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Abstract Sections

The Southern Oceanis animportant regulator of global CO, levels Introduction

and likely had akey role inlowering atmospheric CO, levels during Modern Southern Ocean

the Last Glacial Maximum (LGM) and driving the subsequent increase circulation

during the following deglaciation. Nonetheless, debate continues Southern Ocean dynamics
surrounding the relative importance of Northern versus Southern during the LGM
Hemisphere forcing during deglacial events. In this Review, we Southern Ocean influences on

. s . . deglaciati
compare modern Southern Ocean conditions with those in the LGM egraciation

and deglacial period, identifying factors that were critical in initiating 2:2‘133: and future
the glacial termination. During the LGM, North Atlantic sourced

waters appear to have shoaled and were largely absent from the

glacial Southern Ocean. Increased ocean stratification, shoaling of

the chemical divide and increased nutrient utilization at the surface
contributed to glacial carbon sequestration in deep waters. Warming
at mid-latitudes of the Southern Hemisphere and the Southern Ocean
began at-21ka, preceding deglaciation, indicating insolation changes
could have driven early atmosphere-ocean warming thatinitiated the
shifting of ocean fronts leading to the release of carbon sequestered in
the LGM. Southern Ocean dynamics appear to have been substantial,
or even the critical, factors initiating the termination of the LGM before
deepening of North Atlantic sourced waters. Future research should
focus onbetter resolving deglacial chemical and physical changesin
Southern Ocean waters and their representation in numerical models.
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Key points

e The Southern Ocean is where the major deep-water masses of
oceans rise to the surface, mingle, modify and re-form, making it

the nexus of global ocean interactions. Air-sea exchange of CO, in the
Southern Ocean is a key control on atmospheric CO, concentrations,
the marine carbon cycle and climate.

o During the Last Glacial Maximum (20-26 ka), North Atlantic sourced
waters were largely absent from the glacial Southern Ocean. The
likely cause of this is shoaling of North Atlantic Deep Waters to
intermediate depths.

e The northern glacial Southern Ocean had a shallower and more
intense geochemical divide than modern-day Southern Ocean.
Increased ocean stratification, shoaling of the chemical divide

and increased nutrient utilization at the surface contributed to glacial
carbon sequestration in deep waters.

o Breakdown of the intensified geochemical divide and ventilation
occurred early in the deglaciation, preceding the reintroduction of
northern-sourced waters to the Southern Ocean.

o Shifts in Southern Hemisphere winds, frontal movements and orbital
forcing could have driven these changes in Southern Ocean dynamics,
triggering the release of carbon sequestered during the Last Glacial
Maximum and increasing atmospheric CO, at the beginning of the
deglaciation (~18-11ka), affecting global climate.

Introduction

Ocean dynamics and circulation have afundamental role in millennial-
scale global carbon cycle and climate system feedbacks by regulating
the amount of CO, in the atmosphere' " and the distribution of heat
between the hemispheres®’. The Southern Ocean is where the major
deep-water masses of oceans rise to the surface, mingle, modify and
re-form, makingit the nexus of global ocean interactions (Fig.1) and an
importantareafor ocean-atmosphere gas exchange®'°. The upwelling
of deep waters provides nutrients to the surface of the Southern Ocean
along with dissolved inorganic carbon (DIC), which was previously
sequestered into the ocean interior allowing it to exchange with the
atmosphere™".

In addition to air-sea equilibration, uptake of carbon by photo-
synthesis and the export via sinking of organic matter into the deep
ocean, termed the biological pump, act to decrease the surface DIC".
In the modern Southern Ocean, the upward supply of nutrients and
DIC from deep waters outpace biological demand", resulting in an
excess of unutilized nutrients and, crucially, carbon in surface waters
that can exchange with the atmosphere as CO,. The tight coupling and
competition between these physical and biochemical carbon pumps
determine the sign of the air-sea CO, fluxes. As the abyssal ocean
waters rise to the surface in the Southern Ocean, this also impacts the
ability of the deep ocean to retain carbon, giving the Southern Ocean
anoutsizedrolein the global carbon cycle.

The importance of Southern Ocean for carbon sequestration
during the Last Glacial Maximum (LGM; ~21 ka)™>'® and the subsequent
carbon outgassing across the deglaciation (~18-11ka) are widely
recognized>”??, However, debate continues around the relative

importance of Southern Ocean dynamics in comparison to those in
the Northern Hemisphere. The Northern Hemisphere has long been
considered the prime mover, determining the pace of glacial climate
cycles. This thinking came about as the Northern Hemisphere is both
the locus of continental glaciation and where the deep limb of the
global overturning circulation initiates in North Atlantic.

However, the latest advances have revealed that the Southern
Ocean preceded the North Atlantic in key deglacial responses. Initial
warminginthe Southern Ocean, which began around 21 ka, was earlier
than the termination of the last Ice Age in the Northern Hemisphere
andinthesouth, wasaccompanied by changesinsea-ice extent, frontal
placement and deep ventilation that released deep sequestered CO,
(refs. 21-25). As the Southern Ocean is crucial for setting the physical
and chemical structure of the ocean, and thus the ability of the ocean
tostore CO,, it follows that Southern Ocean processes were key drivers
ofthe last deglaciation and changes in the ocean-atmosphere carbon
partitioning thataccompanied it”*****?, Yet, quantifying the contribu-
tions of Southern Ocean processes such as circulation, stratification,
sea-ice extent, shifting wind belts and the biological pump to the rise
in deglacial atmospheric CO, remains challenging.

Inthis Review, we explore Southern Ocean conditions and ocean-
atmosphereinteractions during thelast glacial-deglacial transitionand
discuss the evidence suggesting that the Southern Ocean was critical
indriving the termination of the LGM. We characterize the state of the
glacial and deglacial Southern Ocean through discussion of published
palaeoclimate proxy dataand numerical simulations. We first examine
the structure of the glacial Southern Ocean and the current under-
standing of sea surface temperature (SST), the efficiency of biological
processes, frontal placement, sea-ice extent, and winds, on oceanic
overturning circulation and CO, sequestration. We then describe
the deglacial changes in the same parameters and their association
with millennial-scale climate events in the first half of the last degla-
ciation. Temporally, we focus on Heinrich Stadial 1 (HS1; 14.5-17.5 ka)
and the Antarctic Cold Reversal (ACR; 12.9-14.5 ka), to place empha-
sis on the inception of the deglaciation. We chose this time period
as later deglacial millennial events are not strongly expressed in the
Southern Ocean. We discuss the evidence for early initiation of degla-
ciation in the Southern Ocean, including two proposed mechanisms
for how the Southern Hemisphere controls the progression of degla-
ciation. We explore future research directions that will provide further
insight into the role of the Southern Ocean in affecting the coupled
ocean-atmosphere climate system.

