¼ 157; validation cohort) followed up during a median time of 3.2 (IQR: 1.3-5.3) years and 6.8 (IQR: 4.0-8.5)

years, respectively. The authors compared the phenogroups’ incremental prognostic value over conventional MR profiles

and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a

covariate for survival analysis (time-dependent exposure).

RESULTS High-severity (HS) phenogroups from the French cohort (HS: n ¼ 117; low-severity [LS]: n ¼ 126) and the

Canadian cohort (HS: n ¼ 87; LS: n ¼ 70) showed improved event-free survival in surgical HS subjects over nonsurgical

subjects (P ¼ 0.047 and P ¼ 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both

cohorts (P ¼ 0.7 and P ¼ 0.5, respectively). Phenogrouping showed incremental prognostic value in conventionally

severe or moderate-severe MR subjects (Harrell C statistic improvement; P ¼ 0.480; and categorical net reclassification

improvement; P ¼ 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup

distribution.

CONCLUSIONS Novel data-driven phenogrouping and explainable AI aided in improved integration of echocardio-

graphic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement

surgery. (J Am Coll Cardiol Img 2023;-:-–-) © 2023 Published by Elsevier on behalf of the American College of

Cardiology Foundation.
N 1936-878X/$36.00 https://doi.org/10.1016/j.jcmg.2023.02.016
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P rimary mitral regurgitation (MR) is
one of the most frequent valvular
heart diseases and is associated with

increased risk of morbidity and mortality.1

Determination of timing and type of mitral
valve (MV) intervention remains challenging
and a source of debate.2 Assessment of dis-
ease severity is important for patient risk
stratification and optimization of the timing
of MV repair or replacement surgery (MVS).3

This is currently achieved using Doppler-
echocardiography, which grades the severity
of MR based on a multiparameter
approach.4,5 However, this approach does
not consider the global left ventricular (LV)
and left atrial (LA) remodeling response or
the consequences of the MR on the pulmo-
nary arterial circulation and right ventricle
(RV), and current guidelines confine the
assessment of LV remodeling to 2 echocar-
diographic markers (LV end-systolic diam-
eter and left ventricular ejection fraction [LVEF]).6,7

Hence, this approach generally provides only modest
risk stratification and is frequently limited by discor-
dant results regarding disease severity, leading to un-
certainty in terms of diagnosis and therapeutic
decision making, especially in asymptomatic pa-
tients.8 Cardiovascular magnetic resonance may
help to improve accuracy of quantitation of MR but
provides currently limited additional information vs
echocardiography regarding assessment of extrava-
lvular cardiac damage, disease severity, and risk
stratification in patients with primary MR.9-11

Furthermore, this imaging modality is expensive
and not widely available. There is thus a need for ac-
curate and simple methods to improve risk assess-
ment in primary MR. Novel machine-learning
approaches can unveil relationships between stan-
dard echocardiographic variables and improve our
understanding of complex cardiovascular disease
states, including aortic valve stenosis.12-14

The objectives of this study were: 1) to use ma-
chine learning (ML) to identify pathophysiologically
and prognostically informative patient subgroups
based on standard echocardiographic measure-
ments; and 2) to validate these ML phenogroups
against future clinical outcomes. We hypothesized
that a ML approach would improve the classification
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and Food and Drug Administration guidelines, including patien

thor Center.
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of disease severity and thus the determination of
the optimal timing for MVS, either replacement or
repair, in primary MR and the prediction of adverse
outcomes.

METHODS

STUDY POPULATION. Patients with at least mild
primary MR (n ¼ 400) were prospectively included
and followed up between January 2008 and
December 2019 at 2 international centers. First, a
cohort of 243 consecutive patients from the Groupe-
ment des Hôpitaux de l’Institut Catholique de Lille in
France (French Cohort) was used to develop a model
to identify phenogroups of primary MR. Second, this
model was validated by analyzing the results of
phenogroup batch prediction in an external and in-
dependent cohort, which included patients from the
prospective and observational PROGRAM (De-
terminants of the Progression and Outcome of Mitral
Regurgitation; NCT01835054) study (n ¼ 157) from the
Institut Universitaire de Cardiologie et de Pneumo-
logie de Québec in Canada (Canadian Cohort). Inclu-
sion and exclusion criteria are outlined in the
Supplemental Methods. The study protocol was
approved by each institutional ethics review board
and all patients signed written informed consent.

DOPPLER-ECHOCARDIOGRAPHIC DATA. Compre-
hensive Doppler-echocardiography was performed
using commercially available ultrasound systems.
The etiology of MR was carefully assessed to confirm
primary etiology and exclude any patient with any
evidence of secondary MR. MV morphology and type
of primary MR was assessed and classified as follows:
leaflet prolapse, flail leaflet, or Barlow disease
(further details in the Supplemental Methods).
Severity of MR was evaluated using an integrative
multiparameter approach, including semi-
quantitative and quantitative parameters using the
proximal isovelocity surface area (PISA) and/or the
volumetric Simpson method (Supplemental Methods,
Supplemental Table 1), as recommended by the cur-
rent American Society of Echocardiography guide-
lines.4,5 LV and LA dimensions and volumes, LVEF,
mitral inflow velocities, averaged early diastolic ve-
locities of the mitral annulus (e0), tricuspid annular
plane systolic excursion, RV dimensions, and
circumferential end-systolic stress are also detailed in
es and animal welfare regulations of the authors’

t consent where appropriate. For more information,
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FIGURE 1 Study Flow Diagram
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Echocardiographic features used for model development are displayed, with the study flow. The model development French cohort with 243 subjects were labelled low

severity and high severity phenogroups by hierarchical clustering and defined by the supervised machine learning algorithm. Model performance was evaluated using

