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Recent field and experimental studies show that mobility patterns for humans 
exhibit scale-free nonlocal dynamics with heavy-tailed distributions characterized 
by Lévy flights. To study the long-range geographical spread of infectious diseases, 
in this paper we propose a susceptible-infectious-susceptible epidemic model with 
Lévy flights in which the dispersal of susceptible and infectious individuals follows 
a heavy-tailed jump distribution. Owing to the fractional diffusion described by a 
spectral fractional Neumann Laplacian, the nonlocal diffusion model can be used to 
address the spatiotemporal dynamics driven by the nonlocal dispersal. The primary 
focuses are on the existence and stability of disease-free and endemic equilibria 
and the impact of dispersal rates and fractional powers on the spatial profiles of 
these equilibria. A variational characterization of the basic reproduction number 
R0 is obtained and its dependence on dispersal rates and fractional powers is also 
examined. Then R0 is utilized to investigate the effects of spatial heterogeneity 
on the transmission dynamics. It is shown that R0 serves as a threshold for 
determining the existence and nonexistence of an epidemic equilibrium as well as the 
stability of the disease-free and endemic equilibria. In particular, in low-risk regions 
both dispersal rates and fractional powers play a critical role and are capable of 
altering the threshold value. Numerical simulations were performed to illustrate the 
theoretical results.

© 2023 Elsevier Masson SAS. All rights reserved.

r é s u m é

Des études récentes sur le terrain et expérimentales montrent que les modèles de 
mobilité pour les humains présentent une dynamique non locale sans échelle avec 
des distributions à queue lourde caractérisées par des vols de Lévy. Étudier la 
propagation géographique à longue distance des maladies infectieuses, dans cet 
article nous proposons un modàle épidémique sensible-infectieux-sensible avec des 
vols de Lévy dans lequel la dispersion des individus sensibles et infectieux suit une 
distribution de sauts à queue lourde. En raison de la diffusion fractionnaire décrite 
par un Laplacien de Neumann fractionnaire spectral, le modèle de diffusion non 
locale peut être utilisé pour traiter la dynamique spatio-temporelle entraînée par 
la dispersion non locale. Les principaux objectifs sont l’existence et la stabilité 
d’équilibres sans maladie et endémiques et l’impact des taux de dispersion 
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et des puissances fractionnaires sur les profils spatiaux de ces équilibres. Une 
caractérisation variationnelle du nombre de reproduction de base R0 est obtenue et 
sa dépendance aux taux de dispersion et aux puissances fractionnaires est également 
examinée. Ensuite R0 est utilisé pour étudier les effets de l’hétérogénéité spatiale 
sur la dynamique de transmission. On montre que R0 sert de seuil pour déterminer 
l’existence et l’inexistence d’un équilibre épidémique ainsi que la stabilité des 
équilibres sans maladie et endémique. En particulier, dans les régions à faible risque, 
les taux de dispersion et les puissances fractionnaires jouent un rôle critique et sont 
capables de modifier la valeur seuil. Des simulations numériques ont été réalisées 
pour illustrer les résultats théoriques.

© 2023 Elsevier Masson SAS. All rights reserved.

1. Introduction

In studying the spatiotemporal properties of biological phenomena, such as the population dynamics of 

biological species and transmission dynamics of infectious diseases, classical reaction-diffusion equations are 

usually used to simulate the geographic diffusion and interaction of individuals (Murray [32], Okubo and 

Levin [35], Ruan and Wu [38]). In such models, Laplace operators are employed based on the assumption 

that the diffusion process can be described by Brownian motion, namely a group of particles spreads as a 

whole according to the irregular motion of each particle, and the fact that the probability density function 

of the continuous random walk (a Gaussian distribution) is a solution of the Fickian diffusion equation 

(Murray [32], Okubo and Levin [35]).

Note that Fickian diffusion applies to a diffusion process that corresponds to the random walk only 

when the step size and time size are small compared with the spatial variable and time, respectively. 

Consequently, classical reaction-diffusion equations only characterize spatial properties of biological systems 

locally. However, recent studies have shown that mobility patterns for humans exhibit scale-free dynamics 

with heavier tails distribution, a characteristic of Lévy flights (Mandellbrot [30], Zaburdaev et al. [54]). Lévy-

flight patterns have been observed in human traveling by analyzing the circulation of banknotes (Brockmann 

et al. [7]), mobile phone data (González et al. [21]), hunter–gathers data when foraging for a wide variety of 

food items (Raichlen et al. [36]), as well as in the dispersal patterns of many biological species (Viswanathan 

et al. [45], Zaburdaev et al. [54]).

It has been shown that the density function representing the population with Lévy flight diffusion is 

the solution of a fractional-order diffusion equation and fractional-order derivatives are nonlocal integro-

differential operators which can be used to characterize memory effects and long-distance diffusion processes 

(Chaves [14], Metzler and Klafter [31]). Such diffusion processes are often mathematically described by the 

spectral fractional Laplacians (−ΔN )s and (−ΔD)s, where 0 < s < 1, (the precise definition of (−ΔN )s will 

be given soon), which are the fractional counterparts of −Δ depending on the boundary condition under 

consideration (Neumann and Dirichlet). We refer to some recent studies by Caffarelli and Stinga [11], Grubb 

[22], Stinga [41], Stinga and Torrea [42], and Zhao [51], a survey of Vázquez [44], and the monographs of 

Bucur and Valdinoci [8] and Dipierro [16] on the fundamental theories of fractional diffusion equations. 

For studies on specific equations, we refer to Gui and Zhao [23] and Ma et al. [29] on the Allen-Cahn 

equation with a fractional Laplacian, Cabré and Roquejoffre [9], Caffarelli et al. [10], Felmer and Yangari 

[19], and Stan and Vázquez [40] on fractional Fisher-KPP equation, Estrada-Rodriguez et al. [18], Salem 

[39], and Stinga and Volzone [43] on Keller-Segel model with fractional diffusion, Bendahmane et al. [5]

and Dannemann et al. [17] on Lotka-Volterra systems with Lévy flight. It is worth noting that, as shown 

in [11], (−ΔN )s can be represented by a nonlocal diffusion operator with a singular integral kernel, which 

highlights the nonlocal nature of (−ΔN )s and is yet contrast with the bounded nonlocal diffusion operators 

studied in Bates et al. [3], Bates and Zhao [4], Andreu-Vaillo et al. [2], Xu et al. [48], Yang et al. [49], Zhao 

and Ruan [52], and references therein.
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The geographical spread of infectious disease through a population consists of two processes, the short-

range local transmission and the long-range travel of infectious individuals, with the latter introducing 

the infectious diseases to new locations and causing potentially global outbreaks (Murray [32], Ruan [37]). 

Hence, it is the tail of the probability distribution of diffusion that has a significant impact on the spatial 

transmission dynamics of infectious diseases. It is believed that utilizing a heavy-tailed human movement 

process such as the Lévy flight can serve as a starting point for developing a new class of epidemic models 

for the spread of human infectious diseases (Brockmann et al. [7]). Indeed, epidemic models with fractional-

diffusion have been developed to simulate the spatial spread of epidemics driven by long-range displacements 

in the infectious and susceptible populations, see Hanert et al. [24] and the references cited therein.

In this paper, we propose a susceptible-infectious-susceptible (SIS) endemic model with fractional diffu-

sion of the following form

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ut + (−duΔN )s1u = a(x)u − b(x)u2 − p(x)uv

u + v
+ q(x)v, (t, x) ∈ R

+ × Ω;

vt + (−dvΔN )s2v =
p(x)uv

u + v
− q(x)v, (t, x) ∈ R

+ × Ω,

u(0, x) = u0(x), v(0, x) = v0(x),

(1.1)

where u(x, t) and v(x, t) are the densities of a susceptible population and an infectious population at 

location x ∈ Ω and time t, respectively, Ω ⊂ R
N (N ≥ 1) is a bounded domain with smooth boundary, 

0 < si < 1 (i = 1, 2) are the fractional powers of the diffusion operator −ΔN , which is the Neumann 

realization of −Δ in a suitable function space. For any given d > 0 and 0 < s < 1, the spectral fractional 

Neumann Laplace operator (−dΔN )s is defined by

(−dΔN )su =
∞

∑

k=1

dsλs
kukϕk =

ds

Γ(−s)

∞̂

0

eΔN tu − u

t1+s
dt,

where eΔN t is the semigroup generated by ΔN , (λk, ϕk)∞
k=1 are eigen-pairs of −ΔN , and u(x) =

∑∞
k=1 ukϕk(x) in which uk = 〈u, ϕk〉, and 〈·, ·〉 is the inner product in L2(Ω). du and dv are two posi-

tive constants that stand for the dispersal rates of u and v. We assume that, in the absence of the disease, 

the population has a density-dependent demographic structure (Gao and Hethcote [20]); that is, its growth 

is governed by a logistic term a(x)u − b(x)u2, where a(x) is the intrinsic growth rate and b(x)/a(x) is the 

carrying capacity of the environment. p(x) and q(x) denote the transmission rate and recovery rate of the 

infectious individuals, respectively. It is assumed that a(x), b(x), p(x), q(x) are Hölder continuous in Ω. In 

addition, b(x), p(x), q(x) are non-negative. In (1.1), the local susceptible population is subject to the logistic 

growth, hence the size of total population is not constant. It is also assumed that the movements of u(x, t)

and v(x, t) are both described by a power law probability distribution and are modeled by two spectral 

fractional Laplacians. Note that when s1 = s2 = 1, system (1.1) along with other diffusive epidemic models 

have been intensively investigated, see Allen et al. [1], Huang et al. [25], Li et al. [26], Li et al. [27], Murray 

[32], Webb [46], and the references cited therein.

The present paper is the second piece of a two-part series of studies on fractional diffusion equations, with 

the first part dealing with singularly perturbed fractional diffusion eigenvalue problems (Zhao and Ruan 

[53]). Our interest in (1.1) arises from a desire to understand its spatiotemporal transmission dynamics 

driven by nonlocal diffusion. Since the susceptible and infectious populations rarely display the exactly 

same dispersal behavior, it seems reasonable to assume that the movements of these two groups follow jump 

distributions at different microscopic scales, so s1 �= s2 in general. Similar to Allen et al. [1], to gain a better 

understanding of the effects of spatial heterogeneity on the occurrence of an endemic, a threshold, being 

referred to as the basic reproduction number R0 and characterized by a variational formula, is introduced 

in the present work. Much like the conventional diffusive models considered in [1], in high-risk regions 
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(q̄ ≤ p̄) it always holds that R0 > 1. Given that R0 > 1, our analysis shows that (1.1) possesses an endemic 

equilibrium under the condition that q̄ ≤ p̄ ≤ ā, where q̄, p̄, and ā are the averages of q(x), p(x), and 

a(x) over Ω, respectively. Hence in a high-risk region where population growth is sustainable, an endemic 

is bounded to occur. On the other hand, (1.1) has no endemic equilibria if R0 ≤ 1. For low-risk regions 

(q̄ > p̄) and infx∈Ω[q(x) − p(x)] < 0, then for each s there exists a threshold value of d0, such that R0 ≤ 1

if d ≥ d0 whereas R0 > 1 if d < d0. Furthermore, if d0 > 1
λ2

, where λ2 is the second least eigenvalue of 

−ΔN over Ω, then the aforementioned s is also a threshold value in the sense that R0 < 1 when d ≥ d0 and 

θ > s, and R0 > 1 provided that d = d0 and 0 < θ < s, where θ stands for a different fractional power. In 

particular, as long as d > 1
λ2

, then R0 is decreasing in s. Thus, from the perspective of disease prevention 

and control, in such regions, increasing s is likely to reduce potential risks of infection. This also underscores 

the importance of the underlying geometry of Ω.