Modern Southern Ocean circulation

The Southern Ocean serves as the conduit through which Atlantic,
Indian and Pacific Ocean water masses are exchanged and modified®*.
Glacial and deglacial circulation in the Southern Ocean can be under-
stood in reference to present-day circulation patterns. At present,
deep Meridional Overturning Circulation (MOC) originates in the
North Atlantic, with the thermohaline formation of North Atlantic
Deep Water (NADW) that delivers a major component of northern-
sourced waters to the deep Southern Ocean (Fig.1). A distinct feature
of modern circulation is that NADW is sufficiently dense to sit below
the depth ofthe Drake Passage Sill allowing it to cross the geostrophic
barrier formed by the circumglobal Antarctic Circumpolar Current
(ACC)®***? and contribute to Lower Circumpolar Deep Water (Lower
CDW)®*? (Box 1). Indian Deep Water and Pacific Deep Water are less
dense than NADW and Lower CDW** and enter the Southern Ocean at
ashallower depth (-1,600-3,000 m) forming the Upper Circumpolar
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Fig.1| Global Meridional Overturning Circulation. Direction of flow is
indicated by arrows, and salinity is indicated by colours. Major water masses
abbreviated as: North Atlantic Deep Water (NADW), Indian Deep Water (IDW)
and Pacific Deep Water (PDW) Antarctic Bottom Water (AABW). Southern
Ocean water masses and currents: Lower Circumpolar Deep Water (LCDW),
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Upper Circumpolar Deep Water (UCDW), Antarctic Intermediate Water (AAIW),
Antarctic Circumpolar Current (ACC). Other ocean currents: The Indonesian
Throughflow (ITF). Bathymetry is displayed in black. Southern Ocean dynamics
are where northern-sourced deep-water masses rise to the surface, mingle,
modify and re-form, making it the nexus of global ocean interactions.

Deep Water (Upper CDW). Closure of the overturning circulation is
intimately linked to the dynamics of the ACC anditseddy field that can
carry mass and heat poleward® across the unbounded channel of the
Southern Ocean at depths above bottom topography°.

Southern Ocean water masses can be summarized as forming two
overturninglimbs derived fromthree layers. A mid-depth southward-
flowinglayer, sourced from NADW, Indian Deep Water (IDW) and Pacific
Deep Water (PDW), transforms into two northward-flowing layers sit-
ting above and below (Fig. 2). Sea-ice formation and cooling decrease
the buoyancy of Lower CDW, leading to the formation of Antarctic
Bottom Water (AABW), the densest, deepest, northward-flowing water
mass. Farther north, Upper CDW freshens and gains buoyancy”*,
forming Antarctic Intermediate Water (AAIW; 800-1,600 m) that sub-
ductsatthe Subantarctic Front (SAF). Farther north, SubantarcticMode
Water (SAMW; 400-800 m) subducts at the Subtropical Front®**¢,
These waters form the upward limb of the thermohaline overturning
circulation that ultimately flows northward (Fig. 2).

IDW and PDW, the source of Upper CDW, are relatively carbon-rich
water masses. The upwelling of these waters to the surface primarily

occurs in the turbulent winter through wind-driven deep mixing***.

This wind-driven mixing causes SAMW and AAIW to exchange their
CO, with the atmosphere while at the surface®, thereby releasing
sequestered carbon in excess of atmospheric levels which ventilates
thewater (Fig.2). This ventilation occursin distinct hot spots across the
Southern Ocean largely driven by topography***¢. Equilibrium-driven
exchange and loss of CO, to the atmosphere is a central factor in the
atmosphere-ocean balance of CO, in the present day'**,

Fronts are important partitions and boundaries in the Southern
Ocean, with the northern boundary of the Southern Ocean being the
Subtropical Front. The fronts are steered by the winds**and the bathym-
etry thatalso direct the flow of the ACC***** and drive the eddy mixing
that provides closure of overturning circulation®*$*°, The response to
topography®~! dictates that changes in the path of the ACC will affect
dynamicbalances, cross-front exchange®*> heat transport and shallow
water mass formation**. Changesin ventilation and water mass forma-
tion can be expected to occur with climate-driven changes in frontal
locations®* and the path of the ACC with implications for the glacial
state and deglacial response of the Southern Ocean.
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Box 1

The Drake Passage, a gateway to the Southern Ocean for deep water

The Southern Ocean at the latitude of the Drake Passage (roughly
57°-61° S) is a circumglobal band of open sea through which the core
of the Antarctic Circumpolar Current (ACC) flows (yellow arrow, see
part a of the figure). This means that waters shallower than the sill
depth (of about 2,500m) lie on density surfaces (isopycnals) in the
Drake Passage latitude band that are continuous all the way around
Antarctica. These continuous isopycnals cannot support net east-
west pressure gradients nor net meridional geostrophic flow. Waters
that are denser and deeper can intersect the ocean bottom at a ridge,
or sill, which can act as a deep meridional boundary, and therefore
support a zonal pressure gradient and net north-south geostrophic
flow. At present, global circulation forms one continuous overturning
cell; North Atlantic Deep Water (NADW, green arrow, see the figure,
part a) has a core density that matches or exceeds that found in the
Drake Passage and so enters the Southern Ocean below ~2,000m
and upwells to the surface south of the ACC, where it becomes a
source of Antarctic Bottom Water (AABW, dark blue arrow)®?”. Water
on shallower isopycnals can only cross the ACC with the help of
eddy-induced stirring that gradually mix across the ACC. The
Pacific Ocean and the Indian Ocean do not have a northern source
of deep water, but there is dynamic similarity, with each basin having
deep water transport southward to where it rises to the surface in
the Southern Ocean. Notably, Indian Deep Water (IDW) and Pacific
Deep Water (PDW), which are lighter than the NADW, upwell in the
Southern Ocean north of NADW where they are the main sources of
the upper ocean waters that leave the Southern Ocean (Subantarctic
Mode Water or SAMW, Antarctic Intermediate Water or AAIW)®™° (Fig. 1).
It is well established that NADW shoaled in the Last Glacial
Maximum (and is commonly referred to as Glacial North Atlantic
Intermediate water, GNAIW) putting most of the southward transport
of Atlantic sourced waters at or above the Drake Passage sill depth
(blue arrow, see the figure, part b). The dynamic constraints require
that if NADW shoaled, this would require decreased densities that
would have prevented these waters from entering the deep Southern
Ocean. This would have restricted GNAIW transport to north of the

Theupwelling of nutrient and DIC-rich deep waters to the surface
ofthe Southern Ocean meansthat DIC release is partially compensated
by the biological uptake of CO, during photosynthesis (primarily in
the spring and summer). North of the Antarctic Polar Front, in the
Subantarctic zone (SAZ), low concentrations of Silimit diatom growth,
whereasinthe Antarctic zone (AZ), south of the Antarctic Polar Front,
diatomgrowthis limited by Fe** and light*>*%, Thus, the Southern Ocean
is an important high-nutrient low-chlorophyll zone in which nutri-
ent consumption is often incomplete, resulting in a high residual, or
preformed, nutrient content being advected to depthin AABW, AAIW
and SAMW. The organic biological pump represents the sum of the
processes that cause the consumption of surface nutrients and seques-
tration of CO,atdepththrough the production, exportand subsurface
remineralization of photosynthetic organic matter. In the Southern
Ocean, the biological pumpis accordingly inefficient, with only about

ACC where through eddy closure they would have contributed to
SAMW and AAIW, especially in the South Atlantic (see the figure, part b).
In the South Atlantic, any non-obducted waters could have retroflec-
ted and contributed to a non-ventilated northern-source component
observed at mid-depths”. In other basins, hypothetically, PDW

and IDW would have filled the role of NADW during the Last Glacial
Maximum (Fig. 2). If so, PDW and IDW would have outcropped south
of the ACC supplying the waters that flowed southward to eventually
form AABW. In the Pacific and Indian Oceans, PDW and IDW should
also have also outcropped north of the ACC and been the source of
the shallow waters SAMW and AAIW, as occurs in those basins today.

