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Abstract Typical use of ambient noise interferometry focuses on longer period (>1 s) waves for exploration
of subsurface structure and other applications, while very shallow structure and some environmental
seismology applications may benefit from use of shorter period (<1 s) waves. We explore the potential for
short-period ambient noise interferometry to determine shallow seismic velocity structures by comparing

two methodologies, the conventional amplitude-based cross-correlation and linear stacking (TCC-Lin) and a
more recently developed phase cross-correlation and time-frequency phase-weighted-stacking (PCC-PWS)
method with both synthetic and real data collected in a heterogeneous karst aquifer system. Our results
suggest that the PCC-PWS method is more effective in extracting short-period wave velocities than the
TCC-Lin method, especially when using data collected in regions containing complex shallow structures

such as the karst aquifer system investigated here. In addition to the different methodologies for computing
the cross correlation functions, we also examine the relative importance of signal-to-noise ratio and number
of wavelengths propagating between station pairs to determine data/solution quality. We find that the lower
number of wavelengths of 3 has the greatest impact on the network-averaged group velocity curve. Lastly, we
test the sensitivity of the number of stacks used to create the final empirical Green's function, and find that the
PCC-PWS method required about half the number of cross-correlation functions to develop reliable velocity
curves compared to the TCC-Lin method. This is an important advantage of the PCC-PWS method when
available data collection time is limited.

Plain Language Summary Seismic monitoring can provide important information about the Earth's
interior structure. However, mapping shallow sedimentary geology can be challenging due to the complex
structure and environmental effects, such as variable water tables that modify seismic waves. With seismic
data measured above a karst aquifer system at O'Leno and River Rise Preserve State Parks, Florida, USA, we
compare the quality and reliability of the results between a conventional seismic data processing method that
uses the amplitude of the seismic signal and a relatively new method using the phase of the seismic signal in
extracting information of the shallow subsurface. We also investigate the effectiveness of the two methods,
determining the amount of seismic data required to derive reliable velocity structures. Although detailed signal
characterization is necessary in selecting the best method, our study suggests that the seismic data processing
method using seismic phase information will play an important role in mapping shallow structures as well as in
monitoring applications.

1. Introduction

Theoretical and experimental studies have shown that the empirical Green's functions (EGFs) can be extracted
from cross-correlation of diffuse seismic wave-fields between station-pairs (Bensen et al., 2007; Derode
et al., 2003; Larose et al., 2005; Snieder, 2004; Wapenaar, 2004). The use of EGFs retrieved from ambient noise
cross-correlations provides supportive and compatible information to body wave signals for improving seismic
tomographic resolution, due to the wave ray paths constrained between two stations (Haned et al., 2016; Roux
et al., 2005; Sabra et al., 2005; Shapiro & Campillo, 2004). Ambient noise data processing has been extensively
and successfully applied in regional and global tomographic studies where EGFs have been determined from long
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period (T > 3 s) waves associated with deep crustal and mantle structures (Bensen et al., 2007; Boué et al., 2014;
Dias et al., 2015; Ekstrom et al., 2009; Fichtner et al., 2008; Haned et al., 2016; Sabra et al., 2005; Shapiro &
Campillo, 2004).

There have been fewer attempts to measure velocity profiles from EGFs using short (T < 1 s) and interme-
diate (1 s < T < 3 s) wave periods to identify shallow crustal and sedimentary structures (Chavez-Garcia &
Luzén, 2005; James et al., 2017; Pilz et al., 2012; Savage et al., 2013). In the use of short-period waves, it is
important to establish a reliable criterion in selecting the randomized noise because reconstruction of velocity
profiles that relies on the scattered wave energy at depths may incorporate biases from uneven distribution of
wave sources (Poli et al., 2012). Nonetheless, cross-correlation functions (CCFs) aligned in different direc-
tions have been observed not to diverge considerably without the knowledge of wave source directions (Aki
& Chouet, 1975), and succeeding studies have stated that the effects of inhomogeneous distribution of wave
sources on ambient noise velocity measurements will be within the errors of isotropic velocity measurements
(Bensen et al., 2007; Harmon et al., 2010; Pilz et al., 2012). Also, greater complexity is introduced to the
velocity measurements by multi-scattering, high wave attenuation, and multimodal signals due to shallow
subsurface heterogeneities that perturb the waveform in comparison to the less complex deep interior of the
Earth (Aki & Chouet, 1975; Levshin & Panza, 2006; Pilz et al., 2012; Shapiro & Campillo, 2004; Vernon
et al., 1998).

Development of ambient noise interferometry techniques has improved the estimation of EGFs by reducing inco-
herent signals between seismic traces (Campillo & Paul, 2003; Schimmel & Gallart, 2007; Schimmel et al., 2011;
Ventosa et al., 2017, 2019). The methods, including cross-correlation with the seismic phase angle (PCC) and
stacking the correlation functions weighted by the time-frequency dependent phase (tf-PWS), have been success-
fully applied to the global seismic network (GEOSCOPE) and regional datasets (Dantas et al., 2018; Haned
et al., 2016; Schimmel et al., 2011; Toledo et al., 2022; Ventosa et al., 2017). However, the PCC and tf-PWS
methods, advantageous in mitigating strong amplitude events compared to the traditional ambient noise interfer-
ometry method, have not yet been widely used with short-period waveforms so their performance has not been
rigorously compared to traditional methods (De Plaen et al., 2019; Toledo et al., 2022).

