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In recent years, advances in small computers as well as
a growing field of potential applications lead to an in-
creased research interest in distributed control algorithms
for multi-agent systems. An overview on such problems,
that include leaderless consensus control, formation con-
trol and coverage control, is provided by Zhu et al. (2016).
The focus of this paper is on a specific problem for dis-
tributed control in multi-agent systems called containment
control. It describes a control problem where a group of
follower agents converges into the convex hull defined by
the state of several leader agents (Xiao and Dong, 2021).
One application of containment control is given by Wang
et al. (2014) with a group of vehicles crossing a hazardous
area where only some agents have the sensor ability to
detect the hazards. The latter take the role of leaders and
mark the safe area in which the followers must remain.

Since the introduction of the first containment control
problem by Ji et al. (2008), many distributed solutions
have been proposed for many different types of systems
and operative conditions. A popular approach is to focus
the study to the control of single and double integrator sys-
tems. For example, Li et al. (2012) propose a distributed
containment controller using only the location of agents
and not their velocity or acceleration. Zhang and Tang
(2016) introduce dispersion behavior into the distributed
containment controller. Similarly, group dispersion is used
to avoid collisions in Zhang et al. (2013). Cao et al.
(2010) introduce several distributed containment control
algorithms for multiple stationary leaders as well as leaders
with identical and different velocities. A special emphasis
on function under disturbances is placed by Wang et al.
(2014) that use a distributed observer as part of the dis-
tributed containment controller to estimate the weighted
average of the leaders speed. In Dong et al. (2019) a group
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1. INTRODUCTION of robot leaders performs distributed formation control
while the followers use a distributed containment control
algorithm to stay within the convex hull spanned by the
leaders. Santilli et al. (2021) consider a distributed con-
tainment control algorithm functioning in the presence of
anonymous adversarial agents using time-varying graphs.

Other authors have proposed more general control laws
designed to work on generic linear systems. In Li et al.
(2015), only relative states and state estimates are used for
the computation of the control input. In Bo et al. (2015)
the system dynamics are limited to to the first and second
order. Second order linear systems are discussed also by
Fu et al. (2019) where the problem of input saturation is
addressed by using sliding mode control and relative pose
measurements. Z-Transforms are used to give sufficient
conditions for distributed containment control. Fixed time
communication delays are considered by Li et al. (2018).
Qin et al. (2019) introduce a distributed containment
controller for heterogeneous linear systems where even the
dimension of the state can vary from agent to agent. An
adaptive distributed observer is used by Liang et al. (2019)
to enable distributed containment control for nonidentical
networks with external disturbances. Yuan et al. (2019)
develop a distributed containment controller for generic
systems with heterogeneous and unknown linear dynamics.

Few papers deal with nonlinear dynamics. Wen et al.
(2019) use a neural network approximator to estimate
the non linear system dynamics. Xu et al. (2020) reduce
communication between agents with a distributed event-
triggered containment control algorithm. Xiao and Dong
(2021) tackle the distributed containment control problem
with a two layer approach in which the top layer does
the containment control while the lower level performs
fault-tolerant tracking control. Gu et al. (2021) propose
a two-level cooperative control architecture paired with a
Lyapunov analysis to achieve a containment formation.
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In most of the works mentioned above (Yuan et al., 2019;
Xiao and Dong, 2021; Wang et al., 2014; Ji et al., 2008;
Li et al., 2012; Zhang and Tang, 2016; Santilli et al.,
2021; Li et al., 2015; Bo et al., 2015; Fu et al., 2019;
Li et al., 2018; Qin et al., 2019; Liang et al., 2019; Wen
et al., 2019; Xu et al., 2020) the proposed controllers are
validated only in simulation, while only few papers provide
experimental result on a robotic system. Gu et al. (2021)
presented a team of two ground robots with bidirectional
communication between the robots and virtual leaders.
Ground robots are also used by Zhang et al. (2013) and
Cao et al. (2010). Multirotor aerial vehicles are used in
Dong et al. (2019), but the authors do not take advantage
of the increased dimensionality and limit the problem to
a bi-dimensional plane.

Another interesting aspect is the limitations on the leaders’
movements assumed in several papers. For example, the
leaders are required to remain stationary by Zhang and
Tang (2016), Cao et al. (2010), and Bo et al. (2015),
while leaders with identical input are required in Zhang
et al. (2013) and Cao et al. (2010). A paper that assumes
little limitations both on the motion of the leaders and
on the system model is Yuan et al. (2019) which is not
only applicable to generic linear systems but also does
not require knowledge of the followers system matrices.
Moreover, in general the model of the different follower
robots can be different between robots.