half of the upwelled nitrate used by phytoplankton. The extent of this
inefficiency determines the export of excess nutrients into intermedi-
ate waters of the upper limb of thermohaline circulation®” and their
subsequent redistribution to most of the low-latitude Southern Hemi-
sphere today>* % (Fig. 1). This nutrient leakage to sub-thermocline
waters helps to sustain global productivity®°,

Southern Ocean dynamics during the LGM

During the LGM (-23-18 ka)®, the climate state of the Earth was funda-
mentally different from that ofthe Holocene (10 ka to present). Global
temperatures were ~3-6 °C lower than pre-industrial®>**>, Winter sea
ice covered the northern portions of the North Atlantic®**°, moving
the locus of deep-water formation southward®®*°, This altered the
formation of NADW, reducing its density and causing the formation
of Glacial North Atlantic Intermediate Water (GNAIW)®%¢"7,
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Deep circulation changes during the LGM

The Atlanticappearsto have had a profound change in overturning cir-
culation duringthe last glaciation. Numerouslines of evidence indicate
bothashoaled geochemical divideinthe LGM and a stronger chemical
gradientacross that divide in the Atlantic. The §°C in the tests (shells)
of benthic foraminifera is frequently used as a tracer for increased
respired DIC in the deep ocean. Compilations of LGM 8"C from the
Atlantic Ocean indicate that the 8C enrichment associated with
NADW shoaled by about 1,500 m from being centred at-3,000 m today
to being centred at 1,500 m in the LGM®**”’°, resulting in an increase
insouthern-sourced watersin the deep Atlantic®®” (Fig. 3).>*'Pa/>°Th
data demonstrate that the Atlantic MOC) was both shallower’>”* and
potentially more sluggish than today™. This shoaled GNAIW was under-
lainby an expanded, more*C-depleted water mass’®” that from1,500
t03,000 m had aNorth Atlantic sourced component . Evidence from
Cd/Ca, aproxy for the nutrient content of waters (Cd,; which co-varies
with nutrient concentrations), also indicates that achemical divide at
~2,500 mexisted within the Atlantic, with nutrient-rich watersresiding
below nutrient-poor GNAIW*7¢78,

The changes in Atlantic MOC structure brought on by shoaling
of NADW to GNAIW described earlier would have affected the makeup of
deep Southern Oceanwaters that have asubstantial NADW component
today” %2, GNAIW appears to have sat shallower than the Drake Passage
silldepth (-2,500 m)”*”". If waters of North Atlantic origin were limited
to above -2,500 m in the glacial Atlantic, then, consistent with the
physical and fluid dynamics constraints®*', GNAIW would have been
largely restricted from the Southern Ocean” — asituation corroborated

© ®
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by some models® (Box 1). A marked decrease in northern-sourced
water in the Southern Ocean was first documented starting in the
1980s7°%%, An important consequence of the lack of a North Atlantic
input, is that PDW and IDW would have become a dominant source for
thelower limb (Lower CDW and AABW) of circulation in the Pacific and
Indian basins™***%,

Supportingevidence for the lack of deep northern-sourced water
in the Southern Ocean and Indo-Pacific during the LGM comes from
ena> . £yg has been important for distinguishing past deep-water
sources from respired DIC levels (despite some uncertainty in end-
member &y, and [Nd] that somewhat obfuscate changes in circula-
tion”> 748794 g, fromthe Southwest Pacific®**, Indian® and Southern
Oceans’®” indicates widespread invasion of Pacific-sourced water at
all depths in the LGM?®, Although some &4 studies have suggested
the presence of North Atlantic sourced waters in the deep Atlantic
inthe LGM”, re-analysis of these data with models appears equivocal'®
and depth transects suggest the presence of Pacific-sourced waters
below -3,000 m'’. Coupled seawater y,—carbonate ion concentra-
tion ([CO,*]) reconstructions in the South Atlantic®'* indicate that
DIC-rich water expanded into the deep Southwest Atlantic from the
Pacific'®®, supporting the interpretation that Pacific waters became
the main deep-water source below 3,000 m during the LGM3*104105,

Inaddition to changes in deep-water sourcesin the several South-
ernOceanbasinsinthe LGM, the vertical structure of the water column
was altered''°®, Compilations of cores that create depth transects of
deep-water chemistry®>'°71¢ show that the ventilation and sourcesin
the Atlantic did not match the Pacific'***®. §*C and [CO,? ] in the Pacific
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Fig.2|Southern Ocean overturning circulation. Arrowheads (circle with dot)
depict the net direction of the wind-driven overturning circulation, with size
ofthe arrowhead representing the relative magnitude. Blue shading and flow

arrows show water mass formation in the Southern Ocean. The upwelling of
deep waters provides nutrients to the surface of the Southern Ocean and brings
dissolved inorganic carbon up to exchange with the atmosphere.
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Fig. 3| Vertical profiles of sedimentary 6*Cin the Atlantic and Pacific. Left,
Holocene. Right, Last Glacial Maximum (LGM). Red arrow indicates the depth

of the profile minimum in the Atlantic for both times. Note that the minimumiis
at~3,000 minthe Holocene, and shallower, at 1,500 m, in the LGM. Data from
ref.270. During the LGM, North Atlantic Deep Waters shoaled to intermediate
depths. 6°C s reported relative to the standard Vienna Pee Dee Belemnite (VPDB).

and Indian Oceans show increased stratification between intermedi-
ate and deeper waters'%*'%°"° and that Lower CDW in these basins had
increased respired CO, (refs. 82,111-113). Notably, the geochemical
divide in the Indian"*" and Pacific basins shoaled by at least ~500 m
to above 1,000 m'*>" (Fig. 3). This shoaled geochemical divide was
nearly akilometre shallower thanin the Atlantic”"*’, where intermediate
depths had lower respired DIC"®. Additionally, models show ashoaled
divide in the Pacific resulting from the changed global MOC® that in
turn could have affected shallow water mass formation and wind-driven
dynamic pathways related to regional topography***, especially in the
Indian Ocean*‘. Taken together, these lines of evidence lend further
support to the Drake gateway hypothesis (Box 1).

Lower atmospheric CO, in the LGM has been widely attributed
to greater sequestration of CO, in the deep ocean?, although storage
in the deep Southern Ocean appears to have been significant. Radio-
carbon (A™C) documents how long DIC been sequestered from the
atmosphere. Datafrom the Southern Ocean®*"""® and the Pacific!?"'*
point strongly to enhanced carbon sequestration at depths filled by
southern-sourced waters, a result that is supported by models*™'»,
The vertical structure of glacial A™C shows that where sequestered
carbonresided varied noticeably between basins'?®. Older waters were
found below 2 km in the Atlantic¥'*, whereas in the South"*"*° and
equatorial™'"* Pacific, oldest waters were at mid-depths (2-3 km)".
Data are more limited but indications are that the Indian Ocean was
similar to the Pacific"* .

