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Abstract

A plethora of approaches have been proposed for joint entity-relation (ER) extraction. Most of these meth-
ods largely depend on a large amount of manually annotated training data. However, manual data anno-
tation is time consuming, labor intensive, and error prone. Human beings learn using both data (through
induction) and knowledge (through deduction). Answer Set Programming (ASP) has been a widely utilized
approach for knowledge representation and reasoning that is elaboration tolerant and adept at reasoning
with incomplete information. This paper proposes a new approach, ASP-enhanced Entity-Relation extrac-
tion (ASPER), to jointly recognize entities and relations by learning from both data and domain knowledge.
In particular, ASPER takes advantage of the factual knowledge (represented as facts in ASP) and derived
knowledge (represented as rules in ASP) in the learning process of neural network models. We have con-
ducted experiments on two real datasets and compare our method with three baselines. The results show
that our ASPER model consistently outperforms the baselines.

KEYWORDS: Joint Entity Relation Extraction, Semi-supervised Learning, Answer Set Programming, Knowledge-
enhanced Models.

1 Introduction

Entity-relation (ER) extraction is to identify named entities and relations from unstructured text.
For joint ER extraction, deep neural network (NN) models have created many successful sto-
ries (e.g., the papers by Gupta et al. (2016); Eberts and Ulges (2020); Wang and Lu (2020)).
Despite such success, the supervised NN methods depend on utilizing a large amount of well-
labeled training data. However, labeling free text data with entities/relations is time-consuming,
labor intensive, and error prone because of a lot of noise, as shown by Chen et al. (2022).

Semi-supervised learning (SSL), introduced by Chapelle et al. (2006) and Ouali et al. (2020),
has been utilized to improve predictions by using a small amount of labeled data and a much
larger amount of unlabeled data. Among the many SSL approaches, the proxy-label methods
described in the papers by Ruder and Plank (2018) and Ouali et al. (2020) are one commonly
utilized strategy. These approaches create different strategies to utilize the pseudo labels that are
predicted from the unlabeled data. However, most of them do not make use of domain knowledge
as discussed by Hu et al. (2016), which is abundant and very useful, in symbolic forms in the
learning process as shown in the survey by Ouali et al. (2020).

* Research partially funded by NSF awards #1757207, #1914635, and #1812628.
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Recent years have witnessed the increasing interest in utilizing general domain knowledge
(e.g., represented as symbolic knowledge) to improve machine learning models to alleviate the
issue caused by the lack of large amounts of labeled data. Such efforts include neural symbolic
modeling and abductive learning.

Neural symbolic models, referred by us as works that encode the knowledge and rules to be a
holistic component of neural network models (e.g., through the design of a new loss function).
Such models have achieved great success (e.g., see the papers by Hu et al. (2016); d’ Avila Garcez
et al. (2019)). However, tightly modeling the symbolic knowledge as a part of NN models suf-
fers from the elaboration tolerant issue where the model is hard to scale to changes of logical
representations of facts (e.g., loss functions need to be modified when adding new rules).

Zhou (2019); Dai et al. (2019); and Cai et al. (2021) introduced abductive learning that com-
bines machine learning models (which are mainly data driven) and logic programming (which
encodes background knowledge and reason about them). In abductive learning, an initial ma-
chine learning model M is trained from the labeled data and used to get predicted labels from
the unlabeled data (denoted as pseudo labels). Pseudo labels may be wrong or inconsistent when
the model M is not effective. Example 3 demonstrates different issues of pseudo labels. The
pseudo labels are revised to get a new set of consistent pseudo labels through minimizing the
inconsistency of the abduced labels and the knowledge. The revised set of pseudo labels are used
to retrain a machine learning model. Most existing abductive learning approaches use first order
logic (FOL) to encode knowledge.

In this work, we propose to design an SSL approach by encoding domain knowledge and
rules using Answer Set Programming (ASP) for the joint recognition of entities and relations.
The purpose of using the domain knowledge is to generate consistent pseudo labels (consistent
w.r.t. the knowledge base) and derive more pseudo labels that cannot be predicted using the pure
data driven models. ASP instead of FOL is used because of multiple advantages ASP provides.
ASP is a simple, rule-based, and declarative language that possess several theoretical building
block results which support the development of provably correct programs. In addition, ASP is
non-monotonic, which is important for dealing with commonsense knowledge, and supports an
elaboration tolerant development of programs. For non-logical experts, ASP-rules are easier to
use and to understand than FOL-formulae.

The main contributions of this work are as follows.

e A new framework, ASP-enhanced Entity-Relation extraction (ASPER), is introduced to
make use of sophisticated domain knowledge in neural network models. ASP-encoded
knowledge and rules intend to generate higher quality pseudo labels, which are further
used to improve the model. As far as we know, this is the first work that incorporates
logic programming to deep learning models for joint ER extraction.

o ASPER introduces novel commonsense rules to select pseudo labels that may improve the
model performance with higher probabilities.

o The experimental evaluation on two real datasets shows that the proposed ASPER consis-
tently improves the other baselines.

In what follows, Section 2 reviews the related work, Section 3 formally defines the problem
and related notations, Section 4 explains our new framework, Section 5 shows our experimental
results, and Section 6 concludes the work.
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2 Related Work

SSL methods are designed to make use of a small amount of labeled data and a much larger
amount of unlabeled data in the learning process. Traditional SSL methods including self-training
and tri-training have been revisited recently by Ruder and Plank (2018). Both self-training and
tri-training utilize an iterative process to improve the initial model(s) trained on the small amount
of labeled data by iteratively adding pseudo labels to the training set. In each iteration, self-
training picks pseudo labels that have higher prediction probability and tri-training picks the
pseudo labels that are agreed by at least two models. A surprising finding in such revisit is
that the classic tri-training, introduced in the paper by Zhou and Li (2005), strategy with minor
changes can outperform many recent NN models.

