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Recent works have shown that strongly magnetized plasmas characterized by having a gyrofrequency greater
than the plasma frequency exhibit novel transport properties. One example is that the friction force on a test
charge shifts, obtaining components perpendicular to its velocity in addition to the typical stopping power
component antiparallel to its velocity. Here, we apply a recent generalization of the Boltzmann equation for
strongly magnetized plasmas to calculate the ion-electron temperature relaxation rate. Strong magnetization
is generally found to increase the temperature relaxation rate perpendicular to the magnetic field, and to
cause the temperatures parallel and perpendicular to the magnetic field to not relax at equal rates. This, in
turn, causes a temperature anisotropy to develop during the equilibration. Strong magnetization also breaks
the symmetry of independence of the sign of the charges of the interacting particles on the collision rate,
commonly known as the “Barkas effect”. It is found that the combination of oppositely charged interaction
and strong magnetization causes the ion-electron parallel temperature relaxation rate to be significantly
suppressed, scaling inversely proportional to the magnetic field strength.

I. INTRODUCTION

Plasma generation typically results in a non-
equilibrium state with electrons and ions at different
temperatures, which subsequently equilibrate through
energy exchange in Coulomb collisions. Understanding
the rate of this relaxation is important to understand-
ing plasma evolution. Here, we calculate the ion-electron
temperature relaxation rate in strongly magnetized plas-
mas. Strongly magnetized plasmas are those in which the
electron gyrofrequency exceeds the electron plasma fre-
quency1,2, i.e., β = ωce/ωpe > 1, where ωce = eB/mec

and ωpe =
√

4πe2ne/me. Understanding electron-ion en-
ergy exchange at strong magnetization is interesting from
the point of view of fundamental physics, as well as appli-
cations, including antimatter traps3,4, magnetized ultra-
cold neutral plasmas5–9, non-neutral plasmas10, mag-
netized dusty plasmas11, multi-MA accelerators12, and
magnetic confinement fusion13.

In a weakly magnetized plasma, the ion temperature
evolution owing to collisions with electrons can be ob-
tained by taking the energy moment of the Boltzmann
equation. For a spatially homogeneous plasma, this pro-
vides

dT1

dt
= −ν (T1 − T2) (1)

where T1 is the ion temperature, T2 is the electron tem-
perature and ν is the temperature relaxation rate. For a
weakly magnetized plasma where the gyromotion of the
particles occurs at a larger length scale than scattering,

a)Electronic mail: baalrud@umich.edu

the traditional Boltzmann collision operator14 predicts
the relaxation rate as15

ν =
32

√
πe4n2 ln Λ

3m1m2(v2T1 + v2T2)
3/2

. (2)

Here, n2 is the density of the electrons, m1 and m2

are the masses of the ions and electrons, respectively,
vT1 =

√

2T1/m1 and vT2 =
√

2T2/m2 are the thermal
velocities, and lnΛ is the Coulomb logarithm.

This work focuses on the opposite limit, where gy-
romotion occurs at a smaller length scale than scat-
tering. In this case, the relaxation rate was obtained
using the recently developed generalized Boltzmann ki-
netic theory for strongly magnetized plasmas16. The
Boltzmann equation is generalized in this theory to ac-
count for the Lorentz force acting on particles during
binary collisions. The theory was previously validated
by comparing the friction force on a test charge mov-
ing through strongly magnetized plasmas with data from
first-principles molecular dynamics (MD) simulations17.
Strong magnetization was found to give rise to novel
physics, such as the friction force not being antiparal-
lel to the velocity and having additional perpendicular
components16,18–23. This was found to give rise to non-
intuitive features, such as an increase in the gyroradius
of a test charge slowing down in strongly magnetized
plasma17,21. Strong magnetization was also discovered
to cause a Barkas effect where the collision rate depends
on the sign of charges of interacting particles24. As a re-
sult, it was found that the electrical resistivity and con-
ductivity of the electron-ion plasma differed significantly
from the positron-ion plasma, which is not a property of
weakly magnetized plasmas.