Inline with other proxies, A*C shows ashoaled geochemical divide
with SAMW remaining well ventilated'**”*® and AAIW A¥C much lower
than today, but relatively much more ventilated than deep water'>°.
Overall A*C evidence confines the enhanced glacial respired carbon
reservoir to deeper waters™'*?and, in agreement with §*C reconstruc-
tions'’, confirms that there was greater DIC storage in the Pacific'?*'*
relative to the other basins. The shoaling of the geochemical boundary
hasbeensuggested to have contributed to strongerisolation between
the upper and lower limbs by reducing deep topographic turbulent
mixing" and along with increased deep ocean salinity"* resulted in
increased ocean stratification. An associated increase in deep ocean

carbonate compensation through enhanced dissolution of deep ocean
carbonates, forexample'**, would have further aided the sequestration
of CO,. The water mass geometry and mixing changes in the LGM would
haveincreased the standing volume of cold, respired carbon-richdeep
waters at the expense of warmer, carbon-depleted waters®*'*, These
carbon-richwaters werelikely sourced from the Southern Ocean giving
surface processes of air-seaexchange and biological uptake increased
influence on the glacial CO, ocean-atmosphere balance.

Today, the Southern Oceanis a high-nutrientlow-chlorophyll zone
inwhich key limiting micronutrients prevent phytoplankton from fully
using the available nutrients, resulting in ainefficient biological pump.
Thus, the potential exists for the Southern Ocean biological pump to
drawdown more CO, in the past through either anincrease in the sup-
ply of nutrients or the alleviation of limitations on production by iron
availability allowing a greater proportion of the nutrients to be con-
sumed by phytoplankton. The ecological differences between the
carbonate-dominated SAZ and the silica-dominated Polar Frontal Zone
and AZ affect the interplay of micronutrients on productivity produc-
ing spatially distinct biopump regimes'*. During the LGM, anincreased
flux of Fe-bearing dust to regions of the Southern Ocean that are today
Fe-limited facilitated biophysical changes to the biological pump'*’.
Specifically, both biogenic sediment accumulationratesand §°Nand
8"Cvalues were higher in the SAZ, indicating enhanced export produc-
tion'*® and surface nutrient consumption®*'**"*° that likely reflected
enhanced iron availability"**"**"32, which subsequently enhanced
CO,sequestrationinthe deep ocean duringthe later stages of the last
glaciation®”"**, Despite purported increases inironavailability, export
production decreased in the AZ***** This decrease co-occurred with
anincreasein relative nutrient consumption, suggesting that nutrient
supply decreased more than nutrient demand and implicating reduced
upwelling of nutrient-rich deep waters in the AZ"*"*%7%2, Reduced AZ
nutrientsupply andincreased nutrient demandin the SAZ likely worked
together drawing CO, down leading into glacial periods™"*'¢*,

Enhanced export production from the surface paired with the
consequent respiration of that organic matter at depth'**** resulted
innotonly theaccumulation of respired carbon but also the depletion
of oxygenindeep waters. More intense oxygen consumptionatdepth
canalso be the result of prolonged residence in the abyss'. Widespread
lower oxygen concentrationsin southern-sourced waters throughout
the Pacific have been documented by qualitative (for example, redox-
sensitive trace elements; Cd, Mo, U and foraminiferal assemblages)
and semi-quantitative proxies of oxygenation including biomarker
preservation''*® and the foraminiferal estimated bottom-water to
anoxic pore-water §°C gradient (A8C.pitaunat-deepintauna) - These prox-
ies suggest deep-water oxygen concentrations as low as ~-35 pmol kg™
in the equatorial Pacific®”**"*'"2 If oxygen-depleted southern-sourced
waters filled roughly half of the volume of the LGM oceans, and assum-
ing the deficit stems from respiration rather than disequilibrium, an
additional -850 PgC could have been stored in the oceans relative to
today'>>1¢7711731%5 The evidence for a decline in deep ocean oxygena-
tion, bothinthe Southern Ocean**'** and beyond, is consistent with an
enhanced biological pump">*""” and/or reduced ventilation of AABW
or reduced gas exchange via a mechanism such as expanded sea-ice
coverageinthe Southern Ocean',

Insummary, multiple lines of evidence have solidified the under-
standing that LGM changesin ocean circulation went beyond the likely
shoaling of NADW to GNAIW in the Atlantic, and the consequences of
the loss of a North Atlantic input had implications for water sources
and water mass structure in the Southern Ocean. As discussed earlier,
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extensive reconstructions of past seawater §°C of DIC, [CO,*], £yg,
oxygenation, nutrients and C have verified that globally, deep waters
in the southern basins were southern-sourced, contained more car-
bonin the form of DIC (that had been sequestered for longer periods
than in the Holocene) and that these same deep waters had lower
oxygen levels. These Atlantic-Pacific differences, in addition to differ-
ences in the depths of their respective chemical divides, support the
concept that there was a diminished northern influence in the deep
southern basins'>®, leading to the hypotheses of an enhanced role
of Southern Ocean dynamics in global carbon cycling.

Glacial Southern Ocean surface dynamics

A number of dynamic changes in the surface Southern Ocean associ-
ated withglobal cooling appear to have served asimportant amplifiers
and/or drivers and are accepted to have enhanced sequestration of
CO, inthe ocean, independent of changes in overturning circulation.
Movement of fronts would have modified the dynamics of the ACC
and its eddy field* affecting transport of mass and heat poleward as
well as the closure of the overturning circulation. Enhanced nutrient
utilization would have improved the efficiency of the biological pump,
contributing to the drawdown of CO, (refs. 179-187). Advances in the
understanding of degassing mechanisms andlocationsin the Southern
Ocean'**imply that these LGM physical changes could have combined
to depress degassing™"'®.

Globally, quantitative SST estimates have demonstrated that the
surface oceanwas colder during the last glaciation*'”", Overall, recon-
structions' suggest that the Southern Ocean was -4 °C cooler than the
Holocene* ', The picture of overall cooling can beimproved by using
multiproxy SST records'*"**'*° that are based on different plankton
species with demonstrated different seasons of growth today'” that
canbeusedtoreconstruct seasonal differences inthe past. Multiproxy
SSTrecords are available from the Australia-New Zealand region that
show thatalthough summers were colder by -4 °C, winters were 4-7 °C
cooler’®?21% This analysis allows us to infer that although summers
were colder by about the same as global averages, winter SST in sub-
polar waters to the south and east of New Zealand cooled as much as
3 °Cmore, implyingan intensification of winter season cooling’**'**'%,

Reconstructing the pastlocation of fronts relies on using their hall-
mark, asteep gradientin SST*. Consequently, our understanding of the
movement of Southern Ocean frontsrests largely onthereconstruction
of palaeo SST. The enhanced SST gradients associated with frontal loca-
tionsindicate northward frontal shifts during the last glaciation's%'?21%
with abundant evidence that Southern Ocean fronts shifted northward
inmostsectors of the Indian'**~*' and Pacific basins"***°>**>, This move-
mentwasrestricted only where land masses constrain their movement,
such as east of New Zealand”>"*"® and south of Tasmania'*°*°*, The
largely unrestricted movement of the Subtropical Front northward
to the south of Africa'®*'?>*% across the Indian Ocean, and south of
Australia**®***was as much as 8° of latitude (Fig. 4). Frontal movement
also likely contributed to the enhanced cooling observed adjacent to
frontal locations in the past'80'921931%,