With advancements in seismic data processing methods, measurements of seismic velocity changes, associated
with perturbations in elastic properties, have also been widely used for environmental studies to understand the
physical dynamics of various geological settings (Andajani et al., 2020; Clements & Denolle, 2018; De Plaen
et al., 2019; Lecocq et al., 2017; Mao et al., 2020; Mordret et al., 2010; Ratdomopurbo & Poupinet, 1995; Rivet
et al., 2015). The key for monitoring temporal variations in seismic velocity is to compare phase shifts between
a reference EGF that represents an average background state for a longer time period and current EGFs that
represent the situation at a certain time period (Clarke et al., 2011; Clements & Denolle, 2018; Ratdomopurbo
& Poupinet, 1995). However, there has not been much examination on the quality of such EGFs, which could
be critical in obtaining robust measurements of the sensitive response of seismic waves propagating through a
variable elastic medium, especially with short-period waves.

The purpose of this study is to compare the traditional cross-correlation method implemented in the time-domain
(TCC) with the phase cross-correlation (PCC) method by estimating EGFs from synthetic data over a network of
less than 20 km interstation distance and short-period (7 < 1 s) waves. We further examine the two methods with
a real seismic data set measured in the Santa Fe River watershed in north-central Florida where surface water
interacts with the semi-confined Floridan karst aquifer (Scott, 1992). Surface wave dispersion curves measured
from the EGFs are assessed for quality, and these results provide insights on selecting specific ambient noise
techniques and parameters for various studies based on the network scale, interstation distances, and geology
within the seismic array network. The quality-controlled dispersion measurements from both synthetic and real
data are inverted to compare with the initial velocity model (synthetic) and stratigraphic structure of the karst
aquifer (real). Using data from the local field survey located within a complex karst aquifer system, we examine
whether the high frequency ambient seismic noise can be used to measure reliable group velocity curves in a
highly heterogeneous layered structure, and determine what set of parameters, such as the number of CCF stacks,
provides reliable velocity structures. Because of the interest in applying these ambient noise techniques to a vari-
ety of temporally varying environmental processes, our study also provides preliminary guidelines for setting the
criteria for surface wave dispersion measurement quality in order to acquire reliable velocity measurements and
maximize the use of a given data set for short-period seismic waves.
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2. Methods

EGFs acquired from cross-correlating ambient seismic noise of a station-pair contain the subsurface structural
information between the paired stations. Symmetric Green's functions (G), from station A to B or B to A can be
expressed as,

Gap(t) = Gpa(t) = -4

Cap(t) + Cpa(t)
dt

5 ](OSI), )]

where C are the cross correlation coefficient functions from station A to B or B to A and ¢ is time (Bensen
et al., 2007). The main ambient noise data processing steps include (a) pre-processing, (b) cross-correlation, and
(c) stacking CCFs. One commonly used method down-weights the influence of large-amplitude signals through
binarization of the data in the time-domain and spectral whitening in the frequency-domain to exclude earthquake
signals and other heterogeneous noise in pre-processing steps, where meaningful signals might be lost (Bensen
et al., 2007; Haned et al., 2016). An alternative method was developed to cross-correlate the instantaneous phase
of station-pair data based on the analytical signal theory to extract phase coherent signals that are amplitude
unbiased. Additionally, the time-frequency phase-weighted stacking (tf-PWS) method was developed to calculate
the EGFs rather than linearly stacking the CCFs (Haned et al., 2016; Schimmel, 1999; Schimmel et al., 2011).

2.1. Phase Cross-Correlation

For each pair of seismic stations, phase cross-correlograms are computed as follows. From a single seismic wave-
form u(?), the analytical signal is s(t) = u(?) + iH(u(?)) = A(t)e™#®, where H(u(?)) is the Hilbert transform of u(f)
and A(?) and ¢(¢) are the envelope and phase of the analytic signal, respectively. Considering two waveforms u(z)
and v(7) with a starting time of z,,, and their instantaneous phases ®(#) and ¥(¢), a phase cross-correlation (PCC)
between two time series is:

T—7+17)
— iD(1+7) V() v iD(t+1) i(t) v

Crec(@) = 35 ,;,()('e + MO — (D — MO, )
where ¢ is time, 7 is the amount of time-lag, v is the power factor value of PCC that controls the amplification of the
CCFs, and T is the time-length of each correlation window (Haned et al., 2016; Schimmel, 1999). PCC produces
the similarity property between the two time series as a function of 7 allowing detection of weak or noisy seismic
signals, unbiased by the amplitude, and is more efficient to detect phase-coherent ambient noise (Schimmel, 1999;
Ventosa et al., 2017). Cp is used to determine whether the two signals are completely correlated (Cpr = 1;
auto-correlation), completely anticorrelated (Cp . = —1), or not correlated (Cp . = 0), thus |Cp| < 1. Performance
of the PCC compared to the classical cross-correlation method has been proven to provide robust group-velocity
measurements (Haned et al., 2016; Schimmel, 1999). However, PCC is much more computationally demanding
to apply to large seismic data set with high sampling frequencies, requiring 2T sums and (2T-1) sums of complex
numbers and modulus, and real numbers, respectively from the two analytic sequences. Therefore, a simplified
derivation of the PCC equation is used to dramatically decrease the computational expense by simplifying the PCC
equation with the power factor value (v = 2) to a complex cross-correlation employing the Fast Fourier Transform as,

N-1
Cpcca[m] = Re% Z @i ®ilmtml pi®2l] 3)
n=0

where @, and @, are the instantaneous phase of the two discrete time series, n is the sample number, m is the
time-lag number, and Re is the operator retrieving the real part of a signal. Equation 3 has the advantage over
Equation 2 in estimating CCFs because the application of the cross-correlation theorem reduces computational
expense. The simplification of Equation 2 to Equation 3 has thus far only been shown to be possible for v = 2
(Ventosa et al., 2019).