Leave-One-Out cross-validation and the SHAP interpretability method determined the most important features. The French model batch predicted the Canadian

external and independent cohort with 157 subjects and the resulting phenogroups and their outcomes were analyzed and compared with the conventional MR

classification method. AI ¼ artificial intelligence; ERO ¼ effective regurgitant orifice; IDI ¼ integrated discrimination index; LA ¼ left atrium; LV ¼ left ventricular;

LVOT ¼ left ventricular outflow track; MR ¼ mitral regurgitation; MV ¼ mitral valve; NRI ¼ net reclassification index; PISA ¼ proximal isovelocity surface area;

RV ¼ right ventricular; TAPSE ¼ tricuspid annulus plane systolic excursion; SV ¼ stroke volume.
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the Supplemental Methods. The clinical and echo-
cardiographic data were collected prospectively and
analyzed retrospectively. All echocardiographic data
were measured in the research echo laboratories of
each institution according to American Society of
Echocardiography guidelines4,15 and outlined in
Supplemental Table 1.

UNSUPERVISEDLEARNINGTODETERMINEPHENOGROUPS.

A total of 24 standard echocardiographic parameters
from the French Cohort was used to identify the
phenogroups (Figure 1). As a first step, hierarchical
clustering analysis (HCA), an unsupervised ML
method, was performed to identify specific patient
clusters, or phenogroups, within the French cohort.
This method is well-suited for initial exploratory
analysis because it analyzes the relationship of the
variables themselves and has been used in other
medical settings, such as infectious disease16 and
oncology.17 Specific HCA parameters used for this
analysis are mentioned in the Supplemental Methods.
The group labels were then used as target class labels
for supervised learning.

SUPERVISED ML TO DISTINGUISH EACH PHENOGROUP.

Using the HCA-determined cluster assignments as
target class labels for each subject in the French
Cohort, a binary decision tree, where each leaf rep-
resents a class label and each node was a binary
echocardiographic parameter test, was developed to
uncover patterns within echocardiographic parame-
ters and predict phenogroups of individual subjects
that would inform the subject of their risk profile and
the prognosis of MVS. The tree algorithm continu-
ously splits subjects within the data set into “ho-
mogenous” subsets with a similar profile until the
tree reaches the stopping parameters.18 Stopping pa-
rameters and the evaluation of the model’s perfor-
mance are outlined in the Supplemental Methods.
The 2 phenogroups established by the HCA-Decision
Tree algorithm were the high-severity and low-
severity (HS and LS) phenogroups.

https://doi.org/10.1016/j.jcmg.2023.02.016
https://doi.org/10.1016/j.jcmg.2023.02.016
https://doi.org/10.1016/j.jcmg.2023.02.016
https://doi.org/10.1016/j.jcmg.2023.02.016


TABLE 1 Baseline Characteristics of the French and Canadian Independent Cohorts

French Cohort (N ¼ 243) Canadian Cohort (N ¼ 157)

P Value
Median
or N

1st and 3rd
IQR or %

Median
or N

1st and 3rd
IQR or %

Clinical data

Age, y 62.0 54.0-73.0 61.0 51.0-73.0 0.61

Male 159 65 83 53 0.01a

BMI, kg/m2 23.9 21.2-27.1 23.8 21.7-26.7 0.94

Systolic BP, mm Hg 140 126-150 128 118-139 <0.0001a

Diastolic BP, mm Hg 80 70-86 74 67-79 <0.0001a

Heart rate, beats/min 74 66-82 64 57-72 <0.0001a

Risk factors

Hypertension 83 34 56 37 0.56

Diabetes mellitus 18 7 5 3 0.10

Dyslipidemia 51 21 37 25 0.42

History of smoking 35 14 61 41 <0.001a

Coronary artery disease 16 7 4 3 0.09

Atrial fibrillation 42 17 2 1 0.54

Stroke or transient ischemic attack 16 6 6 4 0.28

COPD 24 10 2 1 <0.001a

Chronic heart failure 3 1 4 3 0.31

Kidney failure 6 2 2 2 0.45

NYHA functional class <0.001a

1 165 68 145 96

2 77 32 7 4

Echocardiographic data

MR gradeb <0.0001a

Mild 54 22 0 0

Mild-to-moderate 65 27 59 38

Moderate-to-severe 43 18 62 39

Severe 81 33 36 23

LV parameters

Interventricular septum diameter, mm 10.0 8.8-11.0 10.0 9.0-11.0 0.19

LV end-diastolic diameter, mm 54.3 49.0-60.0 50.0 46.5-53.9 <0.0001a

LV end-systolic diameter, mm 33.0 30.0-38.0 29.5 26.9-33.3 <0.0001a

LV posterior wall diameter, mm 10.0 8.9-11.0 9.4 8.3-10.5 0.009a

LVEF, % 65.0 60.0-70.0 67.4 65.1-71.3 0.0001a

LVOT-LV stroke volume, mL 64.0 53.3-75.3 67.4 58.8-80.7 0.002a

LV ejection time, ms 277 248-302 310 290-338 <0.0001a

LV end-diastolic volume, mL 150 122-187 103 82-122 <0.0001a

LV end-systolic volume, mL 53 37-67 34 24-42 <0.0001a

LV circumferential end-systolic midwall stress 151.6 122.9-166.8 107.1 90.4-129.4 <0.0001a

LV midwall fraction shortening, % 36.4 32.5-40.6 38.3 34.3-41.8 0.07

Global longitudinal strainb, % — — 23.3 20.8-25.7 —

Continued on the next page
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SHAP (SHapley Additive exPlanations) interpret-
ability method was used to determine the qualitative
importance of each echocardiographic feature in the
overall model predictive output for the entire
data set. The method is described further in the
Supplemental Methods.

