

https://doi.org/10.1130/G51277.1

Manuscript received 5 April 2023 Revised manuscript received 2 June 2023 Manuscript accepted 20 June 2023

Published online 6 July 2023

© 2023 Geological Society of America. For permission to copy, contact editing@geosociety.org

Li isotope ratios of spring fluids as an effective tracer of slab-derived subducted sources across the Costa Rica forearc

Jacob P. Helper¹, Jaime D. Barnes^{1,*}, J. Maarten de Moor^{2,3}, Alejandro Rodríguez², Peter H. Barry⁴, Evan J. Ramos^{1,†}, and John C. Lassiter¹

- ¹Department of Geological Sciences, University of Texas, Austin, Texas 78712, USA
- ²Observatatorio Vulcanológico y Sismológico de Costa Rica (OVSICORI), Universidad Nacional, Heredia 40101, Costa Rica
- ³Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
- ⁴Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

ABSTRACT

Spring waters from across the Costa Rica margin were analyzed for their Li and He isotope compositions to determine the utility of Li isotopes as a tracer of volatile sources in subduction zones. Li isotope ratios systematically decrease with increasing depth to the subducting slab: averaging +15.0% \pm 9.2% in the outer forearc (<40 km to the slab), +9.3% \pm 4.3% in the forearc (40–80 km to the slab), and +5.8% \pm 2.8% in the arc (>80 km to the slab). In contrast, air-corrected 3 He/ 4 He values (reported relative to the ratio in air, $R_{\rm A}$) range from 0.4 to 7.5 $R_{\rm A}$ and increase from predominantly crustal values near the trench to mantle values in the arc. Together, these data support progressive devolatilization of the subducting plate with slab-derived Li components sourced from shallowly expelled pore fluids in the outer forearc, sedimentary and/or altered oceanic crust contributing to the forearc, and limited slab input beneath the arc.

INTRODUCTION

Recent developments in Li isotope geochemistry have raised concerns about the utility of Li isotopes as tracers of fluid sources in magmatic and metamorphic systems (e.g., Marschall and Tang, 2020). Initial excitement surrounding the use of Li isotopes to trace subduction of crustal components through the subduction cycle (e.g., Zack et al., 2003; Elliott et al., 2004) was dampened by the recognition of diffusive fractionation of Li isotopes at magmatic temperatures (e.g., Jeffcoate et al., 2007). Although Li may be subject to diffusive fractionation at high temperatures, we assert that Li isotopes can still be an effective means to trace fluid sources within subduction zones given the right parameters. Lithium isotopes remain advantageous in that they undergo minimal fractionation during liquid-vapor separation (Liebscher et al., 2007)

Jaime D. Barnes https://orcid.org/0000-0001

*jdbarnes@jsg.utexas.edu

†Current address: Department of Earth, Environment, and Planetary Sciences, Rice University, Houston, Texas 77005, USA

and during dehydration of the subducting slab, thus preserving the isotopic composition of their source (e.g., Marschall et al., 2007; Penniston-Dorland et al., 2012).

In this study, we report δ^7 Li values in cold (<40 °C) spring fluids to determine the change in slab-derived fluid components across the Costa Rica convergent margin. Cold fluids were targeted to limit secondary geochemical modification via fluid-rock interaction at high temperatures. For comparison, we analyzed highertemperature fluids from adjacent springs. Costa Rica is one of few localities in which forearc springs are exposed subaerially due to several uplifted peninsulas and therefore easily accessible. We collected spring samples from the Santa Elena, Nicoya, and Burica Peninsulas as well as across the margin to the volcanic arc, conducting a transect covering depths to the subducting slab from \sim 20 to \sim 120 km.

GEOLOGIC SETTING AND SPRING SAMPLES

The subduction of the Cocos plate beneath the Caribbean plate at a convergence rate of 60-90 mm/yr at the Middle America Trench results in an arc of active volcanoes stretching from Guatemala to southern Costa Rica. Along-arc variations in the subduction parameters drive large changes in the chemistry of arc products. Steep subduction of hydrated oceanic crust formed at the fast-spreading East Pacific Rise in Nicaragua and northern Costa Rica is associated with strong slab-fluid signatures (e.g., Ba/La; Carr et al., 1990) in arc lavas. In central and southern Costa Rica, subduction of thicker oceanic crust formed at the Cocos-Nazca spreading center under the influence of the Galapagos plume results in shallower slab dip, less-pronounced slab-fluid signatures, and oceanic island basalt (OIB)-like lava geochemistry (e.g., Gazel et al., 2011). Subduction of seamounts and the Cocos Ridge result in uplift of the Nicoya and Osa Peninsulas and tectonic erosion of the outer forearc (e.g., Vannucchi et al., 2006).

