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In this paper, we study multivariate ranks and quantiles, defined using
the theory of optimal transport, and build on the work of Chernozhukov et
al. (Ann. Statist. 45 (2017) 223–256) and Hallin et al. (Ann. Statist. 49 (2021)
1139–1165). We study the characterization, computation and properties of
the multivariate rank and quantile functions and their empirical counterparts.
We derive the uniform consistency of these empirical estimates to their pop-
ulation versions, under certain assumptions. In fact, we prove a Glivenko–
Cantelli type theorem that shows the asymptotic stability of the empirical
rank map in any direction. Under mild structural assumptions, we provide
global and local rates of convergence of the empirical quantile and rank
maps. We also provide a sub-Gaussian tail bound for the global L2-loss of
the empirical quantile function. Further, we propose tuning parameter-free
multivariate nonparametric tests—a two-sample test and a test for mutual
independence—based on our notion of multivariate quantiles/ranks. Asymp-
totic consistency of these tests are shown and the rates of convergence of
the associated test statistics are derived, both under the null and alternative
hypotheses.

1. Introduction. Suppose that X is a random vector in R
d , for d ≥ 1, with distribution

ν. When d = 1, the rank and quantile functions of X are defined as F and F−1 (the inverse1

of F ), respectively, where F is the cumulative distribution function of X. Moreover, when
d = 1, quantile and rank functions and their empirical counterparts are ubiquitous in statis-
tics and form the backbone of what is now known as classical nonparametrics (see, e.g., [50]
and the references therein) and are important tools for inference (see, e.g., [40] and the refer-
ences therein). In this paper, we study many properties of multivariate (empirical) ranks and
quantiles defined using the theory of optimal transport (OT), as introduced in [18].

Unlike the real line, the d-dimensional Euclidean space R
d , for d ≥ 2, has no natural or-

dering. This has been a major impediment in defining analogues of quantiles and ranks in
R

d , for d ≥ 2. Several notions of multivariate quantiles have been proposed in the statisti-
cal literature—some based on data depth ideas (see, e.g., [54, 60, 87]) and some based on
geometric ideas (see, e.g., [17, 39, 49]); see [72] and [37] for recent surveys on this topic.
However, most of these notions do not enjoy the numerous appealing properties that make
univariate ranks and quantiles so useful. For example, most of these notions can lead to mul-
tivariate quantiles that may take values outside the support of the distribution ν.

To motivate the notions of ranks and quantiles based on the theory of OT (the subject of
our study), let us first consider the case when d = 1. Suppose that X ∼ ν has a continuous
distribution function F . An important property of the one-dimensional rank function F is that
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1F−1(p) := inf{x ∈R : p ≤ F(x)}.
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F(X) ∼ μ where μ ≡ Uniform([0,1]), that is, F transports (see (6) for the formal definition)
the distribution ν to μ. Similarly, the quantile function F−1 (which is the inverse of the rank
map) transports μ to ν, that is, F−1(U) ∼ X where U ∼ μ. In fact, it can be easily shown that
the quantile function F−1 (or F ) is the unique monotone nondecreasing map that transports
μ to ν (or ν to μ). Moreover, if ν has finite second moment, it can be shown that F−1 is
the almost everywhere (a.e.) unique map (on [0,1]) that transports μ to ν and minimizes the
expected squared-error cost, that is,

(1) F−1 = arg min
T :T (U)∼ν

E
[(

U − T (U)
)2]

, where U ∼ μ

and the minimization is over all functions T that transport μ to ν (and thus the connection to
OT); see Section 3 for the details. The rank function F also minimizes the expected squared-
error cost where now one considers maps that transport ν to μ.

The multivariate quantile and rank functions using OT essentially extend the above prop-
erties of univariate rank and quantile functions. Now let μ be an absolutely continuous prob-
ability measure with respect to (w.r.t.) Lebesgue measure on R

d (d ≥ 1) and supported on
a compact convex set S ; for example, we can take μ to be Uniform([0,1]d) or uniform on
the ball of radius one around 0 ∈ R

d . We often refer to μ as the reference distribution and
will define quantiles relative to this reference measure (when d = 1 we usually take μ to be
Uniform([0,1])). Let ν be another probability measure in R

d which we term as the target

distribution; we think of ν as the population distribution of the observed data. We define
the multivariate quantile function Q : S → R

d of ν w.r.t. μ as the solution to the following
optimization problem:

(2) Q := arg min
T :T (U)∼ν

E
[∥∥U − T (U)

∥∥2]
, where U ∼ μ,

and the minimization is over all functions T : S → R
d that transport μ to ν; cf. (1) and

see Section 3 for the details. Here, ‖ · ‖ denotes the usual Euclidean norm in R
d . Moreover,

if ν does not have a finite second moment, the above optimization problem might not be
meaningful but the notion of multivariate quantiles (using OT) can still be defined as follows.
By the Brenier–McCann’s theorem (see Theorem 2.2), there exists an a.e. unique map Q :

S → R
d—which we define as the quantile function of ν (w.r.t. the reference measure μ)—

that is the gradient of a convex function and transports μ to ν; that is, Q(U) ∼ ν where
U ∼ μ. Further, it is known that when (2) is meaningful, the above two notions yield the
same function Q. Note that when d = 1, the gradient of a convex function is a monotone
nondecreasing function, and thus the above two characterizations of the quantile function Q

are the exact analogues of the one-dimensional case described in the previous paragraph.
Although the rank function can be intuitively thought of as the inverse of the quantile

function, such an inverse might not always exist—especially when ν is a discrete probabil-
ity measure (which arises naturally when defining the empirical rank map). In Section 3,
we tackle this issue and use the notion of the Legendre–Fenchel transform (see Section 2)
to formally define the rank function. Indeed, if the reference and the target distributions are
absolutely continuous, this notion of rank function is the inverse of the quantile function al-
most everywhere (a.e.). Furthermore, it can be shown that (see Proposition 3.1; also see [20],
Theorem 1), under mild regularity conditions, the quantile and rank functions are continuous
bijections (i.e., homeomorphisms) between the (interiors of the) supports of the reference and
target distributions and they are inverses of each other. It is worth noting that when d = 1, a
continuous bijective rank map corresponds to the distribution function being continuous and
strictly increasing.

In Section 3, we describe some important properties of the defined multivariate quantile
and rank functions; also see Section A.2 (of the Supplementary Material [33]). For exam-
ple, in Lemma 3.2 we show that, under appropriate conditions, the rank map approaches a
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limit along every ray that depends only on the geometry of S (and not on ν); this plays a
crucial role in proving the uniform convergence result for the empirical rank map in Theo-
rem 4.1. Some useful properties of the multivariate quantile and rank functions, including:
(i) equivariance under orthogonal transformations when the reference distribution is spheri-
cally symmetric, and (ii) decomposition/splitting into marginal quantile/rank functions when
X ∼ ν has mutually independent subvectors and μ = Uniform([0,1]d ), are given in Sec-
tion A.3 of the Supplementary Material [33]. Thus the choice of the reference distribution
μ affects the properties of the multivariate ranks/quantiles. In practice, this choice should
be dictated by the application at hand; see Remark 3.11 for a discussion on this and some
preliminary guidelines on the choice of μ. A complete study of the pros and cons of different
reference distributions is an important and open research question beyond the scope of this
paper.

Given n i.i.d. random vectors X1, . . . ,Xn ∼ ν in R
d , in Sections 3.1, we discuss the char-

acterization and properties of the empirical quantile and rank maps, which are defined via (2)
but with ν replaced by the empirical distribution of the data. Thus, the computation of the
empirical quantile map reduces to a semidiscrete OT problem; see Section 3.2 for the details
where we show that the empirical quantile map can be computed by solving a convex opti-
mization problem with n variables. An attractive property of the empirical ranks, when d = 1,
that makes ranks useful for statistical inference is that they are distribution-free. Lemma 3.4
shows that a distribution-free version of empirical multivariate ranks can be obtained by ex-
ternal randomization (also see Lemma 6.1). Although our approach of defining multivariate
quantiles/ranks via the theory of OT has many similarities with those of [18, 37] and [11],
there are subtle and important differences; in Section 3.3 we discuss these connections.

The main statistical contributions of this paper are divided in the three sections: Sec-
tions 4, 5 and 6. In the following, we highlight some of the main results in these sections
and their novelties.

(I) Uniform convergence of empirical quantile/rank maps: In Section 4, we state our first
main theoretical result on the almost sure (a.s.) uniform convergence of the empirical quantile
and rank maps to their population counterparts. An informal statement of this result (The-
orem 4.1) is given below. Suppose that μ is supported on a compact convex set S ⊂ R

d

with nonempty interior. Let Y be the support of ν and let {̂νn}n≥1 be a sequence of random
probability distributions converging weakly to ν a.s. Suppose that the quantile map Q of ν

(w.r.t. μ) is a continuous bijection from Int(S) (the interior of S) to Int(Y). Then, with prob-
ability (w.p.) 1, the empirical quantile and rank maps corresponding to ν̂n (w.r.t. μ)—Q̂n and
R̂n—converge uniformly to Q and R ≡ Q−1, respectively, over compacts inside Int(S) and
Int(Y). Moreover, if S ⊂ R

d is a strictly convex set (see Definition 2.3) then R̂n converges
uniformly to R = Q−1 over the whole of Rd a.s.; furthermore, w.p. 1, the tail limit of R̂n

stabilizes along any direction. We mention below two main novelties of the above result.
(a) One of the main consequences of Theorem 4.1 is the a.s. convergence of the empirical

rank function R̂n on the whole of Rd , under the strong convexity condition on the support
S of μ. This can indeed be thought of as a generalization of the famous Glivenko–Cantelli
theorem for rank functions when d > 1. Moreover, our result does not need any boundedness
assumption on the support of ν and even applies when the second moment of ν is not finite.
This is a major improvement over the corresponding results in [18], Theorem 3.1 and [11],
Theorem 2.3. Furthermore, unlike in [37], μ can be any absolutely continuous distribution
supported on a compact convex domain with minor restrictions on its boundary. Note that for
Theorem 4.1 to hold we need to assume that Q is a homeomorphism; in particular, if ν has
a convex support with a bounded density then the above holds; see, for example, Proposi-
tion 3.1.