2.2. Phase Weighted Stacking

While the cross-correlation functions were stacked linearly by each time window in the conventional method,
the Stockwell-transform (S-transform), a time-frequency decomposition process, enables a different approach to
detect weak phase coherent signals, which will herein be referred to as phase weighted stacking, or PWS (Bensen
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et al., 2007; Haned et al., 2016; Schimmel & Paulssen, 1997; Schimmel et al., 2011; Stockwell et al., 1996). The
PWS is a non-linear stack where CCFs computed at each time segment are weighted by a coherence measure,
which is amplitude unbiased. The main step of the PWS is to compute the phase coherence from the phase
cross-correlogram, C,(7) through the S-transform in both time and frequency domain. The S-transform obtains
an analytic signal from a waveform (u(?)) that involves filtering through a Gaussian window function (w) centered
at 7 and window width proportional to ‘ % X

S, ) = / u() w(z —t, fye > dt (C)]
S(T,f)eiz”fr
|S@.NI
the mean of the time-frequency phase stack and the mean of the phase-correlation (C,.) stack decomposed in

The time-frequency instantaneous phase is defined as and the PWS is then computed as the product of

the time-frequency domain as:

N S 2z ft Y
Sews(t, )= |= D |(;(J?j‘)|

J=1

N
S<% ; CPCC,-(T)>’ 5)

where N is the total number of stacks. The sharpness of phase coherency of the mean phase stack can be controlled
with the exponent v, which is equivalent to the power factor in Equation 2 (Haned et al., 2016; Schimmel &
Paulssen, 1997). The inverse of the S-transform is computed from S,,,(z, f) to return to the time domain to
obtain PWS as a function of time-lag. In the following sections, the conventional method will be referred to as
the time cross-correlation and linear stacking (TCC-Lin) and the new method as phase cross-correlation and
time-frequency phase weighted stacking (PCC-PWS).

2.3. Dispersion Measurement

In order to obtain dispersion measurements from the EGFs to extract the group velocity curves, time (time-lag)
and frequency representation of the EGFs are required to locate the spectral peaks. Here, we use a different
method from the traditional frequency-time analysis (FTAN) (Herrmann, 1973, 2013) and employ the continuous
wavelet transform (CWT) analysis (Bensen et al., 2007; Fichtner et al., 2008; Jiang & Denolle, 2020; Torrence &
Compo, 1998). Continuous wavelet transform is a convolution process of a time-series with a scaled and translated
version of a specific wavelet () (1 is non-dimensional time) (Torrence & Compo, 1998). The /(1) has a zero
mean, is localized in both time and frequency, and has a complex conjugate yr,(17)*. Various forms of y () are
available for convolution with the EGFs, but the most general “Morlet” wavelet function wo(17) = e~""/? cos(51)
is used, which is a plane wave modulated by a Gaussian function (Torrence & Compo, 1998). The CWT is
processed in the frequency domain for faster calculation, and the amplitude is normalized for each frequency to
detect the position of time-lag of the maximum peak that is picked to represent the group velocity curve of the
EGFs (Jiang & Denolle, 2020).

3. Data
3.1. Synthetic Surface Wave Data

We use synthetic surface wave data modeled in a spatially heterogeneous medium to examine and illustrate the
performance and limitations between the TCC-Lin and PCC-PWS methods. Using synthetic data allows us to
constrain the true signals and their range in frequency and noise characteristics propagating through a predeter-
mined half-space velocity structure. Thus, we can apply different ambient noise data processing methods and
evaluate their performance against a known answer. We utilize a reference velocity structure model (Table S1 in
Supporting Information S1) obtained from a previous karst tomographic study in Florida (James et al., 2017) and
because we will later apply the techniques to real data, we limit the frequency distribution based on the corner
frequency (0.2 Hz) of the seismic sensor (Sercel L22) deployed at our survey site above a karst conduit (O'Leno
and River Rise Preserve State Parks, FL). We do not focus on the complicated noise generation from different
sources nor the complex propagation and scattering of waves, but emphasize the extraction of group velocity
curves based on the interstation distance and signal quality, which will be affected by the signal-to-noise ratio of
the EGFs and the number of wavelengths that travel between the spacings between station-pairs for each center
period.
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medium (Herrmann, 1973; Lin et al., 2008; Wapenaar, 2004). Within a source
region of a 100 km X 100 km grid, we ran 5 different models with 2 receiver
stations spaced 1, 2, 5, 10, and 20 km (Figure S1 in Supporting Informa-

tion S1), respectively, a sampling frequency (f,,,,,) of 0.25 Hz, and frequency
limits of f; = 0.005 Hz, f, = 0.01 Hz, f, = 49 Hz, and f, = 50 Hz. The four
corner frequencies are used to perform a cubic cosine tapering (|f;, f,| and
| /5> f4]) to ensure that the deconvolved passband spectrum is between f, and f;
(Herrmann, 1973). A single wave source is positioned 50 km west from the
westernmost receiver aligned with both stations to generate force functions
under a predetermined velocity and density model (Table S1 in Support-
ing Information S1). The integrated energy of Love (A,) and Rayleigh
(Ap) surface waves are defined in terms of integrals of the eigenfunctions,

AL = [T pUsdz and Ag = 1o~ p[U? + U?|dz, where U is the eigenfunc-

29.885 tion and ¢, z, and r represent azimuthal, vertical, and radial direction from
the source, respectively (Snieder, 2004). The point force GF initiated at the
29.88 - 250 500 1000 Jd source position is recorded at the two stations, where the fundamental mode
A 5: m is calculated between the source and 2 stations (Snieder, 2004). White Gauss-
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29.87 4 - of the raw seismic waves measured at the 2 receivers in order to generate an
-82.595 -82.583 -82.571 -82.56 authentic noise-like seismic signal for our tests of the efficiency and robust-

Longitude (') ness between the TCC-Lin and PCC-PWS methods.