In this work, the ion-electron temperature relaxation
rate is calculated from the energy exchange density of
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a test ion interacting with background electrons. It
is found that when the plasma is strongly magnetized,
the parallel and perpendicular relaxation rates are no
longer equal, causing a temperature anisotropy to form.
Cases are considered for both attractive (electron-ion)
and repulsive (positron-ion) interactions. The calcula-
tion predicts that the relaxation rates are qualitatively
and quantitatively different in each case. The differ-
ence between the parallel and perpendicular relaxation
rates for attractive collisions is much more significant
than for repulsive collisions. For repulsive interactions,
strong magnetization increases both the parallel and per-
pendicular relaxation rates and becomes constant at ex-
treme values. In contrast, for attractive interactions, the
parallel relaxation rate is inversely proportional to the
magnetization strength (β) in the strongly magnetized
regime. The relaxation rates are also dependent on the
Coulomb coupling strength, Γ = (e2/a)/(kBT ), where
a = [3/(4πn)]1/3 is the Wigner-Seitz radius in addition
to the magnetization strength, β. Three values of Γ are
considered: 0.1, 1 and 10.

Understanding the thermal relaxation of ions in
strongly magnetized plasmas has many applications,
including the antimatter experiments at Antihydro-
gen Laser Physics Apparatus (ALPHA), which synthe-
sizes antihydrogen from antiprotons and positrons25,26.
After slowing and trapping, the collisional tempera-
ture relaxation of antiprotons occurs in two stages.
First, antiprotons are collisionally cooled with elec-
trons. Second, antiprotons are brought into thermal
equilibrium with positrons during the recombination pro-
cess25–27. For typical experimental conditions, electrons
and positrons are strongly magnetized and have magne-
tization strengths around few hundred (β ∼ 300).25,26

Since both ion-electron and ion-positron interactions are
important, the results for attractive (+−) and repulsive
(++) potentials are both relevant to this experiment.

Previous works calculating the temperature relaxation
in strongly magnetized plasmas employed methods such
as Fokker-Plank equations28, linear-response theory29,
force correlation methods30,31, binary collisions32–34, and
other perturbation methods35. These works showed that
the magnetic field enhances the relaxation rate, which
is proportional to the logarithm of the magnetic field
strength. However, all these methods were limited to
weakly coupled plasmas (Γ ≪ 1) and to the transport
regimes where the gyroradius is smaller than the Debye
length but larger than the distance of the closest ap-
proach.

This work extends the calculation of temperature re-
laxation to extreme magnetization regimes where the
gyroradius is smaller than the distance of the closest
approach. Instead of relying on perturbative methods
or weak interaction approximations to calculate the en-
ergy change during the binary collision events, the parti-
cle trajectories are numerically evaluated with high nu-
merical precision. This work also extends the calcula-
tion of temperature relaxation to the strongly coupled

regime using an effective potential theory called the po-
tential of mean force36,37. This makes the result applica-
ble to non-neutral plasmas,10 antimatter trap plasmas,3,4

and mangetized ultracold neutral plasmas5–9 which have
strongly coupled components.

The outline of this paper is as follows. In Sec. II, the
theoretical formulation of energy exchange between a test
charge and strongly magnetized background plasma is
described. Section III discusses the influence of coupling
strength, angle between the test charge velocity and mag-
netic field (i.e., its orientation θ), and the sign of the test
charge on the energy exchange density. In Sec. IV, the
ion-electron temperature relaxation rate is obtained from
the energy exchange density of the test charge. Section V
discusses the parallel and perpendicular temperature evo-
lution of warm ions collisionaly relaxing on a heat bath
of strongly magnetized electrons.
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FIG. 1: Energy exchange density components (Q12
⊥ and

Q12
‖ ) of the like charged (++) and opposite charged

(+−) cases for coupling strength, Γ2 = 1 and
orientation θ = 22.5◦. Note that the break in the
vertical axis signifies a switch from linear to logarithmic
scale.

II. THEORY

The temperature relaxation rate of a distribution of
ions is closely related to the energy exchange density of a
test ion slowing down on electrons38,39. This is because
the heavy mass of the ions makes the ion velocity dis-
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FIG. 2: Polar plots of the energy exchange density components (Q12
⊥ , Q12

‖ and Q12) of the like-charged (++)

interaction at Γ2 = 0.1 and β2 = 10. The radial axis is the speed of the test charge (v1/vT2
) and the angle is the

phase angle that the test charge velocity makes with the direction of the magnetic field (θ).

tribution very narrow compared to the electron velocity
distribution. In this limit, the ion velocity distribution
can be modeled as a Dirac delta function, which is math-
ematically equivalent to a single particle. We first calcu-
late the energy exchange density of a single test charge
and later use it to calculate the temperature relaxation
rate.