Furthermore, the French predictive model was
used to batch predict phenogroups within the sub-
jects of the external and independent Canadian
Cohort. Kaplan-Meier curves were used to compare
the occurrence of MVS in each cohort (ie, derivation
and validation) and understand the benefit of
intervention across the HS and LS phenogroups.
Referral for MVS was left to the discretion of the pa-
tient’s treating physician, and types and indications
for MVS are outlined in Tables 1 and 2.
STATISTICAL ANALYSIS. We used nonparametric
methods for statistical inference. Continuous vari-
ables were summarized as the median and 1st and 3rd
IQRs with Mann-Whitney tests for comparison. Cat-
egorical variables were summarized as counts and
percentages with chi-squared tests for comparison.
The association of phenogroups with time-to-event
(ie, death) was examined using Cox-proportional

https://doi.org/10.1016/j.jcmg.2023.02.016


TABLE 1 Continued

French Cohort (N ¼ 243) Canadian Cohort (N ¼ 157)

P Value
Median
or N

1st and 3rd
IQR or %

Median
or N

1st and 3rd
IQR or %

MV and regurgitation parameters

E wave, cm/s 0.9 0.7-1.1 0.9 0.7-1.1 0.76

A wave, cm/s 0.7 0.6-0.9 0.7 0.6-0.8 <0.0001a

MV flow deceleration time, ms 184 150-220 220 180-267 0.02a

PISA effective regurgitant orifice, cm2 0.4 0.2-0.4 0.3 0.2-0.4 0.35

PISA regurgitant volume, mL 52.3 32.0-65.4 51.2 35.0-75.5 <0.0001a

Average e0 wave velocity, cm/s 10.0 8.5-12.0 8.0 6.5-10.0 0.002a

E/e0 ratio 9.6 7.6-12.3 11.2 8.3-13.5 0.32

MR velocity, m/s 5.60 5.29-5.97 5.56 5.09-5.93 <0.0001a

Volumetric regurgitant volume, mL 34.1 18.9-54.3 14.5 4.6-25.2 <0.0001

MV annulus calcification 0.003a

0 196 80 107 76

1 18 7 25 18

2 16 7 9 6

3 7 3 0 0

Unknown 6 3 0 0

MV morphology

Leaflet prolapse 137 56 88 56 0.95

Flail leaflet 62 26 30 19 0.13

Barlow’s disease 54 22 23 15 0.06

LA and RV parameters

LA volume, mL 77.0 52.7-107.0 69.3 53.2-89.5 <0.0001a

Basal RV diameter in 4-chamber view, mm 27.0 23.0-31.0 33.0 30.0-37.0 0.23

TAPSE, mm 25.0 22.0-28.0 24.1 21.7-27.0 0.23

MV intervention

MV surgery type

Repair 75 31 44 28 0.54

Replacement 9 4 25 16 <0.0001a

MV intervention indicationc

Development of symptoms (dyspnea, syncope, and so on) 46 55 50 72 0.003a

Decrease of LVEF <60% 12 14 16 23 0.045a

LV dilation (LVESD $40 or 45 mm)d 36 43 21 30 0.70

New-onset of atrial fibrillation 17 20 16 23 0.30

New-onset of pulmonary hypertension 12 14 8 12 0.90

Acute heart failure 3 4 2 3 1.00

Other (severe ventricular arrhythmias, indications
for CABG, and so on)

9 11 6 9 1.00

Median follow-up time, mo 38 16-63 81 48-102 <0.0001a

aP value is statistically significant. bEcho finding not used in modelling. cGiven than a patient can develop more than one indication for MV intervention, the sum of the rates
provided in a column can be >100%. dBased on the active practice guidelines (European or American) of the location (Europe or North America) of the referral center. Please be
advised that up to the 2021 update, European guidelines recommended intervention based on LV dilation if the LVESD was $45 mm rather than $40 mm, as in American
guidelines.

BMI ¼ body mass index; BP ¼ blood pressure; CABG ¼ coronary artery bypass grafting; COPD ¼ chronic obstructive pulmonary disease; LA ¼ left atrial; LV ¼ left ventricular;
LVEF ¼ left ventricular ejection fraction; LVESD ¼ LV end-systolic diameter; LVOT ¼ LV outflow track; MR ¼ mitral regurgitation; MV ¼ mitral valve; NYHA ¼ New York Heart
Association; PISA ¼ proximal isovelocity surface area; RV ¼ right ventricular; TAPSE ¼ tricuspid annular plane systolic excursion.
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hazard regression analysis. The association was
studied using 2 different models: a time-fixed
exposure model (Supplemental Figure 1) and a time-
dependent exposure model (details in the Supple-
mental Methods). The analyses were performed
independently for 2 study sites and for the classes (LS
and HS) derived from the ML algorithm. The HRs
corresponding to intervention obtained using the 2
models were compared according to phenogroups.
A subgroup analysis was performed to understand
the incremental value of phenogrouping in patients
with moderate or severe MR as defined by the con-
ventional approach. For this, we compared the initial
survival model with “MR classification” as an inde-
pendent predictor to an updated model with “phe-
nogroups and MR classification” as independent
predictors. We estimated the integrated discrimina-
tion improvement (IDI), net reclassification index

https://doi.org/10.1016/j.jcmg.2023.02.016
https://doi.org/10.1016/j.jcmg.2023.02.016
https://doi.org/10.1016/j.jcmg.2023.02.016