Many recent SSL approaches have been proposed to conduct ER extraction. Hu et al. (2021)
proposes a self-training based SSL method for relation extraction. In each iteration, it adopts
meta-learning to generate higher quality pseudo labels. Curriculum labeling, introduced in the
paper by Cascante-Bonilla et al. (2021), borrows the idea of curriculum learning discussed in
the paper by Bengio et al. (2009), which uses easy samples first and proceeds to use hard sam-
ples, and proposes a self-paced curriculum (curriculum labeling) in the pseudo-labeling process.
However, this model does not use any symbolic knowledge. Most of these approaches do not
make use of domain knowledge in symbolic forms.

Similar to SSL, neural network models also alleviate the issue of insufficient labeled data. Hu
et al. (2016) is the first work of integrating logic rules with NN models. It proposes an iterative
distillation method to enhance several NNs with declarative first-order logic (FOL) rules, which
is encoded using soft logic. NeurASP, introduced in the paper by Yang et al. (2020), also employs
ASP and neural networks. Its knowledge base is predefined and all the atoms are utilized in the
learning process. However, our knowledge base is used to generate answer sets with consistent
pseudo labels and some answer sets (when multiple are available) may not be utilized in the
learning process.

Our work also shares similarity with the framework of abductive learning such as those de-
scribed in the papers Zhou (2019); Huang et al. (2020) in that symbolic knowledge is used to
improve the quality of pseudo labels. However, our work is different from abductive learning
in several aspects. Abductive learning (e.g., the paper by Huang et al. (2020)) derives abduced
pseudo labels through an optimization process. Once these labels are revised, they are used to
retrain a model. When they retrain a model, all the pseudo labels are utilized. Our approach uti-
lizes a subset of the pseudo labels, which have higher probability to be true, to retrain a model. In
addition, the pseudo labels are iteratively refined using ASP, which provides powerful reasoning
capability.

3 Problem Definition and Terminology

This section defines our research problem and related terminology.

Problem definition: Given a dataset Dj, (training data) with labeled entities and relations, a
dataset Dy;7, without any annotated labels, where |Dy| < |Dyr|, and a knowledge base! KB
which encodes the common sense facts and reasoning rules, our problem is to learn an NN

1 The KB is domain-dependent. We discuss practical ideas on developing such KB for the joint ER extraction problem
in the later section.
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model M «+ f(Dy, Dy, K B) to capture the hidden patterns about entities and relations in the
datasets D, U Dy,.

Definition 1 (Pseudo labels). Given a model M and a dataset Dy 1, without any annotated labels,
the predicted labels from Dy, using M are called pseudo labels.

The possible entity and relation labels that occur in the training data Dy are represented as
ent and rel. Given any token or word in a sentence, we use b and e to represent the beginning
and ending locations of that token in the sentence. The b and e are in the range of 0 and the total
number of tokens of a sentence. An entity pseudo label is in the form of

ent(b,e), conf (H

It means that the tokens at the locations [b, e—1] in the sentence is of entity type ent. Here, con f
is a value in the range of [0,1] indicating the confidence of the prediction.
A relation pseudo label is in the form of

rel(b,e, b, e'), conf 2

Here, b (b') and e (¢’) represent the beginning and ending locations of the first (second) token in
the relation. To make the descriptions more intuitive, we sometimes represent a relation as

rel(tokens,tokens'), con f 3)

where tokens (tokens’) are the first (second) tokens at locations [b, e) (and [V, €')).
Without loss of generality, we may omit con f when writing the entity and relation pseudo labels.

Example 1 (Running example notations). In later examples, we will use some well defined entity
types. For example, org, loc, and peop represent organization, location, and people respectively.
Some predefined relations are livedIn, locatedIn, and orgBasedIn. They describe one person,
a location, and an organization lives in, is located in, or is based in a location respectively.

4 ASP Enhanced Neural Network Models for Entity-Relation Extraction (ASPER)

This section presents our proposed ASPER method. ASPER targets at utilizing answer sets and
ASP to improve the quality of pseudo labels and derive more useful labels to retrain the model.

4.1 ASPER Framework

The framework of ASPER is shown in Algorithm 1. ASPER first trains an initial model using
the limited amount of training data (Line 1) and improves the model through an iterative process
using ASP revised pseudo labels (Lines 3-20).

To train an initial neural network model, we utilize the SpERT architecture proposed in the
paper by Eberts and Ulges (2020) due to its lightweight nature. Multiple iterations (Steps 3-20)
are used to improve the model. In each iteration, ASPER predicts the entities and relations in
a sentence x (i.e., the pseudo labels) using the model M (Line 7) where M can be the initial
model (trained in Line 1) or the retrained model (Line 18). Then, it utilizes ASP to update these
pseudo labels (Lines 8-10). The updated pseudo labels coupled with the selected sentences are
then used to retrain the model (Lines 12-18). There are many ways to revise pseudo labels. We
define a preference relation over the sets of revised labels (answer sets) based on the notion of
the probability of a set of revised labels (Definition 2 in Section 4.2). This preference relation is
then used to select the most preferred set of revised labels. The iteration condition can be that the
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prediction of the unlabeled data does not change anymore or the number of iterations reaches a
threshold. In our experiments, we set the number of iterations to be a fixed number.

4.1.1 Generate pseudo labels

Using the initially trained model or a model that is trained in the previous iteration M, the
algorithm can recognize the entities and relations in the unlabeled dataset Dy 1. The predicted
entity and relation pseudo labels are in the form of Egs. (1) and (2).