A total of 43 springs (47 samples) along and across the Costa Rica margin were studied (Fig. 1; Table S1 in the Supplemental Material¹). Nine samples (2017 collection dates; Table S1) were previously studied (Barry et al., 2019). Depth to the subducting slab interface (Lücke and Arroyo, 2015) was used to classify a spring as "outer forearc" (<40 km), "forearc" (40-80 km), or "volcanic arc" (>80 km). The lithology of the overriding plate varies, with sampled springs hosted in Quaternary alluvium, Quaternary volcanics, Tertiary volcanics, Cretaceous to Quaternary deep-water sediments, and Jurassic seafloor basalts. Several of the outer forearc springs on the Nicoya Peninsula (SI, RS, SR, SN, SG, SM, SV; spring abbreviations in Table S1) are located along the Falla Morote, a major

'Supplemental Material. Detailed methods, Figures S1–S3, Tables S1–S4. Please visit https://doi.org/10.1130/GEOL.S.23571741 to access the supplemental material, and contact editing@geosociety.org with any questions.

CITATION: Helper, J.P., et al., 2023, Li isotope ratios of spring fluids as an effective tracer of slab-derived subducted sources across the Costa Rica forearc: Geology, v. XX, p. , https://doi.org/10.1130/G51277.1

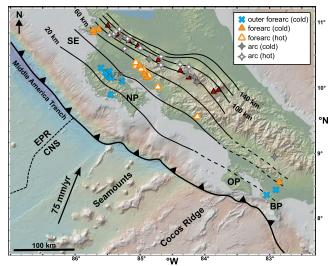


Figure 1. Map of the Costa Rica convergent margin showing sample sites. Solid symbols are cold fluids (<40 °C); open symbols are warm fluids (>40 °C). SE—Santa Elena Peninsula; NP-Nicoya Peninsula; OP-Osa Peninsula; BP-Burica Peninsula; FM-Falla Morote (dashed gray line); EPR-East Pacific Rise; CNS—Cocos-Nazca spreading center. Depth to subducting slab (solid black lines) is shown in 20 km contours after Lücke and Arroyo (2015, and references therein). Depth to subducting slab in southern Costa Rica is

not well defined and shown as speculative dashed black lines. Volcanoes are shown as red triangles.

active northwest-southeast-trending reverse fault (Denyer et al., 2014). Two of the forearc springs (CP, LF) are in altered and mineralized volcanic rocks of the Aguacate Formation. Four springs were sampled twice (SL, LW, FA, GY) to investigate chemical variability. Laurel Well (LW) was sampled 454 days before and 8 days

after a magnitude 6.3 earthquake occurred on the Burica Peninsula.

ANALYTICAL METHODS

Li concentrations and δ^7 Li values were analyzed at the University of Texas at Austin (Austin, Texas, USA). Concentrations were

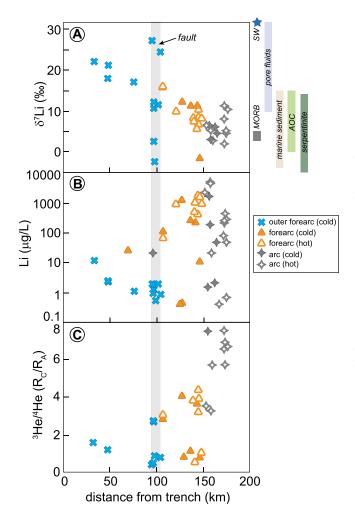


Figure 2. Li isotope composition (A), Li concentration (B), and 3He/4He values (reported as air corrected and relative to the ratio in air, Rc/ R_A) (C) of spring waters with distance from the trench. Symbols are larger than the error. Range in δ^7 Li values is given for various reservoirs (references in text). MORB—mid-ocean-ridge basalt; SW-seawater; AOC-altered oceanic crust. Location of Falla Morote is highlighted by gray bar. Río Cotón and Río Colorado samples plot closer to the trench for forearc and arc given the shallower dip of the subducting slab in southern Costa Rica; δ7Li and 3He/4He values were not analyzed for these two samples.

determined via solution mode inductively coupled plasma mass spectrometry (ICP-MS) using an Agilent 7500ce quadrupole ICP-MS, and Li isotope ratios were measured using a Nu Plasma 3D multi-collector ICP-MS. In addition, ³He/⁴He values, reported relative to the ratio in air (R/R_A), were measured and air corrected (R_C) for either the fluid or free gas. Helium analyses were performed at Woods Hole Oceanographic Institution (Woods Hole, Massachusetts, USA). Major anions were analyzed at the National University of Costa Rica (Heredia, Costa Rica). See the Supplemental Material for details.