Figure 1. Map of O'Leno and River Rise Preserve State Parks (red star in
inset map) and the seismic network with 20 seismic sensors (triangles) plotted 3.2. Real Observational Data
above a digital elevation model (USGS). The red line refers to the network of

water filled caves that is located approximately 30 m below the land surface A subset of seismic data is used collected by a temporary seismic network
(Conduit network provided by the Santa Fe River Rise Project of the National (FDSN network code XS, https://doi.org/10.7914/SN/XS_2018) deployed
Speleological Society Cave Diving Section, mpoucher @cavesurvey.com). at O'Leno and River Rise Preserve State Parks, FL (Figure 1). The seismic

network includes 12 Sercel L-22 short-period sensors with a corner frequency

of 2 Hz, 2 Guralp CMG-3T broadband sensors with corner frequencies of
0.0083-50 Hz, and 150 Fairfield ZLand 3C nodes with a corner frequency of 5 Hz. We select data from the
short-period, broadband, and six nodes recorded over Julian days 236-263 in 2019. Subsequent traces of 20 min
recordings were selected based on the realistic surface wave velocity range (0.4 — 2.5 km/s) and interstation
distances to compute cross-correlation functions (CCFs) from the vertical component of the raw seismic data,
which were band-pass filtered between 1 and 25 Hz in order to focus on the period range of interest (7' < 1 s).
Power spectral density has been computed and plotted for stations (Figure S4 in Supporting Information S1), for
which spectral power peaks near 20 Hz, except OPN which peaks at ~10 Hz. This suggests that additional sources
of seismic noise exist near station OPN compared to other stations. Maximum lags for the CCFs were constrained
to 15 s to have flexibility in picking the correct signal window during the dispersion measurement process based
on the maximum interstation distance (A = 4.77 km).

4. Results
4.1. Synthetic Data
4.1.1. Dispersion Measurement

Preprocessing steps of the white-noise-added seismic data with a time window of approximately 80 s include
removing the mean and trend, and applying a 5% cosine taper. TCC-Lin and PCC-PWS methods are applied to
the preprocessed data to cross-correlate and stack the CCFs (900 stacks) and develop EGFs for each method.
Record-section plots show the moveout of the surface wave as a function of interstation spacing, with similar
time-lags of peak correlation among the two methods (Figure 2). Similarity in the moveout of peaks of the two
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Figure 2. Record-section plot of cross correlation functions determined with two ambient noise data processing methods

(TCC-Lin top, PCC-PWS bottom) applied to synthetic seismic data. Cross correlation functions in both panels are results of a
total of 900 stacks.

methods indicates that an equivalent depth-averaged group velocity would be measured, but the noticeable differ-
ence in the level of noise implies a potential discrepancy in measured velocities. CCFs estimated from the same
station pair, but cross-correlated and stacked in the opposite direction are summed and averaged to have uniform
EGFs in both positive and negative time-lag directions. This process results in a 'symmetric’ signal assuming the
two waveforms traveling in opposite directions between a station-pair are homogeneously distributed along the
azimuthal path (causal and acausal sequences will ideally be symmetric) (Bensen et al., 2007). The positive side
of the symmetric EGFs are then transformed with the scaled and translated Morlet wavelet function, in order to
measure the dispersion. From the wavelet transformed EGFs, a reference velocity model is applied to constrain
the velocity range of each wave period to extract the velocities with peak spectral energy. The lower limit of
period is adjusted based on the Nyquist frequency (50 Hz) of the modeled synthetic surface wave signal. Despite
the appearance of noise within the signal window, group velocities are accurately measured from both methods
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Figure 3. Quality control criteria for the dispersion measurement for each center period and interstation distance. (a and c)
Signal-to-noise ratio over the center periods for the two ambient noise methods. (b and d) Number of wavelengths estimated
for each center period with coinciding group velocity values.

over the given period distribution for both TCC-Lin and PCC-PWS methods and display velocity curves compa-
rable with the input model (Figure S2 in Supporting Information S1).

4.1.2. Quality of Group Velocity Curves

Raw group velocity curves extracted from the EGFs through the wavelet method incorporate unreliable infor-
mation that requires further examination of their quality. In the course of measuring surface wave dispersion for
individual EGFs without any filtering, we calculate the signal-to-noise ratio (SNR) of the power spectrum at each
period. A signal window is determined based on the time-lag (7) and maximum period (7,,,,) from the lower end
of the corner frequencies of the seismic sensor. By selecting the signal window centered at the time-lag (z,) in
the time domain, where the correlation coefficient is maximum, we set the window of the signal tobe 7, — T, .,
7, + 2T, (Bensen et al., 2007). The noise windows for each EGF are positioned outside the signal window in the
positive 7, direction. Their window width is the same as the signal window without any overlap in time. SNR is
calculated by dividing the peak value in the signal window by the standard deviation of a noise window through-
out the period range (Figures 3a and 3c). SNR values greater than 7 have been considered high (or acceptable)
values from previous studies that used the TCC-Lin method (Bremner et al., 2019; James et al., 2017). Both
TCC-Lin and PCC-PWS exhibit the greatest SNR values near 7 = 0.6 s, and SNR values estimated from the
EGFs using the PCC-PWS method have larger SNR values for most of the 7 < 3 s indicating stronger detection
in coherent signals suggesting a need for an SNR cut-off value greater than 7. The SNR appears to have a linear
relationship with interstation distance for 0.2 s < T'< 3 s for the TCC-Lin method (Figure 3a) that does not seem
observable for the PCC-PWS method (Figure 3c). The number of wavelengths (NWL) of monochromatic waves
that propagate between station-pairs are calculated to further test the quality of the dispersion measurement
between the TCC-Lin and the PCC-PWS methods. We use the seismic velocity measured at each 7 to calculate
the NWL for each station pair with discrete distances (NWL = A/(1 km/s X T)). NWL exhibits a clear pattern
with decreasing values with greater 7 and shorter distance (A) (Figures 3b and 3d). A generalized lower NWL
(LNWL) cutoff value of 3 has been widely used, which is considered practical in obtaining a reliable group
velocity curve, but a standard upper cutoff for NWL (UNWL) is not well established (Bensen et al., 2007; Luo
et al., 2015; Toledo et al., 2022).
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Figure 4. Network-averaged group velocity curves with the 2 smallest error
values from a total of 80 combinations in quality control parameters. The
velocities extracted using the TCC-Lin and PCC-PWS methods show similar
profiles with greater error values at 1.5 s < T < 2 s. LNWL value remains
constant for the 5 velocity curves indicating the dominant effect among the 3

parameters.