(b) Our result (see (22) of Theorem 4.1) implies that when the population rank map is a
homeomorphism, the tail limits of the estimated rank maps R̂n depend neither on ν nor on μ;
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rather they depend on the geometry of S—the support of the reference distribution μ. This is
reminiscent of the case when d = 1 where the limits of the distribution (rank) function toward
−∞ and +∞ are always 0 and 1, respectively (irrespective of ν).

(II) Rate of convergence of empirical quantile/rank maps: Theorem 4.1 naturally leads
to the question: “What are the rates of convergence of the empirical quantile/rank maps—
Q̂n and R̂n”? We study this question in detail in Section 5. We first introduce the following
notation:

(3) rd,n :=

⎧
⎪⎪⎨
⎪⎪⎩

n−1/2 d = 1,2,3,

n−1/2 logn d = 4,

n−2/d d > 4.

(a) In Theorem 5.2, we provide upper bounds on the L2-global risk of the empirical quan-
tile map Q̂n. In particular, we show that, for all n ≥ 1,

E

[∫
‖Q̂n − Q‖2 dμ

]
≤ Crd,n,

where C > 0 is a constant that depends only on μ and ν. This result is proved using
Lemma 5.1, which is of independent interest, and gives a quantitative stability estimate for
OT maps in the semidiscrete setting. Note that the rates obtained in Theorem 5.2 are strictly
better than those obtained for OT maps in [81], Theorem 1.1, and [53], Section 4. Further-
more, in Theorem 5.2 we also give a sub-Gaussian tail bound for

∫
‖Q̂n − Q‖2 dμ. We

believe that Theorem 5.2 gives the exact rate of convergence for the empirical quantile map
Q̂n when d > 4; see [43] where the conjecture of this optimality of the rate n−2/d (for d > 4)
is made. Furthermore, Theorem 5.2 holds under minimal structural assumptions on ν—we
only assume strong convexity of the underlying potential function (see (7) below).

(b) In Theorem 5.3, under appropriate assumptions, we give an upper bound on the risk of
the sample rank map, that is, we show that, for all n ≥ 1,

E

[
1

n

n∑

i=1

∥∥R̂n(Xi) − R(Xi)
∥∥2

]
≤ Krd,n,

where K > 0 is a constant that depends only on μ and ν. Deriving such a rate result for the
multivariate sample rank map R̂n is a bit more tricky as R̂n is not an OT map per se, but is
defined via the Legendre–Fenchel transform (see Section 3 for the details).

(c) We address the local uniform rate of convergence of the empirical quantile and rank
maps in Theorem 5.4. The pointwise rate of convergence of empirical rank/quantile maps,
defined via the theory of OT, is indeed a hard problem when d > 1 and not much is known
in the literature. Under similar assumptions as in Theorems 5.2 and 5.3, we show that Q̂n

and R̂n converge locally uniformly to Q and R, respectively, at the rate r
1/(d+2)
d,n . We con-

sider Theorem 5.4 as a first step toward understanding the local behavior of transport maps.
The proof of this result uses Theorem 5.2 and a correspondence result between the local
uniform and local L2 rates of convergence of the empirical rank and quantile functions (see
Proposition F.1 in the Supplementary Material [33]) that could be of independent interest.

(III) Applications to nonparametric testing: In Section 6, we investigate two statistical ap-
plications of the multivariate rank and quantile functions studied in this paper—we propose
methodology for multivariate two-sample goodness-of-fit testing (in Section 6.1) and testing
for mutual independence (in Section 6.2). Both of the proposed tests are tuning parameter-
free. Applying the uniform convergence results of Theorem 4.1, we prove the consistency
of these proposed tests, that is, the power of these tests converges to 1 under fairly general
assumptions on the underlying distributions (see Propositions 6.2 and 6.5). Moreover, using
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the results in Section 5 we provide rates of convergence of the test statistics (for both the test-
ing problems), under both the null and alternative hypotheses; see Propositions 6.3, 6.4, 6.6
and 6.7. This leads to omnibus consistent nonparametric tests that are computationally feasi-
ble, and being rank based, do not depend on moment assumptions on the underlying distri-
bution(s).

Although we state most of our results in terms of multivariate quantile and rank functions,
many of the results have immediate implications in estimation of OT maps. Indeed, in recent
years there has been a deluge of work at the intersection of statistics and the theory of OT;
see, for example, [27, 28, 48, 62, 63, 65–67, 82] and the references therein.

The paper is organized as follows. We introduce notation and some basic notions from
convex analysis and the theory of OT in Section 2. Section 3 defines the multivariate quan-
tile and rank maps and their empirical counterparts and investigates some of their properties,
including computation. The asymptotic results on the uniform a.s. convergence of the empir-
ical quantile and rank maps are given in Section 4. Global and local rates of convergence of
the empirical quantile/rank maps are given in Section 5. The two statistical applications in
nonparametric testing are given in Section 6. Due to space constraints, all the proofs of the
main results, additional (technical) results, further remarks and discussions are relegated to
the Supplementary Material [33].

2. Preliminaries. We start with some notation and recall some important concepts from
convex analysis that will be relevant for the rest of the paper. For u, v ∈ R

d , we use 〈u, v〉

to denote the dot product of u and v and ‖ · ‖ denotes the usual Euclidean norm in R
d . For

y1, . . . , yk ∈R
d , we write Conv(y1, . . . , yk) to denote the convex hull of {y1, . . . , yk} ⊂R

d . A
convex polyhedron is the intersection of finitely many closed half-spaces. A convex polytope

is the convex hull of a finite set of points. The interior, closure and boundary of a set X ⊂ R
d

will be denoted by Int(X ), Cl(X ), and Bd(X ), respectively. The Dirac delta measure at x is
denoted by δx . For δ > 0 and x ∈ R

d , Bδ(x) := {y ∈ R
d : ‖y − x‖ < δ} denotes the open ball

of radius δ around x. The set of natural numbers will be denoted by N.
The domain of a function f : Rd → R ∪ {+∞}, denoted by dom(f ), is the set {x ∈ R

d :

f (x) < +∞}. A function f is called proper if dom(f ) �= ∅. A function f ∈ L∞(S), where
S ⊂ R

d , if supx∈S |f (x)| < ∞. We say that f is lower semicontinuous (l.s.c.) at x0 ∈ R
d if

lim infx→x0 f (x) ≥ f (x0). For a proper function f :Rd →R∪{+∞}, the Legendre–Fenchel

dual (or convex conjugate or simply the dual) of f is the proper function f ∗ : Rd → R ∪

{+∞} defined by

f ∗(y) := sup
x∈Rd

{
〈x, y〉 − f (x)

}
, for all y ∈ R

d .

It is well known that f ∗ is a proper, l.s.c. convex function. The Legendre–Fenchel duality
theorem says that for a proper l.s.c. convex function f , (f ∗)∗ = f . Throughout the paper, we
will assume that all the convex functions that we will be dealing with are l.s.c.

Given a convex function f : Rd → R ∪ {+∞}, we define the subdifferential set of f at
x ∈ dom(f ) by

∂f (x) :=
{
ξ ∈R

d : f (x) + 〈y − x, ξ〉 ≤ f (y), for all y ∈ R
d}

.

Any element in ∂f (x) is called a subgradient of f at x. The subdifferential ∂f (x) is empty
if f (x) = +∞ and nonempty if x ∈ Int(dom(f )). If f is differentiable at x, then ∂f (x) =

{∇f (x)}. A convex function is a.e. differentiable (w.r.t. Lebesgue measure) on Int(dom(f )).
As a consequence, a convex function is continuous in the interior of its domain. For a convex
function f :Rd →R∪{+∞}, we sometimes just write ∇f (x) to denote the (sub)differential
of f at x with the understanding that when f is not differentiable at x we can take ∇f (x) to
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be any point in the set ∂f (x). This avoids the need to deal with the set-valued function ∂f .
However, sometimes we will need to view ∂f as a multivalued mapping, that is, a mapping
from R

d into the power set of Rd , and we will use the notation ∂f in that case. We will find
the following results useful (see, e.g., [79], Proposition 2.4).

LEMMA 2.1 (Characterization of subdifferential). Let f : Rd → R∪ {+∞} be a proper

l.s.c. convex function. Then for all x, y ∈ R
d ,

(4) 〈x, y〉 = f (x) + f ∗(y) ⇐⇒ y ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(y).

Lemma 2.1 shows a one-to-one relation between the subdifferential set of a convex func-
tion and its Legendre–Fenchel dual.

DEFINITION 2.1 (Strongly convex function). A function f :Rd →R∪{+∞} is strongly

convex with parameter λ > 0 if for all x, y ∈ dom(f ),

f (y) ≥ f (x) + ∇f (x)�(y − x) +
λ

2
‖y − x‖2.

DEFINITION 2.2 (Set convergence). Let K1 ⊂ K2 ⊂ . . . be an increasing sequence of
sets in R

d . We say that Kn increases to K ⊂ R
d , and write Kn ↑ K , if for any compact set

A ⊂ Int(K) there exists n0 = n0(A) ∈ N such that A ⊆ Kn for all n ≥ n0.

The above notion is slightly stronger than just assuming K1 ⊂ K2 ⊂ . . . and
lim infn→∞ Kn = K .