The paper is organized as follows: Section 2 collects a series of properties concerning the basic reproduction 

number R0 and presents sufficient conditions that ensure the existence of an endemic equilibrium. Emphasis 

is placed on the dependence of R0 on dispersal rates and fractional powers. In this section, we also examine 

possible influences of dispersal rates du and dv on the spatial profiles of the aforementioned equilibrium. 

Section 3 focuses on the stabilities of the disease-free and endemic equilibria. More specifically, we will 

show that the disease-free equilibrium is globally asymptotically stable when R0 ≤ 1. On the other hand, 

if R0 > 1 and the endemic equilibrium is independent of x, then it is globally asymptotically stable. In 

particular, a universal bound is also obtained for solutions of (1.1) regardless of their initial data. Finally, 

Section 4 presents numerical simulations that simulate the global asymptotic stabilities of disease-free and 

endemic equilibria under the condition that all coefficients are constants.

For future reference, we adopt all notations used in [53]. Given any two functions u and v, u � v means 

that u ≥ v and u and v are not identical. Also, u � v indicates −u � −v, and u ∨ v = max{u, v}, 

u ∧ v = min{u, v}, u+ = u ∨ 0, u− = u ∧ 0. Given any w ∈ L1(Ω), the average of w over Ω is defined by 

w̄ =
ffl

Ω
wdx. Given u, v ∈ L2(Ω), the inner product of u, v is defined by 〈u, v〉 =

´

Ω
uvdx.

Let μ ∈ R
+ \ N and s = μ − [μ], where [μ] denotes the integer part of μ. Let Hμ(Ω) be the Sobolev-

Slobodeckii space defined by

Hμ(Ω) =

{

∂|α|w ∈ L2(Ω), 0 ≤ |α| ≤ [μ]
∣

∣ [w]2Hμ :=

[μ]
∑

|α|=0

ˆ

Ω

ˆ

Ω

|∂|α|w(x) − ∂|α|w(y)|2
|x − y|N+2s

dydx < ∞
}

.

If μ > 3
2 , set Hμ

N (Ω) =
{

w ∈ Hμ(Ω) | ∂w
∂n

|∂Ω= 0
}

, where n is the outward unit normal on ∂Ω. Throughout 

this paper, we let 〈(−ΔN )s· | ·〉 : Hs(Ω) × Hs(Ω) → R be the bilinear form associated with (−ΔN )s, which 

is defined by

〈(−ΔN )su | v〉 =

ˆ

Ω

ˆ

Ω

Ks,N (x, y)[u(x) − u(y)][v(x) − v(y)]dydx u, v ∈ Hs(Ω), (1.2)

where Ks,N (x, y) is given by

Ks,N (x, y) =
1

2|Γ(−s)|

∞̂

0

GN (t, x, y)

t1+s
dt, (1.3)

and GN (t, x, y) is the heat kernel of eΔN t |t>0. As shown in Caffarelli and Stinga [11], Ks,N is symmetric 

and enjoys two-sided Gaussian estimates, and there exist two positive constants c∗(s, Ω) and c∗(s, Ω) such 

that

c∗(s, Ω)

|x − y|N+2s
≤ Ks,N (x, y) ≤ c∗(s, Ω)

|x − y|N+2s
, x �= y. (1.4)
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2. Existence of endemic equilibria

In this section, we consider the existence of endemic equilibria of (1.1). That is, the existence of 

component-wise positive solutions to

⎧

⎪

⎨

⎪

⎩

(−duΔN )s1u = a(x)u − b(x)u2 − p(x)uv

u + v
+ q(x)v, x ∈ Ω,

(−dvΔN )s2v =
p(x)uv

u + v
− q(x)v, x ∈ Ω.

(2.1)

The following are the assumptions that will be used throughout the rest of the paper.

(H1) a, b, p, q ∈ Cα(Ω) for some 0 < α < 1; b > 0, q > 0, and p � 0 for all x ∈ Ω.

(H2) a ≥ 0 if a is a non-constant function, or a > 0 if a is a constant.

2.1. Basic reproduction number

From now on, we set

R0 = sup
w∈Hs(Ω)

{ 〈p(x)w, w〉
〈(−dΔN )sw | w〉 + 〈q(x)w, w〉

}

. (2.2)

R0 is referred to as the basic reproduction number, which is defined in the manner similar to that of Allen 

et al. [1], where 〈(−dΔN )sw | w〉 = ds〈(−ΔN )sw | w〉, and 〈(−ΔN )sw | w〉 is defined in (1.2). It can be 

shown that R0 is well defined, which is confirmed in the next proposition.

Proposition 2.1. Let R0 be defined in (2.2). Then p̄
q̄

≤ R0 ≤ supx∈Ω
p(x)
q(x) . In addition, let λp,q =

infw∈Hs(Ω),‖w‖L2(Ω)=1
〈(−dΔN )sw | w〉 + 〈[q(x) − p(x)]w, w〉, that is, λp,q is the principal eigenvalue of 

(−dΔN )s + [q(x) − p(x)]I. Then

signλp,q = sign

(

1

R0
− 1

)

. (2.3)

Proof. We start to show the first part with an observation similar to Yang et al. [49] that

〈p(x)w, w〉
〈(−dΔN )sw | w〉 + 〈q(x)w, w〉 ≤ sup

x∈Ω

p(x)

q(x)

〈q(x)w, w〉
〈(−dΔN )sw | w〉 + 〈q(x)w, w〉

≤ sup
x∈Ω

p(x)

q(x)
.

Meanwhile, by choosing w = 1 in (2.2), we find that R0 ≥ p̄
q̄
. Thus, p̄

q̄
≤ R0 ≤ supx∈Ω

p
q
. Let I : Hs(Ω) → R

be given by I(w) = 〈(−dΔN )sw | w〉 + 〈q(x)w, w〉, w ∈ Hs(Ω). Thanks to the fact that I is weakly lower 

semi-continuous, by the standard arguments (see the proof of Theorem 2.4 of [12]), it can be shown that 

R0 is attained by a maximizer w∗ ∈ Hs(Ω). In particular, it is not difficult to see that w∗ does not change 

sign. Indeed, given any w ∈ Hs(Ω), we can see that

〈(−ΔN )s|w| | |w|〉 =

¨

Ω×Ω

KN,s(x, y)(w+(x) − w+(y) + w−(x) − w−(y))2dydx

=

¨

Ω×Ω

KN,s(x, y)(w+(x) − w+(y))2dydx
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+

¨

Ω×Ω

KN,s(x, y)(w−(x) − w−(y))2dydx

−2

¨

Ω×Ω

KN,s(x, y)w+(x)w−(y)dydx

≤
¨

Ω×Ω

KN,s(x, y)(w(x) − w(y))2dydx,

where KN,s(x, y) is given in (1.2). Note that 〈(−ΔN )s|w| | |w|〉 < 〈(−ΔN )sw | w〉 if both {x | w > 0}
and {x | w < 0} have positive measures, it then follows that w∗ does not change sign. Now, to show (2.3), 

let φ be a positive eigenfunction corresponding to λp,q, and w∗ be a positive maximizer associated with 

R0, respectively. Due to the Hölder continuity of p and q, Theorem 1.4 of Caffarelli and Stinga [11] and 

Lemma A.4 imply that w∗ > 0 and φ > 0 on Ω. Then, similar to [1], we have

〈(−dΔN )sφ | w∗〉 + 〈[q(x) − p(x)]φ, w∗〉 = λp,q〈φ, w∗〉

and

〈(−dΔN )sw∗ | φ〉 + 〈[q(x) − p(x)]w∗, φ〉 =

(

1

R0
− 1

)

〈p(x)w∗, φ〉.

Subtracting these two equations yields that

λp,q

ˆ

Ω

φw∗dx =

(

1

R0
− 1

)
ˆ

Ω

p(x)w∗φdx.

Namely,

signλp,q = sign

(

1

R0
− 1

)

.

The proof is completed. �

Proposition 2.1 together with Proposition A.6 immediately yield the following.

Proposition 2.2. Assume that (H1) is satisfied, then

(i) R0 > 1 if q̄ ≤ p̄ and q − p is a non-constant function, or q̄ < p̄ and q − p is a constant;

(ii) R0 = 1 if q = p;

(iii) R0 < 1 if q � p;

(iv) If q̄ > p̄ and infx∈Ω[q(x) − p(x)] < 0, then there exists d0 > 0 such that R0 > 1 when d < d0 whereas 

R0 ≤ 1 if d ≥ d0.

The next proposition deals with the dependence of R0 on p, q, d, and s.

Proposition 2.3. Assume that (H1) is satisfied, then

(i) limd→0+

∣

∣R0 − supx∈Ω
p(x)
q(x)

∣

∣ = 0. Moreover, R0 → supx∈Ω
p(x)
q(x) uniformly in s for s ∈ [η, 1) as d → 0+, 

where 0 < η < 1;

(ii) limd→∞
∣

∣R0 − p̄
q̄

∣

∣ = 0;



G. Zhao, S. Ruan / J. Math. Pures Appl. 173 (2023) 243–277 249

(iii) If dλ2 ≥ 1, then R0 is non-increasing in s, where λ2 is the second least eigenvalue of −ΔN in Ω.

Proof. Given any w ∈ Hs(Ω) with w �= 0, it follows from the definition of R0 that

ˆ

Ω

[p(x) − R0q(x)]w2dx ≤ R0〈(−dΔN )sw | w〉.

Let m = supx∈Ω
p(x)
q(x) and x∗ ∈ Ω be such that p(x∗)

q(x∗) = supx∈Ω
p(x)
q(x) . Also, let xr be defined as that in 

Proposition A.6. That is, xr = x∗ if x∗ ∈ Ω, whereas xr = x∗ + rn+(x∗) if x∗ ∈ ∂Ω, where n+(x∗)

is the inward unit normal to Ω at x∗ ∈ ∂Ω, and r > 0 is chosen such that Br(xr) ⊂ Ω. Let again 

ϕr(x) = (r2 − |x − xr|2)s
+. As shown in Proposition 2.1 that R0 ≤ m, we then have

m〈(−dΔN )sϕr | ϕr〉 ≥
ˆ

Br(xr)

[

(m − R0)q(x) +

(

p(x)

q(x)
− m

)

q(x)

]

ϕ2
rdx

≥ (m − R0)q(x∗)

ˆ

Br(xr)

ϕ2
rdx +

ˆ

Br(xr)

(m − R0)[q(x) − q(x∗)]ϕ2
rdx

+

ˆ

Br(xr)

[(

p(x)

q(x)
− m

)

q(x)

]

ϕ2
rdx.

Note that 〈(−dΔN )sϕr | ϕr〉/〈ϕr, ϕr〉 ≤ CN dsr−2s, where CN > 0 is the constant given in the proof of 

Proposition A.6. Dividing both sides of the above inequality by q(x∗)〈ϕr, ϕr〉 gives

m − R0 ≤ 1

q(x∗)

{

mCN

(

d

r2

)s

+ 2m sup
x∈Br(xr)

|q(x) − q(x∗)| + sup
x∈Ω

q(x) sup
x∈Br(xr)

|(p/q)(x) − m|
}

.