The energy exchange of a test charge that moves with
a velocity, v0 in a sea of background electrons can be
obtained by taking the energy moment of the collision
operator (Q12 =

∫

d3v1m1(v1 − v0)
2C/2). The ve-

locity distribution of a single test charge can be mod-
eled as a Maxwellian distribution with flow (v0), and
zero temperature. This limit is the Dirac delta function
(f1 = n1δ

3(v1 − v0)). Thus for a single test charge,
the energy exchange moment is Q12/n1. Here, species
1 is ions and species 2 is the background electron or
positron distribution. Using the generalized collision op-
erator (GCO)16, the energy exchange density is

Q12

n1
=

n2m1

2π3/2v3T2

∫

d3v2ds|u · ŝ|(v′
0−v0)

2e−v2

2
/v2

T2 . (3)

Here, the surface integral is on the surface of the col-
lision volume, and the background plasma is assumed
to be a Maxwellian distribution with thermal velocity
vT2 =

√

2kBT2/m2. The post collision velocity of the
test charge (v′

0) is the input to the collision operator and
is obtained by solving equations of motion of the colliding
particles inside the collision volume.

The ratio of the mass of the test charge (m1) to the
mass of the background particles (m2) is set at 1000;
mr = m1/m2 = 1000. As the test charge is much more
massive, the Lorentz force has little impact on its motion.

As a result, the equations of motion can be simplified as16

(m1 +m2)
dV

dt
= e

(

V

c
×B

)

− em12

m2

(

u

c
×B

)

, (4a)

m12
du

dt
= −[±∇φ(r)] +

em2
12

m2
2

(

u

c
×B

)

−em12

m2

(

V

c
×B

)

. (4b)

where V = (m1v0 + m2v2)/(m1 + m2) is the center
of mass velocity, m12 = m1m2/(m1 + m2) is the re-
duced mass, and u = v0 − v2 is the relative velocity.
Here, φ(r) is the potential of mean force36,37,40. For a
weakly coupled plasma, the potential of mean force is
the Debye-Hückel potential. The potential of mean force
was obtained using the hypernetted-chain approximation
for one component plasma41. The plus (+) sign of the
potential is for the like-charged case and the minus (−)
is for the opposite-charged case. The traditional Boltz-
mann theory does not include a magnetic field in the
equations of motion and uses a bare Coulomb potential
as the interaction potential. This simplifies the equations
of motion and leads to the analytical form of temperature
relaxation rate described in Eq. (2).

The energy exchange density can be split into com-
ponents parallel and perpendicular to the magnetic
field (Q12

‖ =
∫

d3v1m1(v1‖ − v0‖)
2C/2) and (Q12

⊥ =
∫

d3v1m1(v1⊥ − v0⊥)
2C/2). The two components add

to give the total energy exchange density, i.e., Q12 =
Q12

‖ +Q12
⊥ . In a weakly magnetized plasma, Q12

‖ = 1
2Q

12
⊥

in the limit of a low test charge speed. Separating the
parallel and perpendicular components will enable an
analysis of temperature anisotropy formation in strongly
magnetized plasmas.
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Similar to the case of the friction force calcula-
tion16,17,24, the energy moment integral is solved using
the adaptive Monte Carlo integration code VEGAS42,43

and the equations of motion of the colliding particles were
solved using the “DOP 853” method44. The tolerance for
the trajectory calculations was set to 10−8. The collision
volume was taken as a sphere. The radius of the spherical
collision volume for coupling strengths Γ2 = 0.1, 1, and
10 was taken to be 6.39a and 2.88a, 2.74a respectively.
These radii were chosen to ensure minimal interaction at
the surface of the collision volume.