A supporting hyperplane of a closed convex set S ⊂ R
d is a hyperplane that has both of

the following two properties: (i) S is entirely contained in one of the two closed half-spaces
bounded by the hyperplane and (ii) S intersected with the hyperplane is nonempty.

DEFINITION 2.3 (Strictly convex set). A convex set S ⊂ R
d is said to be strictly convex

if any supporting hyperplane to Cl(S) touches Cl(S) at only one point.

Let μ and ν be two Borel probability measures supported on S ⊂ R
d and Y ⊂ R

d , re-
spectively. The goal of OT (Monge’s problem), under the squared Euclidean loss, is to find a
measurable transport map T ≡ Tμ;ν : S → Y solving the (constrained) minimization problem

(5) inf
T

∫ ∥∥u − T (u)
∥∥2

dμ(u) subject to T #μ = ν

where the minimization is over T (a transport map), a measurable map from S to Y , and
T #μ is the push forward of μ by T , that is,

T #μ(B) = μ
(
T −1(B)

)
, for all B ⊂ Y Borel.(6)

A map Tμ;ν that attains the infimum in (5) is called an OT map from μ to ν. We state an
important result in this theory, namely Brenier–McCann’s theorem ([12, 56]). This result
will be very useful to us; see Section A.1 in the Supplementary Material [33] for a brief
introduction to the field of OT.

THEOREM 2.2 (Brenier–McCann theorem). Let μ and ν be two Borel probability mea-

sures on R
d . Suppose further that μ has a Lebesgue density. Then there exists a convex

function ψ : Rd → R ∪ {+∞} whose gradient G = ∇ψ : Rd → R
d pushes μ forward to ν.

In fact, there exists only one such G that arises as the gradient of a convex function, that is,
G is unique μ-a.e. Moreover, if μ and ν have finite second moments, G uniquely minimizes

Monge’s problem (5).
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3. Quantile and rank maps in R
d when d ≥ 1. Suppose that X ∼ ν is supported on

Y ⊂ R
d . Let μ be a known absolutely continuous distribution on R

d (i.e., μ has a den-
sity w.r.t. Lebesgue measure on R

d ) with support S—a compact convex subset of Rd with
nonempty interior; for example, we can take μ to be Uniform([0,1]d). Other natural choices
of μ are the uniform distribution on the unit ball B1(0) in R

d [18], and the spherical uniform
distribution (V has the spherical uniform distribution if V = Lϕ where ϕ is uniformly dis-
tributed on the unit sphere around 0 ∈ R

d and L ∼ Uniform([0,1]), and L and ϕ are mutually
independent); see [30, 37].

In the following, we define the multivariate quantile and rank maps for ν w.r.t. the distri-
bution μ using the theory of OT. We first define the quantile function for ν and then use it to
define the rank map. Our approach is essentially the same as outlined in [18] although there
are some important and subtle differences; see Section 3.3 for a discussion.

DEFINITION 3.1 (Quantile function). The quantile function of the probability measure
ν (w.r.t. μ) is defined as the μ-a.e. unique map Q : S →R

d , which pushes μ to ν and has the
form

(7) Q := ∇ψ,

where ψ : Rd →R∪ {+∞} is convex. We call ψ a potential function.

REMARK 3.2 (Uniqueness of Q). As the convex function ψ in Definition 3.1 need not
be differentiable everywhere, there is a slight ambiguity in the definition of Q. When ψ is
not differentiable, say at u ∈ S , we can define Q(u) to be any element of the subdifferential
set ∂ψ(u) (see Section 2 for its formal definition). As a convex function is differentiable
a.e. (on its domain) this convention does not affect the μ-a.e. uniqueness of Q. Further, this
convention bypasses the need to define quantiles as a multivalued map.

The existence and μ-a.e. uniqueness of the quantile map Q(·), for any probability measure
ν on R

d , is guaranteed by the Brenier–McCann theorem (see Theorem 2.2). Further, by The-
orem 2.2, if ν has finite second moment, then Q(·) can be expressed as in (2). As discussed in
the Introduction, the above notion of quantiles obviously extend our usual definition of quan-
tiles when d = 1; see Section A.4 of the Supplementary Material [33] for a more detailed
discussion.

REMARK 3.3 (Nonuniqueness of ψ). Although Q is μ-a.e. unique it is easy to see that
ψ (as in Definition 3.1) is not unique; in fact, ψ(·) + c where c ∈ R is a constant would also
suffice (as ∂(ψ + c) = ∂ψ). Further, we can change ψ(·) outside the set S and this does not
change Q (as Q has domain S). For this reason, we will consider

(8) ψ(u) = +∞, for u ∈ R
d \ S.

The above convention will be useful in the subsequent discussion.

DEFINITION 3.4 (Rank map). Recall the convex potential function ψ :Rd →R∪{+∞}

whose gradient yields the quantile map (see (7); also see (8)). We define the rank function
R :Rd → S of ν (w.r.t. μ) as

(9) R := ∇ψ∗,

where ψ∗ : Rd → R ∪ {+∞} is the Legendre–Fenchel dual of the convex function ψ , that
is, ψ∗(x) := supu∈Rd {〈x,u〉 − ψ(u)}, for x ∈R

d . Note that ψ∗ is also referred to as the dual
potential of Q ≡ ∇ψ .
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A few remarks are in order now.

REMARK 3.5 (The domain of R). The rank map R(x) is finite for all x ∈ R
d ; cf. the

quantile map Q(·), which is μ-a.e. uniquely defined. This follows from the fact that ψ∗(x) <

∞ for every x ∈R
d ; see Lemma A.3 in the Supplementary Material [33]. If ψ∗ is not differ-

entiable at x (say), we can define R(x) to be any element in the subdifferential set ∂ψ∗(x).

REMARK 3.6 (The range of the rank map). Using Lemma 2.1, one can argue that R(x) ∈

S for every x ∈ R
d . This follows from the fact that R(x) ∈ ∂ψ∗(x) exists for every x ∈ R

d ,
and by (4), u ∈ ∂ψ∗(x) ⇔ x ∈ ∂ψ(u). Note that as ∂ψ(u) exists we must have ψ(u) < +∞,
which in turn implies that u ∈ S (as ψ(u) = +∞, for u ∈ R

d \ S by (8)).

REMARK 3.7 (When ψ∗ is not differentiable). As ψ∗(x) < ∞ for every x ∈ R
d , ψ∗ has

a gradient a.e. Thus, R(x) is uniquely defined for a.e. x. For x ∈ R
d , where ψ∗(x) is not

differentiable, R(x) is not uniquely defined. Although for such an x we can define R(x) to be
any element in the subdifferential set ∂ψ∗(x) (as was done in [18]), in Section 3.1.3 we give
a randomized choice of R(x) that leads to the map R having appealing statistical properties.

Absolute continuity of ν is a sufficient condition for the rank map R and the quantile map
Q to be the essential inverses of one another, that is,

R ◦ Q(u) = u, for μ-a.e. u, and Q ◦ R(x) = x, for ν-a.e. x,

and R#ν = μ (see, e.g., [79], Theorem 2.12 and Corollary 2.3). This justifies the definition
of R via (9). Observe that the rank map, as in Definition 3.4, clearly extends the notion of
the distribution function beyond d = 1. There is an intimate connection between the quantile
map and the celebrated Monge–Ampère differential equation; see, for example, [79], Lemma
4.6, (also see [13, 20, 21]). In Section A.2 (in the Supplementary Material [33]), we discuss
a few other interesting properties of quantile/rank and potential functions.

Although we know that R = Q−1 μ-a.e. when ν is absolutely continuous, one may ask
if the equality holds everywhere (as opposed to a.e.). Several results have been obtained
in this direction that provide sufficient conditions for such an equality. Caffarelli (see [13–
15]) showed that when S and Y are two bounded convex sets in R

d and μ and ν are ab-
solutely continuous with positive densities (on their supports), then the corresponding OT
maps T : S → Y (such that T #μ = ν) and T ∗ : Y → S (such that T ∗#ν = μ) are continuous
homeomorphisms and T ∗ = T −1 everywhere in Y ; see [80], pp. 317–323, for other suffi-
cient conditions. In Proposition 3.1 below, we give another such sufficient condition that is
particularly useful in statistical applications. As pointed out by an anonymous referee, the
main result in the recent paper [20] implies Proposition 3.1(a); Proposition 3.1(b) can then
be derived as a consequence. See [20] for a proof of the following result.

PROPOSITION 3.1 ([20], Theorem 1). Let S ⊂ R
d be a compact convex set and Y ⊂

R
d be a convex set. Let μ and ν be two probability distributions supported on S and Y,

respectively, with Lebesgue densities pS and pY . Suppose that pS,p−1
S ∈ L∞(S) and pY ∈

L∞(Y ∩ BR) for any R > 0, where BR is the ball of radius R centered at 0. Then:

(a) ∇ψ∗, restricted to Int(Y), is a homeomorphism from Int(Y) to Int(S).
(b) ∇ψ is a homeomorphism from Int(S) to Int(Y). Furthermore, we have ∇ψ =

(∇ψ∗)−1 in Int(S).
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REMARK 3.8 (Convexity of S and Y). Convexity of the domains, S and Y , is one of the
important conditions for the existence of continuous transport maps. Cafarrelli constructed a
counterexample (see, e.g., [80], pp. 283–285) where he showed that the transport map may
fail to be continuous when the two measures are absolutely continuous with bounded densities
on two smooth and simply connected nonconvex domains.

REMARK 3.9. The condition on the density pY in Proposition 3.1 does not necessarily
require Y to be compact. For example, any unimodal density supported on a convex domain
Y ⊂ R

d belongs to L∞(Y ∩ BR) for any R > 0; in particular, this includes the family of all
absolutely continuous multivariate normal distributions.