Fix 0 < η < 1. Thanks to the continuity of q and p/q, given ε > 0, r and d can be chosen sufficiently small 

such that m − R0 ≤ ε for all s ∈ [η, 1), this together the fact that R0 ≤ m confirm (i).

(ii) Let wd be the maximizer of (2.2) with ‖wd‖L2(Ω) = 1. Then

(−ΔN )swd =
q(x)wd

ds
+

p(x)wd

dsR0
.

By arguing along the same lines as those in Proposition A.6, we reach the conclusion that R0 → p̄
q̄

as 

d → ∞.

(iii) Instead of R0, we temporarily denote the basic reproduction number by R0(s) to emphasize its 

dependence on s. Given that s1 < s2, let ws2
∈ Hs2(Ω) be a maximizer of (2.2) for s = s2. Clearly, 

ws2
∈ Hs1(Ω) as s2 > s1. Then, from the condition that dλ2 ≥ 1, it follows that

〈(−dΔN )s1ws2
| ws2

〉 =

∞
∑

i=2

(dλi)
s1 |ws2,i|2 ≤

∞
∑

i=2

(dλi)
s2 |ws2,i|2 = 〈(−dΔN )s2ws2

| ws2
〉,

where ws2,i = 〈ws2
, ϕi〉 and (λi, ϕi)

∞
i=1 are eigen-pairs of −ΔN . The inequality is strict if dλ2 > 1. Thus,

R0(s1) ≥ 〈p(x)ws2
, ws2

〉
〈(−dΔN )s1ws2

| ws2
〉 + 〈q(x)ws2

, ws2
〉 ≥ R0(s2).

This completes the proof. �
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2.2. Existence of endemic equilibria

Now we study the existence of endemic equilibria.

Proposition 2.4. Let (u, v) ∈ Hs1(Ω) × Hs2(Ω) be any non-negative solution of (2.1). Then

ˆ

Ω

u2dx ≤ 4

infx∈Ω b(x)

ˆ

Ω

a2(x)

b(x)
dx,

ˆ

Ω

v2dx ≤
(

supx∈Ω p(x)

infx∈Ω q(x)

)2 ˆ

Ω

u2dx.

For any θ ≥ 1,

‖u‖Lθ(Ω) + ‖v‖Lθ(Ω) ≤ C,

where C > 0 is a constant depending on θ, a, b, p, and q only.

Proof. Note that

ˆ

Ω

a(x)udx −
ˆ

Ω

b(x)u2dx = 〈(−duΔN )s1u | 1〉 + 〈(−dvΔN )s2v | 1〉 = 0.

It immediately follows from the Hölder inequality and the Young inequality that

ˆ

Ω

b(x)u2dx ≤ 1

2

ˆ

Ω

b(x)u2dx + 2

ˆ

Ω

a2(x)

b(x)
dx.

This confirms the first inequality.

Also, in conjunction with the facts that | u
u+v

|∞ ≤ 1 and | v
u+v

|∞ ≤ 1, using the Hölder inequality and 

Young inequality again gives rise to

ˆ

Ω

q(x)v2dx + 〈(−dΔN )sv | v〉 ≤
ˆ

Ω

p(x)uvdx ≤ 1

2

ˆ

Ω

q(x)v2dx + 2

ˆ

Ω

p2(x)

q(x)
u2dx.

Hence, the second inequality follows.

Given any k ≥ 1, in light of Lemma A.2 of Brasco and Parini [6], we have

4ds1
u c∗k

(k + 1)2
[u

k+1
2 ]2Hs1 ≤ 〈(−duΔN )s1u | uk〉, 4ds2

v c∗k

(k + 1)2
[v

k+1
2 ]2Hs2 ≤ 〈(−dvΔN )s1v | vk〉,

where c∗ > 0 is the constant given in (1.4). Then, as in Li et al. [26], multiplying the first and second 

equations of (2.1) by uk and vk, respectively, yields that

ˆ

Ω

b(x)uk+2dx ≤
ˆ

Ω

|a(x)|uk+1dx +

ˆ

Ω

q(x)vukdx

≤
ˆ

Ω

(

|a(x)| +
k

k + 1

)

uk+1dx +
1

k + 1

ˆ

Ω

qk+1(x)vk+1dx
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and

ˆ

Ω

q(x)vk+1dx ≤ 1

2

ˆ

Ω

q(x)vk+1dx + k

√

2k

k + 1

ˆ

Ω

pk+1(x)

qk(x)
ukdx.

Therefore,

ˆ

Ω

uk+1dx ≤ C(a, b, q, k)

[
ˆ

Ω

ukdx +

ˆ

Ω

vkdx

]

,

ˆ

Ω

vk+1dx ≤ C(p, q, k)

ˆ

Ω

ukdx.

Given any θ > 2, by virtue of the inequalities given above, the implementation of finite iterations yields 

‖u‖Lθ(Ω) + ‖v‖Lθ(Ω) ≤ C for C > 0 depending on a, b, p, q and θ only. The proof is completed. �

In the following we always let R0 be defined in (2.2) with s = s2

Proposition 2.5. Assume that (H1) is fulfilled and R0 ≤ 1. Then (2.1) has no positive endemic equilibria. 

Suppose further that (H2) is satisfied, then (2.1) possesses only one semi-positive solution (u1, 0), which is 

the disease-free equilibrium, where u1 is the unique positive solution to

(−duΔN )s1w = (a(x) − b(x)w)w. (2.4)

Proof. Again, let λv be the principal eigenvalue of (−dvΔN )s2 +[q(x) −p(x)]I. Since R0 ≤ 1, Proposition 2.1

shows that λv ≥ 0. Assume to the contrary that (2.1) has a positive endemic equilibrium (u, v). Then 

Propositions A.3, A.2 and Lemma A.4 imply that u > 0 and v > 0 on Ω. Let ψ be a positive eigenfunction 

corresponding to λv, Lemma A.4 again implies that ψ > 0 on Ω. Observe that

〈(−dvΔN )s2v | ψ〉 +

ˆ

Ω

[

q(x) − p(x)u

u + v

]

vψdx = 0

and

〈(−dvΔN )s2ψ | v〉 +

ˆ

Ω

[q(x) − p(x)]vψdx = λv

ˆ

Ω

vψdx.

By subtracting the second equation from the first one, we find that

ˆ

Ω

p(x)

[

1 − u

u + v

]

vψdx ≤ 0.

Note that supx∈Ω
u

u+v
< 1 as u > 0 and v > 0 on Ω. Hence, we have reached a contradiction. The 

contradiction implies that (2.1) has no positive endemic equilibria. Additionally, with (H2), the existence 

of the disease-free equilibrium is an immediate consequence of Lemma A.8. The proof is completed. �

The next theorem is the main result of this section that gives sufficient conditions for the existence of an 

endemic equilibrium.

Theorem 2.6. Suppose that (H1) is satisfied and R0 > 1. Assume that λdu,a−p < 0, where λdu,a−p is the 

principal eigenvalue of (−duΔN )s1 − [a(x) − p(x)]I. Then (2.1) has at least a positive endemic steady state.
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Proof. We will obtain the existence of a positive endemic steady state by the homotopy invariance of 

Leray-Schauder degree. To this end, the following auxiliary system is considered:

⎧

⎪

⎨

⎪

⎩

(−duΔN )s1u = [a(x) − p(x) − b(x)u]u,

(−dvΔN )s2v =

[

p(x)u

u + v
− q(x)

]

v.
(2.5)

Notice that (2.5) is a weakly coupled system, it is relatively easier to establish the existence of positive 

endemic steady states of (2.5). Since λdu,a−p < 0, it follows from Lemma A.8 that the first equation of 

(2.5) has a unique positive solution ul > 0 on Ω. Set l0 = − infx∈Ω ul

2 . Now consider the existence of positive 

solutions to

(−dvΔN )s2v = vh(x, ul, v), h(x, u, v) =
p(x)u(x)

u(x) + v
− q(x)

Note that h(x, ul, ·) is differentiable in (l0, ∞) and h(x, ul, 0) = p(x) − q(x). Since R0 > 1, (2.3) implies that 

λdv,p−q < 0, where λdv,p−q is the principal eigenvalue of (−dvΔN )s2 − [p(x) − q(x)]I. Again, Lemma A.8

shows that the equation has a unique positive solution vl. Namely, (2.5) has a unique positive endemic 

steady state (ul, vl). Clearly, ul > 0, vl > 0 on Ω.

Set X = C(Ω) × C(Ω), we next consider the spectrum of the linearization of (2.5) at (ul, vl), which is 

the linear operator L : dom(L ) ⊂ X → X given by

L (u, v) =

⎛

⎝

(−duΔN )s1u + [2b(x)ul − a(x) − p(x)]u 0

− p(x)v2
l

(ul+vl)2 u (−dvΔN )s2v + [q(x) − p(x)u2
l

(ul+vl)2 ]v

⎞

⎠ .

Since (−dΔN )s has compact resolvent, L is a Fredholm operator of index zero. In particular, it is not 

difficult to see that

σ(L ) \ {+∞} = σp(L ) = σp((−duΔN )s1 + c11(x)I)
⋃

σp((−dvΔN )s2 + c22(x)I),

where σp(·) denotes the point spectrum of an operator, and c11(x) = 2b(x)ul − a(x) − p(x), c22(x) =

q(x) − p(x)u2
l

(ul+vl)2 . Let λ1 be the principal eigenvalue of (−duΔN )s1+c11(x)I and λ2 be the principal eigenvalue of 

(−dvΔN )s2 +c22(x)I. Note that 0 is the principal eigenvalue of (−dvΔN )s2 +[q(x) − p(x)ul

ul+vl
]I as (−dvΔN )s2vl+

[q(x) − p(x)ul

ul+vl
]vl = 0. Since c22(x) � [q(x) − p(x)ul

ul+vl
], it follows that λ2 > 0. For similar reasons, λ1 > 0. Thus,

s(L ) := inf{Reλ | λ ∈ σ(L )} > 0.

Next write

f l(x, u) = [a(x) − p(x) − b(x)u]u, fr(x, u, v) = [a(x) − b(x)u]u + q(x)v

and

f c(x, u, v) =

[

a(x) − b(x)u − p(x)v

u + v

]

u + q(x)v, g(x, u, v) =

[

p(x)u

u + v
− q(x)

]

v.

Obviously, for all x ∈ Ω,
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f l(x, u) � f c(x, u, v) � fr(x, u, v)

provided that u > 0 and v > 0 on Ω.

We now select sub- and super-solutions to form the domain for the needed Leray-Schauder degree. Chose 

0 < ε < 1 and set ũl = εul. Then we have (−duΔN )s1 ũl � f l(x, ̃ul). Accordingly, let ṽl be the positive 

solution to (−dvΔN )s2v = g(x, ̃ul, v). As shown above, the existence and uniqueness are a consequence of 

Lemma A.8. That is, (−dvΔN )s2 ṽl = g(x, ̃ul, ̃vl). On the one hand, since ul > ũl on Ω, and ∂ug(x, u, vl) � 0, 

we have (−dvΔN )s2vl = g(x, ul, vl) � g(x, ̃ul, vl). On the other hand, since g(x, ̃ul, v) = vh(x, ̃ul, v) and 

∂vh(x, ̃ul, v) � 0, from Lemma A.4 and Proposition A.7, it follows that vl > ṽl on Ω. Later, (ũl, ̃vl) serves as 

a lower bound. To obtain an upper bound, let C > 0 be such a number that supx∈Ω p(x) ≤ C infx∈Ω q(x). 