RESULTS

The spring waters show a dramatic range in geochemical parameters, with temperatures from 20.6 °C to 98.4 °C and pH from 1.7 to 11.3 (Table S1). Water types range broadly from sulfate dominated to bicarbonate and chloride dominated (Fig. S1; Table S2). Lithium concentrations range from 0.4 to 5173 μ g/L and δ ⁷Li values from -2.4% to +27.3% (Fig. 2). Aircorrected ³He/⁴He (R_C/R_A) values range from $0.4 R_A$ to $7.5 R_A$ (Fig. 2). Overall, $\delta^7 Li$ values decrease with increasing depth to the subducting slab from an average of +15.0% $\pm 9.2\%$ in the outer forearc to +9.3% $\pm 4.3\%$ in the forearc and +5.8% $\pm 2.8\%$ in the arc (Fig. 2). The maximum [Li] increases with increasing depth to the slab. However, there remains a large range in [Li] at a given distance from the trench (e.g., arc samples range from <1 to $>5000 \mu g/L$ Li), resulting in no correlation with δ^7 Li values (Fig. 2; Fig. S2). In contrast, ³He/⁴He values increase with distance from the trench (averaging 1.3 ± 0.8 R_A in the outer forearc, 2.7 ± 1.5 R_A in the forearc, and $5.9 \pm 1.6 R_A$ in the arc), correlating with decreasing δ^7 Li values (Fig. 3). No clear correlations are observed between δ⁷Li values and major anions (Fig. 4A).

Springs that were sampled twice (FA, SL, GY) show minimal change in [Li] and/or δ^7 Li values over the course of a year and up to four years. LW shows minimal to no change in [Li] and δ^7 Li values from pre- and post-earthquake samples. Samples from different springs at Quepos Hot Springs have δ^7 Li and δ^3 He/ δ^4 He values within error and similar [Li].

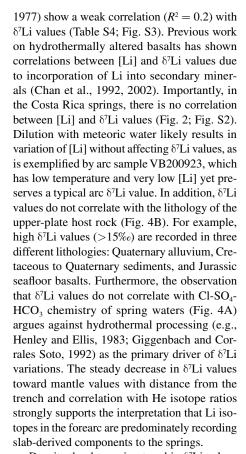
DISCUSSION

Li Isotopes as a Tracer of Slab-Derived Fluids in Spring Fluids

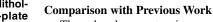
The $\delta^7 \text{Li}$ values of the spring fluids are bounded by the end members of seawater (+31‰) and mid-ocean-ridge basalt (MORB) (\sim +3‰ to \sim +5‰) (Tomascak et al., 2016, and references therein). With increasing distance to the subducting slab, the $\delta^7 \text{Li}$ values steadily decrease to mantle values (Fig. 2). Values from samples from the outer forearc, except for outliers along the Falla Morote (see discussion below), largely overlap with those



Figure 3. Li isotope ratios of spring fluids decrease with increasing $^3\text{He}/^4\text{He}$ values (reported as air corrected and relative to the ratio in air, R_{\circ}/R_{\wedge}) ($R^2=0.36;$ p-value=0.0016). Black dashed line is the best fit line. Samples that experienced modification of $\delta^7\text{Li}$ values along the Falla Morote (springs SI, SV, SM, SG) or contribution from surficial mining drainage (spring CP) are not included. Gray box highlights mantle values.


of sedimentary pore fluids, which range globally from $\sim +10\%$ to +45% (Tomascak et al., 2016, and references therein) and $\sim +20\%$ to +40% in Central America (Chan and Kastner, 2000). Values in fluids from the forearc overlap with those of altered oceanic crust (AOC; $\sim 0\%$ to +15%) (e.g., Chan et al., 1992, 2002) as well as marine sediments (globally between \sim -4% and +15% with samples offshore Costa Rica $\sim +2\%$ to $\sim +13\%$ (Chan et al., 2006) (Fig. 2). However, values from seafloor serpentinites also overlap, ranging from $\sim -28\%$ to ~+14% (Decitre et al., 2002; Vils et al., 2009). Values from arc springs are consistent with MORB values, likely reflecting the ambient mantle wedge, but overlap with those of other potential deeply subducted sources (Fig. 2). Collectively, the decrease in δ^7 Li values suggests an evolving slab component due to progressive devolatilization of the subducting slab from shallow loss of pore fluids in the outer forearc, devolatilization of sediments and/ or AOC below the forearc, and minimal input from the slab beneath the arc.