Similar to the univariate distribution function, the one-dimensional projection of the rank
map R along any direction, is nondecreasing (see Lemma A.4 in the Supplementary Mate-
rial [33] for a formal statement of this result). A univariate distribution function is not only
nondecreasing but takes the value 0 or 1 as one approaches −∞ or +∞, irrespective of ν.
Under mild assumptions on S and R, we show in the following lemma (proved in Section C.1
of [33]) that R(·) is continuous on the whole of Rd and it approaches a limit along every ray
that depends only on the geometry of S and not on the measure ν.

LEMMA 3.2. Let S ⊂ R
d be a strictly convex compact set (as in Definition 2.3). Let μ

and ν be two probability measures on S and Y ⊂ R
d , respectively, where Y has nonempty

interior. Let R be the rank map of ν w.r.t. μ. Suppose that R is a homeomorphism from Int(Y)

to Int(S). Then, for any x ∈ R
d , limλ→+∞ R(λx) = arg maxv∈S〈x, v〉.

Note that the above required condition on S is certainly satisfied, for example, when
S is the unit ball in R

d , that is, S = B1(0); unfortunately when S = [0,1]d , the condi-
tion is not satisfied. Lemma 3.2 has a simple interpretation when S = B1(0)—in this case,
limλ→+∞ R(λx) = arg maxv∈S〈x, v〉 = x

‖x‖
if x �= 0; cf. [26], Corollary 3.1. This generalizes

the fact that for a distribution function F on R, F(x) → 1 as x → +∞ and F(x) → 0 as
x → −∞.

3.1. The sample quantile and rank maps. As before, we fix an absolutely continuous
distribution μ with compact convex support S ⊂ R

d . Given a random sample X1, . . . ,Xn

from a distribution ν (on R
d ), we now consider estimating the population quantile and rank

maps Q and R, respectively (w.r.t. μ). We simply define the sample versions of the quantile
and rank maps as those obtained by replacing the unknown distribution ν with its empirical
counterpart ν̂n—the empirical distribution of the data, that is,

ν̂n(A) =
1

n

n∑

i=1

δXi
(A), for any Borel set A ⊂ R

d .

3.1.1. Empirical quantile function. By Theorem 2.2, there exists an μ-a.e. unique map
Q̂n, which pushes μ to ν̂n and can be expressed as

(10) Q̂n = ∇ψ̂n,

where ψ̂n : Rd → R ∪ {+∞} is a convex function. Further, by Theorem 2.2, Q̂n can be
computed via

(11) Q̂n = arg min
T

∫ ∥∥u − T (u)
∥∥2

dμ(u) subject to T #μ = ν̂n.
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Note that Q̂n ≡ ∇ψ̂n is μ-a.e. unique; when ψ̂n is not differentiable, say at u, we can define
Q̂n(u) to be any point in ∂ψ̂n(u). As Q̂n ≡ ∇ψ̂n pushes μ to ν̂n, ψ̂n is a convex function
whose gradient takes μ-a.e. finitely many values—in the set X := {X1, . . . ,Xn}. Thus ψ̂n is
piecewise linear (affine), and hence, there exists ĥ = (ĥ1, . . . , ĥn) ∈ R

n (unique up to adding
a scalar multiple of (1, . . . ,1) ∈ R

n) such that ψ̂n :Rd →R∪ {+∞} can be represented as

(12) ψ̂n(u) :=

⎧
⎨
⎩

max
i=1,...,n

{
u�Xi + ĥi

}
for u ∈ S,

+∞ for u /∈ S.

The vector ĥ can be computed by solving a convex optimization problem; see Section 3.2 for
the details.

REMARK 3.10 (Form of the subdifferential set ∂ψ̂n(u)). As ψ̂n is piecewise linear
(affine) and convex (and thus a finite pointwise maximum of affine functions), we can ex-
plicitly write its subdifferential, that is, for any u ∈ S ,

∂ψ̂n(u) = Conv
({

Xi : 〈u,Xi〉 + ĥi = ψ̂n(u)
})

.

As Q̂n(u) ∈ ∂ψ̂n(u), for any u ∈ Int(S), Q̂n(u) belongs to the convex hull of the data.
The function Q̂n = ∇ψ̂n induces a cell decomposition of S : Each cell is a convex set and is
defined as

(13) Wi(ĥ) :=
{
u ∈ S : ∇ψ̂n(u) = Xi

}
.

In defining Wi(ĥ), we only consider points u ∈ S where ψ̂n is differentiable; see [36] for
more details. Note that, for a.e. sequence X1, . . . ,Xn, each cell Wi(ĥ) has μ measure 1/n

and
⋃n

i=1 Wi(ĥ) ⊂ S . Figure 1 illustrates this with four points X1, X2, X3 and X4 and
μ = Uniform([0,1]2). Each point in the four cells (labeled 1, 2, 3 and 4) is mapped to the
corresponding data point (X1, X2, X3 and X4) by the sample quantile function Q̂n ≡ ∇ψ̂n.
The convex function ψ̂n is not differentiable at the boundary of the 4 cells (marked by the
black lines in the right panel of Figure 1). Remark A.3 in the Supplementary Material [33]
illustrates the above ideas when d = 1 and μ = Uniform([0,1]).

FIG. 1. The left plot shows a data set with four 2-dimensional points X1, X2, X3 and X4. The right plot shows

the four cells (each with area 1/4) marked 1, 2, 3, 4, and the four data points in blue (appropriately scaled to lie

in [0,1]2) along with dashed lines connecting each data point to the centroid (in red) of the corresponding cell.
The two points A and B in the right plot correspond to the intersection of three cells—1, 2, 3 and 1, 3, 4.
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3.1.2. Empirical rank map. Let us define ψ̂∗
n : Rd → R ∪ {+∞} to be the Legendre–

Fenchel dual of ψ̂n, that is,

(14) ψ̂∗
n (x) := sup

y∈Rd

{
〈x, y〉 − ψ̂n(y)

}
= sup

u∈S

{
〈x,u〉 − ψ̂n(u)

}
, for x ∈ R

d .

We define the multivariate sample rank function R̂n :Rd → S as

(15) R̂n := ∇ψ̂∗
n .

Lemma A.6 in the Supplementary Material [33] gives an alternate expression for R̂n, which
was used in [18], Definition 3.1. Further, Remark A.4 in [33] shows that when d = 1, R̂n is
not defined uniquely at the data points. Note that the nonuniqueness of the rank function when
d = 1 was finessed by enforcing right continuity, which is hard to do as we go beyond d = 1.
Indeed, for any d ≥ 1, R̂n(Xi) could be defined as any element in the (closure of the) cell
Wi(ĥ); this follows from Lemma 2.1. Figure 1 illustrates this when μ = Uniform([0,1]2).
We see in Figure 1 that any point in the interior of the triangle formed by X1, X2 and X3 (or
X1, X3 and X4) is mapped to the point A (or B) by the sample rank map R̂n. The following
result (Lemma 3.3; proved in Section C.3 of the Supplementary Material [33]) formalizes this
observation when d ≥ 2 and provides a way of finding the empirical rank map at any given
point.

LEMMA 3.3. Fix x ∈ R
d . Suppose that for i1, . . . , id+1 ⊂ {1, . . . , n}: (i) x ∈

Int(Conv(Xi1, . . . ,Xid+1)) and (ii) there exists a unique u ∈ S such that u = Cl(Wi1(ĥ)) ∩

· · · ∩ Cl(Wid+1(ĥ)) (see (13)). Then u is the unique point in S such that x ∈ ∂ψ̂n(u). Further-

more, ∂ψ̂∗
n (x) = u = R̂n(x).

3.1.3. Empirical ranks. By the “ranks” of the data points, we mean the rank function
evaluated at the data points. When d = 1 and the underlying distribution is continuous, the
usual ranks, that is, {Fn(Xi)}

n
i=1 (here, Fn is the empirical distribution function), are identi-

cally distributed on the discrete set {1/n,2/n, . . . , n/n} with probability 1/n each. As a con-
sequence, the usual ranks are distribution-free (in d = 1), that is, the distribution of Fn(Xi)

does not depend on the distribution of Xi . We may ask: “Does a similar property hold for the
multivariate ranks R̂n(Xi)?”

From the discussion in Section 3.1.2, it is clear that the multivariate ranks R̂n(Xi) are
nonunique. In fact, we can choose R̂n(Xi) to be any point in the set Wi(ĥ) (see (13)). In the
sequel, we will use a special choice of R̂n(Xi), which will lead to a distribution-free notion.
We define R̂n(Xi) as a random point drawn from the distribution μ̂i , that is, for i ∈ {1, . . . , n},

(16) R̂n(Xi)|X1, . . . ,Xn ∼ μ̂i

where

μ̂i : B �→ nμ
(
Wi(ĥ) ∩ B

)
for any Borel B ⊂ R

d .

Note that μ̂i is a Borel probability measure supported on the cell Wi(ĥ) as μ(Wi(ĥ)) =

n−1. When μ is the uniform distribution on S , an equivalent representation of (16) is
R̂n(Xi)|X1, . . . ,Xn ∼ Uniform(Wi(ĥ)). Thus, our choice of the empirical ranks {R̂n(Xi)}

n
i=1

is random. However, this external randomization leads to the following interesting conse-
quence—the multivariate ranks are marginally distribution-free. This is formalized in the
following lemma (proved in Section C.4 of the Supplementary Material [33]).

LEMMA 3.4. Suppose that X1, . . . ,Xn are i.i.d. ν, an absolutely continuous distribution

on R
d . Then, for any i = 1, . . . , n, R̂n(Xi) ∼ μ.
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Compare Lemma 3.4 with the result R(X) ∼ μ where R is the (population) rank map of
X ∼ ν (as R pushes forward ν to μ). If we do not want a randomized choice of ranks, then we
can define R̂n(Xi) := maxu∈Cl(Wi(ĥ)) ‖u‖; the above choice is convenient for computational
purposes.