TABLE 2 Baseline Characteristics of Each Phenogroup in the French and Canadian Independent Cohorts

French Cohort Canadian Cohort

LS (n ¼ 117) HS (n ¼ 126)

P Value

LS (n ¼ 87) HS (n ¼ 70)

P Value
Median
or N

1st and 3rd
IQR or %

Median
or N

1st and 3rd
IQR or %

Median
or N

1st and 3rd
IQR or %

Median
or N

1st and 3rd
IQR or %

Clinical data

Age, y 63 46-76 61 55-69 0.95 63 53-72 59 50-74 0.45

Male 51 44 108 86 <0.001a 42 48 41 59 0.20

BMI, kg/m2 22.7 19.7-25.6 25.6 22.6-27.8 <0.001a 24.0 21.8-26.7 23.6 21.5-25.9 0.35

Systolic BP, mm Hg 134 121-150 140 130-153 0.02a 129 120-141 127 110-136 0.22

Diastolic BP, mm Hg 80 70-89 80 70-86 0.67 73 68-79 74 64-80 0.81

Heart rate, beats/min 75 68-81 72 64-83 0.19 63 56-72 66 58-73 0.61

Risk factors

Hypertension 31 26 52 41 0.02a 32 38 24 36 0.87

Diabetes mellitus 5 4 13 10 0.07 5 6 0 0 0.04a

Dyslipidemia 27 23 24 19 0.44 18 22 19 28 0.38

Current smoking 13 11 22 18 0.16 36 43 25 37 0.45

Coronary artery disease 2 2 14 11 0.003a 2 2 2 3 0.82

Atrial fibrillation 15 13 27 22 0.08 1 13 1 11 0.93

Stroke/transient ischemic attack 9 8 7 6 0.50 3 4 3 5 0.79

COPD 7 6 17 14 0.05a 0 0 2 3 0.11

Chronic heart failure 0 0 1 1 0.33 1 1 1 1 0.86

Kidney failure 2 2 4 3 0.46 1 1 1 1 0.88

NYHA functional class 0.046a 0.40

1 87 74 78 62 80 94 65 97

2 30 26 47 38 5 6 2 3

Echocardiographic data

MR gradeb <0.001a <0.001a

Mild 45 38 9 7 0 0 0 0

Mild-to-moderate 38 32 27 21 43 49 16 23

Moderate-to-severe 18 15 25 20 39 45 23 33

Severe 16 14 65 52 5 6 31 44

LV parameters

Interventricular septum diameter, mm 9 8-10 10 10-12 <0.001a 10 9-11 10 9-11 0.41

LV end-diastolic diameter, mm 49 46-54 59 55-62 <0.001a 49 46-52 52 48-57 0.0001a

LV end-systolic diameter, mm 31 27-34 37 32-41 <0.001a 29 26-32 32 28-34 <0.001a

LV posterior wall diameter, mm 9 8-11 10 9-11 0.001a 9 8-10 9 9-11 0.34

LVEF, % 66 61-71 64 60-68 0.08 68 65-71 67 64-71 0.54

LVOT-LV stroke volume, mL 59 52-69 67 57-80 0.0002a 65 59-79 70 61-81 0.18

LV ejection time, ms 280 247-300 272 249-303 0.79 310 290-340 310 289-332 0.54

LV end-diastolic volume, mL 122 103-142 185 162-214 <0.0001a 97 79-112 111 90-139 0.002a

LV end-systolic volume, mL 40 33-51 65 53-77 <0.0001a 31 24-39 37 27-48 0.006a

LV circumferential end-systolic midwall
stress

134.0 105.7-154.8 155.5 123.0-204.0 0.0003a 99.6 88.5-121.3 113.2 97.7-139.5 0.01a

LV midwall fraction shortening, % 37.6 33.0-40.9 35.6 30.4-40.6 0.16 38.5 34.9-41.9 37.8 32.3-41.6 0.29

Global longitudinal strainb, % — — — — — 23.1 21.4-25.1 23.5 20.2-26.2 0.72

Continued on the next page
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(NRI), and performed a comparison of the Harrell
C-indices from their respective Cox models.19

The survival analyses were performed using sur-
vival, ggsurvfit, gtsummary, dynpred, and ggplot2 li-
braries from R-4.1.1 (R Core team 2021, R Foundation
for Statistical Computing). C-index comparison and
NRI/IDI calculations were performed using the com-
pareC and predictABEL packages, respectively, in R-
4.1.1. Remaining statistical analyses were performed
using MedCalc ver. 20.0.11 (MedCalc Software), and
Orange Data Mining 3.29.3 with Python 3.8.8. Statis-
tical significance was concluded if alpha was #0.05
for all tests. The artificial intelligence (AI) model was
developed by conforming to the JACC PRIME
Checklist.20

RESULTS

We explored a total of 400 subjects with primary MR
to study the benefits and outcomes of MVS. The 243



TABLE 2 Continued

French Cohort Canadian Cohort

LS (n ¼ 117) HS (n ¼ 126)

P Value

LS (n ¼ 87) HS (n ¼ 70)

P Value
Median
or N

1st and 3rd
IQR or %

Median
or N

1st and 3rd
IQR or %

Median
or N

1st and 3rd
IQR or %

Median
or N

1st and 3rd
IQR or %

MV and regurgitation parameters

E wave, cm/s 0.8 0.7-1.0 1.0 0.8-1.3 <0.0001a 0.8 0.6-0.9 1.0 0.7-1.2 0.0001a

A wave, cm/s 0.7 0.6-0.8 0.7 0.5-0.8 0.26 0.7 0.5-0.8 0.7 0.5-0.8 0.77

MV flow deceleration time, ms 181 150-220 186 151-220 0.66 212 177-270 224 190-257 0.58

