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ABSTRACT: Three polymorphs of the hydrocarbon 9-[(9H-
fluoren-9-ylidene)methyl]phenanthrene have been isolated and
characterized by single-crystal X-ray crystallography. Of these, one
form displays conformational polymorphism with respect to the
other two, a phenomenon that is less common in simple
hydrocarbons. The 5α form, obtained from an earlier fraction
following purification by column chromatography using hexanes as
the eluent, belonged to the monoclinic crystal system (space group
P21/n) and displayed a twist angle of ∼75° between the
phenanthrene and dibenzofulvene planes. Polymorph 5βmc, which
was isolated from a later fraction, also from hexanes, was solved in
the monoclinic space group P21/c and found to have a narrower
interplanar angle of ∼55°. Curiously, when the synthesis of the title
compound was repeated, the 5α form could not be detected. Instead, the 5β form was obtained but in two di!erent modifications
with virtually equivalent molecular structures, one as the monoclinic polymorph 5βmc mentioned above and the other as a new
polymorph 5βor that was solved in the orthorhombic space group Pbca. Di!erential scanning calorimetry experiments indicated that
some of the column fractions (again using hexanes as the eluent) contained both 5βmc and 5βor indicating concomitant
crystallization. Several attempts at separately growing the 5α form proved unsuccessful with either 5βmc or 5βor being formed
exclusively depending on the conditions. All three polymorphs show a common, and comparable, intramolecular C−H/π interaction,
but major di!erences are apparent both in the number and nature of intermolecular contacts made by each form. Quantum chemical
calculations on 5α and 5βmc (chosen as a representative of the β form) were performed using three di!erent model chemistries,
PBE0/6-311+G(d,p), B2PLYP/def2-TZVP, and DLPNO-CCSD(T)/def2-TZVP. These calculations show that the two conformers
are close in energy with the single-point energies of 5βmc slightly lower than that of 5α by about 1.7 to 2.6 kcal/mol. Furthermore,
optimization of 5α and 5βmc (B2PLYP-D3BJ/def2-TZVP or PBE0-D3BJ/6-311+G(d,p)) led to energetically degenerate structures
with geometries that were closer to the latter. A PBE0-D3BJ/6-311+G(d,p) relaxed potential energy scan about the sigma bond
connecting the two ring planes revealed four maxima and four minima. A rotational barrier of 8−9 kcal/mol was estimated for the
interconversion of the two conformers.

■ INTRODUCTION
Our laboratory has reported several examples of methylene-
cyclopropanes (1) based on the phenanthrene framework as
viable photochemical sources of alkylidenecarbenes 2 (Scheme
1).1−7 These alkylidenecarbenes typically rearrange to
acyclic2,5−7 or strained cyclic1,3,4 alkynes 3 via a 1,2-shift of a
substituent attached to the β-carbon.
In continuation of our work, we recently attempted to

synthesize 4, a precursor to dibenzofulvenylidene (Scheme 2).

However, we inadvertently prepared the isomer 5 instead (vide
inf ra). Although the synthesis of 5 was among the several
dibenzofulvenes reportedly recently,8 its solid-state structure
has not been described to date. Herein, we identify three new
polymorphic forms of 5, one of which is a conformational
polymorph of the other two, and report on their character-
ization by X-ray crystallography. It should also be noted that
while conformational polymorphism is a curious but well-
established phenomenon, it is less commonly exhibited by
simple hydrocarbons, which are devoid of heteroatom-
containing functional groups that could facilitate torsional
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Scheme 1. Photochemical Generation of Alkylidenecarbenes
from Phenanthrene-Based Methylenecyclopropanes
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preferences.9−13 This new synthesis of 5, a plausible
mechanism for its formation, structural analysis of its
polymorphic forms, and computational studies of the energies
of the two conformers and the rotational barrier to their
interconversion are presented below.