REMARK 3.11 (Choice of the reference distribution μ). As may have been clear from
the above discussion, the concept of multivariate (empirical) ranks and quantiles, based on
OT, depends on the choice of the reference distribution μ. For example, the choice of a
spherically symmetric μ (e.g., Uniform(B1(0))) leads to quantile maps that are equivariant
under orthogonal transformations (which can be a useful property when studying multivariate
depth, outlyingness, etc.), whereas the choice of μ = Uniform([0,1]d) guarantees factoriza-
tion into lower dimensional marginals under independence (that may be more appropriate
for measuring association/independence between the marginals of ν); see Section A.3 in the
Supplementary Material [33] for formal results in this regard. We would like to point out here
that S , the support of μ, can play an important role in determining the behavior of the rank
map R̂n(·); we will see in Theorem 4.1 that the choice S = [0,1]d could lead to inconsistent
estimation of R̂n(x) for x near the boundary of Y (see Remark 4.1 for further discussion).

The two plots in Figure 2 show the cell decompositions corresponding to the uniform mea-
sures on [0,1]2 and B1(0) ⊂ R

2, respectively. Note that when μ is the uniform measure on
any set S ⊂ R

d , the volume of each cell is 1/n; moreover, when μ = Uniform([0,1]d) the
cells are convex polyhedrons, which can be especially easy to visualize and implement in a
computer. As in d = 1, we believe that the use of appropriate score functions can mitigate
the dependence of multivariate rank-based procedures on the reference distribution μ; see,
for example, [78], Chapters 13 and 15, for the usefulness of a score-based approach when
d = 1. Indeed, the recent papers [23, 74] illustrate the flexibility and power of incorporating
score functions in the definition of multivariate rank-based tests. In particular, in the recent
paper [23] the authors show that different reference distributions lead to different asymp-
totic efficiencies for certain tests in the two-sample problem. Thus, when d > 1, the choice
of μ should be guided by various considerations, as alluded to above. We expect that fu-
ture research will shed more light on this important question of the choice of the reference
distribution.

3.2. Computation of the sample quantile and rank functions. The computation of the
empirical quantile function Q̂n (in (11)) reduces to a semidiscrete OT problem. There are
several methods proposed in the literature to solve the semidiscrete OT problem. Oliker and
Prüssner [61] proposed one of the earliest algorithms in this regard relying on coordinatewise
increments; also see [16, 58]. Although this algorithm has convergence guarantees (see [45]),
it is quite slow in practice. Recently, fast algorithms for solving (11) have been proposed
that typically rely on the formulation of the semidiscrete OT problem as an unconstrained
convex optimization problem which is then solved using a (damped) Newton or quasi-Newton
method; see, for example, [2, 47, 52, 57]. See [58] for a detailed account of many of the
algorithms cited above.

In the following, we outline our approach to computing Q̂n (see the R package https:
//github.com/Francis-Hsu/testOTM [85]). We use Newton-type algorithms proposed in the
papers [47, 52, 57] and implemented in the Geogram2 package. These algorithms are experi-
mentally efficient and converge globally with linear rate; see [47]. Our approach is different
from the “gradient algorithm” used in [18], Section 4, to solve the semidiscrete problem.

2http://alice.loria.fr/software/geogram/doc/html/
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The computation of Q̂n leads to a “partition” of S into n convex sets, each with volume
1/n (i.e., the Wi(ĥ)’s in (13)), and involves what is usually called the power diagram [1]—a
type of weighted Voronoi diagram. Recall that X := {X1, . . . ,Xn}. Let w = (w1, . . . ,wn) ∈

R
n be a given (weight) vector. The power diagram of (X ,w) is the decomposition of the set

S into a finite number of cells, one for each element in X , defined by (for i = 1, . . . , n)

VorwX (i) :=
{
u ∈ S : ‖u − Xi‖

2 − wi ≤ ‖u − Xj‖
2 − wj , for all j �= i

}
.

Note that if the weights are all zero, this coincides with the usual Voronoi diagram. The com-
putation of the power diagram is a classical problem in computational geometry, for which
there exists very efficient software, such as CGAL3 or Geogram. Two-dimensional power
diagrams can be constructed by an algorithm that runs in time O(n logn). More generally,
d-dimensional power diagrams (for d > 2) may be constructed by an algorithm with worst
case complexity O(n�d/2�); see, for example, [1], [3], Chapter 6.

Given the power diagram of (X ,w) we can define the power map T w
X : S → X such that

T w
X (u) := Xi if u ∈ VorwX (i). This map is well defined μ-a.e. (except on the boundary of the

power cells). A weight vector w ∈ R
n is called adapted to (μ, ν̂n) if for every i = 1, . . . , n,

one has μ(VorwX (i)) =
∫

Vorw
X

(i) dμ(u) = n−1. [57], Theorem 2, shows that finding a weight
vector adapted to (μ, ν̂n) amounts to finding the global minimum of the convex function

(17) L(w) := −

n∑

i=1

[
wi

n
+

∫

Vorw
X

(i)

(
‖u − Xi‖

2 − wi

)
dμ(u)

]
, for w ∈R

n;

also see [2]. Moreover, [57], Theorem 2, shows that the power map T ŵ
X , where ŵ is the global

minimizer of L(·), is the OT map between μ and ν̂n, that is,

Q̂n = T ŵ
X .

Thus, we have to minimize L(·) in (17) to obtain ŵ, which will yield Q̂n. Note that the
gradient and Hessian of L(·) can be easily computed; see, for example, [52]. This makes
Newton-type algorithms especially attractive in computing ŵ.

The potential function ψ̂n, as defined in (12), can also be recovered from the above op-
timization problem. Let ĥi := 1

2(ŵi − ‖Xi‖
2), for i = 1, . . . , n. Now, we can easily see that

the convex function thus defined by (12) has gradients that coincides with the quantile map
Q̂n; see, for example, [57], Section 3.4. The computation of the dual potential ψ̂∗

n (as defined
in (14)) and the empirical rank map R̂n now follows easily; see Remark A.2 (in Section A.2
in the Supplementary Material [33]) for the details.

REMARK 3.12 (Computation of the sample ranks). For computing the sample rank
R̂n(Xi), for i = 1, . . . , n, we advocate the use of a randomized choice where we define
R̂n(Xi) as any point in the set Wi(ĥ), chosen according to the probability measure in (16).
When μ is the uniform distribution on a convex polytope S (e.g., [0,1]d ), this computa-
tion is especially simple as then Wi(ĥ) is also a convex polytope whose vertices are already
provided by our algorithm, and thus, uniform sampling can be carried out easily (e.g., via
rejection sampling on the smallest hyperrectangle containing Wi(ĥ)). In fact, the above ap-
proach is much more broadly applicable, as in practice the computer always approximates S
by a convex polytope (see, e.g., Figure 2).

The two plots in Figure 2 show the cell decompositions of [0,1]2 and B1(0) ⊂ R
2, obtained

from the semidiscrete OT problem; see Section A.5 in the Supplementary Material [33] for

3http://www.cgal.org
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FIG. 2. Left plot: Shows the cell decomposition of S = [0,1]2 (each with area 1/n where n = 100) induced

by the estimated quantile function Q̂n (w.r.t. μ = Uniform([0,1]2)) where the data points are drawn i.i.d. from

N2((0,0), I2) (and appropriately scaled to lie in [0,1]2) along with dashed lines indicating which cell corre-

sponds to which data point. Right plot: Shows the corresponding cell decomposition of S = B1(0)—the ball of

radius 1 around (0,0) ∈R
2—induced by Q̂n (w.r.t. μ = Uniform(B1(0))).

more plots of this kind. In particular, we can directly visualize the empirical quantile maps
for the two settings. As the (empirical) rank function (taking values in R

d ) is a bit difficult
to visualize, in Figure 3 we plot the estimated depth functions for the banana-shaped distri-
bution when n = 1000; cf. [18], Figure 2, where the authors motivate the use of multivariate
ranks/quantiles based on OT using this data. The banana-like geometry of the data cloud is
correctly picked up by the nonconvex contours in Figure 3. We also provide depth function
plots for other distributions in Section A.5 of the Supplementary Material [33].

3.3. Comparison with Chernozhukov et al. [18], Hallin et al. [37] and Boeckel et al. [11].
In the papers [18, 37] and [11], the authors use ideas from the theory of OT to define mul-
tivariate quantiles and ranks. Although our approach is similar in spirit to that of [18] there
are subtle and important differences. As opposed to [18] and [11], the quantile map here is
defined based on McCann’s result (see Theorem 2.2), which extended Brenier’s theorem to
general probabilities, without the need for a second moment. Whereas [18] studied multivari-
ate quantiles and ranks to obtain notions of statistical depth, we study quantiles and ranks to
aid us to construct nonparametric goodness-of-fit and mutual independence tests.