Also, let m > 1 and set ur = m, vr = Cm. Simple calculation shows that g(x, ur, vr) = Cm[ p(x)
C+1 − q(x)] < 0

on Ω. In addition, let m be so chosen that fr(x, ur, vr) = a(x)m − b(x)m2 + q(x)Cm � 0 on Ω. Apparently, 

ur and vr are independent of du, dv, and si (i = 1, 2), and ũl < ul < ur, ṽl < vl < vr on Ω. Now it is 

straightforward to verify that

{

(−duΔN )s1 ũl � f l(x, ũl) � f c(x, ũl, v), (x, v) ∈ Ω × [ṽl, vr],

(−dvΔN )s2 ṽl ≤ g(x, u, ṽl), (x, u) ∈ Ω × [ũl, ur],

and

{

(−duΔN )s1ur � fr(x, ur, v) � f c(x, ur, v), (x, v) ∈ Ω × [ṽl, vr],

(−dvΔN )s2vr > g(x, u, vr), (x, u) ∈ Ω × [ũl, ur].

Next set

O =
{

(u, v) ∈ C(Ω) × C(Ω) | ũl < u < ur, ṽl < v < vr, x ∈ Ω
}

,

and let Ft : [0, 1] × O → C(Ω) × C(Ω) be defined by

Ft(u, v) =

⎛

⎝

(−duΔN )s1 + I)−1[u + (1 − t)f l(x, u) + tf c(x, u, v)]

(−dvΔN )s2 + I)−1[v + g(x, u, v)]

⎞

⎠ .

Clearly, Ft is compact for t ∈ [0, 1]. As indicated by the above calculation, (u, v) �= Ft(u, v) on ∂O for any 

t ∈ [0, 1]. Thus, deg(I − Ft, O, 0) is well defined and is independent of t. Since [I − F0](ul, vl) = 0 and 

s(L ) > 0, it follows from Nirenberg [34] that deg(I − F0, O, 0) = 1. Thus, deg(I − F1, O, 0) = 1 and F1

has a fixed point in O, which is a positive endemic steady state of (2.1). Thanks to (H1), Proposition A.2

shows that u ∈ C2s1+2α(Ω) with s1 < 1
2 and 2s1 + 2α < 1 or u ∈ C2s1+2α

N (Ω) with s1 ≥ 1
2 and 2s1 + 2α < 2. 

Likewise, v ∈ C2s2+2α(Ω) with s2 < 1
2 and 2s2 + 2α < 1 or v ∈ C2s2+2α

N (Ω) with s2 ≥ 1
2 and 2s2 + 2α < 2. 

The proof is completed. �

Corollary 2.7. Assume that q ≤ p̄ ≤ ā. Suppose further that q < p̄ if q − p is a constant, and p < ā if p − a

is a constant. Then, for any 0 < si < 1 (i = 1, 2), du > 0, and dv > 0, (2.1) has at least a positive endemic 

steady state.

Proof. The assumptions and Proposition A.6 imply that λdu,a−p < 0 for any 0 < s1 < 1 and du > 0. In 

addition, Proposition 2.2 shows that R0 > 1 for any dv > 0 and 0 < s2 < 1. Thus, the desired conclusion 

follows from Theorem 2.6. �
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2.3. Influence of diffusion rates

We next analyze the impacts of du and dv on the spatial profiles of the positive endemic steady state 

established in Theorem 2.6. We begin with the case du → 0.

Theorem 2.8. Suppose that (H1) is satisfied, R0 > 1, and infx∈Ω[a(x) − p(x)] > 0. Then (2.1) has a positive 

endemic steady state (u, v) for any 0 < s1 < 1 and du > 0. Moreover,

lim
du→0+

‖u − u0‖C(Ω) = 0, lim
du→0+

‖v − v0‖C(Ω) = 0

for some (u0, v0) ∈ C(Ω) × C(Ω), where u0 > 0, v0 > 0 on Ω, and (u0, v0) solves

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[a(x) − b(x)u0]u0 − p(x)u0v0

u0 + v0
+ q(x)v0 = 0,

(−dvΔN )s2v0 =

[

p(x)u0

u0 + v0
− q(x)

]

v0.
(2.6)

Proof. Under the condition that infx∈Ω[a(x) − p(x)] > 0, Proposition A.6 shows that λdu,a−p < 0 for any 

0 < s1 < 1 and du > 0. Hence, it follows from Theorem 2.6 that (2.1) has a positive endemic steady state 

for any 0 < s1 < 1 and du > 0.

Now let ul be the unique positive solution of (−duΔN )s1w = (a(x) − p(x) − b(x)w)w and let x0 ∈ Ω be 

such that ul(x0) = infx∈Ω ul. Then Proposition A.5 implies that

[a(x0) − p(x0) − b(x0)ul(x0)]ul(x0) ≤ 0.

Since ul(x0) > 0, ul(x0) ≥ a(x0)−p(x0)
b(x0) ≥ infx∈Ω(a−p)(x)

supx∈Ω b(x) := l0 > 0. Subsequently, it follows from Proposi-

tion A.7 that u ≥ ul ≥ l0 on Ω. Next let vl be the unique positive solution of

(−dvΔN )s2w =

[

p(x)l0
l0 + w

− q(x)

]

w.

Then, Lemma A.4 implies that infx∈Ω vl ≥ C supx∈Ω vl, where C > 0 is a constant depending on p, q, dv > 0, 

and Ω only. Hence, infx∈Ω vl := k0 > 0. Since u ≥ l0, we have

(−dvΔN )s2v ≥
[

p(x)l0
l0 + v

− q(x)

]

v.

Hence, it follows again from Proposition A.7 that v ≥ vl ≥ k0 on Ω. On the other hand, as a consequence of 

Propositions A.3, 2.4 and Theorem 1.5 of Caffarelli and Stinga [11] (or see Grubb [22]), there exist constants 

0 < γ < 1 and C > 0 such that ‖v‖Hs2 (Ω) + ‖v‖Cγ(Ω) ≤ C. Here C > 0 depends on dv, s2, p, and q, and 

‖v‖L2(Ω). Thus, upon the extraction of a subsequence of du, we have

lim
du→0

‖v − v0‖Cμ(Ω) = 0, v
w−→ v0 in Hs2(Ω)

for any 0 < μ < γ, v0 ∈ Cμ(Ω) ∩ Hs2(Ω).

We then turn to

(−duΔN )s1u =

[

a(x) − b(x)u − p(x)u

u + v
+ q(x)

v

u

]

u.
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Set

g(x, v, u) = u, h(x, v, u) = a(x) − b(x)u − p(x)u

u + v
+ q(x)

v

u
.

To complete the proof, we just need to show that h(x, ·, ·) satisfies the assumptions of Corollary A.9. Fix 

x ∈ Ω and consider

h(x, v0(x), τ) = a(x) − b(x)τ − p(x)τ

τ + v0(x)
+ q(x)

v0(x)

τ
.

Clearly, for each fixed x ∈ Ω, as a function of τ , h is defined in (0, ∞). In particular, h → ∞ as τ → 0+, and 

h → −∞ as τ → ∞. Thus, h(x, v0(x), τ) = 0 has at least one root τ(x) > 0 in (0, ∞). Simple calculation 

shows that

hτ (x, v0(x), τ) = −b(x) − p(x) − p(x)v0(x)

(v0(x) + τ)2
− q(x)v0(x)

τ
< 0, τ ∈ (0, ∞).

Hence, τ(x) is the only root in (0, ∞). The implicit function theorem implies that τ(x) ∈ C(Ω).

We next show that τ(x) is bounded from below by a positive number. Note that

h(x, v(x), τ) ≥ a(x) − b(x)τ − p(x) +
q(x)v0(x)

τ
=

[a(x) − p(x)]τ − b(x)τ2 + q(x)v0(x)

τ
,

which implies that

a(x) − p(x) +
√

[a(x) − p(x)]2 + 4b(x)q(x)v0(x)

2b(x)
:= r2(x) ≤ τ(x).

The assumption that infx∈Ω[a(x) − p(x)] > 0 implies that infx∈Ω r2(x) := r∗ > 0. Set η1 = 0 and η3 = 0. 

Obviously, h(x, ·, ·) ∈ Cα,1(Ω × (η1, ∞) × (η3, ∞)) and hτ (x, v0(x), τ) < 0 for all x ∈ Ω. Rename τ(x) by 

u0(x). That is, (u0, v0) solves the first equation of (2.6). On the other hand, set η2 = −1. Since g(x, v, u) = u, 

g ∈ Cα,1(Ω × (η1, ∞) × (η2, ∞)). Also, ∂3g = 1 > 0. Thus, Corollary A.9 yields that

lim
du→0+

‖u − u0‖C(Ω) = 0.

Returning to v, since u ≥ l0 > 0 and v ≥ k0 > 0 on Ω, u
u+v

→ u0

u0+v0
in C(Ω) as du → 0+. Thus,

lim
du→0+

ˆ

Ω

∣

∣

∣

∣

v +
p(x)uv

u + v
− q(x)v − v0 − p(x)u0v0

u0 + v0
+ q(x)v0

∣

∣

∣

∣

2

dx = 0.

Then, in view of Proposition A.2, the continuity of (−dvΔN )s2 + I)−1 yields

lim
du→0+

∥

∥

∥

∥

v − (−dvΔN )s2 + I)−1

[

v0 +
p(x)u0v0

u0 + v0
− q(x)v0

]∥

∥

∥

∥

Hs2 (Ω)

= 0,

and it follows from the definition of (−dvΔN )s2 + I)−1 that

〈(−dvΔN )s2v0 | ψ〉 =

ˆ

Ω

[

p(x)u0

u0 + v0
− q(x)

]

v0ψdx
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for any ψ ∈ Hs2(Ω). It is not difficult to see that u0 is Hölder continuous. Hence, Theorem 1.4 of [11] shows 

that v0 ∈ C2s2+2θ(Ω) with s2 < 1
2 and 2s2 + 2θ < 1 or v0 ∈ C2s2+2θ

N (Ω) with s2 ≥ 1
2 and 2s2 + 2θ < 2 for 

some 0 < θ < 1, and (u0, v0) solves the second equation of (2.6). The proof is completed. �

The next theorem is concerned with the spatial profiles of the positive endemic steady state (u, v) of 

(2.1) as dv → 0.

Theorem 2.9. Suppose that supx∈Ω[p(x) − q(x)] > 0 and λdu,a−p < 0. Assume that (H1) is satisfied. Then 

there exists d∗ > 0 such that (2.1) has a positive endemic steady state (u, v) for any 0 < dv ≤ d∗. Moreover,

lim
dv→0+

‖u − u0‖C(Ω) = 0, lim
dv→0+

‖v − v+
0 ‖C(Ω) = 0

for some (u0, v0) ∈ C(Ω) × C(Ω), where u0 > 0 on Ω, v+
0 = v0 ∨ 0 := max{v0(x), 0}, and (u0, v0) solves

⎧

⎨

⎩

(−duΔN )s1u0 = [a(x) − b(x)u0]u0 − p(x)u0v0

u0 + v0
+ q(x)v0,

[p(x) − q(x)]u0(x) = q(x)v0(x).
(2.7)

Proof. Under the condition that supx∈Ω[p(x) − q(x)] > 0, Proposition 2.2 implies that there exists d0 > 0

such that R0 > 1 for all 0 < d < d0, where d0 may depend on s2. Fix d∗ < d0, then R0 > 1 for any 

0 < d ≤ d∗. Thus, in terms of Theorem 2.6, (2.1) has a positive endemic steady state (u, v) for any 

0 < dv ≤ d∗ as long as du and si (i = 1, 2) are fixed.