Today, afundamental feature of the climate systemin the South-
ernHemisphereis the alignment of the Southern Westerly Winds with
Southern Ocean fronts. Wind stress largely determines the frontal loca-
tions along with bathymetric steering*>*°° and landmass placement®”’.
Theposition of the wind belt, SST gradients and their associated fronts
vary latitudinally on a seasonal basis, being more equatorward in the
austral winter and more poleward in the austral summer, especially
where they are free to move****. We use these seasonal shifts as an

analogy for LGM northward frontal movement (Fig. 4). The position
of the fronts in the past, combined with terrestrial records of atmos-
pheric temperature, are a potential indicator for past Westerlies
placement. During the LGM, the mid-latitude cooling seen in proxy
reconstructions has frequently been attributed to meridional shifts in
the Southern Westerlies, resulting in changed weather patterns?°2°52%°,
Marine and terrestrial climate data have also been interpreted as
anincreased high-latitude influence along the northern rim of the
Southern Ocean, characterized by a more persistent northerly posi-
tion of the Southern Westerlies in the LGM***?'° and through the early
deglaciation'?20>2!,

Northward frontal movement in the LGM**°*and the expansion
of sea ice around Antarctica are well documented™®* ¥, These shifts
would have induced shoaling in the upper limb of the overturning
circulation”, aphenomenonwell documented in depth transect stud-
ies that document the depth extent of water masses®*'*° (Fig. 2). The
current understanding of degassing mechanisms and locations in
the Southern Ocean'® indicates that wind shifts away from optimal
degassing configurations could have enhanced CO, sequestration>'®’
in conjunction with increased nutrient utilization.

Simulations of the Southern Ocean using box models and inter-
mediate complexity models tend to simulateincreased oceanic carbon
uptake with increasing winds'>*>°21225 whereas complex ocean
general circulation models tend to simulate enhanced outgassing
withoutaconsistent signin CO, response to meridional shifts in South-
ern Westerlies?*?'*?”, This variability among model types illustrates
the complexity of ocean-carbon cycle dynamics while raising the
awareness that some of the widely used, simplified 2D conceptual
reconstructions can often be misleading on finer scales®. However,
model intercomparisons are showing improved performance and
morerealistic patterns in wind stress forcing®®, and model-data com-
parisonsillustrate predicable linkages among temperature, wind and
meltwater””. Models do agree that an increase in the strength of SHW
leads to enhanced outgassing and vice versa”. Taken together, sea-ice
and wind changes likely contributed to the physical stratification and
isolation of the glacial deep ocean, enhancing its ability to hold more
CO,. Tothe extent that deep stratification and isolation is an essential
feature of glaciation', these conditions set the stage for Southern
Ocean dynamics to have arole in the deglaciation”®'*?%,

Insummary, many factors contributed to lower atmospheric CO,
in the last glaciation, and changes in overturning circulation appear
to have greatly altered the sources and structure of waters in the
Southern Ocean across basins”®. Increased ocean stratification and
reduced nutrient supply to the surface'®*?®likely decreased the effi-
ciency of the biological pump. Decreasesin temperature and dynamic
northward movement in frontal locations can be linked to reduced
southward transport supported by eddy mixing® and diminished
air-seaexchange of CO,, contributing to carbon-rich deep waters and
deep carbon sequestration. Hence, global glaciation conditions were
likely amplified by dynamics in the Southern Ocean.

Southern Ocean influences on deglaciation

We now shift focus to discuss the events of the first half of the last
deglaciation. Temporally, we focus on HS1 (14.5-17.5 ka) and the ACR
(12.9-14.5 ka), because later deglacial events have very muted expres-
sion in the Southern Ocean. We review the Southern Hemisphere
dynamics that were influenced by the initial atmosphere-ocean
warming during thelast deglaciation, including the movement of fronts
and the timing of the release of carbon sequestered during the LGM.
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Global onset of deglaciation
Extensive evidence compiled since the 1970s has demonstrated that
the last glacial termination proceeded in multiple steps (Box 2). Early
workinthe1980sidentified that the warming during the deglaciation
(or last termination) was punctuated by a brief period of rapid return
to cold, glacial-like conditions followed by abrupt warming, with these
two warming periods previously referred to as termination1a and 1b*°.
Further work centred on the North Atlantic inferred that there was an
intense Northern Hemisphere cooling that followed the first degla-
cial warming and punctuated the two warming pulses, dubbed the
Younger-Dryas (YD; 12.8-11.7 kyr)??°. The YD was initially conflated
with the ACR (12.9-14.5 ka), giving the appearance of a synchronous
two-step deglaciation globally. This confusion was likely exacerbated
by the fact that climate records from different substrates such as ice
coresand carbonates are necessarily based on various stratigraphic and
chronologic tools. Each has inherent uncertainties that put practical
limits on precise age control. Cross-calibrating different proxy records
toensure the best possible common stratigraphy isimportant for good
chronology and essential for determining leads and lags between indi-
vidual proxy records. For example, differences among Antarctic and
Greenlandice corerecords have beenreconciled using methane levels
trapped intheice*”.Ice core climate records are then cross-calibrated
with speleothems using 80 (ref. 222), whose primary stratigraphy is
based on U-Th dating?” to ensure that global climate records have a
common chronology.

Withimproved radiocarbon dating tools and calibrations?* result-
inginbetter age control, itbecame clear that Southern Hemisphere YD
responses are frequently absent?* and that the two-step deglaciation

signal varied regionally in both magnitude and direction®. Observed
warminginthe Southern Hemisphere thought to coincide with cooling
in the Northern Hemisphere during the deglaciation has been linked
to changes in meridional oceanic heat transport?”. The consistent
interhemispheric temperature differences** were dubbed the bipolar
seesaw>?>?7, Although widely used, the term bipolar seesaw does not
accurately represent the interhemispheric deglacial heat transport
dynamics, as the timing of temperature changes and the interplay
of forcing factors throughout the deglaciation taken together now
appear more complex®*°°?*®, Nonetheless, focusing on the interhemi-
sphericsignals can help clarify the link between warming?°*?** ocean
circulation changes and the deglacial increase in atmospheric CO,
(refs.22,181,229).

In current understanding, the onset of deglaciation is synchro-
nous with the start of HS1 (-18 ka) and the rise in atmospheric CO,
(ref. 23) (Box 2). The widespread synchronicity of HS1 events in the
North Atlantic region has been characterized as having fully antiphased
temperature responses between the hemispheres. However, HS1 is
more fully described as pervasive wintertime cooling and summertime
warming in the Northern Hemisphere?*°**' with sea-ice-intensified
wintertime cooling in the North Atlantic region appearing to have
masked summertime warming?, which has been largely summed up
as cooling in many records®*.

Southern Hemisphere early warming

Itappears that early warming in the Southern Hemisphere* preceded
theglobalshifts occurring at 18 ka?>'®***? hinting that processes in the
south could have tipped the balance towards deglaciation””. Southern
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Fig. 4 |Surface front and deep geochemical divide variations from Glacial-
to-Holocene conditions. Maps show placement of the Subtropical Front
inthe Holocene and estimated positions in the Last Glacial Maximum (LGM),
with the suggested position of the East Australian Current in the Holocene
(dark pink line, top left panel) and its displacement in the LGM (blue line,
top right panel), referred to as the Zealandia Switch’. The vertical section

(lower panel) shows changes in the deep geochemical divide structureina
vertical §'°0 transect through time for the Southwest Pacific. Breakdown of the
intensified geochemical divide and ventilation occurred early in the deglaciation,
preceding the reintroduction of northern-sourced waters to the Southern Ocean.
The presence of Northern Component Water (NCW) between -2 and -3 kminthe
Holocene is supplanted by Southern Component Water (SCW) in the LGM.
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Box 2

Southern Hemisphere deglacial events and their role in deglacial

climate change

The last deglaciation proceeded in multiple steps also called millennial-
scale climate events. The names, timing and extent of these events can
be confusing as the chronology and extent are the subject of ongoing
research.