In order to find the optimal combination of SNR, LNWL, and UNWL values,
we explore different values of SNR (5-10 for TCC-Lin and 5, 10, 15, 20, 25,
30 for PCC-PWS), LNWL (0.5, 1, 1.5, 2, 2.5, 3), and UNWL (10, 20, 30, 40,
50, 60) and estimate the error from the averaged group velocity curve over all
the station-pairs as the mean of the standard deviation of the velocities over
the period range. Selected range of quality control parameters are extended
from single values used or discussed in previous studies (Bensen et al., 2007;
James et al., 2017; Luo et al., 2015). The average group velocity curves with
the 2 lowest errors are shown in Figure 4. Although the combinations (a
total of 216) of the quality control parameters are different between the two
methods, the error values are similar (TCC-Lin: 0.071-0.124, PCC-PWS:
0.072-0.12). However, the group velocity curves with the lowest error for
both methods share the same NWL parameters, although with different SNR
values, and they also have the smallest root-mean-square error (RMSE) away
from the reference input model (PCC-PWS: 0.14, TCC-Lin: 0.16). The lack
of station pairs (5 synthetic models) limits the number of velocity meas-
urements for 7 > 2.7 s to provide a reliable averaged group velocity curve.
Nevertheless, both TCC-Lin and PCC-PWS methods correspond well with
the group velocity curves estimated from FTAN. The input depth-velocity
model directly converted into a group velocity curve shows a very similar
profile for T < 2 s (Figure S3 in Supporting Information S1). The compa-
rable group velocity curves among the three measurements and models
demonstrate the capacity of the ambient noise methods described above to
adequately estimate group velocity structures with high frequency (>1 Hz)
surface waves and regional (<20 km) interstation spacing.

4.2. Real Observational Data
4.2.1. Dispersion Measurement

From a total of 171 station-pairs, excluding the auto-correlations, 20-min
CCFs were computed and stacked with TCC-Lin and PCC-PWS methods.
The final stacked CCFs (EGFs) have an average of 1930 stacks with a stand-
ard deviation of 23 stacks, where erroneous or empty traces were ignored
during the stacking process. Record section plots of the EGFs computed from

the two methods (Figure 5) are more complicated than the synthetic data, likely a result of the more heterogene-

ous subsurface structure, but there is a clear noise contrast between the TCC-Lin and PCC-PWS methods, similar

to the results with the synthetic data. The time-lag position of the peak coefficient from the raw EGFs are similar

among the two data processing methods, indicating that the velocity measurements should be within an accept-

able error range. Based on the alignment of the time-lags at the peaks of EGFs as a function of A (offset distance

in km from station OPN in Figure 5), the moveouts that define the frequency and network-averaged group veloc-

ity of the seismic Rayleigh waves within the spatial coverage of the 19 stations is approximately 1.1 km/s.

In preparation for dispersion measurements, we follow equivalent steps to the synthetic data averaging the causal
and acausal sequences of the EGFs. The CWT is applied to the causal sequence of the EGFs and is filtered
based on a reference velocity structure to constrain the range of velocities for each frequency, avoiding unre-
alistic measurements outside the 0.4-2.5 km/s velocity range (Bremner et al., 2019; Fores et al., 2018; James
etal., 2017). Although the corner frequencies of the L22 sensors and nodes are 2 and 5 Hz, respectively, we incor-

porate frequencies down to 1 Hz where more energy is required to produce the same response as the frequencies
above the corner frequencies. Group velocity curves based on dispersion measurements of the EGFs estimated
from the two methods share a similar profile above T ~ 0.2 for different station-pairs (Figure S5 in Supporting

Information S1). Moreover, comparable group velocity profiles among station-pairs indicate a similar geologic
structure shared within the survey area. However, velocities of periods less than 0.2 s often exhibit discontinuity
and high complexity that depends on the station-pair distance and the analysis method. Discontinuities in the
group velocity curves may arise from detection of multi-modal signals that incorporate phase shifts or may
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Figure 5. Record-section plot showing cross-correlation functions (CCFs) for a subset of the station-pairs using two different
data processing methods (TCC-Lin left, PCC-PWS right). The CCFs are determined by averaging from approximately 1930
stacks over the 1 month survey period.

be caused by multiple scattering of surface waves from local heterogeneities (Aki & Chouet, 1975; Levshin &
Panza, 2006; Shapiro & Campillo, 2004; Vernon et al., 1998), something that we would expect given our study
area of complex karst structure.