With decreasing distance to the arc, ${}^{3}\text{He}/{}^{4}\text{He}$ values increase, approaching upper mantle values (\sim 8 R_A) (Fig. 2) (Barry et al., 2019; this study). Lower ${}^{3}\text{He}/{}^{4}\text{He}$ values are recorded in the outer forearc and forearc but still indicate a mantle component (i.e., samples with R_c/R_A >1) consistent with a deep volatile source mixed with shallow crustal fluids (Barry et al., 2019). The correlation between $\delta^{7}\text{Li}$ and ${}^{3}\text{He}/{}^{4}\text{He}$ values (Fig. 3) supports the interpretation of slab-derived Li components to the outer forearc and forearc springs and limited slab input beneath the arc.


Potential of Li Isotope Fractionation

As with any isotopic system, isotopic fractionation during secondary processes (e.g., fluidrock interaction) must be evaluated. In general, ⁷Li preferentially partitions into aqueous fluids relative to minerals (Tomascak et al., 2016, and references therein). Therefore, the formation or dissolution of Li-bearing minerals may result in isotopic fractionation. Li is a highly fluid-mobile element thought to undergo limited interaction with the host rock and thus considered to be a conservative tracer (e.g., Giggenbach, 1991). However, some work has shown that Li can be both incorporated in secondary minerals and lost to solution via mineral breakdown, resulting in isotopic fractionation typically at higher temperatures (>150 °C) (e.g., James et al., 2003; Reyes and Trompetter, 2012). Despite numerous studies on Li in hydrothermal systems, a complete understanding of Li behavior is lacking, with studies commonly showing contradictory results. For example, some studies report δ⁷Li values of hydrothermal fluids varying with temperature (e.g., Millot and Négrel, 2007), whereas others show minimal temperature dependence (Bernal et al., 2014; Cullen et al., 2019).

To avoid complications due to shallow fluid-rock hydrothermal interaction, we have focused on cold springs. Cold and hot springs with similar distances from the trench result in similar δ^7 Li values, suggesting minimal temperature effects. Calculated subsurface spring temperatures using silica thermometry (Fournier,

Despite the decreasing trend in δ^7 Li values with depth to the subducting slab, there are some distinct outliers. Several springs along the Falla Morote have δ^7 Li values significantly above (springs SI, SV) or below (SM, SG) the overall trend line. These values may result from diffusion due to highly variable degrees of fluidrock interaction along this fluid pathway in the crust. Li concentrations in these samples are very low, making these fluids highly sensitive to modification by shallow processes within the fault zone. In contrast, primary fluids with high [Li] would be relatively impervious to secondary processing in the shallow crust. The CP sample has a much lower δ^7 Li value (-1.6%) than other forearc samples and is from a mineralized region where field observations suggest contribution from associated acid mine drainage. The low He isotope ratio (0.8 R_A) also suggests a shallow, crustal component. These observations demonstrate that although Li isotopes can be an effective tracer of deeper fluid sources, which feed thermal spring systems, care must be taken with samples showing modification by shallow processes.

There has been extensive previous work focusing on the cycling of volatile and fluid-mobile elements through the Central American subduction zone; however, most of the work has focused on the volcanic arc. Based on various elemental and stable isotope ratios, slab con-

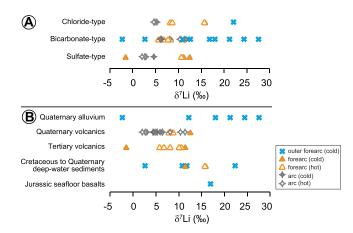


Figure 4. Li isotope composition of springs grouped by water classification (Fig. S1 [see text footnote 1]) (A) and lithology of the upper-plate host rock (B). Lithology from Schruben (1996).