Henrich layers and events

Deposits of iceberg rafted, detrital material have been identified in the
North Atlantic, and found to coincide with massive meltwater discharge
during glacial periods, collectively termed Heinrich Events??. These
events were subsequently linked to cold intervals in temperature
records from the North Atlantic region®”?, named Heinrich Stadials.

The most recent of these, Heinrich Stadial 1 (HS1), occurred at the start
of the last deglaciation, originally dated as 14.6-18 ka?”* but more recently
defined as (HS1: 14.5-17.5ka), which can be subdivided into two intervals
of cooling, HS 1.1and 1.2 in high-resolution stratigraphic studies®”.

The start of HS1 has become synonymous with the onset of
deglaciation, which is a widely recognized and strongly synchronized
signal in the Northern Hemisphere. The beginning of HS1 coincided
with the rise in ocean 8"™0 signalling the onset of boreal continental
ice sheet melting (see the figure, part d) that resulted in a flood of
meltwater to the North Atlantic, recorded by the presence of ice-
rafted debris, the hallmark of Heinrich Events. The substantial input
of fresh water to the North Atlantic resulted in a glacial meltwater
cap credited with the shutdown of Atlantic thermohaline overturning
circulation (see the figure, part €)’>%’°. This chain of events both cooled
the Northern Hemisphere and altered the hydrological cycle of
interannual and interdecadal events such as the East Asian monsoon
(see the figure, part b)*”’. Globally, HS1 is also notable for the rapid
drop in atmospheric A™C (ref. 278) (see the figure, part a)*’° that
mirrors the atmospheric increase in CO, (see the figure, part e).

There is a notable alternation in temperatures between the
hemispheres during HS1 that has been attributed to a synergistic
interplay between the weakened thermohaline overturning circulation
and cooling in the north driving a southward shift of the Intertropical
Convergence Zone and the southern Westerly wind belt®***°, suggesting
a fundamentally Northern Hemisphere heat transport influenced
system?”'. The different timings of events observed in the Southern
Hemisphere suggest independent influences and/or amplifications.
Recent work has suggested that the influence of the latitudinal variations
in orbitally driven insolation could have been a factor (see the figure,
part f)**"*° causing early Southern Hemisphere warming as a substantial
driver?. This possibility is supported by timing offsets in models
between notable Southern Ocean events and Northern Hemisphere
thermohaline changes with the interpretation that the Southern
Hemisphere and Southern Ocean are a dynamic coupled system
with multiple equilibrium states?"%°.

Antarctic Cold Reversal (ACR; 12.9-14.5ka)
A cooling largely confined to mid and higher Southern Hemisphere
latitudes. The ACR cooling was first identified in Antarctic ice cores
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(continued from previous page)

(see the figure, part d), and is also observed in mid-to-high latitude
marine and terrestrial temperature records across the Southern
Hemisphere. Precise dating has now established that it precedes
Northern Hemisphere cooling during the Younger-Dryas and that

it is instead coeval with Bglling-Allerrad (BA)****?®',a warm interval
confined to mid- and high-Northern Hemisphere latitudes (14.5-13 ka)
(ref. 220). As such, this is the embodiment of the bipolar alternation
in temperature signal (see the figure, part d). The rapid Northern
Hemisphere warming in the BA has been attributed to the restart

of thermohaline circulation after the HS1 pause (see the figure,

part €). The contrasting cooling of the ACR has been attributed

to re-expansion of sea ice in the Southern Ocean as summer
insolation in the Southern Hemisphere dropped. These Southern
Hemisphere factors have been linked to shifting Westerlies that
reduced upwelling® and likely caused the pause in the global

rise in CO,. The weak influence, or the lack of Atlantic Meridional
Overturning Circulation influence on Southern Ocean processes
during the ACR, could reflect the fact that northern-sourced waters
were still shoaled at that time”® or might reflect multiple changes in
Southern Ocean dynamics, including warming of the deep ocean?
that dampened the response as the Earth had substantially exited the
glacial mode™.

Younger-Dryas (YD; 12.8-11.7ka)

A rapid return to near-glacial conditions largely confined to the
Northern Hemisphere. The YD, initially observed as a rapid cooling
event centred on the North Atlantic, appears to be restricted to

Hemisphere mid-latitudes (-35-45 °S) SST started warming around
21 ka'®'?>*** |eading, by about 3 ka, both the northern expression of
HS1and warming in Subantarctic waters'*%"°® (Fig. 5). Furthermore,
seasonal SST analyses suggest mid-latitude winters warmed before
summers and warmed faster'?®?* intensifying the warming effect.
In the Australia-New Zealand region, these mid-latitude seasonal
differences have been attributed to changing Southern Westerlies
influences across the seasons during the deglaciation***°?"!, Farther
south, in Subantarctic regions, summer warming began later, between
~18 and 19 ka'$"***”, Antarctica warmed nearly synchronously with the
CO, rise?****, and warming of waters south of the SAF matched that of
the Antarctic continent™>?¥, Present-day Southern Ocean dynamics
dictate thatthe eddy field across the ACC would have transported this
subtropical heat poleward to the upper layers of the Southern Ocean™.

Early mid-latitude warming in the Southern Hemisphere corre-
sponds to insolation increases at these latitudes around 21 ka (Fig. 5a
and Box 2) withinsolation-driven lengthening of summersin Southern
Ocean latitudes®® that has been hypothesized as one mechanism for
the Southern Hemisphere leading or havingaroleindriving the degla-
ciation®®"***° (Fig. 5a and Box 2). The early, rapid loss of sea ice in the
Southern Ocean at about ~20 ka™** coincided with maximum summer
(January) insolation at 65° S*® (Fig. 5) with initial pulses of deep ocean
warming accelerating at ~18 ka”. Although the start of HS1 coincides
with the initiation of the global rise in atmospheric CO,, it is notable
that, similar to bottom water temperature, CO, did not decline and
sea ice did not fully rebound again after HS1 — distinguishing it from
atypical abrupt Heinrich bipolar climate event**** (Box 2). Notably,

the Northern Hemisphere (see the figure, part d). The intense YD
cooling in Greenland is attributed to a reduction in thermohaline
circulation, which was substantial but smaller than in HS1 (ref. 72)
(see the figure, part €). Nonetheless, the impact on Northern
Hemisphere temperatures and hydroclimate as far away as Asia was
enormous (see the figure, part b)**??2. The YD was concurrent with
the resumption of Southern Ocean upwelling and reinvigoration

of the atmospheric CO, increase (see the figure, part e)*°. The bipolar
influence during the YD appears to have been weaker than the ACR
during which many Southern Hemisphere temperature records show
little or ambiguous responses*'°¢?°9?% rather than the opposite
response as observed in the ACR. Likewise, this lack of Southern
Hemisphere response could have been because northern-sourced
waters remained shoaled”® and therefore still restricted from the
Southern Ocean'. Alternatively, the insolation gradient between

the hemispheres had widened (see the figure, part f).