■ EXPERIMENTAL SECTION
General Notes. Tetrahydrofuran was degassed by purging with

nitrogen and dried by passage through two activated alumina columns
(2 ft × 4 in). Other solvents and reagents were used as obtained from
commercial sources. We have previously reported procedures for
preparing intermediate compounds 1,1-dibromo-1a,9b-dihydro-1H-
cyclopropa[l]phenanthrene (6)14 and exo-1-bromo-1a,9b-dihydro-
1H-cyclopropa[l]phenanthrene (7).15,16 Medium pressure flash
chromatography was performed on an automated system using pre-
packed silica gel columns (70−230 mesh) with the indicated eluents.
Proton (1H) and proton-decoupled carbon 13C{1H} NMR spectra
were recorded in CDCl3 at 500 and 126 MHz, respectively. The
chemical shifts are reported in δ ppm with reference to the signal of
tetramethylsilane set to 0 ppm. Infrared spectra (resolution 0.4 cm−1)
were acquired on solid samples with an FTIR instrument equipped
with an attenuated total reflectance (ATR) accessory and processed
with SpectraGryph.17
Synthesis of 9-(1a,9b-dihydro-1H-cyclopropa[l]phen-

anthren-1-yl)-9H-fluoren-9-ol (8). The monobromo derivative 7
(0.414 g, 1.53 mmol) was dissolved in 40 mL of tetrahydrofuran
(THF) with magnetic stirring in a 100 mL three-necked flask under
argon. The resultant solution was cooled to −70°C (dry ice/acetone),
and a solution of n-butyllithium (0.80 mL, 2.5 M in hexanes, 2.0
mmol) was slowly added over the course of 10 min. Stirring was
continued for an hour in the cold bath after which fluorenone (0.372
g, 2.1 mmol), dissolved in 10 mL of THF, was slowly added to the
reaction flask. After stirring for another hour, the cold bath was
removed and the reaction mixture was stirred overnight at room
temperature, after which it was quenched with H2O (20 mL). The
layers were separated, and the aqueous layer was extracted with
CH2Cl2 (3 × 30 mL). The combined organic layer was washed with
H2O (2 × 30 mL) and brine (3 × 30 mL) and freed of solvent under
reduced pressure with a rotary evaporator. The crude product was
purified by flash column chromatography on silica gel using hexanes
as the eluent to obtain 8 as a white solid. Yield: 0.479 g (84%). 1H
NMR (500 MHz, CDCl3): δ = 7.89 (d, J = 7.8 Hz, 2H), 7.79 (d, J =
6.6 Hz, 2H), 7.59 (d, J = 6.7 Hz, 2H), 7.52 (d, J = 7.4 Hz, 2H), 7.34
(dt, J = 12.0, 5.7 Hz, 4H), 7.25−7.18 (m, 4H), 3.19 (d, J = 4.7 Hz,
2H), 2.02 (s, 1H), 0.53 (t, J = 5.1 Hz, 1H). 13C{1H} NMR (126
MHz, CDCl3): δ = 21.0, 31.4, 77.8, 119.1, 122.1, 123.0, 125.0, 126.7,

127.2, 128.0, 128.2, 128.6, 134.3, 138.0, 148.0. FTIR: ν 3547.7,
3283.0, 3064.3, 3024.2, 2962.3, 2929.5, 2859.5, 1447.5 cm−1.