Geological Society of America | GEOLOGY | Volume XX | Number XX | www.gsapubs.org

tributions to the Costa Rica arc volcanic products are estimated to be minimal (e.g., Carr et al., 1990; Patino et al., 2000; Fischer et al., 2002). Work focused on volatiles in the Costa Rica outer forearc and forearc is limited. Carbon, O, and H isotope compositions of offshore cold seeps have been interpreted as recording a sedimentary-derived fluid component from the subducting slab (Hensen et al., 2004; Füri et al., 2010). Recent carbon isotope work on outer forearc and forearc springs also suggests a deeply derived (mantle + slab) component (Barry et al., 2019). Nitrogen isotope work on gases from forearc springs records δ¹⁵N values of -4.4% to +1.6%, similar to mantle-like values from arc springs (-3.0% o to +1.9% o), which are interpreted to reflect subduction erosion of accreted ophiolites from the upper plate with minimal input from subducted sediments (Lee et al., 2017).

Overall, prior work is consistent with the Li isotope geochemistry across the Costa Rica margin. Outer forearc springs have a component of Li sourced from sedimentary pore fluids. With increasing subduction, dehydration of sediments and/or AOC contributes to forearc fluids, consistent with carbon and nitrogen isotope work. The $\delta^7 \rm Li$ values of the arc springs predominantly record a mantle signature with minimal slab contribution, consistent with the compositions of arc lavas and gas emissions.

CONCLUSIONS

Li isotope ratios vary systematically across the Costa Rica convergent margin and correlate with 3He/4He values. Poor correlation of δ⁷Li values with host lithology, temperature, or water chemistry argues against a major fractionation control. Li in outer forearc and forearc fluids is instead derived from dewatering of evolving subducted slab components, and little slab contribution is preserved in arc samples, which are dominated by Li from the mantle wedge. Li isotopes are thus an effective tracer of slab fluid source in appropriate samples. Additionally, forearc spring emissions are a potentially significant output of volatiles fluxes through the subduction zone, which is commonly overlooked.

ACKNOWLEDGMENTS

This work is part of the M.S. thesis of Helper. The authors thank M.M. Chavarría, G. Alvarado, and C. Ramírez for guidance in the field, the Area Conservación Guanacaste for sampling permits, and numerous landowners for permission to sample on their property. J. Cullen, S. Loewy, A. Satkoski, N. Miller, and C. Jiménez are thanked for analytical help. The authors thank two anonymous reviewers and editorial handling by A. Barth. This work was funded by National Science Foundation grant GeoPRISMS-1850711 to Barnes and de Moor.

REFERENCES CITED

Barry, P.H., et al., 2019, Forearc carbon sink reduces long-term volatile recycling into the mantle: Na-