FIG. 3. Left panel: A random sample of size n = 1000 drawn from the banana-shaped distribution. Middle

panel: The estimated depth function—defined as D̂n(x) := 1/2 − ‖R̂n(x) − (1/2)1‖∞ for x ∈ R
d (see [18]),

where 1 = (1,1, . . . ,1) ∈ R
d—using μ = Uniform([0,1]2). Right panel: The estimated depth function—defined

as D̂n(x) := π−1(θ − cos θ sin θ) where θ = arccos(‖R̂n(x)‖)—w.r.t. μ = Uniform(B1(0)); see [69], Section 5.6.
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The approach to defining multivariate ranks and quantiles proposed and studied in [37]
and [11] are quite different from ours. In the papers [37] and [11], the authors solve a discrete-
discrete OT problem, compared to our semidiscrete approach (further, in [11] the authors
only consider target distributions supported on a compact subset of Rd ). Thus, to define the
empirical rank map this approach involves the choice of n representative points inside the set
S (that approximates the measure μ) to solve the discrete-discrete OT problem (between the
sample data points and the n chosen points). Thus, the “ranks” of the data points are forced to
be the points in the chosen grid. This approach immediately leads to many attractive features
for the empirical ranks, for example, the distribution-freeness of the ranks. However, this
approach does not automatically give rise to a quantile function (or quantile contours) and
special smoothing interpolation is required. In comparison, our approach has the drawback
of leading to nonunique ranks at the data points. In a sense, our approach yields an elegant
and useful notion of quantiles while the approach of [37] (and [11]) yields a notion of ranks
with attractive properties.

4. Uniform convergence of empirical quantile and rank maps. The rank and quantile
functions in one dimension enjoy many interesting asymptotic properties. For example, if
X1, . . . ,Xn ∼ ν, where ν is a distribution on R, then by the Glivenko–Cantelli theorem, the
empirical rank function (which is the empirical distribution function when d = 1) converges
uniformly to the population rank function a.s. Similarly, for d = 1, the empirical quantile
function converges uniformly (on compacts [a, b] ⊂ (0,1)) to the population quantile func-
tion, when the underlying distribution function is continuous and strictly increasing. One may
wonder if such results also hold for the multivariate empirical quantile/rank maps studied in
this paper. In Theorem 4.1 below, we show that this is indeed the case.

Suppose that ν is absolutely continuous with support Y ⊂ R
d ; here, ν is the target dis-

tribution. Let μ be an absolutely continuous distribution supported on a compact convex
set S ⊂ R

d . Let Q and R be the quantile and rank maps of ν (w.r.t. μ); as in (7) and (9),

respectively. Let X1,X2, . . . ,Xn
i.i.d.
∼ ν. Let {̂νn}n≥1 be a sequence of random probability

distributions (computed from X1, . . . ,Xn) such that ν̂n converges weakly to ν a.s., that is,

(18) ν̂n
d
→ ν a.s.

We can take ν̂n to be the empirical distribution obtained from the first n data points, that
is, ν̂n = 1

n

∑n
i=1 δXi

; in this case, we know that (18) holds (see, e.g., [29], Theorem 11.4.1).
Denote the multivariate quantile/rank functions for ν̂n by Q̂n and R̂n. In particular, when the
underlying potential functions (see Definition 3.1) are not differentiable, we define Q̂n and
R̂n to be any point in the corresponding subdifferential set. The following is a main result of
this paper (see Section D.2 of the Supplementary Material [33] for its proof).

THEOREM 4.1. Consider the notation introduced above and suppose that (18) holds.
Suppose that Q : Int(S) → Int(Y) is a homeomorphism.4 Let K1 ⊂ Int(S) and K2 ⊂ Int(Y)

be any two compact sets.

(a) Then

(19) sup
u∈K1

∥∥Q̂n(u) − Q(u)
∥∥ a.s.

→ 0.

(b) Further,

sup
x∈K2

∥∥R̂n(x) − R(x)
∥∥ a.s.

→ 0.(20)

4See Proposition 3.1 for sufficient conditions.
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(c) Suppose that S is a strictly convex compact set (as in Definition 2.3). Let {λn}n≥1 ⊂R

be a sequence such that λn → ∞ as n → ∞. Then

sup
x∈Rd

∥∥R̂n(x) − R(x)
∥∥ a.s.

→ 0, and(21)

lim
λn→∞

R̂n(λnx)
a.s.
= arg max

v∈S

〈x, v〉, for all x ∈ R
d .(22)

Theorem 4.1(a) (i.e., (19)) extends the uniform convergence of the empirical quantile
function (on compacts in the interior of [0,1]) beyond d = 1. Theorem 4.1(b) (i.e., (20))
shows the uniform convergence of the estimated rank map on any compact set inside Int(Y).
One may notice that Theorem 4.1(a) and (b) improve upon the result of [18], Theorem 3.1,
where the authors prove a similar convergence result for the estimated quantile/rank maps
under the assumption of compactness of Y . In [37], Theorem 2.2.1, a result similar to (21)
is given for the empirical rank map arising from a discrete-discrete OT problem, when the
reference measure is the spherical uniform distribution; also see [11], Theorem 2.3, for a
similar result where the authors only consider a compactly supported ν. In [86], Proposition
6, the authors prove a local uniform convergence result for the empirical quantile map, under
additional finite second moment assumptions on ν. Theorem 4.1(c) (see (21)) can be thought
of as the proper generalization of the Glivenko–Cantelli theorem beyond d = 1 where we
show the a.s. convergence of the estimated rank map uniformly over the whole of Rd .

To prove Theorem 4.1, one needs to develop tools that deal with convergence of
(sub)gradients of a sequence of convex functions and their Legendre–Fenchel duals. These
tools are summarized in three deterministic lemmas in Section D of the Supplementary Ma-
terial [33]—Lemmas D.1, D.2 and D.3—and could be of independent interest.

REMARK 4.1 (On the sufficient condition for (21)). In (21), we show that the empirical
rank map converges to the population rank function uniformly on R

d , under the strict con-
vexity assumption on S . This sufficient condition is certainly satisfied, for example, when S

is the unit ball in R
d , that is, S = B1(0). Unfortunately, when S = [0,1]d , this condition is

not satisfied.

REMARK 4.2 (Necessity of Q to be a homeomorphism). One of the main assumptions
in Theorem 4.1 is that the population quantile Q is a homeomorphism; for d = 1, this cor-
responds to assuming that the distribution function is continuous and strictly increasing. It
is actually a necessary condition for showing the uniform convergence of Q̂n (the sample
quantile function) to Q; in fact, more generally, for a sequence of (sub)gradients of convex
functions. To see this, consider the example of a sequence of convex functions φn : R → R

defined as φn(x) := (x2 + n−1)1/2. As n → ∞, φn(x) converges pointwise to φ(x) := |x|.
However, the subdifferential set of the function φ(x) at x = 0 is equal to [−1,1] whereas
φ′

n(0) = 0 for all n ≥ 1. Hence, φ′
n(·) does not converge uniformly on any compact set con-

taining 0.

REMARK 4.3 (When is Q a homeomorphism?). In Proposition 3.1, we provide a suffi-
cient condition on the density of ν, supported on a convex set, which ensures that the quantile
map Q will be a homeomorphism; also see Remarks 3.8 and 3.9. Recently, in [46], Proposi-
tion 4.5 and Corollary 4.6, some results are provided that show that Q can be a homeomor-
phism even when the support of ν is a union of convex domains.

REMARK 4.4 (Connection to [22]). The recent paper [22] implies “graphical conver-
gence” of the estimated quantile maps (see [22], Theorem 4.2 and Corollary 4.4). Their re-
sult does not need absolute continuity of ν and no restrictions are placed on the supports of
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the measures μ and ν. However, graphical convergence, which implies a form of local uni-
form convergence, is weaker than uniform convergence on compacta stated in Theorem 4.1.
Moreover, since the sample rank map R̂n is not strictly a transport map, it is not clear if [22]
implies any notion of convergence for R̂n.

5. Rate of convergence of empirical quantile/rank maps. In this section, we study the
global and local rates of convergence of the empirical quantile/rank maps. Section 5.1 pro-
vides upper bounds on the global L2-risk of the empirical quantile map whereas Section 5.2
provides analogous results for the empirical rank map. In Section 5.3, we provide a result that
gives a local uniform rate of convergence for the empirical quantile/rank maps.

5.1. Global rate of convergence for the empirical quantile map Q̂n. We first state a
lemma (see Lemma 5.1 below; proved in Section E.1 of [33]) that upper bounds the L2-
distance between two OT maps using the difference of the corresponding 2-Wasserstein dis-
tances (and a remainder term). Note that the 2-Wasserstein distance between μ and ν is
defined as

W2(μ, ν) := inf
π∈�(μ,ν)

(∫
‖u − x‖2 dπ(u, x)

)1/2
,

where �(μ,ν) denotes the collection of all joint distributions (couplings) π with marginal
distributions μ and ν; see Section A.1 of [33] for more details.

LEMMA 5.1. Let μ, ν and ν̃ be three probability measures on R
d such that∫

‖x‖2 dμ(x) < +∞,
∫

‖x‖2 dν(x) < +∞ and
∫

‖x‖2 dν̃(x) < +∞. Also, let ψ and

ψ̃ be two convex functions such that ∇ψ#μ = ν and ∇ψ̃#μ = ν̃, respectively. Suppose

ψ∗ : Rd → R ∪ {+∞}, the Legendre–Fenchel dual of ψ , is strongly convex with parame-

ter λ > 0. Then, letting g(x) :=
‖x‖2

2 − ψ∗(x),
∫

‖∇ψ̃ − ∇ψ‖2 dμ ≤
1

λ

[{
W 2

2 (μ, ν̃) − W 2
2 (μ, ν)

}
+ 2

∫
g d(ν − ν̃)

]
.

The above lemma, which is of independent interest, gives a quantitative stability estimate
for OT maps in the semidiscrete setting. Although the stability of OT maps has recently been
studied by many authors (see, e.g., [34, 43, 53, 81]), we could not find such an explicit upper
bound, under such minimal assumptions on the underlying distributions. Moreover, as we
illustrate in Theorem 5.2 below (proved in Section E.2 of the Supplementary Material [33]),
Lemma 5.1 can be used to obtain rates for OT maps that are strictly better than those obtained
in [81], Theorem 1.1, and [53], Section 4. It is worth pointing out that the starting point of
the proof of Lemma 5.1 is based on an observation in [34], Proposition 3.3.