4.2.2. Quality of Group Velocity Curves

Group velocity curves extracted from the dispersion measurements are examined for each period with 3 quality
control parameters with an extended range of cutoff values implemented from the synthetic data of SNR (5-20
for TCC-Lin and 20-50 for PCC-PWS), LNWL (0.5-3.5), and UNWL (5-70) (Figure 6). Similar to the results
calculated with the synthetic data set, SNR values of the PCC-PWS method can be several orders of magnitude
greater than the TCC-Lin method. SNR values appear to increase for 7 < 0.7 s with decreasing A, while display-
ing an opposite trend for 7> 0.7 s. T ~ 0.1 and 0.23 s for both TCC-Lin and PCC-PWS methods have peaks in
SNR with a decreasing trend in both higher and lower periods. The lowest SNR values occur at 7 ~ 0.04 and
0.14 s for both methods, where the network-averaged group velocity will be altered the most by varying the
SNR cutoff value. NWL values share an analogous trend between the TCC-Lin and PCC-PWS methods, where
an increase in A and decrease in T results in an increase in NWL of a monochromatic seismic wave (Figure 6).
Predicting the effect of adjusting the LNWL is clear, as most of the group velocity measurements at 7> 0.5 s with
short A (<1 km) will be discarded during the quality control process, although the effect of the UNWL requires
examination of the quality controlled velocity curves. Over 92% and 86% of NWL for A < 1 km reside in NWL
less than 3 for TCC-Lin and PCC-PWS, respectively. However, the optimal value of LNWL may change based on
the complexity of the subsurface structure, as surface waves with lower T have a greater chance of experiencing
multiple scattering that may appear as multiple travel time arrivals. Station-pairs with 2 km < A < 3 km show a
peak in SNR near NWL = 10, and two peaks at NWL =7 and 19 for A > 3 km. UNWL controls the lower thresh-
old of T, and station-pairs with greater A are affected. UNWL should be distinguished between the two methods
as PCC-PWS for A < 1 km to incorporate more NWL points occupied in NWL > 3.

In order to evaluate changes in the network-averaged group velocity curves based on the selection of the qual-
ity control parameters, we constrain two parameters and explore the effect governed by a single parameter
(Figure 7). Increasing SNR values results in a decrease in mean error (Table S2 in Supporting Information S1),
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0.35s < T<045sand T > 0.7 s (Figures 7e and 7f). Removing velocity
measurements with NWL greater than 5 leads to removing approximately
31% of the capacity and drops to 15% when controlling the quality with a
UNWL value of 10. Averaged velocity measurements appear to stabilize with
UNWL values greater than 10.
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Figure 6. Quality control parameters (SNR and NWL) calculated for each

' ; 0.0 between the PCC-PWS (SNR: 20, LNWL: 3, UNWL: 10) and TCC-Lin
(SNR: 7, LNWL: 3, UNWL: 10) methods depict comparable outputs,
demonstrating the reliability of both PCC-PWS and TCC-Lin data process-
ing methods in extracting EGFs with short-period waves (T < 1 s) (Figure 8).

station-pair over the period distribution. SNR = 7 and NWL = 3 are typical However, greater velocities up to 0.11 km/s are measured from the PCC-PWS
values used in previous ambient noise studies to limit empirical Green's method for 7> 0.38 s and 7 ~ 0.15 s with the specific combination of qual-

functions by quality (Bensen et al., 2007; James et al., 2017).

ity control parameters. The differences in velocity measurements among the
data processing methods indicates that careful decision making is necessary
when selecting the quality control parameters, especially with seismic data
collected above a complex geologic medium.

5. Discussion
5.1. Ambient Noise Interferometry of Short-Period Waves

We compare the robustness of the EGFs extracted from applying two ambient noise data processing meth-
ods of short-period (7 < 1 s) waves. The philosophy of the PCC-PWS method is based on coherence of the
time-frequency dependent phase of the analytic signals, and the traditional TCC-Lin method detects the largest
sum of amplitudes, which is associated with energy, as coherent seismic signals (Bensen et al., 2007; Haned
et al., 2016; Schimmel, 1999; Schimmel et al., 2011; Ventosa et al., 2017). The PCC method has greater wave-
form sensitivity than the TCC method, but has disadvantages when the phase signal is corrupted by high ampli-
tude noise. Therefore, the most appropriate surface wave data processing method depends on the waveform signal
characteristics (Schimmel & Paulssen, 1997; Schimmel et al., 2011). Application of the TCC-Lin method to
synthetic data shows higher noise levels within the signal window compared to the PCC-PWS method (Figure 2).
This demonstrates the effectiveness of the PCC-PWS method in detecting phase coherent signals and attenuat-
ing incoherent signals associated with the random noise input, which is also shown in the wavelet spectrogram
(Figure S2 in Supporting Information S1). In addition to the amplitude-unbiased advantage of the PCC method
and minimal alteration of the waveforms, the time-frequency PWS is also an important step which improves the
signal extraction performance and azimuthal coverage (Baig et al., 2009; Schimmel et al., 2011).
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Figure 7. Quality-controlled network-averaged group velocity curves by varying (a and b) signal-to-noise ratio (SNR), (c and
d) lower number of wavelengths (LNWL), and (e and f) upper number of wavelengths (UNWL).

Real data application using the TCC-Lin and PCC-PWS methods produced similar noise levels compared to the
synthetic results, where the PCC-PWS data processing steps resulted in an improved detection in coherent signals
with reduced noise than the TCC-Lin method (Figure 5). Measurement of dispersion within the short-period
range (0.04 s < T < 1 s) was complicated, especially below 0.2 s, in contrast to the results of the synthetic data
implementation where deviation of the dispersion curves among the two methods were greater in longer peri-
ods (2.8 s < T < 4 s) (Figures S2 and S5 in Supporting Information S1). However, the emergence of complex-
ity and discontinuity of spectral peaks for 7 < 0.2 s in real data is expected due to the highly heterogeneous
geologic structure of the karst aquifer. Such structure likely causes multi-scattering of surface waves, as well as
multi-modal signals that incorporate shifts in phase of the seismic waveforms (Aki & Chouet, 1975; Levshin &
Panza, 2006; Pedersen & Kriiger, 2007; Pilz et al., 2012; Shapiro & Campillo, 2004; Vernon et al., 1998).
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5.2. Control on Quality of Dispersion Measurements
Figure 8. Results of network-averaged (171 station-pairs) group velocity From the spectral dispersion analysis, SNR and NWL values are estimated for

curves examined with specific quality control parameter values for the
PCC-PWS method (blue) and TCC-Lin method (red). Periods (T) greater than
0.38 s depict higher velocity measurements for the PCC-PWS method.