Let ul be the positive solution given in the proof of Theorem 2.8. Since du > 0 and s1 are fixed, 

Lemma A.4 shows that infx∈Ω ul ≥ C supx∈Ω ul, where C > 0 depends on du, s1, a, and p only. Hence, 

l0 = infx∈Ω ul > 0. It then follows from Proposition A.7 that u ≥ ul ≥ l0 > 0. Now chose θ > N
2s2

, then in 

view of Proposition 2.4, we see that ‖v‖Lθ(Ω) ≤ Cθ for some Cθ > 0 depending on a, b, p, q and θ only. Also 

note that

〈(−duΔN )s1u | ψ〉 ≤ 〈a(x)u, ψ〉 + 〈q(x)v, ψ〉

for any ψ ∈ Hs1(Ω) satisfying ψ ≥ 0. Consequently, Proposition A.3 and Theorem 1.5 of Caffarelli and 

Stinga [11] imply that ‖u‖Hs1 (Ω) + ‖u‖Cγ(Ω) ≤ C for some 0 < γ < 1 and C > 0 depending on du, s1, 

|a|∞, |q|∞, and ‖v‖Lθ(Ω). By extracting a subsequence of dv if necessary, we obtain

lim
dv→0+

‖u − u0‖Cμ(Ω) = 0, u
w−→ u0 in Hs1(Ω)

for any 0 < μ < γ, u0 ∈ Hs1(Ω) ∩ Cμ(Ω). We next turn to v. Note that

(−dvΔN )s2v =

(

v

u + v

)

[

p(x)u − q(x)u − q(x)v
]

and set

g(x, u, v) =
v

u + v
, h(x, u, v) = [p(x) − q(x)]u − q(x)v.

As done in Theorem 2.8, we proceed to show that g and h satisfy the assumptions of Corollary A.9. Clearly, 

h(x, u0(x), v) = 0 has a unique root v0(x) = [p(x)−q(x)]u0(x)
q(x) and v0 ∈ Cβ(Ω) for some 0 < β < 1. Let η1 = l0

2 , 

η2 = − l0

4 , and η3 = −2|v0|∞. Then
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g ∈ Cα,1(Ω × (η1, ∞) × (η2, ∞)), h ∈ Cα,1(Ω × (η1, ∞) × (η3, ∞))

and

g(x, ·, 0) = 0, θg(x, ·, τ) ≥ g(x, ·, θτ), ∂τ g(x, u, τ) =
u

(u + τ)2
> 0, ∂τ h(x, u, τ) = −q(x) < 0.

Here θ ≥ 1 and τ ≥ 0 are arbitrary. Note that v+
0 � 0 as supx∈Ω[p(x) − q(x)] > 0 and u0 ≥ l0. Thus, 

Corollary A.9 implies that

lim
dv→0+

‖v − v+
0 ‖C(Ω) = 0.

Now, by employing the same arguments used in the proof of Theorem 2.8, we infer that (u0, v0) solves the 

first equation of (2.7). This completes the proof. �

We next study the spatial profiles of the positive endemic steady state of (2.1) as either du → ∞ or 

dv → ∞.

Theorem 2.10. Suppose that (H1) is satisfied and R0 > 1. Assume that a > p. Then (2.1) has a positive 

endemic steady state (u, v) for any du > 0. Moreover,

lim
du→∞

‖u − u∞‖C(Ω) = 0, lim
du→∞

‖v − v∞‖C(Ω) = 0

for some (u∞, v∞) ∈ C(Ω) × C(Ω), where u∞ > 0 and v∞ > 0 on Ω, u∞ is a constant, and (u∞, v∞) solves

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ˆ

Ω

[a(x) − b(x)u∞]u∞dx =

ˆ

Ω

[

p(x)u∞
u∞ + v∞

− q(x)

]

v∞dx,

(−dvΔN )s2v∞ =

[

p(x)u∞
u∞ + v∞

− q(x)

]

v∞.

(2.8)

Proof. In terms of the condition that a > p, Proposition 2.2 implies that λdu,a−p < 0 for any du > 0. Thus, 

the existence of an endemic steady state is obtained via Theorem 2.6 for any du > 0. As dv > 0 and s2 are 

fixed, with the same reasoning shown in the proof of Theorem 2.8, we obtain

lim
du→∞

‖v − v∞‖Cμ(Ω) = 0, v
w−→ v∞ in Hs2(Ω)

for some 0 < μ < 1, v∞ ∈ Cμ(Ω) ∩ Hs2(Ω). Again, notice that

〈(−ΔN )s1u | ψ〉 ≤ d−s1
u 〈a(x)u, ψ〉 + d−s1

u 〈q(x)v, ψ〉

for any ψ ∈ Hs1(Ω) with ψ ≥ 0. Hence, it follows from Proposition A.3 and Theorem 1.4 of Caffarelli and 

Stinga [11] that

‖u‖C2s1+2θ(Ω) ≤ C,

where 0 < θ < 1 is such that 2s1 + 2θ < 1 if 0 < s1 < 1
2 , and 2s1 + 2θ < 2 if s1 ≥ 1

2 , C > 0 is independent 

of du as long as du ≥ 1. Then, as in the proof of Proposition A.6, we have u → u∞ in Ω as du → ∞, where 

u∞ ≥ 0 is a constant. In particular, by passing the limits in
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0 = 〈(−duΔN )s1u | 1〉 =

ˆ

Ω

[

a(x)u − b(x)u2 − p(x)uv

u + v
+ q(x)v

]

dx,

we infer that (u∞, v∞) solves the first equation of (2.8).

Next we show u∞ > 0 and v∞ > 0 on Ω. Let again ul be the positive solution of (−duΔN )s1w =

[a(x) − p(x) − b(x)w]w. In view of the fact that 〈(−duΔN )s1ul | 1
ul

〉 ≤ 0 (see the discussion at the end of 

Section 3 of [53]), we have

 

Ω

b(x)uldx ≥
 

Ω

[a(x) − p(x)]dx.

The inequality is strict unless ul is a constant. Since u ≥ ul on Ω and limdu→∞ ‖u − u∞‖C(Ω) = 0, we have 

u∞ ≥ ā−p̄

b̄
:= l0 > 0. In addition, it is clear that u ≥ l0

2 on Ω if du is sufficiently large. Now let vl be the 

positive solution of

(−dvΔN )s2w =
p(x)l0w

l0 + 2w
− q(x)w.

Since dv and s2 remain unchanged, as shown before, infx∈Ω vl := k0 > 0. Because u ≥ l0

2 once du is large 

enough, Proposition A.7 shows that v ≥ vl ≥ k0 on Ω if du is sufficiently large. As a result, v∞ ≥ k0 on 

Ω. Finally, the same arguments used in Theorem 2.8 imply that u∞ and v∞ satisfy the second equation of 

(2.8). The proof is completed. �

Theorem 2.11. Suppose that (H1) is satisfied and λdu,a−p < 0. Assume that p > q. Then (2.1) has a positive 

endemic steady state (u, v) for any dv > 0. Moreover,

lim
dv→∞

‖u − u∞‖C(Ω) = 0, lim
dv→∞

‖v − v∞‖C(Ω) = 0

for some (u∞, v∞) ∈ C(Ω) × C(Ω), where u∞ > 0 and v∞ > 0 on Ω, v∞ is a constant, and (u∞, v∞) solves

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(−duΔN )s1u∞ = [a(x) − b(x)u∞]u∞ − p(x)u∞v∞
u∞ + v∞

+ q(x)v∞,
ˆ

Ω

[

p(x)u∞
u∞ + v∞

− q(x)

]

v∞dx = 0.
(2.9)

Proof. The proof is mainly the same as that of Theorem 2.10. We present a sketch with a few key details. 

First, as in the proof of Theorem 2.10, we have u → u∞ and v → v∞ in Ω for some (u∞, v∞) ∈ C(Ω) ×C(Ω), 

where v∞ ≥ 0 is a constant. As du is fixed, we still have u ≥ ul ≥ l0 := infx∈Ω ul > 0, where ul is the 

positive solution given in the proof of Theorem 2.10. Hence u∞ ≥ l0 on Ω.

It remains to show that v∞ > 0. Similar to Ni [33], we consider w = v
‖v‖L2(Ω)

. Then

(−dvΔN )s2w =

[

p(x)u

u + v
− q(x)

]

wdx.

By using Proposition A.3 and Theorem 1.4 of [11] again, we obtain that w ∈ C2s2+2θ(Ω) for some 0 < θ < 1. 

Then, the same arguments show that w → w∞ in Ω for some positive constant w∞ as dv → ∞. In particular,

ˆ

Ω

[

p(x)u∞
u∞ + v∞

− q(x)

]

dx = 0.
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Note that v∞ > 0, otherwise, we would have p̄ = q̄, which contradicts the assumption. By passing the limits 

in (2.1), we find that (u∞, v∞) solves (2.9). The proof is completed. �

Corollary 2.12. Suppose that (H1) is satisfied and q̄ < p̄ < ā. Then (2.1) has a positive solution (u, v) for 

any du > 0, dv > 0, and 0 < si < 1 (i = 1, 2). Moreover,

u → ā

b̄
, v → ā

b̄
(R0 − 1)

uniformly in Ω as du → ∞ and dv → ∞.

Proof. The existence of a positive solution (u, v) of (2.1) is a special case of Corollary 2.7. The convergence 

of u and v and the positivity of the corresponding limits are established via the same arguments employed 

in the proofs of Theorems 2.10 and 2.11. Let u∞ and v∞ be the limits of u and v, respectively. Clearly, u∞
and v∞ are two positive constants. Then

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ˆ

Ω

[a(x) − b(x)u∞]u∞dx =

ˆ

Ω

[

p(x)u∞
u∞ + v∞

− q(x)

]

v∞dx,

ˆ

Ω

[

p(x)u∞
u∞ + v∞

− q(x)

]

v∞dx = 0.

Therefore u∞ = ā

b̄
and v∞ = ā

b̄
( p̄

q̄
− 1). Meanwhile, by Proposition 2.3, we have R0 → p̄

q̄
as dv → ∞. Thus, 

the desired conclusion follows. �

3. Stability of disease-free and endemic equilibria

This section focuses on the stability of the disease-free and endemic equilibria that were obtained in 

Section 3. We first consider time-dependent positive solutions to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ut + (−duΔN )s1u = a(x)u − b(x)u2 − p(x)uv

u + v
+ q(x)v, (t, x) ∈ R

+ × Ω;

vt + (−dvΔN )s2v =
p(x)uv

u + v
− q(x)v, (t, x) ∈ R

+ × Ω,

u(0, x) = u0(x), v(0, x) = v0(x),

(3.1)

where (u0, v0) ∈ X = C(Ω) × C(Ω). According to Yosida [50], −(−dΔN )s is the infinitesimal generator of 

an analytic semigroup given by

e−(−dΔN )stw =

∞̂

0

Ts,t(τ)edΔN τ wdτ,

where Ts,t ∈ L1(R+) are a family of non-negative functions satisfying

∞̂

0

Ts,t(τ)dτ = 1, t > 0; Ts,t ∗ Ts,η = Ts,t+η, t, η > 0, Ts,t(τ) = t− 1
s Ts,1(t− 1

s τ), t > 0.