PISA effective regurgitant orifice, cm2 0.2 0.1-0.3 0.4 0.3-0.6 <0.0001a 0.2 0.1-0.2 0.4 0.2-0.5 <0.001a

PISA regurgitant volume, mL 31.5 16.0-49.0 64.6 43.0-86.0 <0.0001a 38.0 30.0-51.1 75.0 56.5-92.0 <0.001a

Average e0 wave velocity, cm/s 9.5 8.0-12.4 10.5 8.6-12.0 0.35 8.2 6.4-10.0 7.9 6.7-10.0 0.99

E/e0 ratio 8.6 6.6-10.8 10.2 8.3-13.6 <0.0001a 9.9 7.9-11.8 12.4 9.9-15.6 0.0005a

MR velocity, m/s 566 536-622 544 509-593 0.008a 557 509-597 555 510-592 0.84

Volumetric regurgitant volume, mL 20.0 11.5-35.6 50.2 32.0-68.7 <0.0001a 10.9 3.4-22.3 17.2 6.4-30.2 0.13

MV annulus calcification 0.054 0.21

0 100 86 96 76 62 80 45 71

1 6 5 12 10 10 13 15 24

2 9 8 7 6 6 8 3 5

3 2 2 5 4 0 0 0 0

Unknown 0 0 6 5 0 0 0 0

MV morphology

Leaflet prolapse 80 68 57 45 0.0003a 57 66 31 44 0.008a

Flail leaflet 12 10 50 30 <0.001a 10 12 20 29 0.007a

Barlow’s disease 29 25 25 20 0.36 11 13 12 17 0.43

LA and RV parameters

LA volume, mL 56 41-77 104 73-127 <0.001a 64 51-75 79 66-94 0.0004a

Basal RV diameter in 4-chamber view, mm 25 22-29 29 25-33 <0.001a 33 29-37 33 30-39 0.37

TAPSE, mm 24 21-27 26 22-29 0.03a 24 21-27 24 22-28 0.07

MV intervention

MV surgical type

Repair 14 12 61 48 <0.001a 21 24 23 33 0.23

Replacement 6 5 3 2 0.26 15 17 10 14 0.62

MV intervention indicationc

Development of symptoms (dyspnea,
syncope, and so on)

14 12 32 25 0.008a 29 33 21 30 0.66

Decrease of LVEF <60% 1 1 11 9 0.005a 9 10 7 10 0.94

LV dilation (LVESD $40 or 45 mm)d 2 2 34 27 <0.0001a 6 7 15 21 0.008a

New-onset of atrial fibrillation 3 3 15 12 0.006a 9 10 7 10 0.94

New-onset of pulmonary hypertension 7 6 6 5 0.67 7 8 1 1 0.06

Acute heart failure 3 2 3 2 0.09 1 1 1 1 0.88

Other (severe ventricular arrhythmias,
indications for CABG, and so on)

3 3 6 4 0.37 3 3 3 4 0.79

aP value is statistically significant. bEcho finding not used in modelling. cGiven than a patient can develop more than one indication for MV intervention, the sum of the rates provided in a column can be
>100%. dBased on the active practice guidelines (European or American) of the location (Europe or North America) of the referral center. Please be advised that up to the 2021 update, European guidelines
recommended intervention based on LV dilation if the LVESD was $45 mm rather than $40 mm, as in American guidelines.

HS ¼ high-severity phenogroup; LS ¼ low-severity phenogroup; other abbreviations as in Table 1.
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subjects in the French Cohort were used for model
training and the 157 subjects in the Canadian Cohort
were used for model validation. The study workflow
is outlined in Figure 1. Table 1 shows a descriptive
analysis and comparison of the baseline characteris-
tics of the 2 study populations. Compared with the
French Cohort, the external Canadian Cohort had
more females, lower systolic and diastolic blood
pressures (BPs), lower New York Heart Association
functional classification distribution, lower
prevalence of chronic obstructive pulmonary disease,
lower MR severity, and various other cardiac
structural differences including a higher LVEF, and
lower LV dimension parameters and LA volume (all
P < 0.05). Median follow-up time was 38 (IQR: 16-63)
months and 81 (IQR: 48-102) months in the French
and Canadian cohorts, respectively.

DEVELOPMENT OF PHENOGROUPS. In the heatmap
constructed from the HCA classification with the



FIGURE 2 Derivation of High- and Low-Severity Groups Based on Echocardiographic Data
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parameters are depicted. HS ¼ high severity; LVEF ¼ left ventricular ejection fraction; LS ¼ low severity; RVd ¼ right ventricular diameter; other abbreviations as

Figure 1.
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French cohort data depicted in Figure 2, there were 2
distinct clusters or phenogroups labeled LS (n ¼ 117)
and HS (n ¼ 126). The 2 phenogroup labels were used
as target labels to train a decision tree supervised
learning model that identified rules that define the
phenogroups. The performance of this prediction
model, assessed using Leave-One-Out cross-valida-
tion, demonstrated an area under the curve (AUC) of
0.829 (sensitivity: 84.9%; specificity: 77.8%), classi-
fication accuracy of 0.819, F1-score of 0.814, precision
of 0.815, and recall of 0.815, as shown in Figure 3.