Synthesis of 9-[(9H-fluoren-9-ylidene)methyl]phen-
anthrene (5). A solution of the alcohol 8 (0.181 g, 0.487 mmol)
in 15 mL of CH2Cl2 was stirred in an ice bath under argon in a 50 mL
three-necked flask. Triethylamine (0.090 mL, 0.646 mmol) was added
to the mixture at ∼0 °C, followed by methanesulfonyl chloride (0.050
mL, 0.646 mmol). The faint yellow mixture was allowed to stir
overnight at room temperature, after which it was quenched with H2O
(10 mL). The layers were separated, and the aqueous layer was
extracted with CH2Cl2 (3 × 10 mL). The combined organic layer was
washed with H2O (1 × 10 mL) and brine (2 × 10 mL) and freed of
solvent under reduced pressure with a rotary evaporator. The crude
product was purified by flash column chromatography on silica gel
using hexanes as the eluent to obtain 5 as a yellow solid. Yield: 0.074 g
(43%). 1H NMR (500 MHz, CDCl3): δ = 8.79 (dd, J = 18.0, 8.3 Hz,
2H), 8.14 (d, J = 8.2 Hz, 1H), 8.07 (s, 1H), 8.00 (s, 1H), 7.95 (d, J =
7.4 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.77 (d, J = 7.4 Hz, 1H), 7.73
(t, J = 7.3 Hz, 3H), 7.62 (dt, J = 24.1, 7.6 Hz, 2H), 7.42 (dt, J = 19.3,
7.5 Hz, 2H), 7.26−7.22 (m, 2H), 6.87 (t, J = 7.7 Hz, 1H). 13C{1H}
NMR (126 MHz, CDCl3): δ = 119.7 (2C), 120.5, 122.7, 123.1, 124.9,
125.3, 126.0, 126.9 (2C), 127.0 (2C), 127.1 (2C), 128.0, 128.5 (2C),
128.9, 130.5 (2 C), 130.8, 131.5, 132.9, 136.8, 138.2, 139.2, 139.4,
141.3. FTIR: ν 3055.6, 3011.9, 1446.9 cm−1.

X-ray Di!raction Studies. An appropriately sized crystal of each
polymorph was mounted using Paratone N oil on a MiTeGen
MicroMount. Di!raction data were obtained at 173 K on a Bruker D8
Quest Eco di!ractometer employing graphite monochromated Mo Ka
radiation (l = 0.71073 Å) and a PHOTON II CPA (Charge-
integrating Pixel Array) area detector. The Bruker Apex (3 or 4) suite
of programs was used to acquire X-ray data.18,19 Frames were
integrated with a narrow-frame algorithm using the Bruker SAINT+
data reduction software package.20 The multiscan method imple-
mented in SADABS-2016/221 was used to correct the data for
absorption e!ects. The Bruker SHELXTL software package,22,23
executed from within the Olex2 program,24 was used to process data
and perform structure solution by direct methods and refinement by
full-matrix least-squares on F2. All nonhydrogen atoms were refined
anisotropically with suggested weighting factors, and the hydrogens
were calculated on a riding model. The checkCIF/Platon facility of
IUCr, accessed through Olex2, was used to validate the cif file,
including the structure factors. Analyses of the crystal structures,
including measurements of distances, angles, planes, contacts, packing,
morphologies, etc., were carried out with the program Mercury.25
Graphics based on the crystal structures were also produced with
Mercury.

Scheme 2. Synthetic Route to 9-[(9H-fluoren-9-ylidene)methyl]phenanthrene (5)
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Computational Studies. The quantum chemistry program Orca
(version 5.0)26,27 was used to perform calculations involving the use
of double hybrid density functional theory (B2PLYP)28 and domain-
based local pair natural orbital-coupled-cluster [DLPNO-CCSD-
(T)]29−31 methods in combination with Ahrlich’s def2-TZVP.32 The
auxiliary basis sets def2/J33 and def2-TZVP/C34,35 were also used as
appropriate. Acceleration of SCF and exchange integral calculations
was accomplished by invoking the resolution-of-identity36 option and
the chain-of-spheres37,38 algorithm, respectively (RIJCOSX). T1
diagnostic values39 for coupled-cluster calculations were <0.02,
indicating that the systems are adequately described by a single
reference wave function. Hybrid density functional theory
(PBE0)40−43 calculations, with Pople’s triple ζ basis set [6-
311+G(d,p)]44 including di!use and polarization functions, were
performed with the Gaussian 16 (Revision A.03)45 computational
package. All calculations used Grimme’s atom-pairwise dispersion
correction with Becke−Johnson damping (D3BJ).42,46 Frequency
calculations were performed to verify the nature of the stationary
points as minima (0 imaginary frequency) or maxima (1 imaginary
frequency). GaussView (version 6.0)47 and/or ChemCraft48 were
used to visualize computational data.