The analytic semigroup generated by −(−dΔD)s on L2(Ω) and C0(Ω) can be defined in a similar way. 

The following lemma summarizes a few basic estimates of (−dΔN )σe−(−dΔN )st and (−dΔD)σe−(−dΔD)st in 

either L2(Ω) or C(Ω) (C0(Ω) for e−(−dΔD)st) as t → ∞, where 0 < σ ≤ s
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Lemma 3.1. Let e−(−dΔN )st and e−(−dΔD)st be the analytic semigroups generated by −(−dΔN )s and 

−(−dΔD)s in either L2(Ω) or C(Ω) (C0(Ω) for e−(−dΔD)st), respectively. Then

e−(−dΔN )stw =

∞̂

0

Ts,t(τ)edΔN τ wdτ, e−(−dΔD)stw =

∞̂

0

Ts,t(τ)edΔDτ wdτ.

Let 0 < σ, s < 1. Then, for any t > 0,

(i) ‖e−(−dΔN )stw‖L2(Ω) ≤ ‖w‖L2(Ω), ‖(−dΔN )σe−(−dΔN )stw‖L2(Ω) ≤ Ce− (dλ2)st

2 t− σ
s ‖w‖L2(Ω);

(ii) ‖e−(−dΔN )stw‖C(Ω) ≤ CΩ‖w‖C(Ω), ‖(−dΔN )σe−(−dΔN )stw‖C(Ω) ≤ Ct− σ
s ‖w‖C(Ω), where C > 0 are 

constants depending on σ, s, and Ω, CΩ > 0 depends on Ω;

(iii) ‖e−(−dΔD)stw‖L2(Ω) ≤ e−(dμ1)st‖w‖L2(Ω), ‖(−dΔD)σe−(−dΔD)stw‖L2(Ω) ≤ Ce− (dμ1)st

2 t− σ
s ‖w‖L2(Ω);

(iv) ‖e−(−dΔD)stw‖C(Ω) ≤ CΩe
−(dμ1)st

2 ‖w‖C(Ω), ‖(−dΔD)σe−(−dΔD)stw‖C(Ω) ≤ Ct− σ
s ‖w‖C(Ω), where 

μ1 > 0 is the principal eigenvalue of −ΔD in Ω, C > 0 are constants depending on σ, s, and Ω, 

CΩ > 0 depends on Ω.

Proof. We only prove (i) and (ii) as the proofs of (iii) and (iv) are parallel. To show (i), notice that 

edΔN τ w =
∑∞

k=1 e−dλkτ wkϕk, where (λk, ϕk)∞
k=1 are the eigen-pairs of −ΔN in L2(Ω), and wk = 〈w, ϕk〉. 

From the Laplace transforms of Ts,t |t>0 (see Sec. IX, 11 of Yosida [50]), it follows that

e−(−dΔN )stw =

∞
∑

k=1

∞̂

0

Ts,t(τ)e−dλkτ dτwkϕk =

∞
∑

k=1

e−(dλk)stwkϕk. (3.2)

Note that e−(−dΔN )st1 = 1. Moreover, the Parseval’s identity implies that

‖e−(−dΔN )stw‖L2(Ω) ≤ ‖w‖L2(Ω).

To prove the second estimate of (i), we use the fact that (−dΔN)σϕk = (dλk)σϕk. For the sake of simplicity, 

we assume without loss of generality that d = 1. Then, it follows from (3.2) that

(−ΔN )σe−(−ΔN )stw =
∞

∑

k=2

λσ
ke−λs

ktwkϕk

=
∞

∑

k=2

λσ
ke− λs

k
2 te− λs

k
2 twkϕk

= t− σ
s

∞
∑

k=2

(2τk)
σ
s e−τk e− λs

k
2 twkϕk,

where τk =
λs

kt

2 . Therefore, the Parseval’s identity implies that

‖(−ΔN )σe−(−ΔN )stw‖2
L2(Ω) ≤

(

t− σ
s e− λs

2t

2 )2
∞

∑

k=2

(2τk)
2σ
s e−2τk |wk|2.

Observe that supτ≥0(2τ)
2σ
s e−2τ = (2σ

s
)

2σ
s e− 2σ

s < ∞. Hence,



G. Zhao, S. Ruan / J. Math. Pures Appl. 173 (2023) 243–277 261

‖(−ΔN )σe−(−ΔN )stw‖L2(Ω) ≤ Ct− σ
s e− λs

2t

2 ‖w‖L2(Ω)

for some C > 0 depending on s, σ, and Ω.

To prove (ii), assume that w ∈ C(Ω). Write w = w̄ + (w − w̄). By results in Lunardi [28],

eΔN τ w = w̄ + eΔN τ (w − w̄), ‖eΔN τ (w − w̄)‖C(Ω) ≤ C ′e−(λ2−δ)τ ‖w − w̄‖C(Ω),

where 0 < δ < λ2 and C ′ > 0 depends on Ω. Thus, by the definition of e−(−ΔN )st,

‖e−(−ΔN )stw‖C(Ω) ≤
∞̂

0

Ts,t(τ)
(

‖w̄‖C(Ω) + ‖eΔN τ (w − w̄)‖C(Ω)

)

dτ

≤ |w̄| + C ′e−(λ2−δ)st‖w − w̄‖C(Ω)

≤ CΩ‖w‖C(Ω)

for some constant CΩ > 0. Furthermore, by [28] again, it holds that

‖(−ΔN )σeΔN τ w‖C(Ω) ≤ Cστ−σ‖w‖C(Ω), τ > 0,

where Cσ > 0 depends on σ and Ω. Consequently,

‖(−ΔN )σe−(−ΔN )stw‖C(Ω) ≤
∞̂

0

Ts,t(τ)‖(−ΔN )σeΔN τ w‖C(Ω)dτ

≤ Cσ‖w‖C(Ω)

∞̂

0

t− 1
s Ts,1(t− 1

s τ)

τσ
dτ

= Cσt− σ
s ‖w‖C(Ω)

∞̂

0

θ−σTs,1(θ)dθ

≤ Cσt− σ
s ‖w‖C(Ω)

[

1
ˆ

0

θ−σTs,1(θ)dθ +

∞̂

0

Ts,1(θ)dθ

]

≤ Ct− σ
s ‖w‖C(Ω)

for a positive constant C depending in σ, s and Ω. Here we used the fact that Ts,1(·) is bounded (see page 262 

of Yosida [50]). Let Y denote either L2(Ω) or C(Ω), when σ = s, it is worth mentioning that the estimate 

of ‖(−ΔN )se−(−ΔN )stw‖Y is already established in [50] where it was shown that

∥

∥

∥

∥

d

dt
e−(−ΔN )stw

∥

∥

∥

∥

Y

≤ Ct−1‖w‖Y ,

where C > 0 is a constant. The proof is completed. �

3.1. Global existence and point dissipativity

We first establish the global existence of solutions and point dissipativity of the semiflow generated by 

problem (3.1).
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Proposition 3.2. Suppose that (u0, v0) ∈ X with u0 ≥ 0 and v0 ≥ 0. Then there exists a unique global positive 

solution (u(t, u0, v0), v(t, u0, v0)) to (3.1) such that u(0, u0, v0)(x) = u0(x) and v(0, u0, v0)(x) = v0(x). 

Moreover, u(t, u0, v0) > 0 and v(t, u0, v0) > 0 on Ω for each t > 0 if u0 � 0 and v0 � 0. In particular,

lim sup
t→∞

|u(t, u0, v0)|∞ ≤ C, lim sup
t→∞

|v(t, u0, v0)|∞ ≤ C,

where C > 0 is a constant depending on du, dv, si (i = 1, 2), N , and a, p, q.

Proof. We shall first obtain the local existence and uniqueness of a positive solution with initial data (u0, v0). 

For the sake of clearance, write again

f l(x, u) = [a(x) − p(x) − b(x)u]u, fr(x, u, v) = [a(x) − b(x)u]u + q(x)v

and

f c(x, u, v) =

[

a(x) − b(x)u − p(x)v

u + v

]

u + q(x)v, g(x, u, v) =

[

p(x)u

u + v
− q(x)

]

v.

Notice that the (mild) solution of (3.1) with initial data (u0, v0) is given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u(t, x) = e−(−duΔN )s1 tu0(x) +

t
ˆ

0

e−(−duΔN )s1 (t−τ)f c(x, u, v)dτ,

v(t, x) = e−(−dvΔN )s2 tv0(x) +

t
ˆ

0

e−(−dvΔN )s2 (t−τ)g(x, u, v)dτ.

Thus, the local existence and uniqueness of (u(t, u0, v0), v(t, u0, v0)) follow from the contraction mapping 

theorem.

We next prove the positivity of (u(t, u0, v0), v(t, u0, v0)) given that u0 � 0 and v0 � 0. To this end, let 

(ul(t, u0, v0), vl(t, u0, v0)) and (ur(t, u0, v0), vr(t, u0, v0)) be the solutions of

(L)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut + (−duΔN )s1u = f l(x, u),

vt + (−dvΔN )s2v = g(x, u, v),

u(t, x) = u0(x), v(t, x) = v0(x);

(R)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut + (−duΔN )s1u = fr(x, u, v),

vt + (−dvΔN )s2v = g(x, u, v);

u(t, x) = u0(x), v(t, x) = v0(x),

respectively. Both systems are cooperative as ∂vf l = 0, ∂vfr > 0, and ∂ug ≥ 0 in X+, where X+ :=

{(u, v) ∈ X | u ≥ 0, v ≥ 0}. The local existence and uniqueness of these two solutions are again established 

by the contraction mapping theorem. In addition, thanks to the strong positivity of e−(−dΔN )st |t>0 and 

the comparison principle (see Lemma 2.1 of Chapter 8 of Wu [47]), we have

(0, 0) < (ul(t, u0, v0), vl(t, u0, v0)) ≤ (u(t, u0, v0), v(t, u0, v0)) ≤ (ur(t, u0, v0), vr(t, u0, v0)) (3.3)

for x ∈ Ω over the maximal interval of existence shared by all three solutions. It is not difficult to see that 

(u(t, u0, v0), v(t, u0, v0)) is a global solution. In fact, set ũr = m and ṽr = mC, where m and C are two 

positive constants satisfying supx∈Ω p(x) ≤ C infx∈Ω q(x) and m > 1 as in the proof of Theorem 2.6. It is a 

simple matter to verify that

∂tũr + (−duΔN )s1 ũr ≥ fr(x, ũr, ṽr), ∂tṽr + (−dvΔN )s2 ṽr ≥ g(x, ũr, ṽr), (t, x) ∈ R
+ × Ω.
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Let m be so chosen that |u0|∞ ≤ ũr and |v0|∞ ≤ ṽr. Then, the comparison principle implies that

(ul(t, u0, v0), vl(t, u0, v0)) ≤ (u(t, u0, v0), v(t, u0, v0)) ≤ (ur(t, u0, v0), vr(t, u0, v0)) ≤ (ũr, ṽr).

Thus, it follows from the continuation of solution that (u(t, u0, v0), v(t, u0, v0)) is a global solution.