In this paper, we present a distributed multi-robot imple-
mentation of the multi-agent containment control devel-
oped by Yuan et al. (2019). This will involve particulariz-
ing the controller for a suitable dynamics while verifying its
assumptions, including it in a proper control scheme, and
testing the resulting control system both in simulation and
in real experiments. The validation of Yuan et al. (2019)
on a real system, as well as its particularization for a multi-
robot system, are the main contribution of this paper.

2. PROBLEM SETTINGS

The multi-robot system discussed in this paper consists
of a group F = {1, . . . , N} of N followers and a group
R = {N + 1, . . . , N + M} of M virtual leaders. Each
follower is a unicycle-type mobile robot with non-linear
dynamics (Do, 2015):
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where ξi = [ξ1,i ξ2,i]
T ∈ R

2 and φi ∈ SO(2) are respec-
tively the global position and orientation of the i-th robot
in a world frame of reference. The virtual leaders are a
group of M virtual agents that exist in the same Cartesian
space as the robots. We will indicate their state as sk ∈
R

2, k ∈ R. The symbol Co(R) = Co ({sN+1, . . . , sN+M})
describes the complex hull spanned by the leaders k ∈ R.
An undirected graph G = (V, E) is used to describe the
communication among the followers. This graph consists
in a set of vertices V = {1, 2, . . . , N} representing the
followers, and a set of edges E = {(i, j)}, where (i, j) ∈ E
if robot i can communicate with robot j. The adjacency
matrix A ∈ R

N×N provides a matrix representation of G
and is defined as A = [aij ] with aij > 0 if and only if

(i, j) ∈ E and aij = 0 otherwise, including if i = j. The
Laplacian matrix L ∈ R

N×N of G is defined as L = [Iij ]
with Iii =



j ̸=i aij and Iij = −aij if i ̸= j. The communi-
cation between leader k ∈ R and follower i ∈ F is marked
with a weight of δki = 1 in ∆k = diag{δk1 , . . . , δ

k
N} ∀k ∈ R

with ∆k ∈ R
N×N . Conversely, δki = 0 if there is no commu-

nication between leader k ∈ R and follower i ∈ F . In gen-
eral, the communication graph G and the communication
matrices ∆k are assumed constant for the whole duration
of the containment control task. The goal of this control
algorithm is to achieve containment control as defined in
Qin et al. (2019) as: limt→∞ dist (xi (t) ,Co (R)) = 0, ∀i ∈
F . Our solution to this problem is an application of the
containment controller for multi-agent systems presented
by Yuan et al. (2019). In the following, I describes the
identity matrix of arbitrary dimension, O describes the
zero matrix of arbitrary dimension, and S

n
+ denotes the

sets of symmetrical and positive definite n× n matrices.

3. BACKGROUND

3.1 System Descriptions

Yuan et al. (2019) propose a containment control algo-
rithm applicable to linear multi-agent systems with the
following characteristics. N heterogeneous followers are
each described with the following linear uncertain system
model:

ẋi = Aixi +Biui ∀i ∈ F , (2)

where the unknown system matrix Ai ∈ R
n×n and the

known input matrix Bi ∈ R
n×nu,i are constant. xi ∈ R

n

is the state of the i-th follower, and ui ∈ R
nu,i the control

input. There are M homogeneous leaders with the generic
k-th leader described as:

ṡk = A0sk +B0rk ∀k ∈ R, (3)

with constant and known system matrices A0 ∈ R
n×n

and B0 ∈ R
n×nu,r . sk ∈ R

n is the k-th leaders’ state
and rk ∈ R

nr the bounded input signal. The input signal
rk is measurable for followers neighboring the leader as
indicated in the ∆k matrix. The following linear system
generates the leaders input:

ṙk = Arrk ∀k ∈ R (4)

where Ar ∈ R
nr×nr is constant.

3.2 Assumptions

Yuan et al. (2019) state several assumptions regarding the
system dynamics and communication among the agents.

Assumption 1: There exist constant matrices K1i ∈
R

n×nu,i and K2i ∈ R
nr×nu,i , such that A0 = Ai + BiK

T
1i

and B0 = BiK
T
2i ∀i ∈ F .

Assumption 2: (A0, B0) is stabilizable, and the leaders’
input signals rk are bounded, i.e., ||rk|| ≤ r∗k ∀k ∈ R, where
r∗k are positive constants.

Assumption 3: The interaction graph G among the
follower agents is undirected and connected. There is at
least one follower that each leader has a directed path to.