- ture, v. 568, p. 487–492, https://doi.org/10.1038/s41586-019-1131-5.
- Bernal, N.F., Gleeson, S.A., Dean, A.S., Liu, X.M., and Hoskin, P., 2014, The source of halogens in geothermal fluids from the Taupo Volcanic Zone, North Island, New Zealand: Geochimica et Cosmochimica Acta, v. 126, p. 265–283, https://doi.org/10.1016/j.gca.2013.11.003.
- Carr, M.J., Feigenson, M.D., and Bennett, E.A., 1990, Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc: Contributions to Mineralogy and Petrology, v. 105, p. 369– 380, https://doi.org/10.1007/BF00286825.
- Chan, L.H., and Kastner, M., 2000, Lithium isotopic composition of pore fluids and sediments in the Costa Rica subduction zone: Implications for fluid processes and sediment contribution to the arc volcanoes: Earth and Planetary Science Letters, v. 183, p. 275–290, https://doi.org/10.1016/S0012-821X(00)00275-2.
- Chan, L.H., Edmond, J.M., Thompson, G., and Gillis, K., 1992, Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in the oceans: Earth and Planetary Science Letters, v. 108, p. 151–160, https://doi.org/10.1016 /0012-821X(92)90067-6.
- Chan, L.H., Alt, J.C., and Teagle, D.A., 2002, Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater–basalt exchange at ODP Sites 504B and 896A: Earth and Planetary Science Letters, v. 201, p. 187–201, https://doi.org/10.1016/S0012-821X(02)00707-0.
- Chan, L.H., Leeman, W.P., and Plank, T., 2006, Lithium isotopic composition of marine sediments: Geochemistry, Geophysics, Geosystems, v. 7, Q06005, https://doi.org/10.1029/2005GC001202; corrigendum available at https://doi.org/10.1029/2006GC001380.
- Cullen, J.T., Hurwitz, S., Barnes, J.D., Lassiter, J.C., Penniston-Dorland, S., Kasemann, S.A., and Thordsen, J.J., 2019, Temperature-dependent variations in mineralogy, major element chemistry and the stable isotopes of boron, lithium and chlorine resulting from hydration of rhyolite: Constraints from hydrothermal experiments at 150 to 350 °C and 25 MPa: Geochimica et Cosmochimica Acta, v. 261, p. 269–287, https://doi .org/10.1016/j.gca.2019.07.012.
- Decitre, S., Deloule, E., Reisberg, L., James, R., Agrinier, P., and Mével, C., 2002, Behavior of Li and its isotopes during serpentinization of oceanic peridotites: Geochemistry, Geophysics, Geosystems, v. 3, p. 1–20, https://doi.org/10.1029/2001GC000178.
- Denyer, P., Aguilar, T., and Montero, W., 2014, Cartografiá geológica de la Península de Nicoya, Costa Rica: Estratigrafíca y tectónica: San José, Costa Rica, Editorial de la Universidad de Costa Rica, 216 p.
- Elliott, T., Jeffcoate, A., and Bouman, C., 2004, The terrestrial Li isotope cycle: Light-weight constraints on mantle convection: Earth and Planetary Science Letters, v. 220, p. 231–245, https://doi.org/10.1016/S0012-821X(04)00096-2.
- Fischer, T.P., Hilton, D.R., Zimmer, M.M., Shaw, A.M., Sharp, Z.D., and Walker, J.A., 2002, Subduction and recycling of nitrogen along the Central American margin: Science, v. 297, p. 1154–1157, https://doi.org/10.1126/science.1073995.
- Fournier, R.O., 1977, Chemical geothermometers and mixing models for geothermal systems: Geothermics, v. 5, p. 41–50, https://doi.org/10.1016/0375-6505(77)90007-4.
- Füri, E., Hilton, D.R., Tryon, M.D., Brown, K.M., McMurtry, G.M., Brückmann, W., and Wheat, C.G., 2010, Carbon release from submarine seeps

- at the Costa Rica fore arc: Implications for the volatile cycle at the Central America convergent margin: Geochemistry, Geophysics, Geosystems, v. 11, Q04S21, https://doi.org/10.1029/2009GC002810.
- Gazel, E., Hoernle, K., Carr, M.J., Herzberg, C., Saginor, I., van den Bogaard, P., Hauff, F., Feigenson, M., and Swisher, C., III, 2011, Plume–subduction interaction in southern Central America: Mantle upwelling and slab melting: Lithos, v. 121, p. 117–134, https://doi.org/10.1016/j.lithos.2010.10.008.
- Giggenbach, W.F., 1991, Chemical techniques in geothermal exploration, *in* D'Amore, F., ed., Application of Geochemistry in Geothermal Reservoir Development: Rome, UNITAR/UNDP Centre on Small Energy Resources, p. 119–144.
- Giggenbach, W.F., and Corrales Soto, R., 1992, Isotopic and chemical composition of water and steam discharges from volcanic-magmatic-hydrothermal systems of the Guanacaste Geothermal Province, Costa Rica: Applied Geochemistry, v. 7, no. 4, p. 309–332, https://doi.org/10.1016/0883-2927(92)90022-U.
- Henley, R.W., and Ellis, A.J., 1983, Geothermal systems ancient and modern: A geochemical review: Earth-Science Reviews, v. 19, p. 1–50, https://doi.org/10.1016/0012-8252(83)90075-2.
- Hensen, C., Wallmann, K., Schmidt, M., Ranero, C.R., and Suess, E., 2004, Fluid expulsion related to mud extrusion off Costa Rica—A window to the subducting slab: Geology, v. 32, p. 201–204, https://doi.org/10.1130/G20119.1.
- James, R.H., Allen, D.E., and Seyfried, W.E., Jr., 2003, An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350°C): Insights as to chemical processes in near-shore ridge-flank hydrothermal systems: Geochimica et Cosmochimica Acta, v. 67, p. 681–691, https://doi.org/10.1016/S0016 -7037(02)01113-4.
- Jeffcoate, A.B., Elliott, T., Kasemann, S.A., Ionov, D., Cooper, K., and Brooker, R., 2007, Li isotope fractionation in peridotites and mafic melts: Geochimica et Cosmochimica Acta, v. 71, p. 202– 218, https://doi.org/10.1016/j.gca.2006.06.1611.
- Lee, H.W., Fischer, T.P., de Moor, J.M., Sharp, Z.D., Takahata, N., and Sano, Y., 2017, Nitrogen recycling at the Costa Rican subduction zone: The role of incoming plate structure: Scientific Reports, v. 7, 13933, https://doi.org/10.1038/s41598-017-14287-y.
- Liebscher, A., Meixner, A., Romer, R.L., and Heinrich, W., 2007, Experimental calibration of the vapour–liquid phase relations and lithium isotope fractionation in the system H₂O–LiCl at 400°C/20–28 MPa: Geofluids, v. 7, p. 369–375, https://doi.org/10.1111/j.1468-8123.2007.00188.x.
- Lücke, O.H., and Arroyo, I.G., 2015, Density structure and geometry of the Costa Rican subduction zone from 3-D gravity modeling and local earthquake data: Solid Earth, v. 6, p. 1169–1183, https://doi.org/10.5194/se-6-1169-2015.
- Marschall, H.R., and Tang, M., 2020, High-temperature processes: Is it time for lithium isotopes?: Elements, v. 16, p. 247–252, https://doi.org/10.2138/gselements.16.4.247.
- Marschall, H.R., Pogge von Strandmann, P.A.E., Seitz, H.-M., Elliott, T., and Niu, Y.L., 2007, The lithium isotopic composition of orogenic eclogites and deep subducted slabs: Earth and Planetary Science Letters, v. 262, p. 563–580, https://doi .org/10.1016/j.epsl.2007.08.005.
- Millot, R., and Négrel, P., 2007, Multi-isotopic tracing (δ⁷Li, δ¹¹B, ⁸⁷Sr/⁸⁶Sr) and chemical geothermometry: Evidence from hydro-geothermal systems in