We next show the second part. As the arguments are standard, only a sketch is given. We start to show 

that there exists 0 < θ < α < 1 such that

u(t, u0, v0) ∈ C0,2s1+2θ([ε, ∞) × Ω), ut(t, u0, v0) ∈ C([ε, ∞) × Ω)

for any ε > 0, where α is given in (H1). If s1 ≥ 1
2 , then u(t) ∈ C2s1+2θ

N (Ω) for each t ≥ ε. Likewise,

v(t, u0, v0) ∈ C0,2s2+2θ([ε, ∞) × Ω), vt(t, u0, v0) ∈ C([ε, ∞) × Ω).

To this end, select 0 < σ < s1 such that σ + σ ∧ α
4 ∧ s2 > s1. By using the first equation of (3.1) and 

Lemma 3.1, we find that, for any t > 0,

‖(−duΔN )σu‖C(Ω) ≤ C

[

t− σ
s1 ‖u0‖C(Ω) + ‖f c‖C(Ω)

t
ˆ

0

(t − τ)− σ
s1 dτ

]

≤ C(t− σ
s1 + t1− σ

s1 ),

where C > 0 depends on s1, σ, du, |u|∞, |v|∞, and |f c|∞. In view of Proposition 2.2.15 of Lunardi [28], 

u ∈ C2σ(Ω). Assume without loss of generality that si ≥ α
4 , (H1) and Proposition A.1 show that f c ∈

dom(−duΔN )
α
4 . Employing Lemma 3.1 again gives that

‖(−duΔN )σ+ α
4 u‖C(Ω) ≤ C

[

t−( σ
s1

+ α
4s1

)‖u0‖C(Ω) + ‖(−duΔN )
α
4 f c‖C(Ω)

t
ˆ

0

(t − τ)− σ
s1 dτ

]

≤ C(t−( σ
s1

+ α
4s1

) + t1− σ
s1 )

for some C > 0. Let β = σ + α
4 − s1. Then u(t) ∈ C2s1+2β(Ω). In particular, u(t) ∈ C2s1+2β

N (Ω) if s1 ≥ 1
2 . 

Proposition A.1 implies that (−duΔN )s1u(t) ∈ C(Ω). Then the interpolation theory gives rise to the desired 

estimates since ut = −(−duΔN )s1u +f c(x, u, v). The regularity of v and vt follows from the same arguments.

We now are ready to prove the last part. Given any k ≥ 1, note that

1

k + 1

d

dt

ˆ

Ω

vk+1dx +
4ds2

v c∗k

(k + 1)2
‖v

k+1
2 ‖2

Hs2 (Ω) ≤
ˆ

Ω

[

p(x) + 4ds2
v c∗

]

vk+1dx,

where c∗ > 0 is the constant given in (1.4). Write w = v
k+1

2 . Then the Sobolev embedding theorem implies 

that

d

dt

ˆ

Ω

w2dx +
kr

k + 1

ˆ

Ω

w2s∗
2 dx ≤ (k + 1)

ˆ

Ω

[

p(x) + 4ds2
v c∗

]

w2dx,

where r > 0 is a constant depending on s2, c∗, ds2
v , N only, and 2s∗

2 = 2N
N−2s2

. Similar to the proof of Lemma 

6.1.1 of Cholewa and Dlotko [15], it follows from the Bernoulli inequality that

lim sup
t→∞

|v(t, u0, v0)|∞ ≤ C,
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where C > 0 depends on s2, c∗, ds2
v , N , and p only. Likewise, we have

1

k + 1

d

dt

ˆ

Ω

uk+1dx +
4ds1

u c∗k

(k + 1)2
‖u

k+1
2 ‖2

Hs1 (Ω) ≤
ˆ

Ω

[a(x) + 4ds1
u c∗]uk+1dx +

ˆ

Ω

q(x)vukdx.

Hence, the same reasoning shows that

lim sup
t→∞

|u(t, u0, v0)|∞ ≤ C,

where C > 0 depends on s1, c∗, ds1
u , N , and a, q only. The proof is completed. �

3.2. Stability of the disease-free equilibrium

Proposition 3.2 implies that the semiflow (u(t, u0, v0), v(t, u0, v0)) generated by (3.1) is point dissipative 

in X+, where X+ := {(u, v) ∈ X | u ≥ 0, v ≥ 0}, and X = C(Ω) ×C(Ω). This along with the compactness of 

the trajectory of (u(t, u0, v0), v(t, u0, v0)) suggest the existence of a global attractor. The next two theorems 

(Theorems 3.3 and 3.5) specify what the global attractor is under certain conditions.

Theorem 3.3. Suppose that all assumptions of Proposition 2.5 are satisfied. Assume that R0 < 1. Then the 

disease-free equilibrium (u1, 0) is globally asymptotic stable, where u1 is the unique positive solution of (2.4).

Proof. As the first step, we show that limt→∞ ‖v(t, u0, v0)‖C(Ω) = 0. Thanks to (3.3), u
u+v

≤ 1. Thus,

vt + (−dvΔN )s2v ≤ [p(x) − q(x)]v.

Let ψ be the positive eigenfunction corresponding to λdv,p−q with infx∈Ω ψ ≥ 1. Let C be the constant 

obtained in Proposition 3.2 and set ξ = Cve−λdv,p−qtψ, where Cv = C ∨ |v0|∞. Then

ξt + (−dvΔN )s2ξ = [p(x) − q(x)]ξ.

Subsequently, it follows from the comparison principle that

0 < v(t, u0, v0) ≤ Cve−λdv,p−qtψ, x ∈ Ω.

Since R0 < 1, λdv,p−q > 0. This confirms that limt→∞ ‖v(t, u0, v0)‖C(Ω) = 0.

Now it remains to show that u(t, u0, v0) converges to u1 as t → ∞. Since u1 > 0 on Ω and v(t, u0, v0) → 0

as t → ∞, given any 0 < δ < 1, there exists Tδ > 0 such that

[a(x) − b(x)u]u − δb(x)u2
1 ≤ ut + (−duΔN )s1u ≤ [a(x) − b(x)u]u + δb(x)u2

1, t ≥ Tδ.

Notice that there exists a unique positive solution wδ± to each of the following equations

(−duΔN )s1w = [a(x) − b(x)w]w ± δb(x)u2
1, (3.4)

respectively, as long as 0 < δ < 1
4 . As a matter of fact, set ε− = 1−

√
1−4δ
2 , wδ− = (1 − ε−)u1; and 

ε+ =
√

1+4δ−1
2 , wδ+ = (1 + ε+)u1. Direct calculation shows that

(−duΔN )s1wδ− = [a(x) − b(x)u1]wδ− = [a(x) − b(x)wδ− ]wδ− − ε−(1 − ε−)b(x)u2
1
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and

(−duΔN )s1wδ+ = [a(x) − b(x)u1]wδ+ = [a(x) − b(x)wδ+ ]wδ+ + ε+(1 + ε+)b(x)u2
1.

Namely, wδ± are positive solutions of (3.4)±.

We invoke the implicit function theorem to prove the uniqueness of wδ±. To do so, let m = 2 supx∈Ω
a(x)
b(x)

and define

j(x, τ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a(x)τ, τ ≤ 0,

a(x)τ − b(x)τ2, 0 ≤ τ ≤ m;

b(x)m2 + a(x)τ − 2b(x)mτ, τ ≥ m.

Hence, j ∈ Cα,1(Ω × R). Also let F : Hs(Ω) × R → H−s(Ω) be defined by

〈F (w, δ) | v〉 = 〈(−dwΔN )s1w | v〉 − 〈j(x, w) + δb(x)u2
1, v〉, w, v ∈ Hs(Ω).

Note that F ∈ C1(Hs(Ω) × R). In addition,

F (u1, 0) = 0, ∂wF (u1, 0) = (−duΔN )s1 − [a(x) − 2b(x)u1]I.

Since λdu,a−2bu1
> 0, 〈∂wF (u1, 0)w | w〉 ≥ λdu,a−2bu1

‖w‖2
L2(Ω), it follows that ∂uF (u1, 0) is invertible. 

Therefore, the implicit function theorem implies that F (w, δ) = 0 has a unique solution for δ ∈ (−ε, ε)

provided that ε > 0 is sufficiently small. Obviously, wδ± are two solutions of F (w, δ) = 0 when δ is 

sufficiently small as j(x, τ) = (a(x) − b(x)τ)τ if 0 ≤ τ ≤ m. So the uniqueness of wδ± follows.

Finally consider

{

wt + (−duΔN )s1w = [a(x) − b(x)w]w − δb(x)u2
1, (t, x) ∈ (t0, ∞) × Ω,

w(t0, ·) = u(Tδ, u0, v0).

In terms of the theory of monotone dynamical systems, both wδ± are globally asymptotic stable. Hence, 

there exists Tε− > 0 for which w(t, t0) ≥ wδ− −ε−|u1|∞ if t ≥ Tε− +Tδ. Meanwhile, the comparison principle 

shows that u(t, u0, v0) ≥ w(t, t0) for t ≥ Tδ. Thus, if t ≥ Tε− + Tδ, then u1 − 2ε−|u1|∞ ≤ u(t, u0, v0). For 

the same reason, u(t, u0, v0) ≤ u1 + 2ε+|u1|∞. In view of the setups of ε±, given any ε > 0, we have 

|u(t, u0, v0) − u1|∞ ≤ ε if t is sufficiently large. This ends the proof. �

The following theorem accounts for the stability of (u1, 0) when R0 = 1. It shows that (u1, 0) is still 

stable as long as 〈v0, φ1〉 is sufficiently small, where φ1 is a positive eigenfunction associated with λdv,p−q.

Theorem 3.4. Suppose that all assumptions of Proposition 2.5 are satisfied. Assume that R0 = 1. Then, 

given any ε > 0, there exist δ > 0 and T > 0 depending on ε such that

‖u(t, u0, v0) − u1‖C(Ω) + ‖v(t, u0, v0)‖C(Ω) ≤ ε

whenever 〈v0, φ1〉 ≤ δ and t ≥ T , where φ1 is the positive eigenfunction corresponding to λdv,p−q satisfying 

‖φ1‖L2(Ω) = 1.