Example 2 (Pseudo labels). Given a sentence “CDT Tuesday is in the area of Port Arther and
Galveston, Texas.” the predicted pseudo labels look like the following:

org(0,2), 0.888| other(1,2), 0.799| locatedIn(7,9,10,11), 0.998
loc(7,9), 0.998| loc(10,11), 0.998| locatedIn(0,2,12, 13), 0.993
loc(12,13), 0.998| orgBasedIn(1,2,12,13), 0.777| locatedIn(10,11,12,13), 0.993
The pseudo label “org(0,2), 0.888” means that the token from location 0 to I (which is “CDT
Tuesday”) is an organization (org). This prediction has confidence value 0.888. Similarly, the
pseudo label “loc(7,9)” means that “Port Arther” (the tokens at locations 7 and 8) is of type
location (loc). Correspondingly, the predicted relation “locatedIn(7,9,10,11)” means that “Port
Arther” is located in “Galveston”. The other entities and relations can be interpreted accord-

ingly. To assist the understanding of the relations, we create a figure for these entities and rela-
tions.

loc(Port Arther) locatedin loc(Galveston) other(Tuesday) orgBasedIn locatedin org(CDT Tuesday)

locatedin

Fig. 1: Example of pseudo labels (a node represents an entity and a directed edge between a source (first
tokens) and a destination (second tokens) represents a relation)

Algorithm 1: ASPER framework

Input: Labeled data Dy ; Unlabeled data Dy 1 ; Knowledge Base K B
Parameter: Confidence step parameter A (e.g., 20)
Output: The model M

1: Learn an initial model M from D,

2: Ay =100 — A

3: while iteration condition is not met do

4 Z < O # The set of the selected answer sets for all the sentences in Dy,

5: Daug < () # The pseudo labels augmented to train the model
6: for each sentence x € Dy 1, do
7
8
9

z < GenPseudoLabels(M, x)
Ag + Convert2Atoms(z)
: W < ReviseUsingASP(Ag U K B) #W is an answer set associated with a confidence value W.con f
10: Z+—7ZUW

11: end for

12: T < the confidence value at A percentile of all the answer sets in Z
13: for each answer set W € Z do

14: if W.conf > T then

15: Daug < Daug UW

16: end if

17: end for

18: Train model M on Dy, U Dgqyg from scratch
19: At = At — A

20: end while

21: return M
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4.1.2 Improve pseudo-label quality using answer sets

The predicted entity and relation pseudo labels may be wrong (just like any machine learning
model does) or inconsistent.

Example 3 (Inconsistent and hidden pseudo labels). Example 2 shows the pseudo labels pre-
dicted from one sentence. They have different types of inconsistencies.
o (inconsistent labels) The relation locatedIn(C DT Tuesday, Texas) and entity org(C DT Tuesday)
are not consistent because the first term of locatedIn needs to be a location, but C DT Tuesday
is an organization. Similarly, the entity other(Tuesday) and relation orgBasedIn(Tuesday, Texas)
are not consistent because the first term of orgBasedIn needs to be an organization.
e (overlapping entities) The two entities org(0, 2) and other(1,2) overlap because “Tuesday”
is a part of “CDT Tuesday”. It makes more sense not to have both.
o (hidden labels) Given locatedIn(Port Arther, Galveston) and locatedIn(Galveston,
Texas), another relation locatedIn(Port Arther,Texas) should be valid. However, the
model does not predict this relation.

In utilizing pseudo labels to improve a model, a recognized problem is confirmation bias as
mentioned in the paper by Cascante-Bonilla et al. (2021), which means that utilizing the wrong
pseudo labels to retrain a model can amplify the error. It is critical to control which pseudo labels
are utilized to retrain the model.

The issues listed above are not inclusive. Their root issue is the ineffective pure data-driven
model learned from insufficient training data. The most commonly identified issue with an in-
effective model is its inaccurate predictions. We target at addressing the root issue by somehow
correcting the wrongly predicted pseudo labels. Our ASPER framework (Lines §8-10) improves
the quality of pseudo labels by computing a consistent set of pseudo labels (an answer set). It
first converts all the pseudo labels () to a set of atoms Ag that ASP can process (using Function
Convert2Atoms). Given Ag and the knowledge base K B, there may be multiple answer sets.
ReviseUsingASP utilizes the rules in the K B to calculate a probability for each answer set and
chooses the one with the highest probability and associates with it a confidence level. The details
of the two steps are described in Section 4.2.2.

4.1.3 Model retraining with improved pseudo labels

Once we get the improved pseudo labels from the unlabeled dataset Dy, these improved pseudo
labels are put to Z (Line 10) and are used to help retrain the model.

We observe that some answer sets have much higher confidence values than others. The pseudo
labels in these answer sets tend to be correct with higher probabilities. Based on this observation,
the model retraining first utilizes the pseudo labels in the answer sets with higher confidence
values and proceeds to use pseudo labels in answer sets with lower confidence values. This idea
is the same as that in curriculum labeling proposed by Cascante-Bonilla et al. (2021) that uses
a portion (with high prediction confidence) of the pseudo labels to retrain a model in each itera-
tion. This curriculum idea is implemented through the use of A; in Line 12. With the iterations
proceed, A; decreases (Line 19). At the end, when A; becomes zero, the model retraining uses
the pseudo labels in all the answer sets.

4.2 Computing Improved Pseudo Labels via ASP

Background. ASP, proposed in the papers by Marek and Truszczyfiski (1999); and Niemeld
(1999), is a knowledge representation and reasoning (KR&R) approach to problem solving us-
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ing logic programs under answer set semantics introduced by Gelfond and Lifschitz (1990). In
ASP, a problem is solved by first encoding it as an ASP program, whose answer sets correspond
one-to-one to the solutions of the problem. The encoded ASP program is then given to an ASP
solver (e.g., clingo as described in the paper by Gebser et al. (2014)) to compute answer sets
and solutions can be extracted from these answer sets.

The ASP language also includes language-level extensions to simplify the use of ASP in prac-
tical applications. We will make use of the choice atom of the form [ {l1;...;1,,} v where [; is
an atom, [ and u are integers. Intuitively, it says that the number of literal /; that is true must be
within a lower bound [ and an upper bound u. If [ (resp. u) is not specified, then the lower (resp.
upper) bound is 0 (resp. +00) by default. A choice atom can appear in the head or body of a rule
or after the default negation.