III. RESULTS

Figure 1 shows example profiles of the energy exchange
density, in this case for a background coupling strength of
Γ2 = 1 and an angle of θ = 22.5◦ between the test particle
velocity and magnetic field. The energy exchange den-
sity in the parallel and perpendicular directions gives the
thermalization rate of a cool beam of ions in those direc-
tions. Its value in the perpendicular direction is expected
to be double that of the parallel direction because there
are two degrees of freedom compared to one. When the
parallel and perpendicular energy exchange densities do
not satisfy this criterion, it leads to different relaxation
rates in each direction, which can generate a temperature
anisotropy.

For low speeds, the energy exchange densities are in-
dependent of the speed of the test charge (see Fig. 1). In
the unmagnetized cases, the low-speed value of the per-
pendicular energy exchange density is double that of the
parallel. This is the usual expectation of weakly magne-
tized plasma, where the electrons and ions relax isotrop-
ically in the limit there is no relative drift. However,
in the case of strongly magnetized plasma, the limiting
values of the perpendicular energy exchange density are
greater than double that of the parallel. Thus, strong
magnetization is expected to lead to the development of
temperature anisotropy during the relaxation. This dif-
ference in the perpendicular and parallel energy exchange
densities is significantly enhanced for attractive collisions
compared to repulsive. In fact, for β2 = 10, Q⊥ is more
than an order of magnitude greater than 2Q‖, suggesting
that electron-ion energy exchange is much faster in the
perpendicular direction.

The difference between attractive and repulsive col-
lision rates is a significant, and perhaps surprising, ef-
fect that is often called the “Barkas” effect. Collisions in
standard plasma kinetic theories are based on either the
Rutherford scattering cross section in Boltzmann-type
models, or on the linear dielectric response function in
Lennard-Balescu type models. Both cases predict that
the collision rate has no dependence on the sign of the
interacting charges, since only the square of the charges
enters the theory. It has previously been shown that a
Barkas effect arises in strongly coupled plasmas.45 The
explanation for this is that screening associated with the

potential of mean force leads to a difference in the scat-
tering cross section when the relative speeds of particles
are small, corresponding to the close-interaction regime.
Here, we observe a Barkas effect in a moderately cou-
pled plasma (Γ2 = 1), but which also depends strongly
on the degree of magnetization. It is expected that, like
the strong coupling case, the origin of the effect is a de-
pendence on the sign of interacting charges in close col-
lisions. Attractive collisions are generally observed to
lead to closer interactions that occur over a much longer
timescale, including occurrences of pseudo-bound states,
than repulsive collisions. It is noteworthy that previous
work studying the influence of strong magnetization from
a linear response perspective does not predict a Barkas
effect.21,22 The reason is similar to unmagnetized plas-
mas: the linear dielectric response does not consider close
interactions, and therefore is independent of the sign of
the charges. This emphasizes the need for a particle-
based collision model at sufficiently strong magnetization
strength.

The Barkas effect is more significant in the case of
small-speed large-angle scattering than for high-speed
small-angle scattering. Thus, the energy exchange den-
sity enhancement due to the Barkas effect is absent at
high speeds of the test charge, as indicated by the merg-
ing of the like-charged and oppositely-charged curves at
high speed; see Fig. 1. Similarly, the curves for the
strongly magnetized conditions merge with those for un-
magnetized conditions at high speeds. This is because
the collisions of a high-speed test charge happen at a
faster time scale than the gyromotion of the electrons,
nullifying the strong magnetization effect.

Figures 2, 3 and 4 show results of computations of the
energy exchange density components for different orien-
tations of the test charge velocity with respect to the
direction of the magnetic field (θ). Figures 2 and 3 show
results for like-charged interactions at coupling strengths
Γ2 = 0.1 and Γ2 = 1 and Fig. 4 for oppositely-charged
interactions at coupling strength Γ2 = 1. The energy ex-
change density not only depends on the speed and sign
of the ion charge, but also on θ. However, at very low
speeds Q12

‖ and Q12
⊥ are observed to become independent

of θ.

Figure 2 shows that at weak coupling (Γ2 = 0.1) Q12
‖

is largely independent of θ at any speed, while Q12
⊥ is

peaked along the magnetic field (θ = 0, 180◦). Here,
both Q12

‖ and Q12
⊥ take maximal values in the low speed

limit, having long flat plateaus at low speed. In contrast,
Fig. 3 shows that at moderate coupling (Γ2 = 1), both
Q12

‖ and Q12
⊥ depend strongly on θ, with the peak value

of each being along the magnetic field (θ = 0, 180◦) at a
speed of a few thermal speeds.