each station-pair and period and evaluated based on the predefined threshold
values (Figure 3). Both averaged group velocity curves between periods of 1.5
and 1.8 s exhibit the greatest errors (Figure 4), and the magnitude of velocity
residual relative to average velocity for 7> 1.5 s (Figure S3 in Supporting
Information S1) could potentially result from (a) the lack of station-pairs that have interstation spacing between
10 and 20 km, and (b) random noise that altered the synthetic surface wave signal. Moreover, measurements of
velocities of T > 2.7 s are limited due to the absence of station-pairs with distances above 20 km. The constant
value of LNWL = 3 among the 5 velocity curves with the lowest errors suggests that the LNWL has the most
impact on the velocity measurements. The constraint on the maximum wave period for each station-pair distance
based on the LNWL values is shown in Figure 9. A general decreasing trend is observed between maximum 7
and LNWL for both PCC-PWS and TCC-Lin methods in synthetic and real data applications. For the synthetic
data application, maximum 7 increases logarithmically with increasing interstation distances (Figures 9a and 9c¢),
while a linear trend is observed for real data (Figures 9b and 9d), although a better distance resolution is required
to confirm the data-specific relationship linked to the design of the seismic network.

For the field data analysis, measurements of SNR have shown that the more distant station-pairs produce velocity
measurements with relatively greater SNR at higher periods (7' > 0.7 s), although the SNR values decrease with
distance for T < 0.7 s (Figures 7a and 7b). In general, the LNWL from our quality control results suggests that
the cutoff of 3 provides the network-averaged group velocity curve with the lowest mean error along the period
distribution, which agrees with the conventional three-wavelength requirement (Figures 7c and 7d) (Bensen
et al., 2007). However, verified by previous studies, individual dispersion measurements processed with the
PCC method, especially with short-separation paths, are capable of producing reliable measurements with lower
LNWL threshold than 3 (Luo et al., 2015). Nevertheless, LNWL most likely limits station-pairs with shorter
interstation distances controlling periods greater than 7 > 0.6 s. Control on UNWL value over the predefined
range influences velocity measurements mostly for 7 < 0.7 s (Figures 7e and 7f). The observed differences
can be associated with the highly heterogeneous shallow karst structure leading to a spatial variation in wave
attenuation rates for the short-period (7 < 1 s) surface waves (Hackert & Parra, 2003; He & Cai, 2012). Moreo-
ver, similar to the synthetic results, the lack of spatial coverage can result in deviations in velocities with larger
errors. Therefore, constraint on the UNWL under this condition should not only be resolved with the mean error
of the network-averaged group velocity curve, but should also be carefully resolved with the site-specific wave
attenuation rates.

Network-averaged group velocity curves with the smallest and largest errors, extracted from varying all three
quality control parameters, illustrate corresponding velocity profiles with a maximum difference of 0.12 km/s
(T ~ 0.2 s), which is within the error range of both results (Figure S9 in Supporting Information S1). Therefore,
smaller error values do not necessarily indicate a more reliable velocity curve, unless the subsurface medium
is spatially homogeneous, and should be carefully selected based on the information of the geologic structure.
The range of reliable wave periods differ based on the interstation spacing, and the deviations in group veloc-
ity measurements of different station-pairs reflect the path-dependent surface wave dispersion from extreme
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Figure 9. Maximum period associated with the lower threshold of the number of wavelengths (LNWL) required to propagate
between the interstation spacings. The left column (a, c) are the results obtained from the synthetic data, and the right column
(b, d) are results from the real data application.

heterogeneity of the carbonate crust in Florida. Moreover, the undulating velocity curves may be resulting from
spurious precursory arrivals interfering with the primary signals (Bensen et al., 2007).

5.3. Inversion of Group Velocity Curves

Inverted seismic velocity models can provide basic information of the geology without a known velocity structure.
We invert for 1-dimensional velocity models using the network-averaged group velocity curves derived from the
synthetic data and compare with the input velocity model (Table S1 in Supporting Information S1) used to gener-
ate the synthetic Green's functions for the initial testing. The velocity models computed from the synthetic data
are similar, with generally increasing velocity with depth (Figure S7 in Supporting Information S1). However, the
difference between the original input and velocity models computed by inverting our group velocities indicate the
effect of signal detection from the white noise introduced to the synthetic waveform. Moreover, the small number
of seismic stations limits accurate recovery of the input velocity model.

We do the same inversion for a 1-dimensional velocity model determined using the network-averaged group
velocity curves found for the real data set. This resulting velocity structure can be interpreted in light of the
known geologic structures of the site (Williams & Kuniansky, 2015). Shallow layers (<15 m) required a steep
decrease in velocity to produce a misfit smaller than 0.1 that would account for the sediment-bedrock boundary
below O'Leno and River Rise Preserve State Parks, Florida, USA, producing greater misfit than deeper struc-
tures. Layers beneath the sediments down to ~300 m, are comprised of highly permeable carbonate rocks of
the Floridan aquifer system that results in a decrease in seismic velocity compared to deeper structure, which
is also observed in our inversion models (Figure S8 in Supporting Information S1) (Fores et al., 2018; James
et al., 2017; Williams & Kuniansky, 2015). However, the inversion process does not incorporate the variances
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Figure 10. The average number of stacks required for the empirical Green's
functions to stabilize for all station-pairs at each center period. 7 < 0.2 s
from the TCC-Lin include high uncertainty, also shown in the dispersion

measurements.