4.2.1 ASP for computing pseudo labels

First, the pseudo labels representing the entities (Eq. (1)) and relations (Eq. (2)) are represented
in ASP using atoms of the form (4) or (5).

atom(entity(ent, b, e), conf) 4 atom(relation(rel, b, e, V', e"), conf) ®)
Let Ag be the collection of atoms of the form (4) or (5) for a sentence S. A sentence is a part

of a dataset D that often has declarative knowledge associated with it. In this paper, we consider
the different types of knowledge that are usually available given D which can be specified as
follows:

1. Type declaration: a type declaration defines the type of a relation and is given in the form
type_def(rel,ent,ent’). (6)

A type declaration by Eq. (6) says that relation rel is between entities ent and ent’. For ex-
ample, in the domain coNL1.04 (see next section), the relation liveln is specified by the atom
type_de f (livelIn, peop,loc) which says that it is a relationship between entities of the types
peop and loc.

2. Inference rule: in many domains, there are relationships among relations. For example, locatedIn
is transitive in the sense that if area A is located in area B and B is located in C' then A is located
in C. This rule can easily be specified by an ASP rule of the following form?:
rule(X,Y, Z) < Body @)
where X, Y, and Z is of the form relation(R, B, E, B, E') and Body is domain-specific in-
formation. The rule relating to locatedIn discussed above can be encoded as follows:
rule(relation(locatedIn, By, E1, Ba, Ey), relation(orgbasedIn, B,, E,, By, E1),
relation(orgbasedin, B,, E,, Ba, Es)) +
atom(relation(locatedIn, By, E1, Ba, Es)), atom(relation(orgbasedIn, B,, E,, B1, E1)),
not atom(relation(orgbasedIn, B,, E,, By, E2)).

The head of the above ASP rule encodes an inference rule, whose first two labels (the relations

2 We use variables (strings starting with an uppercase letter) in the logic program. A rule with variables is the collection
of ground rules obtained from substituting variables with any possible values; in this case, variables refer to locations
in the sentence.
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on the first line) are predicted but the third relation (underlined) is missing in the set of predicted
labels. This inference rule is used for inferring the third pseudo label only if the first two pseudo
labels exist and the third pseudo label is not in the predicted model.

3. Optional parameters: in some dataset, entity pseudo labels cannot overlap and/or each sen-
tence has at least one relation. Such information can be specified by setting different flags. In our
experiments, we use the following:

overlap_fl. % true if present (8)
relation_fl. % true if present 9)

Form (8) forbids overlapping entities while (9) signals that each sentence should have a relation.

4. Other rules: any ASP rule can be a part of the domain-dependent part. Preferably, these rules
work with the predicates defined below.

We refer to the collection of rules of the form (7)—(9) and any other rules for a domain D as
K Bp. We denote that Ag is inconsistent when it contains pseudo labels that either contradict to
each other or violate the rules in K Bp.

We next describe II, the ASP program that takes the domain dependent knowledge K Bp and
the set of pseudo labels for a sentence Ag as inputs and produces a consistent set of pseudo
labels. II uses the following main predicates:

e pi(X): the prediction of X (entity/relation pseudo label) might be incorrect (pi stands for
possible_incorrect);
e 0k(X): the prediction of X is considered as correct; as such, X can be used as pseudo label

(for further training);

e nok(X): X is not included in the output (set of pseudo labels); and
e inf(X): X is derived using domain-dependent rules.
1. Overlap checking rules: 11 contains the following rules:

2{pi(entity(N, B, E)); pi(entity(N', B', E'))} <+ overlap_fl,
atom(entity(N, B, E)), B < B', E > B',atom(entity(N', B', E')). (10)
+ overlap_fl, ok(entity(N, B, E)),B < B', E > B’ ok(entity(N', B', E")). (11)

Rule (10) states that if the starting location B’ of an entity (/N') lies within the interval of the
some other entity (/V) then the prediction of the two entities might be wrong which is represented
by the predicate pi. This leads to the constraints (11) that prevents the consideration of both
entities at the same time when they overlap in a sentence. The presence of overlap_fI in these
rules indicates that they are in effect only if overlap_fI is set to true in K Bp. Similar rules
and constraints are also implemented for the case that the starting indices of both entities are the
same. They are omitted for brevity to save space and are listed in the appendix.

2. Type checking rules: This type of rules is used to make sure that the entity types and relation
types are consistent with the type declaration information in K Bp:

2{pi(relation(R, B, E, B', E")); pi(entity(N, B, E))} <+ type_def(R, N1, N3),
atom(relation(R, B, E, B', E")), atom(entity(N, B, E)), Ny # N. (12)
< ok(relation(R, B, E, _, .)), ok(entity(N, B, E)), type_def(R, N', ), N # N'.(13)

Rule (12) states that if the first entity in a predicted relation is different from its specified type
then both the predicted relation and the entity might be wrong. Constraint (13) disallows the
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acceptance of both the relation and entity if their types do not march the specification. Again, we
omit some rule relating to the second entity and the relation.

3. Type inference rules: These rules use the type declarations from K Bp to infer the type of
accepted entities or the possible incorrect predictions of relations and entities.

2{ok(entity(N, B, E)); ok(entity(N', B', E'))} +

type_def(R, N, N'),ok(relation(R, B, E, B, E")). (14)
pi(entity(N', B', E")) < atom(relation(R, B, E, B', E")),
pi(entity(N, B, E)), type_def(R, N, N"). (15)

Rule (14) says that if a relation R is accepted as a true prediction then we should also accept its
first and second entity with the type specified by the type declaration of R. Rule (15) indicates
that if the first entity of a relation R is potentially incorrect then so is its second entity.

4. Rules for inference from predictions: The following rules are used for processing an inference
rule specified in K Bp via atom of the form rule(X,Y, Z).