The comparison of Figs. 3 and 4 show that for attrac-
tive interactions (+−), the peak value of Q12

⊥ is signifi-
cantly larger than all other cases and occurs at a speed
slightly less than the thermal speed. This suggests that
the energy exchange in the perpendicular direction is very
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FIG. 3: Polar plots of the energy exchange density components (Q12
⊥ , Q12

‖ and Q12) of the like-charged (++)

interaction at Γ2 = 1 and β2 = 10. The radial axis is the speed of the test charge (v1/vT2
) and the angle is the phase

angle that the test charge velocity makes with the direction of the magnetic field (θ).
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FIG. 4: Polar plots of the energy exchange density components (Q12
⊥ , Q12

‖ and Q12) of the opposite-charged (+−)

interaction at Γ2 = 1 and β2 = 10. The radial axis is the speed of the test charge (v1/vT2
) and the angle is the phase

angle that the test charge velocity makes with the direction of the magnetic field (θ).

rapid for an oppositely charged beam especially when
moving slightly slower than the thermal speed of the elec-
trons. In this case, the peak value of all energy exchange
density components is when the test charge moves per-
pendicular to the magnetic field. This contrasts with the
repulsive (++) case, where the peak values occur when
the test charge moves along the magnetic field. This
observation is similar to the friction force, where the op-
positely charged test charge (+−) experiences maximum
friction when moving perpendicular to the magnetic field,
while the like-charged case is peaked when moving par-

allel to the magnetic field.24 The increase of the peak
value from the plateau value in the low speed limit is
also significant in the +− case.

IV. TEMPERATURE RELAXATION

The energy exchange density for a test charge was
discussed in the previous section. Here, we extend the
calculation to a distribution of ions with a finite tem-
perature and apply the result to model the evolution of
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FIG. 5: Energy exchange density of an ion distribution
as a function of its parallel [(a) and (c) for fixed
T⊥/T2 = 0.5] and perpendicular [(b) and (d) for fixed
T‖/T2 = 0.5] temperatures. Circles denote solutions of
Eqs. (10) and (11). The dashed line shows the linear
prediction from Eqs. (14) and (15). The top row is for
the case of like-charged collisions and bottom row is for
the case of opposite-charged collisions. Here, the
coupling strength is Γ2 = 1 and magnetization is
β2 = 10.

the ion distribution as it relaxes with a strongly mag-
netized electron distribution held at a fixed temperature
(i.e., a heat bath). Since strong magnetization causes an
anisotropy in the energy exchange density, we consider
an anisotropic Maxwellian distribution for ions

f1 =
n1

π3/2v2T1⊥
vT1‖

e
−v2

1‖/v
2

T
1‖ e−v2

1⊥/v2

T
1⊥ . (5)

Here, vT1‖
=

√

2kBT1‖/m1 and vT1⊥
=

√

2kBT1⊥/m1

are parallel and perpendicular ion thermal speeds. Here,
we note that the anisotropic Maxwellian is an assumed
form for the distribution function that is expected to be
accurate particularly when the difference between the
electron and ion temperatures is relatively small. As-
suming this form, the parallel energy exchange density
is

Q‖ =
1

2
m1

∫

d3v1d
3
v2ds|u · ŝ|(v′21‖ − v21‖)f1f2 (6)

Using, v′21‖− v21‖ = (v′1‖− v1‖)
2+2v1‖(v

′
1‖− v1‖), this can

equivalently be expressed as

Q‖ =
1

2
m1

∫

d3v1d
3
v2ds|u · ŝ|

[

(v′1‖ − v1‖)
2

+2v1‖(v
′
1‖ − v1‖)

]

f1f2. (7)

On rewriting f1 =
∫

δ3(v1 − v0)f1(v0), and evaluating
the d3v1 integral

Q‖ =

∫

d3v0f1(v0)

∫

d3v2ds|u · ŝ|1
2
m1(v

′
0‖ − v0‖)

2f2

+

∫

d3v0f1(v0)

∫

d3v2ds|u · ŝ|m1v0‖(v
′
0‖ − v0‖)f2.(8)