■ RESULTS AND DISCUSSIONS
Synthetic Aspects. As noted earlier, our synthetic goal was

4, which we attempted to prepare by the route described in
Scheme 2. Preparation of the dibromo derivative 6 by addition
of dibromocarbene to phenanthrene under phase-transfer-
catalyzed conditions and the subsequent replacement of the
endo bromine with hydrogen to obtain 7 were carried out
using procedures we have previously reported. Treatment of 7
with butyllithium at low temperatures, followed by addition of
fluorenone and quenching with water, gave the expected
alcohol 8. Dehydration of 8 with methanesulfonyl chloride and
triethylamine, however, did not produce 4 as we had hoped.

Instead, we obtained the rearranged dibenzofulvene derivative
5.
A plausible mechanism for the formation of 5 from 8 is

depicted in Scheme 3 above. As expected, the first step would
be conversion of the alcohol group in 8 into the mesylate
group in 9, which is a superior leaving group. However, the
expectation that triethylamine would induce elimination in 9 to
form 4 was not met. Instead, a facile ring opening to generate
the resonance-stabilized benzyl cation 10 appeared to have
occurred. Indeed, there is some precedence in the literature for
these types of ring openings of cyclopropyl carbinols.49−51

Subsequent deprotonation of 10 by triethylamine aromatizes
the central ring of the phenanthrene moiety and yields the
observed product 5.

Structural Analyses of the Polymorphs 5α, 5βmc, and
5βor. Purification of 5 by column chromatography (silica gel/
hexanes) led to fractions that provided crystals suitable for
analysis by X-ray di!raction. Interestingly, two distinct types of
crystals, from separate fractions, were identified, each of which
turned out to be 5 in a di!erent conformation. The conformer
obtained from an earlier fraction was designated as 5α and a
di!erent conformer, isolated from a later fraction, was classified
as 5βmc. Polymorph 5α was solved in the monoclinic space
group P21/n (#14), with an asymmetric unit consisting of a
single molecule and a unit cell volume corresponding to four
molecules. Polymorph 5βmc also belonged to the monoclinic
crystal system but in the space group P21/c (#14). It, too, had
a Z of four and Z′ of one.
Interestingly, when the synthesis was repeated, the

polymorph 5α could no longer be found. Instead, a new
orthorhombic modification of the 5β form designated as 5βor

was discovered along with the 5βmc polymorph mentioned

Scheme 3. Proposed Mechanism for the Formation of 5 from 8

Figure 1. Single-crystal X-ray structures of the polymorphs of 5α, 5βmc, and 5βor.
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Figure 2. Unit cell contents of (a) 5α, (b) 5βmc, and (c) 5βor. The phenanthrene and dibenzofulvene groups are shown in green and purple,
respectively.

Table 1. Key Crystal Structure Data for 5α, 5βmc, and 5βor

entry 5α 5βmc 5βor

formula C28H18 C28H18 C28H18

formula weight 354.42 354.42 354.42
color colorless colorless colorless
shape prism prism prism
crystal size/mm3 0.19 × 0.12 × 0.10 0.27 × 0.10 × 0.08 0.21 × 0.09 × 0.04
T/K 173(2) 173(2) 173(2)
crystal system monoclinic monoclinic orthorhombic
space group P21/n P21/c Pbca
a/Å 12.6268(5) 22.5395(5) 18.9255(6)
b/Å 10.8735(4) 5.14880(10) 7.9070(3)
c/Å 13.8051(5) 16.2579(3) 23.9871(8)
a/° 90 90 90
b/° 93.142(2) 107.8200(10) 90
g/° 90 90 90
volume/Å3 1892.56(12) 1796.23(6) 3589.5(2)
Z/Z′ 4/1 4/1 8/1
Dcalc./g cm−3 1.244 1.311 1.312
absorption m/mm−1 0.070 0.074 0.074
F(000) 744.0 744.0 1488.0
2θ range for data collection/
deg