6{pi(X); pi(Y); pi(2);inf(Z);dependency(X, Z); dependency(Y, Z)} <

rule(X,Y, Z), atom(X), atom(Y), not atom(Z). (16)
— ok(Y),inf(Y),dependency(X,Y), not ok(X). (17
—rule(X,Y, Z),0k(X),0k(Y), not ok(Z). (18)

Rule (16) says that if we have an inference rule rule(X,Y, Z) and X and Y were predicted but
not Z then Z is an inferred prediction and all the predictions might be incorrect. Furthermore,
Z depends on X and Y. Constraint (17) states that if Y is an inferred atom and depends on X
then the acceptance of Y cannot be done separately from the acceptance of X. Constraint (18),
on the other hand, states that if rule(X, Y, Z) is an inference rule then the acceptance of X and
Y cannot be done separately from the acceptance of Z.

5. Rules for checking the existence of relation: The following rule records the acceptance of some
relation pseudo label whenever relation_fl is defined:

relation_exists « ok(relation(R, _, _, _, _)), relation_fl. (19)

6. Rules for selection of a consistent set of pseudo labels: This set of rules defines the various
types of atoms that will be used for computing the probability of a set of pseudo labels and
selecting a set of pseudo labels.

atom(X) « atom(X, P). (20) invprob(X, P) + atom(X, P),nok(X).

prob(X, P) « atom(X, P),ok(X). 21) {ok(X)} + H{atom(X);inf(X)},pi(X).

(23)
(24)

0k(X) + atom(X), not pi(X). (22) nok(X) + 1{atom(X);inf(X)}, not ok(X).(25)

Rule (20) projects an input atom(X, P) to define atom(X) for use with other part of the pro-
gram. Rules (21)—(23) define the predicates prob and invprob that are used in computing the
probability of the set of selected labels (see later). Rule (22) says that if there is no information
about the potential incorrectness of the prediction of X then X must be accepted as a pseudo
label. Rule (24) states that if the prediction of X might be incorrect then X could be accepted
or not accepted as a pseudo label. Rule (25) says that if X is not selected as a pseudo label then
nok(X) is true.
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In summary, IT is the collection of rules of the Rules (10)-(25). Together with the set Ag of the
predicted labels and the knowledge base K Bp, we can compute a new set of pseudo labels by
computing the answer sets of 7(S) = Ag U K Bp U II. Each answer set W of w(S) consists
of a set of atoms of the form ok(X). We say that L(W) = {X | ok(X) € W} is the set of
pseudo labels corresponding to W. Intuitively, L(TV) encodes a revision of Ag. For an arbitrary
sentence S in a domain D, we can prove several properties of the program 7 (S) such as (i) 7(.5)
is consistent; (if) if Ag does not contain any relation then relation_erists does not belong to any
answer set of 7(.S); and (iii) for every W, L(WW) does not contain any overlapping pseudo labels
if overlap_fl1 is true; and L(WW) does not contain type-inconsistent relations or entities. Intu-
itively, (i) represents the fact that there is always some revision of Ag. This can be proven using
the splitting theorem proposed by Lifschitz and Turner (1994); (ii) holds because of Rule (19);
and (i) holds due to the rules and constraints defined for type inference and checking. Due to
space limitation, we omit the formal proof. The next example illustrates the use of II.

Example 4. Consider the sentence in Example 2. The program produces twenty answer sets (the
K Beonrros and the answer sets of the program are given in the Appendix). We observe that

o Some answer set does not contain any atom of the form ok(relation(...));

o No answer set contains both ok (entity(org,0,2)) and ok(entity(other, 1,2)) because they
overlap each other and K Bcoyi104 contains overlap_f1;

o ok(relation(orgBasedIn,1,2,12,13)) belongs to some answer sets but not all. It is be-
cause entity(other,1,2) is of the type other that does not match the required type (org) in
the definition of orgbasedIn; and

o [fok(relation(locatedIn,7,9,10,11)) and ok(relation(locatedIn, 10,11,12,13)) belong
to an answer set then ok (relation(locatedIn, 7,9,12,13)) also belongs to the answer set due
to the transitivity of locatedIn, a part of the K Beoyrros-

Note that encoding knowledge in ASP incurs extra works. However, compared with manually
labeling a large amount of data, this extra works pay off.

4.2.2 Computing the Most Preferred Answer Set

Definition 2 (Preference score of an answer set). Given an answer set W, its preference score is

defined as
ﬁ pT@f(W) = Hprob(a,p)GWp * Hinvprob(a,p)GW(]- - p) (26)

The preference score pref(W) is the product of two terms, the first term is the product of the
confidence level p of every pseudo label a such that ok(a) € W (hence, prob(a,p) € W, due
to Rule (21)) and the second term is the product of the complement confidence level 1 — p of
pseudo label a such that ok(a) ¢ W (hence, invprob(a,p) € W, due to Rule (23)). It is easy
to see that for two answer sets A and B such that L(B) C L(A) (i.e., A contains all acceptable
labels in B), if prob(l,p) € A and p > 0.5 for every | € L(A) \ L(B), then p(A) > p(B).
Intuitively, this probability definition favors answer sets containing more (w.r.t. C) pseudo labels
whose confidence level is greater than 0.5. When relation_fl is set to true, we set pref(W) = 0
if relation_exists ¢ W. Preference will be given to the answer set with maximal probabil-
ity. When all answer sets have zero preference, we prefer those with higher number of entity
pseudo labels. The selection of the most preferred answer set is implemented using clingo and
its PythonAPI library. The confidence level of an answer set W (i.e., W.conf) is defined by
min{p | prob(l,p) € W}.
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5 Experiments

The algorithms and models are implemented in Python 3.8 and run on a server with two 32-core
GPU @3.9 GHz, 512 GB RAM, and one NVIDIA A100 GPU. The Clingo version is 5.5.2.
Data. We use two datasets, CONLL04 (Eberts and Ulges 2020; Roth and Yih 2004; Gupta et al.
2016; Wang and Lu 2020) and SciERC (Eberts and Ulges 2020; Luan et al. 2018), which have
been utilized in other entity/relation extraction work. The CoNLLO04 dataset contains sentences
extracted from newspapers. We employ the training (922 sentences), development (231 sen-
tences) and test set (288 sentences) split , which is similar to that of (Gupta et al. 2016). The
SciERC dataset consists of abstracts of artificial intelligence research papers. The training/devel-
opment/test split is 1861/275/551 sentences, which is the same as that of Luan et al. (2018).