Assuming an isotropic Maxwellian distribution of elec-
trons, f2 = n2/(π

3/2v3T2
) exp(−v22/v

2
T2
) and using the def-

initions of energy exchange density, Eq. (3), and friction
force of the test charge charge24

F =
n2m1

π3/2v3T

∫

d3v2

∫

S−

ds |u · ŝ|(v′
0 − v0)e

−v2

2
/v2

T , (9)

this can be further simplified to

Q‖ =

∫

d3v0f1(v0)Q12
‖ /n1 +

∫

d3v0f1(v0)F‖v0‖.(10)

Similarly, the perpendicular energy exchange density is

Q⊥ =

∫

d3v0f1(v0)Q12
⊥ /n1 +

∫

d3v0f1(v0)F⊥ · v0⊥.(11)

Finally, the parallel and perpendicular energy moments
of the Boltzmann equation connect the energy exchange
densities to the rate of change of the respective temper-
atures

n1kB
dT1⊥

dt
= Q⊥, (12)

1

2
n1kB

dT1‖

dt
= Q‖. (13)

Considering the common situation that the electron
and ion temperatures are not dramatically different (i.e.,
T1/T2 ∼ 1), an analytic approximation of the tem-
perature evolution can be obtained by assuming a lin-
ear dependence of the form: Q‖ ∝ (1 − T1‖/T2) and
Q⊥ ∝ (1 − T1⊥/T2). In the limit that the parallel or
perpendicular temperature is zero, the energy exchange
density should asymptote to the value for that of a test
charge in the limit of zero speed, i.e., Q⊥(T1⊥ → 0) =
Q12

⊥ (v1 → 0) and Q‖(T1‖ → 0) = Q12
‖ (v1 → 0). In the

limit that the ion parallel or perpendicular temperature
is equal to that of the electron temperature, the energy
exchange in the respective directions goes to zero, i.e.,
Q⊥(T1⊥ → T2) = 0 and Q‖(T1‖ → T2) = 0. With these
two limiting cases and the assumption of a linear depen-
dence on the temperature ratio, the parallel and perpen-
dicular energy exchange densities for a distribution of
ions can be related to the test particle values in the low
speed limit

Q‖ = lim
v1→0

Q12
‖ (v1)

(

1− T1‖

T2

)

(14)

Q⊥ = lim
v1→0

Q12
⊥ (v1)

(

1− T1⊥

T2

)

(15)

where Q12
‖ (v1) and Q12

⊥ (v1) are the components of the

test particle energy exchange density.
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FIG. 6: The ion-electron temperature relaxation rates for like-charged collisions [(a) Γ2 = 0.1, (b) Γ2 = 1 and (c)
Γ2 = 10] and opposite charged collisions [(d) Γ2 = 1]. The red circles are the perpendicular relaxation rates and the
blue circles are the parallel relaxation rates. Vertical dotted lines delineate transitions between the four transport
regimes.

This linear model is overall in good agreement with di-
rect numerical integration of Eqs. (10) and (11) for ion-
electron temperature ratios near 1; as shown in Fig. 5.
The small deviation of Q⊥ from the linear prediction in
the attractive interaction case (+−) might be because
the Q12

⊥ curve does not plateau to a constant value until
very small speeds are reached (v/vT . 10−2); see Fig. 1.
The energy exchange density of the ions having a linear
dependence on the ion temperature is equivalent to say-
ing that the temperature relaxation rate is independent
of the ion temperature. From Eqs. (12)–(15), we get

dT1⊥

dt
= −ν⊥ (T1⊥ − T2) (16)

dT1‖

dt
= −ν‖ (T1‖ − T2) (17)

where,

ν⊥ = lim
v1→0

Q12
⊥ (v1)

n1kBT2
, (18)

ν‖ = 2 lim
v1→0

Q12
‖ (v1)

n1kBT2
. (19)

The temperature relaxation rates ν (linear order) de-
pend only on the low speed value of Q12. Since the low
speed value of Q12 does not depend on the orientation of
the test charge with respect to the magnetic field, the cal-
culation of the temperature relaxation can be extended

to higher β values very efficiently. Instead of creating
the whole polar plot and integrating, Q12 was calcu-
lated for a fixed orientation θ = 22.5◦, at very low speed
(≈ 10−2vT2) for different magnetization strengths. The
results of this calculation for different coupling strengths
are shown in Fig. 6

The figure also indicates regimes that have previ-
ously been predicted to delineate when changes in trans-
port properties occur.2 These are defined by compar-
ing the electron gyroradius (rc =

√

kBT2/m2/ωc2) with
other fundamental length scales including the Coulomb
collision mean free path (λcol), Debye length (λD =
√

kBT2/4πe2n2), and Landau length (rL =
√
2e2/kBT2).