5.672 to 55.062 5.696 to 55.036 5.484 to 54.984

index ranges 16 ≤ h ≤ 16, −13 ≤ k ≤ 14, −17 ≤ l ≤
17

−28 ≤ h ≤ 29, −6 ≤ k ≤ 6, −21 ≤ l ≤
21

−24 ≤ h ≤ 24, −10 ≤ k ≤ 10, −31 ≤ l ≤
30

reflections collected 41 259 37 822 58 274
independent reflections 4353 [Rint = 0.0479, Rsigma = 0.0269] 4122 [Rint = 0.0369, Rsigma = 0.0201] 4080 [Rint = 0.1618, Rsigma = 0.0825]
data/restraints/parameters 4353/0/253 4122/0/254 4080/0/254
goodness-of-fit on F2 1.030 1.091 1.189
final R indices [I ≥ 2σ (I)] R1 = 0.0595, wR2 = 0.1424 R1 = 0.0542, wR2 = 0.1073 R1 = 0.0935, wR2 = 0.1521
final R indices [all data] R1 = 0.0962, wR2 = 0.1724

R1 = 0.0823, wR2 = 0.1310 R1 = 0.1734, wR2 = 0.1810
largest di!. peak/hole/e Å−3 0.48/−0.23 0.23/−0.21 0.30/−0.29
CCDC number 2140219 2140220 2172802
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above. The 5βor form was solved in the Pbca space group with
a Z of eight and Z′ of one. Some column fractions contained
both the 5βmc and 5βor forms as evident from di!erential
scanning calorimetry (DSC) experiments, which showed two
distinct endothermic events corresponding to the melting
points of the two 5β polymorphs (see the Supporting
information). These melting points corresponded to those of
the pure samples of 5βmc (199 °C) and 5βor (184 °C), which
were measured individually by DSC (see the Supporting
information). Numerous attempts to grow crystals of 5 under a
variety of conditions (e.g., by slow evaporation of various
solvents and by di!usion systems employing several binary
solvent mixtures) to obtain 5α proved futile. On the contrary,
these e!orts invariably led to pure 5βmc or 5βor depending on
the crystallization conditions.52
Crystal structures of the three polymorphs of 5α, 5βmc, and

5βor are shown in Figure 1. The unit cell contents of each of
the three polymorphs are shown in Figure 2 and their salient
crystallographic data are presented in Table 1.
Close examination of the crystal structures revealed

interesting features in the polymorphs. For instance, the
planes of the dibenzofulvene and phenanthrene moieties were
twisted away from each other by 75° in 5α and ∼55° in 5βmc

and 5βor, as shown in Figure 3. This twisting led to a notable
short C−H/π intramolecular contact53−57 within each con-
former. As shown in Figure 4a, one of the hydrogens of the
dibenzofulvene moiety in 5α, designated as H27, is only 2.95 Å
away from the centroid of the middle ring in phenanthrene.
The C27−H27-centroid angle was ∼147°. An equivalent
contact was identified in 5βmc, with H27 at a distance of 2.95 Å
from the centroid and a C27−H27-centroid angle of ∼143°

(Figure 4b). Interestingly, although the twist angles between
the two planes in 5βmc and 5βor are essentially the same, it

Figure 3. Twisting of the dibenzofulvene plane (purple) from the phenanthrene plane (green) in (a) 5α, (b) 5βmc, and (c) 5βor.