These datasets all have training sets. To utilize these datasets to verify the effectiveness of
our method, we do not use the whole training set to train the initial model. Instead, we use a
small percentage of the training data (e.g., pi € (0,1]) as the actual training data Dy, and use
the remaining (1 — py,.) training data as the unlabeled data Dy, to calculate pseudo labels. The
original testing data is still utilized to test the model performance. To get stable results, for each
dataset, we randomly choose five subsets (each one contains p;, of the training data) from the
training data and train five models. Then, we report the averaged results from the five models.
Performance metric. We report the micro and macro F} values for entities (E), relations (R), and
relations together with entities (ER). The micro F is calculated globally by counting the total
true positives (TP), false negatives (FN), and false positives (FP). In all the counting, a special
class (not-an-entity or not-a-relation), which is encoded as zero, is never treated as positive. For
example, considering the E type, all the correctly predicted non-zero entities are counted as TP.
Among the wrongly predicted entities, an entity is counted as FP if it is wrongly predicted to be
non-zero, and an entity is counted as FN if its true class is non-zero. Some wrongly predicted
entities are counted in both FP and FN. The macro F} is obtained by calculating the prediction
F when treating each class as positive (and all the others as negative) and averaging the Fis for
all the classes. We also report the running time of the models.
Methods. We compare our ASPER method with three classical and state-of-the-art baselines
listed below. (1) Self-training as described in the papers by McClosky et al. (2006); Reichart
and Rappoport (2007). For this method, we use 90% as the threshold to select pseudo labels to
be included for model retraining. (2) Curriculum-labeling (CL): this method retrains the model
using the curriculum-labeling strategy proposed by Cascante-Bonilla et al. (2021). This is a state-
of-the-art approach for SSL using pseudo labels. It has one hyper parameter (stepping threshold)
controlling the confidence value of pseudo labels that are included in the training of the model
in one iteration. This parameter is set to the same (20%) as the original paper. (3) Tri-training:
this method retrains the model using the tri-training strategy proposed by Zhou and Li (2005). A
recent study by Ruder and Plank (2018) has shown that the classic tri-training method is still a
strong baseline for neural semi-supervised learning for natural language processing.

For fair comparison, we run five iterations (retraining of the model) for every model. For our
model, A is set to be 20% as that in curriculum-labeling approach.

5.1 Effectiveness Analysis

We conduct experiments to examine the effectiveness of our approach. Our first set of experi-
ments is to compare our ASPER method with the other baselines. In these experiment, p;, is set
to be 10%. Le., 10% of the training data forms Dy . Table 1 shows the results on the CoNLL04
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and the SciERC datasets. It shows that ASPER outperforms all the other baselines on all the
calculated F} measurement on recognizing relations (R) and both entities and relations (ER) no
matter it is at the micro or macro level. For Entity (E) recognition, Tri-training is slightly better
than our method. This is because our training process gives higher preferences to sentences with
potentially correct relations. These results show the superiority of our proposed method.

When more training data is available and the KB cannot provide extra information than what
the labeled data can provide, ASPER may not beat the pure data driven models such as trile-
training and curriculum labeling. However, ASPER is able to improve (at least not hurt) its base
deep learning model (the SpERT model in this paper) that ASPER is built upon no matter whether
the KB can provide much more information than the training data or not.

CoNLLO04 dataset
Fy (micro) Fi (macro)
method E R ER E R ER
Self-train | 77.74+1.7| 41.76+£5.7| 41.3945.7| 72.50£1.9| 43.19+6.0| 42.8246.0
CL 77.494+1.1| 41.61+£3.0| 41.354+3.2| 72.03£1.6| 43.07+3.8| 42.774+4.0
Tri-train | 78.634+2.4| 42.60+6.7| 42.2946.7| 72.49+2.5| 42.99+7.1| 42.64+7.2
ASPER | 81.25+1.2| 52474+3.6| 52.41+3.6| 75.90+1.7| 53.324+4.0| 53.27+4.0
SciERC dataset
F (micro) Fi (macro)
method E R ER E R ER
Self-train| 56.72+1.2| 18.60+£2.6| 12.364+1.7| 54.43+1.4| 11.07+3.7| 6.984+2.3
CL 60.75+0.8| 31.00£2.1| 20.81+1.0| 59.194+0.4| 22.00+3.8| 15.55+1.8
Tri-train | 60.99+0.7 | 27.43+1.9| 18.944+14| 59.52+0.4| 17.09+3.6| 11.5942.7
ASPER | 60.34+0.6| 32.30+1.2| 21.73+1.2| 59.10+0.4| 22.72+3.1| 16.06+2.3

Table 1: Performance comparison of ASPER and other baselines on the two datasets (E: entity, R: relation,
ER: entity and relation; p:, = 10%)

We conduct a more detailed analysis about the running of ASPER by showing its performance
in three iterations (other iterations show similar trend). This analysis is to show the quality of
the pseudo label revision. The quality can be measured by comparing the pseudo labels and the
ground truth labels (which are the training data with the correct labels, but are not directly used
for training) and calculating the F} score.