THEOREM 5.2. Let μ be an absolutely continuous probability measure supported on

a compact convex set S ⊂ R
d . Let X1, . . . ,Xn

i.i.d.
∼ ν, where ν is an absolutely continuous

distribution on R
d with population quantile map Q ≡ ∇ψ (see (7)); here, ψ is a convex

function. Suppose that ψ∗ : Rd → R ∪ {+∞} (the Legendre–Fenchel dual of ψ) is strongly

convex. Then, for all n ≥ 1, with Q̂n being the empirical quantile map (see (10)),

(23) E

[∫
‖Q̂n − Q‖2 dμ

]
≤ Crd,n,

where C ≡ C(μ,ν) > 0 is a constant that depends on μ and ν, and rd,n is defined in (3).
Furthermore, there exists c > 0 such that, for all s ≥ 0,

P

(∫
‖Q̂n − Q‖2 dμ ≥ Crd,n + n−1/2s

)
≤ exp

(
−cs2)

.
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We believe that the above result gives the exact rate of convergence for the Q̂n when
d > 4; see [43] where the authors mention “... In this case, one formally recovers the rate
n−2/d and we conjecture that this is the minimax rate of estimation in the context where
the transport map T0 is only assumed to be the gradient of a strongly convex function with
Lipschitz gradient...” Note that in Theorem 5.2 we just assume strong convexity of the dual
potential associated with the quantile map Q. We would also like to point out here that, even
when d = 1, without some assumptions on ν it is impossible to derive rates of convergence
for Q̂n as in (23); see, for example, [10, 25].

The left-hand side in (23) is obviously an upper bound for E[W 2
2 (̂νn, ν)] and, as a conse-

quence,

E
[
W 2

2 (̂νn, ν)
]
≤ E

[∫
‖Q̂n − Q‖2 dμ

]
≤ Crd,n.

Compare this with [31], Theorem 1, which yields E[W 2
2 (̂νn, ν)] ≤ Crd,n, when ν has a finite

moment of order q > 4. Thus, Theorem 5.2 is an improvement of the result in [31], under the
strong convexity assumption on the potential function ψ∗.

The proof of Theorem 5.2 utilizes the stability result of the empirical quantile map Q̂n

obtained in Lemma 5.1. As one may note, Lemma 5.1 bounds the L2-loss of Q̂n by the
difference (up to a smaller order term) between two 2-Wasserstein distances, under minimal
structural assumptions on the dual potential of Q. The rate of convergence in Theorem 5.2 is
then obtained by analyzing the expected value of the difference of the Wasserstein distances
using empirical process theory; see, for example, the proof of [19], Theorem 2.

5.2. Global rate of convergence for the empirical rank map R̂n. Deriving a rate of con-
vergence for the multivariate sample rank R̂n map is a bit more tricky. Note that R̂n is not
an OT map per se, but is defined via the Legendre–Fenchel dual of the potential function ψ̂n

(see (15)). Also, the sample ranks R̂n(Xi)’s are not uniquely defined (see Section 3.1.3). In
this subsection, we consider the randomized choice of the empirical ranks (as in (16)). In the
following result, we give an upper bound on the risk of the sample rank map (see Section E.3
of the Supplementary Material [33] for its proof).

THEOREM 5.3. Let μ be an absolutely continuous probability measure supported on a

compact convex set S ⊂ R
d . Let X1, . . . ,Xn be i.i.d. from an absolutely continuous distribu-

tion ν on R
d with compact support and rank map R ≡ ∇ψ∗, where ψ : S →R is assumed to

be strongly convex. For i = 1, . . . , n, let R̂n(Xi) be defined as in (16). Then, for all n ≥ 1,

(24) E

[
1

n

n∑

i=1

∥∥R̂n(Xi) − R(Xi)
∥∥2

]
≤ Krd,n,

where K ≡ K(μ,ν) > 0 depends on μ and ν, and rd,n is defined in (3).

The expectation on the left-hand side of (24) averages over the external randomization in
the definition of the empirical ranks. Note that for Theorem 5.3 to hold we need to assume
that ν has compact support, in addition to the strong convexity of ψ . Although a formal result
on the optimality of the upper bound in Theorem 5.3 is beyond the scope of this paper, we
believe that the obtained bounds are optimal when d > 4.

5.3. Local uniform rate of convergence. Theorem 5.4 below (proved in Section F.1 of the
Supplementary Material [33]), provides a local uniform rate of convergence of the empirical
quantile/rank maps. In the following result, when the underlying potential functions are not
differentiable, we define Q̂n and R̂n to be any point in the corresponding subdifferential sets.
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THEOREM 5.4. Let μ be an absolutely continuous distribution with a bounded non-

vanishing density supported on a compact convex set S ⊂ R
d . Let X1, . . . ,Xn be i.i.d. ν

absolutely continuous and supported on a convex set Y ⊂ R
d with population quantile map

Q ≡ ∇ψ (see (7)), where ψ is a convex function. Suppose that Q is a homeomorphism from

Int(S) to Int(Y). Assume that ψ∗ and ψ are strongly convex inside Y and S, respectively.
Fix u0 ∈ Int(S) and δ0 ≡ δ0(u0) > 0 such that Bδ0(u0) ⊂ S and Bδ0(∇ψ(u0)) ⊂ Y . Then

there exists a constant C ≡ C(μ,ν,u0) > 0, depending only on μ, ν and u0, such that, for

all n ≥ 1,

E

[
sup

u∈Bδ0/3(u0)

∥∥Q̂n(u) − Q(u)
∥∥
]
≤ Cr

1
d+2
d,n ,

and

E

[
sup

x∈Bδ0/6(∇ψ(u0))

∥∥R̂n(x) − R(x)
∥∥
]
≤ Cr

1
d+2
d,n .

The proof of Theorem 5.4 is built on Proposition F.1, stated in the Supplementary Mate-
rial [33], which connects the local uniform rate of convergence of Q̂n and R̂n with the local
L2-rate of convergence of Q̂n. Theorem 5.2 is then used to upper bound this local L2-rate of
convergence.

To the best of our knowledge, the above result is the first attempt to study the local uniform
behavior of transport maps. However, it is not clear to us whether the above bounds are tight
when d ≥ 2. We believe that it may be possible to improve our rate of convergence result
under further assumptions on ν. We hope to address this in future work.

6. Applications to nonparametric testing.

6.1. Two-sample goodness-of-fit testing in R
d . Suppose that we observe X1, . . . ,Xm

i.i.d. νX and Y1, . . . , Yn i.i.d. νY , where m,n ≥ 1 and νX and νY are unknown absolutely
continuous distributions on R

d . We also assume that both the samples are drawn mutually in-
dependently. In this section, we consider the two-sample equality of distribution hypothesis
testing problem:

(25) H0 : νX = νY versus H1 : νX �= νY .

The two-sample problem for multivariate data has been extensively studied, beginning with
the works of [7, 84]. Several graph based methods have been proposed in the literature for
this problem; see, for example, [6, 32, 68, 70] and the references therein. Also see [4, 71, 76]
for distance and kernel based methods for the two-sample problem. Recently, the theory of
OT and Wasserstein distances have been used to construct goodness-of-fit tests for (25); see,
for example, [11, 24, 28, 38, 65]. In the following we propose a tuning-free method that uses
the (estimated) multivariate quantile/rank maps defined in Section 3.

Let μ be an absolutely continuous distribution supported on a compact convex set
S ⊂ R

d having a density (w.r.t. Lebesgue measure), for example, μ = Uniform([0,1]d) or
μ = Uniform(B1(0)). Let Q̂X and Q̂Y be the sample quantile maps estimated from the Xi’s
and Yj ’s, respectively (w.r.t. μ). Let R̂X,Y be the empirical rank map of the pooled sample
X1, . . . ,Xm, Y1, . . . , Yn (w.r.t. μ). As in Section 3.1.3, we define the rank at any data point as
a randomized value (as in (16)). We use the following test statistic for testing (25):

TX,Y :=

∫

S

∥∥R̂X,Y

(
Q̂X(u)

)
− R̂X,Y

(
Q̂Y (u)

)∥∥2
dμ(u).(26)
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Exactly computing TX,Y is possible as the above integral reduces to a finite sum; see Sec-
tion H.1 of the Supplementary Material [33] for the details. One can also easily approximate
TX,Y using Monte Carlo.

We reject H0 when TX,Y is large. To motivate the form of the above test statistic, consider
the one-sample Cramér–von Mises statistic when d = 1. Let Fn be the empirical distribution
of the data (when d = 1) and F be the true distribution function (assumed to be absolutely
continuous). Then the Cramér–von Mises statistic can be written as

∫

R

{
Fn(x) − F(x)

}2
dF(x) =

∫ 1

0

{
Fn

(
F−1(u)

)
− u

}2
du.

Indeed, (26) is similar to the right-hand side of the above display; however, as we are now in
the two-sample case, F−1 is unknown and is replaced by the sample quantile function.

The connection to the Cramér–von Mises statistic immediately raises the following ques-
tion: Is TX,Y distribution-free under H0 (as the Cramér–von Mises statistic when d = 1)?
Unfortunately, we do not know the exact answer to this question. In the following lemma
(proved in Section G.1 of the Supplementary Material [33]), we show that R̂X,Y (Q̂X(U))

and R̂X,Y (Q̂Y (U)) (as in (26)) are both marginally distribution-free and distributed as μ un-
der H0.

LEMMA 6.1. Suppose that νX = νY . Then R̂X,Y (Q̂X(U)) ∼ μ and R̂X,Y (Q̂Y (U)) ∼ μ,
and hence their distributions do not depend on νX ≡ νY .