The four regimes are: 1) The unmagnetized regime (rc >
λcol): Here, the gyroradius is larger than the Coulomb
collision mean free path. Thus, the magnetic field is not
expected to influence transport. 2) The weakly magne-

tized regime (max(λD, a) < rc < λcol): Here, the mag-
netic field influences transport by acting on the distribu-
tion function. However, collisions between particles occur
at microscopic scales (less than the Debye length) are
not influenced by gyromotion, so the collision operator
does not explicitly depend on the magnetic field. 3) The
strongly magnetized regime (rL < rc < λD): Here, the
gyroradius is smaller than the Debye length but larger
than the Landau length. In this regime, the magnetic
field strongly influences collisions between the particles
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FIG. 7: The parallel and perpendicular ion temperature
evolution when warm ions collisionally relax with a heat
bath of electrons. Here, the electron coupling strength
is Γ2 = 1 and magnetization strength is β2 = 10. Solid
lines are for the case where both the ion-electron and
ion-ion collisions are present and dashed lines are for
the case where ion-ion collisions are turned off.

in addition to the macroscopic evolution of the distri-
bution function. 4) The extremely magnetized regime
(rc < min{rL, λcol, a}): In this regime, the magnetic field
is so strong that the gyroradius is the smallest length
scale. Here, the motion of the particles is nearly 1D,
with particles making 180◦ collisions at the distance of
closest approach. Note that at strong coupling (Γ > 1),
the Coulomb collision mean free path becomes smaller
than the Debye length and Landau length leading to the
collapse of the four transport regimes to only two - the
unmagnetized and extremely magnetized.2

As expected, the parallel and perpendicular temper-
ature relaxation rates are independent of the magnetic
field strength and have the same value through the un-
magnetized and weakly magnetized regimes (1 and 2).
The independence of the relaxation rates on the magnetic
field is expected because the generalized collision opera-
tor in these regimes is equivalent to the traditional Boltz-
mann collision operator, which does not depend on the
magnetic field strength.16 In contrast, the parallel and
perpendicular relaxation rates depend on the magnetic
field strength and take different values from one another
in the strongly and extremely magnetized regimes. The
difference in the relaxation rates can cause anisotropy to
form in the ion temperature during the collisional relax-
ation to thermal equilibrium. For like-charged interac-
tions, strong magnetization increases both the parallel
and perpendicular temperature relaxation rates (though
by differing amounts), reaching constant values in the
large β limit. A strikingly different behaviour is observed

in the case of oppositely charged interactions, where al-
though the perpendicular relaxation rate increases, the
parallel relaxation rate decreases at a rate inversely pro-
portional to β: ν‖ ∝ β−1. This leads to a dramatic
suppression of energy exchange along the magnetic field
at high values of the magnetization strength.

V. DISCUSSION

This section discusses the temperature evolution of
warm ions cooling down on a cool bath of electrons. The
density of the background electrons (lighter species) is
taken as much larger than the ion density so it can be
considered a heat bath (i.e., constant temperature). This
case is representative of anti-matter traps where antipro-
tons are mixed with electrons at the cooling stage (repul-
sive case) and with positrons during antihydrogen forma-
tion (attractive case)25–27.