3.3 Control Algorithm

The error signal used in the controller is defined as:
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ei =

N


j=1

aij (xj − xi) +

N+M


k=N+1

δki (sk − si) ∀i ∈ F . (5)

This distributed observer based adaptive control protocol
is proposed by Yuan et al. (2019):

˙̂ri = Ar r̂i (6)

+ L


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T
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ui = K̂T
1ixi +KT

2ir̂i +KT
2iK3ei, (8)

where r̂i ∈ R
nr is the distributed observer state of the lead-

ers’ input signals rk, L ∈ R
nr×nr is a control coefficient,

and K̂1i ∈ R
n×nu,i is the estimation of K1i ∀i ∈ F and is

influenced by the control coefficients γ ∈ R+ and P ∈ S
n
+.

The followers’ control input ui is dependent on K2i which
can be derived from Assumption 1, and on K3 ∈ R

nr×n

which is another coefficient. These four coefficients are
designed according to the following equation (9).

3.4 LMI Condition to Determine the Controller Coefficients

Equations (6)-(8) implement an observer for the leader’s
input as well as a control algorithm for the follower robots
that depends on several parameters. These must be prop-
erly selected to achieve the desired containment control
behavior. In particular any γ > 0 can be selected, while
the following Linear Matrix Inequality (LMI) needs to be
fulfilled for all followers in order to obtain limt→∞ ei(t) = 0
according to Yuan et al. (2019):


A0P̂ + P̂AT
0 − λi(H)(B0K̂3 + K̂T

3 B
T
0 ) B0

BT
0 QAr +AT

r Q− λi(H)(L̂+ L̂T )



< 0

(9)
where λi(H) are the eigen-values of the matrix H =
N+M

k=N+1

1

M
L + ∆k, and the variables are the positive

definite matrices P̂ ∈ S
n
+ and Q ∈ S

nr

+ as well as the

rectangular matrices K̂3 ∈ R
nr×n and L̂ ∈ R

nr×nr .
The controller coefficients are calculated as: P = P̂−1,
K3 = K̂3P̂

−1, L = Q−1L̂. A proof for the stability of this
controller is provided by Yuan et al. (2019).

4. PARTICULARIZATION

The controller presented above has been developed for
linear systems, however our robots have nonlinear dynam-
ics. Its application to our system can be done through
the control system architecture presented in Section 1,
that presents the control system running on each robot.
It is structured as a two layer system, in which a refer-
ence trajectory is generated for the robots through the
developed controller. At this aim, the i-th robot commu-
nicates with its communication neighbors to obtain their
state and their control inputs (for the leaders only). The
generated trajectory is then used as a reference signal
for an Input/Output Controller (IOC) that generates the
linear velocity vi and angular velocity ωi for the robot as
described by Siciliano (2009). Using the error εi = xi − ξ̄i,
the desired velocity µi = ki · εi is calculated, where ki is a
positive proportional gain. The linear and angular veloc-
ities for the robots are calculated using their orientation

Containment
Controller

IOC Robot i

Tracking
System

xi

to neighbors

ri vi, ωi



ξTi φi

T



ξ̄Ti φ̄i

T

xj , sk, rk

from neighbors

Fig. 1. Control system running on robot i

φ̄i:



vi
ωi



=



cos(φ̄i) sin(φ̄i)
− sin(φ̄i)/b cos(φ̄i)/b



× µi,

where b > 0 is a parameter.

The implementation of the containment controller to gen-
erate the reference signals first required the selection of a
linear system that would respect Assumptions 1-3, and
would lead to a solvable LMI (9). For both the leaders
and followers, we picked a simple integrator dynamics by
selecting A0 = O,B0 = I, Ar = O,Ai = O,Bi = biI,
where bi > 0 is a parameter that can be selected to
improve the system performance. The resulting system
fulfills Assumption 1 with KT

1i = O and KT
2i = I.

Assumption 2 is fulfilled with B0 being the identity
matrix and the controllability matrix therefore having full
rank i.e., the system (A0, B0) is stabilizable. Assumption
3 is a condition on the communication graph, therefore is
not affected by the system matrices. It will be fulfilled
later in the simulations and experiments sections. Note
that choice of Ai is only limited to linear systems, but is
not limited to an integrator dynamics. In Section 7 we will
discuss how it can be used as a parameter of the system
to improve the closed loop behavior.

With these choices the LMI from (9) is reduced to:


−λi(H)(B0K̂3 + K̂T
3 B

T
0 ) B0

BT
0 −λi(H)(L̂+ L̂T )



< 0

(10)

Choosing Ar = O leads to ṙk = 0 which means that the
leaders have a constant velocity. This limitation in general
is not given in Yuan et al. (2019) but caused by the chosen
system dynamics. In Section 6 we will show that slow
changes in velocity do not affect the stability and behavior
of the controller.