REMARK 6.1 (Finding the critical value of TX,Y ). Although we have shown (in
Lemma 6.1) that R̂X,Y (Q̂X(U)) ∼ μ and RX,Y (Q̂Y (U)) ∼ μ (and thus both quantities are
distribution-free), it is not immediately clear if the test statistic TX,Y in (26) is distribution-
free, under H0. In Section H.1 of [33], we provide simulation evidence that suggests that
a properly normalized version of TX,Y may be asymptotically distribution-free, at least
when d = 2. In any case, the critical value of the test can always be computed by condi-
tioning on the observed samples and using the following permutation principle: Under H0,
X1, . . . ,Xm, Y1, . . . , Yn are i.i.d., and thus we can consider any partition of the m + n data
points into two sets of sizes m and n and recompute our test statistic to simulate its null
distribution. This is indeed the most common approach in these nonparametric testing prob-
lems as it avoids the need to use asymptotic distributions and leads to exact tests; see, for
example, [41, 44, 51].

The following result (proved in Section G.2 of the Supplementary Material [33]) shows
that our proposed test has asymptotic power 1 when νX �= νY .

PROPOSITION 6.2 (Consistency). Suppose that H0 : νX = νY ≡ ν holds. Assume that

ν is supported on a domain Y ⊂ R
d such that the quantile map Q : Int(S) → Int(Y) is a

homeomorphism. Also, assume that m,n → ∞ such that m
m+n

→ θ ∈ (0,1). Then, under H0,
as m,n → ∞,

TX,Y
a.s.
−→ 0.

Now, suppose that X1, . . . ,Xm
i.i.d.
∼ νX and Y1, . . . , Yn

i.i.d.
∼ νY where νX �= νY are two distinct

probability measures supported on domains YX and YY , respectively. Denote the quantile

maps of the distributions νX , νY and θνX + (1 − θ)νY by QX , QY and QX,Y , respectively.
Assume that QX , QY and QX,Y : Int(S) → Int(YX ∪ YY ) are homeomorphisms. Then, as

m,n → ∞,

TX,Y
a.s.
−→ c :=

∫

S

∥∥RX,Y

(
QX(u)

)
− RX,Y

(
QY (u)

)∥∥2
dμ(u),

where c > 0 and RX,Y is the rank function for the measure θνX + (1 − θ)νY .
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The following two results (proved in Sections G.3 and G.4 of [33]) provide rates of con-
vergence of TX,Y under the null and alternative hypotheses. The proofs of these results are
built on Theorems 5.2 and 5.3.

PROPOSITION 6.3. Suppose that H0 : νX = νY ≡ ν holds. Assume that ν is absolutely

continuous and supported on a compact domain Y ⊂ R
d . Further, we assume that the con-

vex potential ψ of the quantile map Q of ν (w.r.t. μ) is strongly convex. Under H0, if

min{m,n}/(m + n) ≥ θ ∈ (0,1), then

E[TX,Y ] ≤ Crd,m+n,

where C ≡ C(μ,ν, θ) > 0 depends on μ, ν and θ , and rd,n is defined in (3).

PROPOSITION 6.4. Suppose that νX �= νY , where νX and νY are compactly supported.
Recall the notation from Proposition 6.2. For convenience, we will assume that the pooled

sample size N is fixed and that m|N ∼ Binomial(N, θ), where θ ∈ (0,1). Further, we assume

that the convex potential functions ψX , ψY , ψX,Y of the quantile maps QX , QY , QX,Y are

strongly convex. Then we have

E
[
|TX,Y − c|

]
≤ Cr

1/2
d,N ,

where C ≡ C(μ,νX, νY , θ) > 0, and rd,n is defined in (3).

A detailed study of the finite sample performance and the asymptotic weak limit of the
above test in beyond the scope of the present paper. We plan to pursue this in a future paper.
As mentioned before, TX,Y is inspired by the form of the Cramér–von Mises (one-sample)
goodness-of-fit statistic. One can, of course, use other test statistics based on the empirical
quantile/rank maps for testing (25). A key observation for constructing such tests is to re-
alize that, under H0, R̂X,Y (X1), . . . , R̂X,Y (Xm), R̂X,Y (Y1), . . . , R̂X,Y (Yn) are exchangeable

and are all marginally distributed as μ.

6.2. Mutual independence testing. Let X = (X(1), . . . ,X(k)) ∼ ν be a random vector
in R

d where k ≥ 2 and X(j) ∼ νj is a random vector in R
dj , for j = 1, . . . , k, with∑k

j=1 dj = d . In this subsection, we consider the problem of testing the mutual indepen-

dence of X(1), . . . ,X(k). Specifically, we consider testing whether ν is equal to the product
measure ν1 ⊗ · · · ⊗ νk , for some ν1, . . . , νk , that is,

(27) H0 : ν = ν1 ⊗ · · · ⊗ νk versus H1 : ν �= ν1 ⊗ · · · ⊗ νk,

when we observe i.i.d. data from ν. This is again a fundamental problem in statistics and
there has been many approaches investigated in the literature; see, for example, [8, 9], [42],
Chapter 8, [24] and the references therein. The use of kernel (see, e.g., [35, 55, 64, 71]) and
distance covariance (see e.g., [24, 59, 73, 75–77]) based methods have become very popular
for this problem. Also see [5, 83] and the references therein for some recent other approaches
to testing (27). We use our multivariate quantile and rank functions to construct a tuning
parameter-free consistent test for (27).

For simplicity of notation, let us assume that k = 2. As we will see, the extension to
k > 2 is straightforward. Let {Zi ≡ (Xi, Yi) : 1 ≤ i ≤ n} be i.i.d. ν, assumed to be absolutely
continuous on R

dX ×R
dY ; here, dX, dY ≥ 1 and dX +dY = d . Further, we assume that X ∼ νX

and Y ∼ νY . We want to test the hypothesis of mutual independence between X and Y , that
is,

(28) H0 : ν = νX ⊗ νY versus H1 : ν �= νX ⊗ νY .
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Let μX = Uniform([0,1]dX ), μY = Uniform([0,1]dY ) and let μ := μX ⊗ μY = Uniform([0,

1]d). We define R̂ :Rd → [0,1]d and Q̂ : [0,1]d →R
d to be the empirical rank and quantile

maps of the joint sample (X1, Y1), . . . , (Xn, Yn). Let R̂X : RdX → R
dX be the empirical rank

map of X1, . . . ,Xn; similarly, let R̂Y : RdY → R
dY be the sample rank map obtained from

Y1, . . . , Yn. Define R̃ := (R̂X, R̂Y ) :Rd → [0,1]d . We consider the following test statistic:

Tn :=

∫

[0,1]d

∥∥R̂
(
Q̂(u)

)
− R̃

(
Q̂(u)

)∥∥2
du =

1

n

n∑

i=1

∥∥R̂(Zi) − R̃(Zi)
∥∥2

.

Note that the above integral reduces to a finite average as Q̂(·) can only take n distinct values
a.s. We reject the null hypothesis in (28) when Tn is large. As in Section 6.1, the critical value
of the test can be computed using the permutation principle: We take a random permutation
of σ of {1, . . . , n} and consider the permuted data set {(Xi, Yσ(i))}

n
i=1. The (conditional) null

distribution of Tn can be computed by considering the permutation distribution of Tn (i.e.,
computed from the data {(Xi, Yσ(i))}

n
i=1, as σ varies).

The following result, proved in Section G.5 of the Supplementary Material [33], describes
the asymptotic behavior of the proposed test statistic under the null and alternative hypothe-
ses; in particular, it shows that the power of the test converges to 1, as the sample size n

increases.

PROPOSITION 6.5 (Consistency). We have R̂(Q̂(U)) ∼ μ, where U ∼ μ = Uniform([0,

1]d). Suppose H0 holds in (28), that is, ν = νX ⊗νY . Then R̃(Q̂(U)) ∼ μ. Assume further that

νX and νY are two probability measures supported on the domains YX ⊂ R
dX and YY ⊂ R

dY

respectively. Denote the quantile maps of the measures νX , νY and ν w.r.t. the measures

Uniform([0,1]dX), Uniform([0,1]dY ) and Uniform([0,1]d) by QX , QY and Q, respectively,
where d = dX + dY . Assume that QX : (0,1)dX → Int(YX), QX : (0,1)dY → Int(YY ) and

Q : (0,1)d → Int(YX ×YY ) are homeomorphisms. Then, under H0, as n → ∞,

Tn
a.s.
−→ 0.

Now suppose that ν �= νX ⊗ νY . Let R = (RX,RY ) where RX and RY are the rank maps of

νX and νY , respectively. Then

Tn
a.s.
−→ c :=

∫

[0,1]d

∥∥u − R
(
Q(u)

)∥∥2
du, as n → ∞.

The following two results (proved in Sections G.6 and G.7 of [33]) provide rates of con-
vergence of Tn under the null and alternative hypotheses.

PROPOSITION 6.6. Suppose H0 : ν = νX ⊗ νY holds, where νX and νY are compactly

supported absolutely continuous distributions on R
dX and R

dY with quantile maps QX and

QY . Further, assume that the convex potentials ψX and ψY of QX and QY are strongly

convex. Then, for d = dX + dY ,

E[Tn] ≤ Crd,n,

where C ≡ C(μ,ν) > 0 depends on μ and ν, and rd,n is defined in (3).

PROPOSITION 6.7. Suppose that ν �= νX ⊗ νY , where νX and νY are compactly sup-

ported. Recall the notation from Proposition 6.5. Further, we assume that the convex poten-

tial functions ψX , ψY , ψ of the quantile maps QX , QY , Q are strongly convex functions.
Then we have

E
[
|Tn − c|

]
≤ Cr

1/2
d,n ,

where C ≡ C(μ,ν) > 0 and rd,n is defined in (3).
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