When there is an anisotropy in the ion temperature,
ion-ion collisions reduce the anisotropy. Thus, when con-
sidering the ion temperature evolution, in addition to the
ion-electron collisions, contributions from ion-ion colli-
sions are included as a collision term in the Boltzmann
equation. The temperature evolution equation of the ions
then takes the following form,

dT1⊥

dt
= −ν⊥ (T1⊥ − T2)− νA(T1⊥ − T1‖) (20)

dT1‖

dt
= −ν‖ (T1‖ − T2) + 2νA(T1⊥ − T1‖) (21)

where νA is the anisotropy relaxation rate due to ion-
ion interactions. Since ions are weakly magnetized, we
use the relaxation rates from Ref. 46, obtained using the
traditional Boltzmann collision operator to model this
term,

νA
ν̄

=
3
√
π

16

(1 + 2
3A)3/2√

αA5/2

∫ ∞

0

dξξ2e−αξ2 σ
(2)

σ0

×
[

2

3
ξ2αAerf(ξ

√
αA)− ψ(ξ2αA)

]

. (22)

Here, σ0 ≡ πe4/(2kBT )
2, ξ2 ≡ u2/(2v2T1), A ≡

T1⊥/T1‖ − 1, α ≡ 1
3 (3 + 2A)/(1 + A), ν̄ =

2
√

π/m1n1e
4/(kBT1)

3/2 is the reference collision fre-

quency, σ(2) is the 2nd momentum scattering cross sec-
tion obtained using the potential of mean force computed
from the HNC approximation for the one component
plasma [Eq. (27) in Ref. 46] and

ψ(x) = erf(
√
x)− 2√

π

√
xe−x (23)

is the Maxwell integral.
The temperature evolution obtained by integrating

Eqs. (20) and (21)] is shown in Fig. 7. The plots are for
the attractive (+−) interaction. As the previous section
shows, electron-ion collisions lead to different tempera-
ture relaxation rates in the perpendicular and parallel

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
4
6
4
1
7



9

directions. Thus, as a warm ion distribution collisionally
relaxes with electrons toward the equilibrium tempera-
ture, a temperature anisotropy develops. The dashed
lines are the results of solving the equations without the
ion-ion collisions, and solid lines account for both the
ion-electron and ion-ion collisions. Here, the initial ion
distribution is an isotropic Maxwellian distribution with
a temperature, T1/T2 = 2.1, and the electrons are as-
sumed to have a coupling strength, Γ2 = 1, and magne-
tization strength, β2 = 10. The density ratio of ions to
electrons is n1/n2 = 10−2. Even though the initial distri-
bution is isotropic, the ion-electron collisional relaxation
rate differs in the perpendicular and parallel directions,
inducing temperature anisotropy during the relaxation
process. Since the perpendicular energy equilibration
rate is much larger than the parallel, the anisotropy is
such that the parallel temperature is larger through the
evolution. This anisotropy is slightly relaxed by ion-ion
collisions. Here, the temperature evolution is obtained by
assuming that the ion distribution stays an anisotropic
Maxwellian throughout the evolution. This assumption
simplifies the energy moment of the Boltzmann equation
to Eqs. (12) and (13). A more general solution of the
full kinetic equation may predict deviations from this as-
sumed form, but it is expected to provide an accurate
approximation for sufficiently small differences between
the electron and ion temperatures.

VI. CONCLUSION

This work used the recently developed generalized
Boltzmann kinetic theory for strongly magnetized plas-
mas to calculate the ion-electron temperature relaxation
rate. The temperature relaxation rate was obtained from
the energy exchange density of a test charge slowing
down in a strongly magnetized plasma. It was found
that when the plasma is strongly magnetized, the relax-
ation rates change and also cause the rates in the parallel
and perpendicular directions to no longer be equal. Dif-
ferent parallel and perpendicular temperature relaxation
rates cause temperature anisotropy to develop when the
ions and electrons equilibrate to a common temperature.
The relaxation rates were also found to depend on the
sign of the charge of the interacting particles, known as
the Barkas effect. The Barkas effect increases the differ-
ence between the parallel and perpendicular relaxation
rates. The parallel relaxation rate in the case of oppo-
sitely charged interaction was found to be inversely pro-
portional to the magnetic field strength in the strongly
magnetized regime.

These new results may be observed in magnetized
plasma experiments, including ultra-cold neutral plas-
mas5,8,9 and antimatter traps3. Modeling these experi-
ments requires the computation of macroscopic transport
coefficients like diffusion1,2,47,48, conductivity49, shear
viscosity50, and other characteristics like dynamic struc-
ture factor51. The generalized collision operator is a

strong candidate for obtaining them. This will be ex-
plored in future work.
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