Table 2 shows the detailed analysis of how the ASP component helps improve the quality of
the generated pseudo labels. We can see that after each iteration, the F1 of the ASP generated
pseudo labels is always higher than that of the raw pseudo labels. This confirms that the use of
answer sets and ASP helps improve the quality of the pseudo labels. Table 2 also shows that
the performance improvement in earlier iterations is better than that in later iterations. This is
also consistent with our design of utilizing curriculum labeling, i.e., answer sets with higher
confidence values are used in earlier iterations (Section 4.1.3).

The second set of experiments examines the effect of the amount of initial training data on
ASPER. We change the amount of initial training dataset Dy, by varying the percentage p;, with
different values (5%, 10%, 20%, 30%).

The results are reported in Figure 2. We only report the F1 of relation with entity (micro)
because the trend of the other F1 values is the same. The figure shows that, when there is less
initial training data, the overall performance is worse. However the positive effect of ASPER is
more obvious when there are less training data, which can be observed from the larger gap
between ASPER and other methods for smaller p;, (e.g., 5%). This result is consistent with
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CoNLLO04 dataset

F1 (micro) Fi (macro)

ASPER E R ER E R ER
Iter 1 no-ASP | 75.65| 41.62| 41.07| 69.81| 42.86| 42.29
with ASP| 77.06| 44.45| 4445| 71.16| 45.40| 45.40
Iter2| no-ASP | 78.68| 49.78| 49.08| 73.24| 50.86| 50.16
with ASP| 79.01| 50.19| 50.19| 73.49| 51.27| 51.27
Iter 3| no-ASP | 79.98| 5292 52.66| 74.25| 53.97| 53.72
with ASP| 80.24| 53.62| 53.62| 74.52| 54.67| 54.67
SciERC dataset
F1 (micro) F1 (macro)

ASPER E R ER E R ER
Iter 1 no-ASP | 60.34| 30.87| 21.98| 58.78| 21.47| 16.59
with ASP| 60.34| 31.12| 22.09| 58.78| 21.75| 16.79
Iter2| no-ASP | 60.86| 32.59| 23.10| 59.39| 22.34| 17.25
with ASP| 60.86| 32.83| 23.24| 59.39| 22.58| 17.42
Iter 3| no-ASP | 60.65| 33.11| 23.53| 59.31| 22.79| 17.74
with ASP| 60.65| 33.12| 23.54| 59.31| 22.82| 17.76

Table 2: The effect of the ASPER algorithm to improve the quality of the pseudo labels on the two datasets.
(E: entity, R: relation, F'R: entity and relation; pt, = 10%)

65 40

35
555 530 U
S 5 _
€ 35 / g5 /

o 10

5% 10% 20% 30% 5% 10% 20% 30%
ptr ptr

—Self-train —CL Tri-train ASPER —Self-train —CL Tri-train ASPER
(a) CoNLLO4 (b) SciERC
Fig. 2: Performance comparison (varying training data amount)

our intuition of designing ASPER to alleviate the issue of insufficient amount of training data.
Figure 2(b) also shows that our method does outperform, but has comparable performance as, CL
and tri-training when py,. is larger. The major reason is that the knowledge base is less effective in
capturing the characteristics of the second domain (research articles). More effective rules need
to be developed to enrich the knowledge base in the future.

The third set of experiments conduct an ablation study to investigate the effect of the rules
in the ASP program. Due to space limitation, we present this analysis on one dataset. Table 3
shows the results. The first row (with all rules) shows the results when all the rules are utilized.

(F; micro) F3 (macro)
E R ER E R ER
with all rules 81.25| 52.47| 5241| 75.90| 53.32| 53.27
with all rules except the relation_exists rule| 76.64| 34.13| 33.84| 70.56| 34.87| 34.57
without any rules 76.74| 31.07| 31.07| 70.52| 31.99| 31.99

Table 3: Ablation study on ASPER; CoNLL04

The third row (without any rules) on the other hand shows the results when no rule is utilized.
The results (improvement of the first row comparing to the third row) clearly demonstrate that
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the rules contribute positively to the performance of ASPER. We conduct a further analysis
about the effect of the different type of rules and find that the relation_exists rule (Rule (19))
plays the most significant role. The second row shows the results from the program while the
relation_exists rule is not utilized, but all the other rules are used. The improvement of all the
other rules to the algorithm (which is captured by the difference between the 2nd and the 3rd
row) is not as much as the relation_exists rule (which is observed from the difference between
the 1st and the 2nd row).

5.2 Efficiency Analysis

We also examine the running time of the different methods to understand the overhead brought
by the ASP program. Due to space constraint, we report the summarized data here. Self train-
ing, curriculum labeling, and ASPER use similar amount of time. On the CoNLLO04 dataset, it
takes approximately 40-50 minutes to run the five iterations. Tri-training’s time is approximately
three times of the other three methods because it needs to train three models in each iteration.
The overhead of using ASP to generate the updated pseudo labels is about 30 seconds in each
iteration. This time is negligible compared with the expensive NN model training.

6 Conclusions

In this paper, we presented a novel method ASPER, which leverages Answer Set Programming
(ASP) to improve the performance of Neural Network models in the joint recognition of entities
and relations from text data when limited amount of training data is available. ASPER makes
use of pseudo labels. The ASP program encodes different types of commonsense rules by taking
advantage of the commonsense domain knowledge. The experiments on two real datasets show
that ASPER can report significantly better results than the other baselines in most cases.
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7 Appendix
7.1 Encoding and Output of Revising Pseudo Labels of Example 2

The collection Ag for the sentence in Example 2:

atom(entity(org,0,2),"0.888"). % CDT Tuesday

atom(entity(other,1,2),"0.799"). % Tuesday

atom(entity(loc,7,9),"0.998"). % Port Ather

atom(entity(loc,10,11),"0.998"). % Galveston

atom(entity(loc,12,13),"0.998"). % Texas
atom(relation(locatedIn,7,9,10,11),"0.998"). % locatedIn(Port Ather,Galveston)}

atom(relation (locatedIn,10,11,12,13),"0.993").% locatedIn(Galveston, Texas)
atom(relation(locatedIn,0,2,12,13),"0.993").% locatedIn(CDT Tuesday, Texas)
atom(relation (orgbasedIn,1,2,12,13),"0.777"). % locatedIn (Tuesday, Texas)
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The domain dependent K B, for the con1.1.04 dataset:

type_def (livelIn, peop, loc).
type_def (locatedIn, loc, loc).
type_def (orgbasedIn, org, loc).
type_def (workFor, peop, org).
type_def (kill, peop, peop).