COMPARISON OF PHENOGROUPS AND THE USE OF

EXPLAINABLE AI. The baseline clinical and echocar-
diographic characteristics of both cohorts by phe-
nogroup assignment are presented in Table 2. The 2
phenogroups showed varying severity of MR, with 1
phenogroup having a higher prevalence of conven-
tionally defined category of severe MR (HS phe-
nogroup) than the other (LS phenogroup) both in
derivation and validation cohorts (Table 2).

On comparing the 2 phenogroups in the French
Cohort, LS had less males, lower body mass index,
lower systolic and diastolic BPs, less patients with
hypertension, coronary artery disease, and a lower
percentage of New York Heart Association functional
class II and severe MR (all P < 0.05).

SHAP values were calculated and depicted in a bee
swarm summary plot, as shown in Figure 3, to
illustrate the impact of each feature’s contribution to
the prediction of HS and LS phenogroups. In this
study, SHAP analysis suggests that LV end-diastolic
volume (LVEDV), E/e0 ratio, MR regurgitant volume
by PISA, interventricular septal diameter, left ven-
tricular end-systolic volume (LVESV), MV decelera-
tion time, and left ventricular end-systolic dimension
(LVESD) are qualitatively more critical for severity
classification than the remaining parameters, based
on the magnitude of their influence for most of the
classification instances (Figure 3A).

PHENOGROUPING AND ITS RELATIONSHIP TO

INTERVENTIONS AND OUTCOMES. When comparing
outcomes in the derivation cohort, the HS phe-
nogroup had a faster referral rate for MVS (P <

0.0001) (Figure 4A). On incorporating time-to-surgery
as a covariate in the Cox model (ie, time-dependent
exposure with LS� and HS� representing the
nonsurgical subgroup and LSþ and HSþ representing
the subgroups with MVS), the HSþ phenogroup
showed lower rates (ie, survival benefit) of the pri-
mary outcome of all-cause mortality (P ¼ 0.047)
(Figure 4B), whereas the LS phenogroup showed no
significant difference in event-free survival when
stratified by MV surgery occurrence (P ¼ 0.7)
(Figure 4C). The baseline clinical and echocardio-
graphic characteristics of HS nonsurgical (HS�) and
both surgical HS and LS subgroups (HSþ; LSþ) for both



FIGURE 3 Illustration of Top 10 Echocardiographic Parameters on Model Output and Predictive Performance
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cohorts are presented and compared in Supplemental
Tables 2 and 3.
VALIDATION OF PHENOGROUPING AND OUTCOME

ASSESSMENT IN THE CANADIAN COHORT. The
French cohort-trained model was used to assign phe-
nogroup labels to the external Canadian Cohort (ie,
batch prediction) using the rules defined by the su-
pervised binary decision tree. In the Canadian Cohort,
the LS (n ¼ 87) phenogroup contained more diabetic
subjects than HS (n ¼ 70). Like the French Cohort, HS
had a higher prevalence of patients who were cate-
gorized to have severe MR as per conventional grading
(Table 2). The statistically significant parameters
separating LS and HS in the Canadian Cohort are
LVESV, LVESD, LVEDV, LV end-diastolic diameter, LV
circumferential end-systolic midwall stress, MV E
wave velocity, effective regurgitant orifice area by
PISA, and E/e0 ratio, most of which align adequately
with the SHAP interpretation of the French model.
However, there was no difference in LV systolic
function as characterized by LVEF or global longitu-
dinal strain, a marker of subclinical LV disease.21

The Canadian HS phenogroup maintained a faster
referral rate for MVS in comparison with the LS phe-
nogroup (P ¼ 0.05) (Figure 4D). Moreover, on incor-
porating time-to-surgery as a covariate in the Cox
model (ie, time-dependent exposure) after MVS, pa-
tients in the HSþ phenogroup also presented lower
rates (ie, survival benefit) on the primary endpoint
resulting in a longer event-free survival (P ¼ 0.02), in
comparison with the LS phenogroup (P ¼ 0.5)
(Figures 4E and 4F). The main indications for surgical
intervention in both cohorts’ phenogroups and sur-
gical groups are described in Tables 1 and 2.

Missing values from standard transthoracic echo-
cardiography are difficult to overcome when assess-
ing risk and outcomes using traditional decision trees
such as in severe MR, and accurate regurgitant vol-
ume (RVol) is susceptible to being unable to obtain in
various situations (ie, nonholosystolic or multiples
jets). Therefore, we trained the French model using 2
measures of RVol: PISA at SHAP Rank 3 (Figure 3A)
and volumetric method at SHAP Rank 11 (not shown).
We tested the utility of having redundancy in RVol by
removing the variables during batch prediction of the
Canadian Cohort. There was minimal difference in
model performance as indicated by AUC when the
volumetric RVol was removed, but the model per-
formed worse when the RVol by PISA method was
removed (Supplemental Table 4) compared with the
original model, as we would expect from our SHAP
analysis.