Figure 4. Short intramolecular C-H/π contacts in (a) 5α, (b) 5βmc,
and (c) 5βor. The C27−H27-centroid angles in 5α, 5βmc, and 5βor are
147.13, 143.29, and 141.96°, respectively.
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appears as if the dibenzofulvene plane is tilted back ever
slightly from the phenanthrene plane in 5βor. This is evident
from a slightly longer distance of 3.37 Å between H27 and the
centroid (Figure 4c). The C27−H27-centroid angle in 5βor

was measured to be ∼142°.
Although the di!erence in interplanar twist angles between

5α and 5β appears to have little e!ect on intramolecular
contacts, it seems to be rather consequential to the nonbonded
intermolecular contacts within the crystal structure of each
conformer. On a per molecule basis, polymorph 5α has many
more atoms involved in C−H/π interactions than 5β. In 5α,
there are as many as seven intermolecular C−H contacts
involving 13 atoms. These include two carbons (C2 and C8)
and two hydrogens (H6 and H11) in the phenanthrene
moiety. The dibenzofulvene moiety has even more such
contacts involving five carbons (C16, C17, C19, C23, and
C24) and four hydrogens (H20, H24, H25, and H26). The
orientations of the contacts are also noteworthy in that the
phenanthrene plane has all both contacts on one side but the
dibenzofulvene plane shows that the contact made by C23 is
on the opposite side relative to those made by the other four
carbons. In sharp contrast, only C11 and H12 of the
phenanthrene group and C26 and H26 of the dibenzofulvene
moiety appear to be involved in a pair of C−H/π interactions
in polymorph 5βmc. The polymorph 5βor displayed three
intermolecular C−H/π contacts involving C7, C8, and C12
and H15 and H18. Representative examples of the network of
C−H/π interactions in the crystal structures of 5α, 5βmc, and
5βor are shown in Figure 5 and the relevant contact data are
presented in Table 2.
We also probed the crystal lattice of all three polymorphs to

investigate π stacking among the aromatic rings.54,58−61

Remarkably, no π−π interactions were observed in the
polymorph 5α. In 5βmc, however, π stacking was observed
between one of the terminal six-membered rings of a
dibenzofulvene moiety and the other, non “symmetry
equivalent”, six-membered ring of a neighboring dibenzoful-
vene (Figure 6). These two rings, which were at an angle of
5.76°, showed a centroid−centroid distance of 3.63 Å and a
shift distance of 1.29 Å. The related symmetry operation was
+x, 1 + y, and +z.
In polymorph 5βor, both the phenanthrene and dibenzo-

fulvene parts appeared to π-stack separately with their
counterparts in the neighboring molecules (Figure 7). One
of the terminal six-membered rings in the phenanthrene part π-
stacked with a parallel symmetry equivalent ring of a
neighboring molecule at a centroid-to-centroid distance of

3.97 Å, a shift distance of 2.02 Å, and a symmetry operation of
1 − x, 1 − y, and 1 − z. In a similar fashion, one of the terminal
six-membered rings in the dibenzofulvene part π-stacked with a
symmetry equivalent ring of a neighboring molecule at an
angle of 19.15° and a centroid−centroid distance of 3.92 Å.
Notably, there was a slight di!erence in the shift distance,

Figure 5. C−H/π interactions in (a) 5α, (b) 5βmc, and (c) 5βor. The groups are color-coded for phenanthrene (green) and dibenzofulvene
(purple). Intermolecular contacts are shown in cyan.