rule (relation(locatedIn,P1,P2,0Q1,0Q02),
relation (orgbasedIn,01,02,P1,P2),
relation (orgbasedIn,01,02,01,0Q2)) :—
atom(relation (locatedIn,P1,P2,Q1,02)),
atom(relation (orgbasedIn,0l1,02,P1,P2)),
not atom(relation (orgbasedIn,01,02,01,02)),
Pl != P2, Pl != Q1.

rule (relation(locatedIn,P1,P2,Q1,Q2),
relation(locatedIn,Ql,Q2,R1,R2),
relation(locatedIn,P1l,P2,R1,R2)) :—
atom(relation (locatedIn,P1,P2,Q1,Q02)),
atom(relation (locatedIn,Q1,Q2,R1,R2)),
not atom(relation(locatedIn,P1l,P2,R1,R2)),
Pl != P2, P1L !'=Q1, Q1 != Q2, Q1 != RI1.

rule (relation(livelIn,X1l,X2,P1,P2),
relation(locatedIn,P1,P2,Q1,0Q02),
relation(livelIn,X1,X2,Q01,0Q2)) :—
atom(relation(livelIn,X1,X2,P1,P2)),
atom(relation (locatedIn,P1,P2,Q1,02)),
not atom(relation(liveIn,X1l,X2,Q1,02)),
Pl != P2, Pl != Q1.

overlap_flag.
relation flag.

The twenty answer sets of the program 7(S) for the sentence from Example 2 (the listing contains only
atoms of the form ok(.) each represents a pseudo label):

Answer: 1 (pref=0, conf=0)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok (entity(loc,12,13))
Answer: 2 (pref=0, conf=0)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (entity(org,0,2))

Answer: 3 (pref=0, conf=0)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (entity (other,1,2))

Answer: 4 (pref=1.7039341161594381e-09, conf=0.777)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (entity(loc,0,2)) ok(relation(locatedIn,0,2,12,13))

Answer: 5 (pref=6.937258075900524e-08, conf=0.993)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))
ok (entity(org,1,2)) ok(relation(orgbasedIn,1,2,12,13))

Answer: 6 (pref=6.937258075900524e-08, conf=0.993)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (relation(locatedIn,10,11,12,13))
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Answer: 7 (pref=5.50025461732113e-07, conf=0.888)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (entity (other,1,2)) ok(relation(locatedIn,10,11,12,13))

Answer: 8 (pref=2.757646369474885e-07, conf=0.799)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (entity(org,0,2)) ok(relation(locatedIn,10,11,12,13))

Answer: 9 (pref=9.840996099098876e-06, conf=0.993)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (entity(org,1,2)) ok(relation(locatedIn,10,11,12,13))

ok (relation (orgbasedIn,1,2,12,13))

Answer: 10 (pref=2.4171522533518863e-07, conf=0.777)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (relation(locatedIn,10,11,12,13)) ok (relation(locatedIn,0,2,12,13))
ok (entity(loc,0,2))

Answer: 11 (pref=2.4402661086727617e-07, conf=0.998)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (relation(locatedIn,7,9,10,11))

Answer: 12 (pref=9.700361297659388e-07, conf=0.799)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok (entity(loc,12,13))

ok (entity(org,0,2)) ok(relation(locatedIn,7,9,10,11))

Answer: 13 (pref=1.934782414733404e-06, conf=0.888)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (entity (other,1,2)) ok(relation(locatedIn,?7,9,10,11))

Answer: 14 (pref=3.4616917798743576e-05, conf=0.993)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (relation(locatedIn, 7,9,10,11)) ok (relation(locatedIn,0,2,12,13))
ok (entity(loc,0,2))

Answer: 15 (pref=8.502631239635589e-07, conf=0.777)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (relation(locatedIn,7,9,10,11)) ok (relation(orgbasedIn,1,2,12,13))
ok (entity (org,1,2))

Answer: 16 (pref=3.4616917798743576e-05, conf=0.993)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (relation(locatedIn,7,9,10,11)) ok(relation(locatedIn,10,11,12,13))
ok (relation(locatedIn, 7,9,12,13))

Answer: 17 (pref=0.0002744627054043241, conf=0.888)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (entity (other,1,2)) ok(relation(locatedIn,?7,9,10,11))

ok (relation(locatedIn,10,11,12,13)) ok (relation(locatedIn,7,9,12,13))
Answer: 18 (pref=0.00013760655383679662, conf=0.799)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (entity(org,0,2)) ok(relation(locatedIn,?7,9,10,11))

ok (relation(locatedIn,10,11,12,13)) ok (relation(locatedIn,7,9,12,13))
Answer: 19 (pref=0.004910657053450334 (maximum prob), conf=0.993)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (relation(locatedIn,7,9,10,11)) ok(relation(locatedIn,10,11,12,13))
ok (relation(locatedIn,0,2,12,13)) ok(relation(locatedIn,7,9,12,13))
ok (entity (loc,0,2))

Answer: 20 (pref=0.00012061589744225903, conf=0.777)

ok (entity(loc,7,9)) ok(entity(loc,10,11)) ok(entity(loc,12,13))

ok (relation(locatedIn,7,9,10,11)) ok(relation(locatedIn,10,11,12,13))
ok (relation (orgbasedIn,1,2,12,13)) ok(relation(locatedIn,7,9,12,13))
ok (entity(org,1,2))
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