ASSESSMENT OF THE INCREMENTAL VALUE. We com-
bined both cohorts and assessed the incremental
value of phenogrouping vs conventional grades of MR

https://doi.org/10.1016/j.jcmg.2023.02.016
https://doi.org/10.1016/j.jcmg.2023.02.016
https://doi.org/10.1016/j.jcmg.2023.02.016
https://doi.org/10.1016/j.jcmg.2023.02.016


FIGURE 4 Outcomes of Phenogrouping Model in Derivation and Validation Cohorts in Time-Dependent Exposure Analysis
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Time-to-event data depicted (A) and (D) as Kaplan-Meier curves and (B), (C), (E), and (F) are time-dependent Cox models with time to MVS as

a covariate. (A) and (D) show how the HS phenogroup had faster referral for MV surgery in both cohorts (French: P < 0.001; Canadian:

P ¼ 0.05). (B) and (E) show that there was a significant primary outcome benefit with surgery in the HS phenogroups in both cohorts (French:

P ¼ 0.047; Canadian: P ¼ 0.020). (C) and (F) show, in the LS phenogroup, that surgery did not show any significant benefit with surgery in
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severity for understanding the effects of MVS on
event-free survival. The event-free survival predic-
tion for the phenogroups with mild-to-moderate MR
was similar. However, in moderate-to-severe or se-
vere MR, a Cox model that included the phenogroup
categories along with conventional grading showed a
significant improvement in event-free survival with
the performance of MVS in comparison with another
model that only included the conventional grading
(P ¼ 0.048) (Table 3). In fact, the addition of phe-
nogrouping information to the initial model improved
the Harrel C-index, reclassification (continuous NRI:
0.56 [95% CI: 0.20-0.93]; P < 0.005), and discrimi-
nation (IDI: 0.0200 [95% CI: �0.0002 to 0.0350];
P ¼ 0.055) for event-free survival during the follow-
up period (Table 3). Moreover, the addition of the
phenogrouping information to using LV size, defined
as a cutoff at LVESD $40 mm, provided a similar
improvement in reclassification (NRI: 0.55 [95% CI:
0.19-0.92]: P < 0.005), but not discrimination (IDI:
0.012 [95% CI: �0.007 to 0.033]; P ¼ 0.200) in the
moderate-to-severe or severe MR group.

DISCUSSION

Risk stratifying patients and determining the best
timing and course of treatment for primary MR is a
clinical dilemma for physicians due to its heteroge-
neous nature, and the preferred treatment option (ie,
MVS-repair) is an invasive intervention with its asso-
ciated risks.22,23 In this retrospective study of 400
primary MR patients from France and Canada, we
developed a simple and objective model integrating
standard noninvasive echocardiographic parameters
that attempts to predict the patient population that
would benefit from MVS (Central Illustration). Leave-
One-Out cross-validation of the model yielded an
AUC of 0.829. Themodel was then tested in an external
and independent subset of subjects, further demon-
strating its ability to stratify subjects who benefit from
MVS in terms of long-term clinical outcomes.
In patients with moderate-to-severe or severe primary
MR, we observed a higher prognostic ability to predict
the primary endpoint of all-cause mortality, in com-
parison with the conventional classification method,
as depicted by improved C-index and NRI (Table 3).

CLINICAL INTERPRETATION OF AI MODEL FINDINGS.

Our model suggests that if a subject with primary MR
was assigned to HS, surgery could lead to a reduction
in risk of all-cause mortality, and if assigned to LS, the
risk reduction after MVS might very well be minimal.
The French model’s most impactful features are
aligned with the main variables reflecting MR severity
and LV dilation and function (ie, LVEDV, LVESV, E/e0,
MR RVol by PISA, and interventricular septal diam-
eter [IVSd] per the SHAP), some of which reflect
LVESD and LVEF variables included in the current
guidelines. In the external Canadian Cohort, the
French model was again able to predict who would
benefit from MVS in the HS cohort.

The American College of Cardiology/American
Heart Association and European Society of Cardiol-
ogy/European Association for Cardio-Thoracic
Surgery guidelines guide treatment plans by first
identifying severe MR, and then symptoms and LV
systolic dysfunction.6,7 Although both the valve and
left ventricle drive treatment, they are assessed in
isolation and have inherent limitations in assessing
disease severity in various subsets of patients.
Compared with the LSþ phenogroup who did not
show a statistically significant outcomes benefit after
surgery, the HS- phenogroup in the French cohort had
more males, higher body mass index, higher systolic
BP, more smokers, a higher IVSd, LVESV, LVEDV,
LVESD, LV posterior wall diameter, LV outflow tract
stroke volume, LV circumferential end-systolic mid-
wall stress, MV deceleration time, basal RV diameter,
and LA volume (all P < 0.05), but similar effective
regurgitant orifice area and RVol values (both by PISA
and volumetric methods; P > 0.05; Supplemental
Table 1). Thus, the differences between the HS� and
LSþ subgroups represent where the linearity of the
current guidelines may have limited the assessment
of overall severity.

In a hypothetical clinical scenario, a physician ob-
serves a LS subject’s symptoms (eg, shortness of
breath) in the setting of moderate-severe primary MR
and opts for intervention thinking the primary MR is
the main cause of symptoms. Postoperatively, this
hypothetical subject may retain their symptoms with
the same mortality and hospitalization risk as before
the intervention. This observation underlines that the
presence of symptoms is not necessarily appropriate
to assess the MR severity, risk of poor outcomes, and
response to intervention. The phenogrouping model’s
findings in the present study indicate that the subjects
in the LS phenogroup who receivedMVSmay have had
an underlying condition not amenable to surgery
suggesting uncertainty in the primary diagnosis that
could be uncovered before intervention by an inte-
grative AI/ML-derived tool. Conversely, if a similar
subject had been identified as a HS subject using the
proposedmodel, then this would support a physician’s
plan for surgery. As a matter of fact, we have shown
that HS patients who undergo surgery have improved
outcomes, whereas LS patients show no clear evidence
of benefit from surgery. Case studies are detailed in
Supplemental Figure 2.

https://doi.org/10.1016/j.jcmg.2023.02.016
https://doi.org/10.1016/j.jcmg.2023.02.016
https://doi.org/10.1016/j.jcmg.2023.02.016