Table 2. Selected Intermolecular C−H/π Contact
Parameters in (a) 5α, (b) 5βmc, and (c) 5βor

5α
number of contacts

made atom1 atom2
length
(Å) symmetry operator

1 H20 C24 2.87 1.5 − x, −1/2 + y,
1/2 − z

2 C23 H6 2.88 1.5 − x, −1/2 + y,
1.5 − z

3 C17 H11 2.83 1 − x, 1 − y, 1 − z
4 C16 H11 2.80 1 − x, 1 − y, 1 − z
5 C19 H26 2.89 −1/2 + x, 1/2 − y,

−1/2 + z
6 C8 H24 2.79 −1/2 + x, 1/2 − y,

1/2 + z
7 C2 H25 2.87 −1/2 + x, 1/2 − y,

1/2 + z
5βmc

1 C11 H26 2.89 x,−1/2-y,-1/2+z
2 H12 C26 2.73 x,1/2 − y, −1/2 + z

5βor

1 H15 C12 2.89 1/2 − x, −1/2 + y, z
2 H18 C7 2.85 1/2 − x, −1/2 + y, z
3 H18 C8 2.86 1/2 − x, −1/2 + y, z

Figure 6. Intermolecular π−π interactions between the dibenzoful-
vene units in 5βmc.
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which was 1.29 Å on the one side (symmetry operator: 1/2 −
x, −1/2 + y, and +z) and 1.62 Å on the other side (symmetry
operator: 1/2 − x, 1/2 + y, and +z). Just as was the case with
5βmc, no π-stacking interactions were detected between the
phenanthrene and dibenzofulvene groups from neighboring
molecules in 5βor.
Given the distinct di!erences in packing within the crystal

structures of 5α, 5βmc, and 5βor, the Bravais, Friedel, Donnay,
and Harker (BFDH)62−64 theoretical morphologies were
calculated for all three polymorphs. These are displayed in
Figure 8. The predicted morphology of 5α shows a fairly
comparable dimensionality along all three coordinates and
5βmc shows a plate-like morphology. The calculated morphol-
ogy of the 5βor form appears to have features that are
somewhere in between those displayed by 5α and 5βmc. The
actual images of the crystals of these polymorphic forms are
provided in the Supporting information.
Computational Studies on the Conformers 5α and

5βmc. Given the close similarity in the geometries of 5βmc and

5βor and the virtually identical interplanar twist angles between
their phenanthrene and dibenzofulvene planes, 5βmc was
chosen as a representative of the 5β form for computational
comparison to the clearly di!erent 5α polymorph. Atomic
coordinates from the cif files were used to calculate the gas-
phase single-point energies of conformers 5α and 5βmc to
probe their intrinsic stabilities. Three di!erent model
chemistries representing hybrid density functional theory
(PBE0), double hybrid density functional theory (B2PLYP),
and coupled-cluster [DLPNO-CCSD(T)], in conjunction with
appropriate basis sets, were used for comparative purposes. In
each case, the two conformers were found to be close in energy
with 5α slightly less stable than 5βmc (Table 3).

We carried out a relaxed potential energy scan, at the PBE0/
6-311+G(d,p) level, by rotating the C1−C14−C15−C16
dihedral angle in 5 (see the structure in Figure 9 for
numbering scheme) from 0° through 360°. This scan, which
tracks rotation of the sigma bond between the phenanthrene
and dibenzofulvene planes, showed four maxima and four
minima labeled on the graph in Figure 8. The relative energies,
dihedral angles, and interplanar angles corresponding to
structures 5a through 5h are shown in Table 4.
We then performed another relaxed potential energy scan by

converting one conformer into the other by rotating about the
σ bond connecting the phenanthrene and dibenzofulvene
planes. As shown in Figure 10, the highest-energy conformer
on the scanned surface lies 8.74 kcal/mol above the minima on
either side. This maximum, which shows a dihedral angle

Figure 7. Intermolecular π−π interactions in 5βor.

Figure 8. Theoretically predicted BDFH morphologies of polymorphs 5α, 5βmc, and 5βor.