Holocene (11.7ka to present)
The onset of the warm Holocene period marks the termination of the
transition out of the last glacial period at about 11.7ka.

Abbreviations in this figure: IntCal is the intercalibration of “C
project (a); MSD, PD, YT and H82 are individual speloethem names
(b); Atlantic Meridional Overturning Circulation (AMOC) (¢); North
Greenland Ice Core Project (NGRIP)*?, West Antarctic Divide (WD)
ice cores (d); Dome C, Siple dome and Law dome are ice cores from
the West Antarctic Ice Sheet (WAIS)?**? (e); 8'®O values are reported
to standard mean ocean water (SMOW).

more than half of the warming in the mean global ocean temperature?”
and half the CO, increase occurred across HS1 and before the North-
ern Hemisphere Bglling-Allergd warming event when there was the
first reinvigoration of, but not deepening, Atlantic MOC'”* (Box 2).
The southern lead in these events suggests Southern Hemisphere
processes influenced deglacial initiation”°. Critically, the rise of CO,
above a threshold level of 230 ppm has been suggested to lock the
planet into an interglacial mode as long as CO, remains above that
level, lagged Southern Hemisphere warming, so CO, could not have
driven that warming?.

Theinfluence of shifting fronts on CO, release

Early warming beginning around 21 kain the subtropical Pacific around
theNorthIsland of New Zealand"° led the SST warming in Subantarctic
waters around the South Island of New Zealand and Tasmania'®*"7*%%,
By contrast, SST warming in Subantarctic waters was notably synchro-
nous with New Zealand glacial retreat at ~18 ka’. These latter events
do correspond to a step-change in the surface water source and the
thermocline thickness to the north of New Zealand thatindicates a shift
in cross-Tasman flow?**. This evidence for circulation changes lends
some empirical support to the ‘Zealandia Switch’ hypothesis that links
glacial retreat on the New Zealand subcontinent to a hypothetical shift
in cross-Tasman flow at ~18 ka’ (Fig. 4). The Zealandia Switch hypoth-
esizes that the northerly migration of the Westerliesin the LGM caused
afundamental shift toarestricted South Pacific subtropical gyre system
owing to the land mass placement in the region (Fig. 4), an assertion
supported by model simulations that provides a mechanism for the
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southern origin for the dominant phase of the last glacial termination’.
Integral to this mechanism is that mid-latitude warming was the result
of southerly migration of the Westerlies thatin turn caused an abrupt
reorganization at ~18 ka that expanded the subtropical gyre system
reinitiating the modern configuration characterized by a strong East
Australia Current and dominant cross-Tasman flow from Tasmania to
the South Island of New Zealand’ (Fig. 4).

Fig. 5| Deglacial time series. a, Seasalt sodiumin ice cores (a sea-ice extent
proxy)'®*. b, Southern Ocean (SO) upwelling, as indicated by opal accumulation®.
¢, Alkenone-based sea surface temperature (SST) reconstructions from the east
of New Zealand" interpreted as summer SST. d, Mean ocean temperature?”,
atmospheric CO, (ref. 22) and relative temperature change”. e, Total solar
insolation for the months and latitudes indicated. The time intervals are displayed
onthex-axis, which include: ACR, Antarctic Cold Reversal; BA, Bglling-Allergd;
HS1, Heinrich Stadial1and YD, Younger Dryas. Southern Ocean upwelling increased
and sea-ice extent decreased before the main onset of deglaciation, CO,

release and warming.

Evidence for the importance of Southern Ocean dynamics and
Southern Hemisphere conditions on the early deglaciation that
eclipsed the influence of MOC circulation is solidified by &4 data.
All deglacial time series of £y, in the southern Atlantic®, Indian®®""1%
and SW Pacific?* indicate that the reintroduction of Atlantic-sourced
watersinto the Southern Ocean did not occur until after Atlantic MOC
recovered, possibly in the Bglling-Allergd and more likely during
the YD”*. This interpretation holds even when potential changes in the
end-member &y, of Atlantic-sourced waters are taken into account?,
Theindividual timing varies, but a shiftin £y is generally seen around
the time of the ACR or after®***?*’, Evidence from the Atlantic sug-
gests that it was not until after the YD that Atlantic MOC deepened
enough” to re-enter the Southern Ocean'®® (Box 1). It is noteworthy
that NADW reinvigoration lagged substantially in the early warming
of the mean ocean?, indicating that AABW warmed before there was
NADW input?*?**5%*’ againsuggestingasoutherndriver in the deglacial
initiation.

Flushing of respired CO, from the deep ocean across the deglacia-
tionis well documented. Time series of A*C"*"*"'* and carbonate ion
concentration ([CO,?]) determined using B/Ca (ref. 113) along with
8C (refs.26,109) in the South Pacific all indicate that the deep South
Pacificlost asubstantial portion of the glacially sequestered DIC across
HS1. The deep Pacific was flushed of low A™*C (refs. 120,125), whereas
intermediate depth records of “C were more variable, which could have
been a consequence of dynamic changes in water mass geometry. High-
latitude Southern Hemisphere records™”*%1*0*220 haye so far found
little evidence of A“C-depleted waters at intermediate water depthsin
the deglaciation. This absence contrasts with pulses of A*C-depleted
waters observed in Northern Hemisphere locations that have been
suggested to document the path of CO, release at low latitudes®' >
purportedly from the Southern Ocean (although the significance
of equatorial degassing has been disputed®®). Deglacial records of
surface ocean pCO, based on boron isotopes have documented CO,
release to the atmosphere from the equatorial Pacific and Southern
Ocean'**72%° suggesting ashallow water tunnel connection between
them. Although the resolution and variation between equatorial and
Southern Ocean locations leaves the timing somewhat unclear, at a
minimum, the Southern Ocean appearsto havebeenanimportantsite
of CO, release across the deglaciation'**.

Adistinct deglacial pace in the Southern Hemisphere

Although HS1 began at ~18 ka, many notable events in the Southern
Hemisphere have been documented midway through HS1 at ~16.3-
16.5 ka, suggesting a regional event that influenced CO, release. The
onset of intense upwelling in the Southern Ocean? (Fig. 5b) at-16.5 ka
(Fig. 5, dashedline) coincided closely with evidence for better ventila-
tion of AAIW at ~16.3 ka'°>*** and a widely noted spike in atmospheric
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CO, increase at -16.3 ka*, all attributed to the release of respired CO,
from the ocean (Fig. 5e). Multiseason SST records with high enough
resolution show a decrease in the winter latitudinal temperature gra-
dients centred on 16.3 ka'° also coincident with a sharp decrease in
the atmospheric 6°°C (ref. 24) and A™C of atmospheric CO? (ref. 223),
again attributed to a combination of the release of respired CO, from
the oceanandterrestrial biosphere. Collectively, these events suggest
that halfway through HS1 (-16.3 ka), Southern Ocean dynamics were
involvedinreleasing a pulse of CO, to the atmosphere wellbefore North
Atlantic sourced waters re-entered the Southern Ocean™*®.