- France: Chemical Geology, v. 244, p. 664–678, https://doi.org/10.1016/j.chemgeo.2007.07.015.
- Patino, L.C., Carr, M.J., and Feigenson, M.D., 2000, Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input: Contributions to Mineralogy and Petrology, v. 138, p. 265–283, https://doi.org/10 .1007/s004100050562.
- Penniston-Dorland, S.C., Bebout, G.E., Pogge von Strandmann, P.A.E., Elliott, T., and Sorensen, S.S., 2012, Lithium and its isotopes as tracers of subduction zone fluids and metasomatic processes: Evidence from the Catalina Schist, California, USA: Geochimica et Cosmochimica Acta, v. 77, p. 530– 545, https://doi.org/10.1016/j.gca.2011.10.038.
- Reyes, A.G., and Trompetter, W.J., 2012, Hydrothermal water–rock interaction and the redistribution of Li,

- B and Cl in the Taupo Volcanic Zone, New Zealand: Chemical Geology, v. 314–317, p. 96–112, https://doi.org/10.1016/j.chemgeo.2012.05.002.
- Schruben, P.G., 1996, Geology and resource assessment of Costa Rica at 1:500,000 scale: A digital representation of maps of the U.S. Geological Survey's 1987 Folio I-1865: U.S. Geological Survey Digital Data Series DDS-19, https://doi.org/10.3133/ds19R.
- Tomascak, P.B., Magna, T., and Dohmen, R., 2016, Advances in Lithium Isotope Geochemistry: Berlin, Springer, 195 p., https://doi.org/10.1007/978-3-319-01430-2.
- Vannucchi, P., Fisher, D.M., Bier, S., and Gardner, T.W., 2006, From seamount accretion to tectonic erosion: Formation of Osa Mélange and the effects of Cocos Ridge subduction in southern

- Costa Rica: Tectonics, v. 25, TC2004, https://doi.org/10.1029/2005TC001855.
- Vils, F., Tonarini, S., Kalt, A., and Seitz, H.-M., 2009, Boron, lithium and strontium isotopes as tracers of seawater–serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209: Earth and Planetary Science Letters, v. 286, p. 414–425, https://doi .org/10.1016/j.epsl.2009.07.005.
- Zack, T., Tomascak, P.B., Rudnick, R.L., Dalpé, C., and McDonough, W.F., 2003, Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust: Earth and Planetary Science Letters, v. 208, p. 279–290, https://doi.org/10.1016 /S0012-821X(03)00035-9.

Printed in the USA