Table 3. Relative Single-Point Energies, in Kcal/Mol, for
Conformers 5α and 5βmc

PBE0/
6-311+G(d,p)

B2PLYP/
def2-TZVP

DLPNO-CCSD(T)/
def2-TZVP

5α 2.59 1.74 1.70
5βmc 0 0 0
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(C1−C14−C15−C16) of about 18.33° and an interplanar
twist angle of 23.27°, likely corresponds to the one labeled as
5a in Figure 9. Subsequent optimization and frequency
calculation on 5a confirmed it is a maximum (one imaginary
frequency). Examination of the vibrational mode along the
imaginary frequency indicated that 5a is likely the correct
transition state connecting 5α and 5βmc· The precise value of
the rotational barrier to the interconversion of 5α and 5βmc

could not be estimated as attempts to optimize each conformer
[PBE0/6-311+G(d,p)] led to the same ground-state structure
in which the interplanar twist angle was 56.28°. Optimization
of 5α and 5βmc, at the B2PLYP/def2-TZVP level, led to nearly
degenerate structures with interplanar angles of 58.46 and

60.22°, respectively. In any event, all of the foregoing
discussions collectively indicate that there is very little energy
di!erence between 5α and 5βmc· The two conformers are likely
separated by a rotational barrier of 8−9 kcal/mol, which would
explain why they both give identical 1H and 13C NMR spectra.
The FTIR spectra of 5α and 5β, measured using an ATR
accessory, are also the same.

■ CONCLUSIONS
This work describes the isolation and characterization of three
polymorphs of 9-[(9H-fluoren-9-ylidene)methyl]phenanthrene
(5), a simple hydrocarbon. One of the polymorphs 5α, which
belongs to the monoclinic crystal system, is a conformational
variant of 5βmc/5βor. On the other hand, the polymorphs 5βmc

and 5βor are closely related structurally but grow in monoclinic
and rhombohedral crystal systems, respectively. DSC measure-
ments indicate that 5βmc and 5βor are able to grow
concomitantly. All three polymorphs show a common, and
comparable, intramolecular C−H/π interaction, but striking
di!erences are apparent both in the number and nature of
intermolecular contacts made by each form. Quantum
chemical calculations using three di!erent model chemistries,
PBE0/6-311+G(d,p), B2PLYP/def2-TZVP, and DLPNO-
CCSD(T)/def2-TZVP, indicated that the two conformers
are close in energy, with the single-point energies of 5β slightly
lower than that of 5α by about 1.7−2.6 kcal/mol. A PBE0-
D3BJ/6-311+G(d,p) relaxed potential energy scan about the σ
bond connecting the two ring planes revealed four maxima and
four minima. A rotational barrier of 8−9 kcal/mol was
estimated for the interconversion of the two polymorphs.
Given the importance of dibenzofulvenes in materials
science,65−68 and the influence exerted by molecular
conformations on optoelectronic properties,66,69−80 it is
anticipated that the work reported herein will contribute to
growing interest in the curious phenomenon of polymorphism,
both conformational and concomitant, in small hydrocarbons.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.cgd.2c00120.

NMR (1H and 13C{1H}) and IR spectra, cif files, and
computational results (PDF)

Figure 9. Relaxed potential energy scan, at the PBE0/6-311+G(d,p) level, by rotating the C1−C14−C15−C16 dihedral angle in 5 from 0 to 360°.

Table 4. Relative Energies (kcal/mol), Dihedral Angles (°),
and Interplanar Angles (°) Corresponding to 5a through 5h

conformer
relative
energy

C1−C14−C15−C16
dihedral

interplanar twist
angle

5a 8.17 15.00 26.82
5b 0.00 50.00 56.15
5c 0.90 90 89.00
5d 0.39 125 61.13
5e 22.58 230 33.74
5f 0.39 235 61.09
5g 0.91 270 89.01
5h 0.00 310 56.20

Figure 10. Graph showing the relaxed potential energy scan about the
C1−C14−C15−C16 dihedral angle for interconverting 5α and 5βmc·.
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contacting The Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
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