The ACR was a cold period that is recognized throughout the
Southern Hemisphere, which represented a partial return to glacial
conditions. Occurring at the same time as the Northern Hemisphere
Balling-Allergd warming event, it is an interhemispheric tempera-
ture seesaw. The ACR was represented by widespread Southern
Hemisphere cooling at mid-latitudes in both terrestrial**>*** and
marine'”® records. ACR cooling coincided with expanded sea-ice
extent®* and more northerly frontal positions'*'®!, During the ACR,
the CO, release paused?, which indicates that these conditions were
not favourable for CO,release and could be attributable to diminished
upwelling in the Southern Ocean?. Reduced shallow ventilation at
this time'® supports the connection between surface dynamics in
the Southern Ocean and diminished deep-water degassing. Increased
export production and nitrogen isotopic evidence during the ACR for
oxygen deficit zone expansion outside the Southern Ocean suggest
enhanced nutrient supply to low latitudes via SAMW and decreased
nutrient utilization similar to the LGM"7?*"?%2_ Following the ACR,
resumed warming®'%*1°¢, sea-ice reduction and northward front move-
ment™®® occurred. Notably, there is little or no YD expression in mid-
latitudes and lower latitudes of the Southern Hemisphere?**, making
the ACRthelast notable climatic eventin the deglacial Southern Ocean.

Nutrient utilization and CO, sequestration

Changes in export production and nutrient utilization during the degla-
ciation have also been linked to past changes in winds, deep ocean
stratification or biological uptake and export that in turn could have
changed the balance of the air-sea flux and influenced CO, sequestra-
tion. With the onset of HS1, dust-borne iron fertilization appears to
have waned in the South Atlantic Polar Frontal Zone and AZ*****. In the
Atlantic SAZ, export production and nutrient consumption decreased'
whereas deep ocean oxygenationincreased, consistent with the inter-
pretation that productivity was driven by diminished dust supply
and iron availability"**"**. To the south, export production increased
abruptly whereas nutrient consumption decreased, consistent with the
intensified upwelling in the Polar Frontal Zone?*'**?*, However, dust fer-
tilization played alesser role in the Pacific***. Similarly, in the AZ of the
Indian Ocean, correlation between export production and dust proxies
suggests reduced nutrient utilization through the deglaciation; these
are smaller changes than observed in the Atlantic?®. Nutrient utiliza-
tion in the Indian Ocean SAZ remains unconstrained. The variation
amongbasins and between Southern Ocean zones leaves the influence
of nutrient utilization in the earliest deglaciation uncertain.

Notable observations gleaned from focusing on the Southern
Ocean during the last deglaciation are as follows. Waters of North
Atlantic origin that were largely restricted from the deep Southern
Ocean during the LGM (23-18 ka) were not detected until after the
ACR (12.9-14.5 ka). The initial accumulation of heat in mid-southern
latitudes®® might have helped prime whole ocean warming in the early
deglaciation”, prompting the interpretation that regional insolation

could have been animportant driver of the initial deglaciation®®"*'*,
This early warming has led others to suggest drivers in the first half of
the deglaciation, which might have been atmospheric**°, or driven
by Southern Ocean-Atmosphere dynamics™”’. Other theories call on
Southern Hemisphere total insolation levels forcing deglaciations**
and others invoke different aspects of Southern Hemisphere orbital
parameters as triggers for deglaciations?$°%%4,

Summary and future perspectives

The ocean is the largest reservoir of rapidly exchangeable carbon
on the surface of the Earth, which at present contains 45 times more
CO, thanthe atmosphere®®®. Variations in atmospheric CO, during the
last glaciation and deglaciation were likely caused by climate-related
changes in ocean dynamics controlling global CO, partitioning with
the atmosphere®®. Studies based on proxies found in marine sedi-
ment cores have guided understanding that alteration of deep-water
formation processes in the North Atlantic fundamentally changed
deep circulation globally’®”"7>'?, But Atlantic Overturning Circula-
tion is only one of the mechanisms controlling carbon sequestration
and release during the termination of the LGM. Changes in physi-
cal and biological processes in the Southern Ocean described in this
Review, and others such as deep ocean carbonate compensation'*,
arealsorequired toaccount for the ocean-atmosphere balance of CO,
across glacial-interglacial climate periods. We highlight the growing
realization that some changes in the Southern Ocean preceded many
Northern Hemisphere benchmarks of deglaciation.

The deep southward flow of Atlantic-derived deep water entering
the Southern Ocean is widely considered to be a key feature of inter-
glacial climate. Evidence that suggests North Atlantic sourced waters
shoaled and were largely restricted from all basinsin the deep Southern
Ocean until after the ACR. The preponderance of the evidence from the
Southern Ocean suggests that a deepening of North Atlantic sourced
waters (presuming shoaling lasted until the YD) could not have been
atrigger for deglaciation, but was instead a response””. Nonetheless,
morework determining deep and intermediate water sourcesis needed
to augment available data and solidify this observation.

Warmingin mid-latitudes of Southern Hemisphere and Southern
Ocean beginning at ~21 ka occurred before the deglacial initiation.
The accompanying increases in insolation have led to hypotheses
suggesting thatinsolation could have driven early warming. Although
SST data are available from across the several basins in the Southern
Ocean, it remains sparse. Given the knowledge that temperature vari-
ations vary meridionally and areimportantin climate forcing®*°, more
high-resolution time series of SST are needed. Observations of SST
targeting frontal locations would improve our very scant knowledge of
frontalmovements and their timingin the deglaciation. Hard evidence
of frontal movements that imply wind shifts are needed to validate
mechanisms that have been proposed such as the Zealandia Switch.

The pacing of deglacial atmospheric CO, increases in the early
deglaciation appears to be in sync with changes in Southern Ocean
stratification and ventilation. Ventilation of the deep ocean and forma-
tion of shallow water masses are intimately linked to frontal dynamics
inthe Southern Ocean. In additionto SST observations, thereisaneed
for more information on the timing of changes in deep-water mass
chemistry across the basins.

The strategy of combining high-resolution time series and verti-
cal and horizontal transects of the sediment core material from the
Pacific’”'®*?* and Atlantic Oceans’*”"**%'°' has been a fundamental
tool for establishing that surface and deep conditionsinthe Southern
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Ocean differed from today. Similar sediment core transects from the
Indian Ocean basin are needed to improve this picture.

The importance of good chronology across multiple sites using
different stratigraphic tools has beenvital to constraining the timing of
deglacial events across depths, basins and hemispheres. Stratigraphic
chronicling of sub-millennial events is critical to understanding climate
drivers and requires putting climate proxy records onacommon time
framework. However, limitations arise when different types of records
with independent chronologies are considered collectively without
appropriate corrections or cross-correlations. Improved understand-
ing could be gained from compilation of theserecords, butrelies oninte-
grated well-dated and detailed time series, making cross-correlation
critical to constraining the relative timing of events. Integration of
chronological records is an ongoing effort’ that should continue to
be vigorously pursued.

The role of Southern Ocean in the last deglaciation likely draws
on many mechanisms. Numerical model simulations with increas-
ingly higher resolution and better representations of ocean bioge-
ochemistry, ecosystems and sediment processes should continue
to be pursued. Constraining the ocean carbon cycle and improving
our understanding of the response of Southern Westerly Winds to
changesinboundary conditions are the goal. Further research on the
impact of Southern Ocean sea-ice changes on global CO, is likewise
needed.

Published online: 9 June 2023
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