The implementation of the controller on our mobile robots
required a time discrete version of it. We start with the
discrete system dynamics at time step m of length ∆t:

xi,m = Ai,dxi,m−1 +∆tBi,dui,m−1 (11)

sk,m = A0,dsk,m−1 +∆tB0,drk,m−1 (12)

with the discrete input matrices Bi,d ∈ R
n×nu,i : Bi,d =

Bi = I and B0,d ∈ R
n×nr : B0,d = B0 = I, the

discrete follower’s system matrix Ai,d ∈ R
n×n : Ai,d = I +

∆tAi = I, and the discrete leader’s system matrix A0,d ∈

R
n×n : A0,d = I+∆tA0 = I. The k-th leader input is given

as rk,m = Ar,dvk,m. with a separate algorithm supplying
the input vk,m ∈ R

nr . As above, Ar,d = I + ∆tAr = I.
The discrete error signal is defined similar as in (5):

ei,m = ei,m−1 +

N


j=1

aij (xj,m − xi,m) (13)

+
N+M


k=N+1

δki (sk,m − si,m) ∀i ∈ F .
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Fig. 2. Communication graph in the simulation with the
leaders lk and the followers fi.

The continuous control algorithm described in equations
(6)-(8) is discretized as:

r̂i,m = r̂i,m−1 +
1

∆t
L





N


j=1

aij (r̂j,m−1 − r̂i,m−1) (14)

+
N+M


k=N+1

δki (rk,m−1 − r̂i,m−1)



K̂1i,m = K̂1i,m−1 +
1

∆t
γxi,meTi,m−1PBi (15)

ui,m = K̂T
1i,mxi,m +KT

2ir̂i,m +KT
2iK3ei,m, (16)

where the controller coefficients P , K3, and L are the same
as the continuous case.

5. VALIDATION IN SIMULATION

To validate the proposed controller we implemented a
distributed simulation in Gazebo using five virtual leaders
and ten simulated unicycle-style robots with the dynamics
described in (1) as followers. The communication graph
is shown in Figure 2, which respects Assumption 3.
The controller coefficients P , K3 and L are obtained

as P =



0.1818 0
0 0.1818



, K3 =



1.6120 0
0 1.6120



, L =


1.6545 0
0 1.6545



by solving the LMI condition in (10). The

simulation was performed with the parameter bi = 1, so
that the matrix Bi = I. The five virtual leaders move

each with a different velocity of v1,m = [0.0225 0.07]
T
m/s,

v2,m = [−0.0075 0.05]
T
m/s, v3,m = [−0.0125 0.01]

T
m/s,

v4,m = [0.004 0.03]
T
m/s, v5,m = [−0.015 0.025]

T
m/s

Figure 3 shows the simulated trajectories for leaders,
and followers. Colored solid lines represent the actual
trajectories ξi of the robots while the colored dashed lines
represent the desired trajectories xi. Black dashed lines
represent the trajectory sk of the five virtual leaders.
The gray dotted and dash dotted lines mark the convex
hull spanned by the leaders at the start and end of
the simulation at t = 0s and t = 38s. From the plot,
we can observe that all followers starting outside the
convex hull spanned by the leaders ended within it and
all followers end up following their set point trajectory.
This is corroborated also by the plot of the distance di
between each robot and the convex hull Co(R) spanned
by the leaders reported in Figure 4. Since a negative value
of di indicates that robot i is within Co(R), from the plot
it is possible to observe that all robots eventually converge
to and remain in the convex hull.
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t = 38s
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ξi

Fig. 3. Simulation results: trajectories of the virtual leaders
sk (black, dashed), the reference trajectories of the
followers xi (colored, dashed) and the robots trajecto-
ries ξi (colored, solid). The convex hull at time t = 0s
(gray, dotted) and at time t = 38s (gray, dash-dotted)
are also shown.
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Fig. 4. Simulation results: distance di from followers to
the convex hull; negative distances indicate that the
followers within the hull.
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Fig. 5. Simulation results: errors of the IOC during the
simulation with bi = 1.
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Fig. 6. Simulation results: errors of the IOC during a
simulation with bi = 0.015.
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f1

f2 f3

l1

l2 l3

Fig. 7. Communication graph in the experiments with the
leaders lk and the followers fi.