TABLE 3 Incremental Performance Value of the Model

Conventional
MR Classification

Addition of
ML-AI Model P Value

Harrel C-index (95% CI) 0.71 (0.62-0.80) 0.75 (0.66-0.84) 0.048a,b

Reference: Conventional Classification of Moderate-to-Severe and Severe MR
Addition: ML-AI Model

Value 95% CI P Value

NRI 0.56 0.20-0.93 <0.002a

IDI 0.02 �0.0002 to 0.035 0.055

Reference: Conventional Classification of Moderate-to-Severe and Severe MR and LVESD >40 mm
Addition: ML-AI Model

Value 95% CI P Value

NRI 0.55 0.19-0.92 <0.003a

IDI 0.013 �0.007 to 0.033 0.202

Comparison of conventional MR grading to the ML-AI model using Cox proportional hazard regression Harrell C-index and NRI-IDI in the French and Canadian cohort on the
mortality outcome after surgery in moderate-to-severe and severe MR patients. aP value is statistically significant. bP value was calculated by comparing the Harrel C-index
prognostic indices from each model’s Cox proportional hazard regression in a receiver-operating characteristic analysis.

AI ¼ artificial intelligence; IDI ¼ integrated discrimination improvement; ML ¼ machine learning; NRI ¼ net reclassification index; other abbreviations as in Table 1.
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A recent study using topological data analysis,
another unsupervised ML algorithm that uses clinical
similarity to cluster subjects, again highlights ML’s
ability to uncover distinct phenotypes of LV remod-
eling with primary MR. The group found that the
cluster with the highest prevalence of diastolic
dysfunction had a higher incidence of adverse events
or MVS.24 Our French model had similar findings such
as the higher risk group having elevated LVESV,
LVEDV, IVSd, E wave, E/e0 ratio, LA volume, and lower
e0, indicating that our technique also incorporates
diastolic dysfunction during model training. Although
topological data analysis as a method for phenog-
rouping is attractive,25,26 it is usually reserved for
situations where more straightforward cluster ana-
lytic techniques may not provide meaningful sub-
groups. Future studies would need to assess the
incremental value of one method over the other in
predicting event-free survival following MVS.

FUTURE DIRECTIONS FOR AI IN PRIMARY MR

MANAGEMENT. These findings suggest that a ML al-
gorithm for phenogroup prediction could work in
partnership with current risk stratification guidelines
by using an integrative approach for disease charac-
terization and management in primary MR. ML
models replicate how physicians aggregate data in
real life as the entire constellation of variables is used
to determine a prediction, rather than the traditional
single line of binary decisions. However, an auto-
mated risk classifier requires training with larger,
more clinically diverse data sets, with multiple
rounds of validation to determine the most important
features for risk stratification. Features that could be
implemented in future ML models for primary MR
models may include advanced echocardiographic
measures, such as global longitudinal strain, regur-
gitant fraction, pulmonary artery pressure, or RV–
pulmonary artery coupling. Our findings suggest
that ML can provide a useful decision-making tool for
surgical intervention in primary MR.

STUDY STRENGTHS AND LIMITATIONS. Although the
gender and comorbidity distributions were largely
balanced between the 2 cohorts, we did not incorpo-
rate the ethnicity or race of the patients. There was no
significant difference in MV morphology between the
cohorts, but standardization of surgical approach and
MV morphology at the beginning of follow-up in
future studies would benefit the assessment of ML/AI
approaches for risk prediction in primary MR. For
validation purposes of this study, we were also
limited to using echocardiographic parameters that
were measured in both cohorts. Although we could
not use more advanced parameters, the basic mea-
sures in our study add important clinical implications
to the existing knowledge of MR and to the inter-
pretability of the model. Aside from limitations
related to its retrospective nature, there are the
smaller sample size and low event incidence. The
model was thus underpowered for statistical analyses
such as multivariate Cox analyses to adjust event-free
survival curves for comorbidities or exercise data.
The small number of subjects with moderate-severe
or severe MR also limits the findings of the current
study and should be studied further in a larger group
of MR subjects. Future studies could use direct
regression of the top features in larger and more
diverse samples, potentially with the use of more
robust AI/ML techniques applied directly to
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AI ¼ artificial intelligence; AUC ¼ area under the curve; CA ¼ classification accuracy; LA ¼ left atrium; LV ¼ left ventricle; LVEDV ¼ left ventricle end-diastolic volume;

ML ¼ machine learning; MV ¼ mitral valve; MVS ¼ mitral valve surgery (replacement/repair); MR ¼ mitral regurgitation; PISA ¼ proximal isovelocity surface area.
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echocardiographic images, with a focus on follow-up
and outcomes based on the subgroup.

CONCLUSIONS

In conclusion, our preliminary study with an AI/ML
model integrating standard, quantitative, and objec-
tive echocardiographic parameters demonstrated the
ability to predict a patient population with primary
MR that would benefit from MVS in 2 separate and
independent cohorts, and incrementally improved
the prognostic value over the conventional classifi-
cation method in subjects with moderate-severe and
severe MR. These preliminary data suggest the
potential value of a more robust and global integra-
tion of echocardiographic data to enhance risk
stratification in patients with primary MR and thus
to guide treatment by determining interventional
benefit. The need for further trials with large,
diverse populations and systematic feature selection
to further improve the model prediction and clinical
use is warranted.
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APPENDIX For an expanded Methods section
and the PRIME Guidelines 2019 Checklist as
well as supplemental figures, tables, and ref-
erences, please see the online version of this
paper.
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