in seismic velocity (dv/v) (Clarke et al., 2011; Clements & Denolle, 2018;
Ratdomopurbo & Poupinet, 1995). The fundamental procedure in measuring
dvlv is to compare the phase shift between a reference EGF that represents the
average background velocity of the study area and the current EGF that holds
information of the current state of the velocity structure that varies through
time (Clarke et al., 2011; Hillers et al., 2014; Mordret et al., 2010). In order to

measure accurate dv/v, the reference and current EGFs must also have sufficient similarity (Clarke et al., 2011). In

the course of cross-correlation and stacking, we output progressive EGFs after each additional stack to compare
the emergence of EGFs among the TCC-Lin and PCC-PWS methods. RMSE between the progressive group
velocity curves and the group velocity curve extracted from the fully stacked EGFs were estimated to find the
average number of stacks needed to reach sufficient similarity (RMSE = 0.05) for each wave period (Figure 10).
Assuming the 1-month stacked EGF represents a stable group velocity structure, the required number of stacks

shows a decreasing trend with increase in wave period. The TCC-Lin method required an average of 125 stacks

to reproduce a stable velocity curve sufficiently similar to the 1-month stacked result, while an average of 69
stacks was needed for the PCC-PWS method. Differences in the necessary number of stacks between the two
methods are in line with the progressive SNR calculations (Figure S10 in Supporting Information S1), where the

PCC-PWS method requires less number of stacks for stable signal emergence. Irregularities are found in several
wave periods (7 = 0.47 and 0.8 s for the PCC-PWS method and 7 = 0.18 s, 0.42 s, 0.76 s, and 0.9 s for the
TCC-Lin method (Figure 10) that could be a result from lack of reliable velocity measurements at certain periods

due to insufficient station-pair distances Figure S6 in Supporting Information S1). Nonetheless, our findings

suggest that the PCC-PWS method would be a preferable method in the application of monitoring studies to track

dv/v with a better time resolution.

6. Conclusion

To test the validity and effectiveness in detecting short-period (7T < 1 s) ambient noise signals, two different

cross-correlation methods based on the amplitude (TCC) and phase coherence (PCC) of ambient noise signals

accompanied by distinct stacking methods (Lin and PWS) were examined with synthetic and real seismic data

measured at O'Leno and River Rise Preserve State Parks, Florida, USA. Both methods were capable of generat-

ing the empirical Green's functions (EGFs) with a maximum peak positioned at a comparable time-lag, but the

apparent noise amplitude within the signal window indicates that the PCC-PWS method is better in detecting

coherent signals for both synthetic and real data. However, high heterogeneity of the shallow subsurface structure

at the field site introduced complications to the dispersion measurement process, especially at the lowest periods

(T < 0.2 s). The complexity of the carbonate aquifer could lead to erroneous velocity extraction from inclusion of
multi-scattered and multimodal surface wave signals for both TCC-Lin and PCC-PWS methods, suggesting the
necessity of the quality control process subsequent to the dispersion measurement.

From the spectral dispersion analysis, various combinations of signal-to-noise ratio (SNR) and the upper and
lower limits of the number of wavelengths traveled between station-pairs (UNWL and LNWL) were explored to
identify the effects of each quality control parameters on the extraction of group velocities over the period distri-

bution. A constant value of LNWL = 3 applied to develop the averaged group velocity curves of the synthetic

data resulted in the smallest mean errors and was most similar to the input reference model, suggesting that the
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LNWL is the dominating effect on extracting reliable group velocities of our modeled surface wave data. Also,
our results show larger errors for wave periods 1.5 s < T < 2 s for both PCC-PWS and TCC-Lin methods, which
likely have resulted from (a) random noise inserted to the surface wave signal, and (b) insufficient interstation
distance coverage. Although SNR is effective in examining the robustness of the empirical Green's functions
(EGFs), NWL had greater impact on differences in the network-averaged group velocity curves from the ambi-
ent noise data measured at O'Leno State Park. Varying the UNWL in particular generated high divergence at
025 <T<0.3and 0.45s < T < 0.7 s potentially resulting from the high heterogeneity of the carbonate struc-
ture and the lack of spatial coverage, analogous to the synthetic data application. Regardless of the method in
extracting coherent signals, both PCC-PWS and TCC-Lin methods output comparable group velocity curves of
the lowest errors with the same value of LNWL = 3, indicating the effectiveness of the quality control process.
This also results in a similar velocity structure of the two methods from inverting the dispersion curves. However,
network-averaged group velocity curves with both low and high mean errors are within the standard deviation of
velocities extracted from all station pairs. Therefore, smaller error does not always indicate a more reliable group
velocity curve, especially for complex geologic structures with high heterogeneity. Error values of the averaged
group velocity curves should also be applied when inverting for the velocity structure. Quality control parameters
should be carefully selected based on the signal characteristic and information of the geology.

Reproducibility of EGFs was examined for the two data processing methods to account for the spatiotemporal
changes in the complex elastic medium as well as the ambient noise sources. The PCC-PWS method required
fewer stacks (or time) over the wave periods (69 stacks) to measure reliable group velocities than the TCC-Lin
method (125 stacks), further demonstrating the efficiency and robustness in locating coherent ambient noise
signals. Our results for the number of stacks needed to extract stable group velocities may be used as a baseline in
producing timely EGFs to compare with a background EGF for environmental seismology studies. However, the
site-specific reproducibility will vary based on the complexity of the geologic structure in monitoring changes in
group velocities, and waveform signal biases based on the directions and distances of the seismic network need
to be further investigated to improve uncertainties in measuring the time and frequency dependent surface wave
velocities.

Data Availability Statement

The seismic data collected at O'Leno and River Rise Preserve State Parks, Florida, USA, are available through the
International Federationof Digital Seismograph Networks website (FDSNnetwork code XS, https://doi.org/10.7914/
SN/XS_2018) (Bilek, 2018). The codes for controlling quality control parameters and computing reproducibil-
ity of dispersion measurements in this paper can be found online (at https://doi.org/10.5281/zenodo.7582572)
(Woo, 2023).
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