It must be noted that at the beginning of the simulation
the reference signals move fast compared to maximum
velocity that the robots can exert, causing a significant
error in the IOC. This is visible in Figure 5 that shows
the tracking error |εi| for each follower over time t, with
a sharp increase of the errors at the beginning followed
by a steady decrease. This is due to the fact that most
robots starts relatively far from the convex hull (1− 3m).
Therefore the containment controller must recover a large
initial error that is subsequently translated into error for
the IOC. It is possible to reduce the parameter bi so that
the reference points will not move too fast for the robots.
We performed the same simulation with bi = 0.015, and
the corresponding tracking errors, provided in Figure 6,
are much smaller and mostly due to the initial difference
between the orientation of the robots and the direction of
motion of the reference points. It must be noted that in
this case the Cartesian trajectories of the reference points
for the followers (omitted for brevity) are very similar to
the simulation with bi = 1, however, the robots take longer
to converge to the convex hull as they are moving slower.

6. VALIDATION IN EXPERIMENT

For an experimental implementation a system of three
virtual leaders and three ∼ 20cm differential drive mobile
robots was used. The robots are equipped with an arduino
Romeo board to perform the low-level control tasks and
compute the odometry, and an ODROID-XU4 for high-
level control tasks and communication through a Wifi
module. The robots move in a 10m × 10m area equipped
with an Optitrack motion capture system that provides
the ground truth.

The communication graph is depicted in Figure 7. The
corresponding controller coefficients computed by solv-

ing the LMI in (10) are: P =

[

0.1818 0
0 0.1818

]

, K3 =
[

1.5597 0
0 1.5597

]

, L =

[

1.5848 0
0 1.5848

]

. The virtual lead-

ers move with a velocity of

v1,m =

[

0.075 cos(t/20 + 3/2π) + 0.0125
0.075 sin(t/20 + 3/2π) + 0.0125

]

m/s (17)

v2,m =

[

0.075 cos(t/20 + π) + 0.0125
0.075 sin(t/20 + π) + 0.0125

]

m/s (18)

v3,m =

[

0.075 cos(t/20) + 0.0125
0.075 sin(t/20) + 0.0125

]

m/s. (19)

This choice of velocities creates a triangular convex hull
that rotates about its center of mass and slowly drifts
with a linear motion, as visible in Figure 8. The fully
distributed controller was executed by the ODROID-XU4
on each robot. Communication between the robots and the
calculation of the virtual leader’s position was managed
by a ground station computer hosting a shared ROS
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Y
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t = 186s
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xi

ξ̄i

Fig. 8. Experimental results: trajectories of the virtual
leaders sk (black, dashed), the reference trajectories of
the followers xi (colored, dashed) and the real robots
trajectories ξ̄i (colored, solid). The convex hull at time
t = 0s (gray, dotted) and at time t = 186s (gray, dash-
dotted) are also shown.
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0.4

t [s]

d
i
[m

]

d1
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Fig. 9. Experimental results: distance di from followers to
the convex hull; negative distances indicate that the
followers are within the hull.

master node. Each follower only subscribed to and received
information from neighboring robots as described by the
communication graph in Figure 7.

Figure 8 shows the measured trajectory ξ̄i (colored, solid
lines), the reference trajectories computed by the contain-
ment controller xi (colored, dashed) and the position of
the virtual leaders sk (black, dashed). As in simulation,
the plot shows that the followers reach and stay within
the convex hull spanned by the virtual leaders plotted
for t = 0s and t = 186s (gray, dotted and dot-dashed
respectively). Notably, the tracking error of the IOC in this
case is lower with respect to the simulation. This happens
because the robots start from a configuration that is closer
to the convex hull. Therefore the reference trajectories
move slower with respect to the simulation case. The
distance di of robot i to the convex hull is plotted in
Figure 9 with negative values indicating the robot being
inside the convex hull. A clip of the experiment can be
seen in the accompanying video.

7. CONCLUSION

This paper shows a mobile robot application of the dis-
tributed containment controller introduced in Yuan et al.
(2019) and its validation in simulation with ten robots and
experiments with three robots. In general, the controller
showed the expected behavior being able to solve the
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containment control and drive the robots inside the convex
hull. This applies both in case that the virtual leaders move
according to Assumption 1, that allows for each leader
to move with a different constant velocity (simulation),
and also when that assumption is violated as shown in the
experiment where a circular motion component is added
to the velocity of the leaders. However, it is also evident
from the plots in Figure 5 that a limited robot velocity
can cause the tracking error in the lower level IOC to
increase significantly at the beginning of the control task
if the robots start in a configuration that is far from the
convex hull. One possible solution to this problem is to
”slow down” the dynamics of the reference trajectories by
changing the bi parameter with a proper adaptive law.
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