Proof. Given any δ > 0 such that 〈v0, ψ1〉 ≤ δ, we first show that |v(t, u0, v0)|∞ ≤ C1δ when t is sufficiently 

large, where C1 > 0 is a constant depending on φ1. Since R0 = 1, (2.3) says that λdv,p−q = 0. Denote 

(−dvΔN )s2 − (p − q)I by A and consider A as a linear operator on L2(Ω) with dom(A) ⊂ L2(Ω). In 
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view of the proof of Lemma A.8, λI − A is invertible if λ < 0 and |λ| is sufficiently large. In particular, 

(λI − A)−1 is compact. Namely, A has compact resolvent. Hence, the self-adjointness of A implies that 

σ(A) \ {∞} = σp(A) = {ν1}∞
k=1, where νk ∈ R

+, νk ≤ νk+1, and ν1 = λdv,p−q = 0. Moreover, νk are 

characterized by the min-max formula

ν1 = inf
w∈Hs(Ω),‖w‖L2(Ω)=1

〈(−dvΔN )s2w | w〉 + 〈(q − p)w, w〉,

νk = inf
w∈X⊥

k−1,‖w‖L2(Ω)=1
〈(−dvΔN )s2w | w〉 + 〈(q − p)w, w〉, k ≥ 2,

where Xk =
⊕k

i=1 ker(A − νiI) and each νk has finite geometric multiplicity. Now we view A as a linear 

operator on C(Ω) with dom(A) ⊂ C(Ω). The spectrum σp(A) remains the same. In particular, ν1 = λdv,p−q

is a simple pole of (νI − A)−1. Since ν1 = 0, in terms of Proposition A.2.2 of [28], we have C(Ω) =

ker(−A) ⊕ range(−A). Note that range(−A) = {w ∈ C(Ω) | 〈w, φ1〉 = 0}. According to Proposition 5.3.2 of 

Carracedo and Alix [13], A is sectorial. Let P be the spectral projection associated with {0}, then Corollary 

2.3.5 of [28] shows that

e−Atw = 〈w, φ1〉φ1 + e−At(I − P )w, ‖e−At(I − P )w‖C(Ω) ≤ Cεe
−(ν2−ε)t‖w‖C(Ω),

where w ∈ C(Ω), 0 < ε < ν2 and Cε > 0 are two constants. Now let ζ = e−Atv0. Clearly, ξ solves 

ζt + (−dvΔN )s2ζ = [p(x) − q(x)]ζ. By the comparison principle again, we have v(t, u0, v0) ≤ ζ. In view of 

the estimate given above, it is easy to see that |v(t, u0, v0)|∞ ≤ C1δ for some positive constant C1 as long 

as t is sufficiently large. Due to the arbitrariness of δ, given any ε > 0, by employing the arguments used in 

Theorem 3.3, we can reach the desired conclusion. The proof is completed. �

3.3. Stability of the endemic equilibrium

Our final result is about the stability of a homogeneous endemic equilibrium in system (3.1). We thereafter 

assume that a, b, p, and q are constants, and q < p < a. Under these assumptions, one can construct a 

Lyapunov function as done in Li et al. [26].

Theorem 3.5. Suppose that a, b, p, and q are constants, and q < p < a. Then system (3.1) has a unique 

endemic equilibrium (u∗, v∗) =
(

a
b
, a(p−q)

bq

)

which is globally asymptotic stable.

Proof. As in [26], let V (u(t), v(t)) be given by

V (u(t), v(t)) =

ˆ

Ω

[u − u∗ log u + v − v∗ log v]dx.

In terms of the fact that 〈(−dΔN )sw | 1〉 = 0, a straightforward calculation shows that

dV

dt
= u∗〈(−duΔN )s1u | u−1〉 + v∗〈(−dvΔN )s2v | v−1〉

+

ˆ

Ω

[

(u − u∗)(a − bu) − v

(

pu

u + v

)(

v∗

v
− u∗

u

)]

dx

≤ −
ˆ

Ω

[

b(u − u∗)2 +
p(uv∗ − u∗v)2

u(u + v)(u∗ + v∗)

]

dx ≤ 0.
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Here we used the fact that 〈(−dΔN )sw | w−1〉 ≤ 0. It then follows from the theory of dynamical systems 

that

lim
t→∞

(

‖u − u∗‖L2(Ω) + ‖v − v∗‖L2(Ω)

)

= 0.

We next show that

|u − u∗|∞ + |v − v∗|∞ ≤ C
(

‖u − u∗‖L2(Ω) + ‖v − v∗‖L2(Ω)

)

for some positive constant C > 0. This will complete the proof. To this end, write

c11(t, x) =

1
ˆ

0

f c
u(x, τw + (1 − τ)w∗)dτ, c12(t, x) =

1
ˆ

0

f c
v(x, τw + (1 − τ)w∗)dτ,

c21(t, x) =

1
ˆ

0

gu(x, τw + (1 − τ)w∗)dτ, c22(t, x) =

1
ˆ

0

gv(x, τw + (1 − τ)w∗)dτ,

where w = (u, v) and w∗ = (u∗, v∗). Due to Proposition 3.2, ci,j ∈ L∞(R+ × Ω), 1 ≤ i, j ≤ 2. Accordingly 

we rewrite (3.1) as

{

(u − u∗)t + (−duΔN )s1(u − u∗) = c11(t, x)(u − u∗) + c12(t, x)(v − v∗),

(v − v∗)t + (−dvΔN )s2(v − v∗) = c21(t, x)(u − u∗) + c22(t, x)(v − v∗).

In what follows, for the sake of clearance and simplicity, we assume without loss of generality that du =

dv = 1 and c∗ = 1. Let w = u − u∗, and m ≥ 2 be even. Then by multiplying both sides of the first equation 

of the system by wm−1 and integrating the resulting equation over Ω, we obtain

1

m

d

dt

ˆ

Ω

wmdx +
4(m − 1)

m2
‖w

m
2 ‖2

Hs1 (Ω) ≤
ˆ

Ω

|c11 + 1|wmdx +

ˆ

Ω

|c22||v − v∗||w|m−1dx

≤ C

[
ˆ

Ω

wmdx +

(
ˆ

Ω

|v − v∗|mdx

)
1
m

(
ˆ

Ω

wmdx

)
m−1

m
]

≤ C

[
ˆ

Ω

wmdx +

(
ˆ

Ω

wmdx

)
m−1

m
]

,

where C > 0 depends on c11, c12, |v − v∗|∞, and |Ω|. Let ξ = w
m
2 , then

d

dt

ˆ

Ω

ξ2dx +
4(m − 1)

m
‖ξ‖2

Hs1 (Ω) ≤ Cm
(

‖ξ‖2
L2(Ω) + ‖ξ‖

2(m−1)
m

L2(Ω)

)

. (3.5)

By the Sobolev embedding theorem and interpolation inequality, we have

‖ξ‖L2(Ω) ≤ Cs1
‖ξ‖θ

Hs1 (Ω)‖ξ‖1−θ
L1(Ω), θ =

N − 2s1

N + 2s1
.
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Here we already assumed that N ≥ 2 or N = 1 > 2s1. It follows from the Young inequality that

Cm‖ξ‖2
L2(Ω) ≤ 2(m − 1)

m
‖ξ‖2

Hs1 (Ω) +

[

Cm2θ

2(m − 1)

]
1−θ

θ

‖ξ‖2
L1(Ω).

Likewise,

Cm‖ξ‖
2(m−1)

m

L2(Ω) ≤ m − 1

m
‖ξ‖2

Hs1 (Ω) +

[

Cmθ

2

]

(m−1)θ

m(1−θ)+θ

‖ξ‖2θm

L1(Ω),

where θm = m(1−θ)−(1−θ)
m(1−θ)+θ

. By inserting these two inequalities into (3.5), we find that

d

dt

ˆ

Ω

ξ2dx +
(m − 1)

m
‖ξ‖2

Hs1 (Ω) ≤
{[

Cm2θ

2(m − 1)

]
1−θ

θ

+

[

Cmθ

2

]

(m−1)θ

m(1−θ)+θ
}

(

‖ξ‖2
L1(Ω) + ‖ξ‖2θm

L1(Ω)

)

.

Thus, Lemma 1.2.5 of Cholewa and Dlotko [15] shows that

ˆ

Ω

ξ2dx ≤ Cθmμ
(

‖ξ‖2
L1(Ω) + ‖ξ‖2θm

L1(Ω)

)

,

where μ = 4s1

N−2s1
∨ 2. Set m = 2k, k = 1, 2, · · · , then

ˆ

Ω

w2k

dx ≤ Cθ2kμ

[(
ˆ

Ω

w2k−1

dx

)2

+

(
ˆ

Ω

w2k−1

dx

)2θk
]

,

where θk = 2k(1−θ)−(1−θ)
2k(1−θ)+θ

. Given any t0 > 0 sufficiently large, let jk = supt≥t0
‖w‖

L2k (Ω)
. Then, we have

jk+1 ≤ (Cθ2kμ)
1

2k
[

j2k

k + j
2kθk+1

k

]
1

2k .

Note that {jk}∞
k=1 is bounded and jk → |w|∞, θk → 1 as k → ∞. Hence, there exists κ > 1 such that 

j
2kθk+1

k ≤ κj2k

k . As a result, jk+1 is dominated by j′
k+1 = [Cθ(1 + κ)2kμ]

1

2k j′
k with j′

1 = j1. As in the proof 

of Lemma 9.3.1 of [15], we have

lim
k→∞

j′
k = j1

∞
∏

k=2

[Cθ(1 + κ)2kμ]
1

2k := C1,∞.

Through the passage of the limit, we obtain

|u − u∗|∞ ≤ C1,∞‖u − u∗‖L2(Ω), t ≥ t0.

Repeating the same argument for v − v∗ yields that

|v − v∗|∞ ≤ C2,∞‖v − v∗‖L2(Ω), t ≥ t0

for a constant C2,∞ > 0. Thus, the desired conclusion follows if N ≥ 2 or N = 1 > 2s1.

We now end the proof with a brief account for the cases that N = 1 ≤ 2s1 or (N = 1 ≤ 2s2). Under these 

circumstances, the conclusion can be reached via the regularity of u − u∗ (or v − v∗). Chose 0 < σ < s1, 
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let − σ
s1

= θ − 1, assume without loss of generality that C ≤ 1, where C is given in Lemma 3.1, and write 

δ =
λs

2

4 , then Lemma 3.1 implies that

‖(−ΔN )σw‖L2(Ω) ≤ e−δtt− σ
s1 ‖w‖L2(Ω) +

t
ˆ

0

e−δ(t−τ)(t − τ)− σ
s1 ‖h‖L2(Ω)dτ

≤ e−δtt− σ
s1 ‖w‖L2(Ω) + ‖h‖L2(Ω)

∞̂

0

tθ−1e−δtdt

≤ e−δtt− σ
s1 ‖w‖L2(Ω) + C‖h‖L2(Ω), t > 0.

Here h = c11(u − u∗) + c12(v − v∗) and C > 0 depends on s1, λ2, θ. Since s1 ≥ 1
2 , then σ can be so chosen 

that 2σ > 1
2 . Thus, the Sobolev embedding theorem shows that

|u − u∗|∞ ≤ C(‖u − u∗‖L2(Ω) + ‖v − v∗‖L2(Ω))

for some positive constant C. The proof is completed. �

4. Numerical simulations

This section provides numerical simulations of solutions of (3.1) to illustrate the stabilities of both disease-

free and endemic equilibria under the condition that all coefficients are constant. Regarding the asymptotic 

stability of the disease-free equilibrium, we assume that the spatial domain is either Ω = (−1, 1) ⊂ R or 

Ω = (−1, 1) × (−1, 1) ⊂ R
2, and the parameters are given as follows:

s1 = s2 = 0.6, du =
0.6
√

0.8, dv =
0.6
√

0.7, a = 2, b = 1, p = 0.3, q = 10.

Then it follows from Proposition 2.2 and Theorem 3.3 that R0 < 1 and the disease-free equilibrium (2, 0)

is globally asymptotically stable (Figs. 4.1 and 4.2). The asymptotic stability of (2, 0) is manifested in the 

solutions with initial data in (−1, 1) or (−1, 1) × (−1, 1) given below:

u0(x) = 1.001 + 0.05 sin(5πx + 0.1), x ∈ (−1, 1)

v0(x) = 0.5 + 0.02 cos(3πx + 0.1) + 0.0005e2x sin(πx), x ∈ (−1, 1),

or

u0(x, y) = 1.001 + 0.05 sin(3πx + 0.1) cos(5πy + 0.2), (x, y) ∈ (−1, 1) × (−1, 1)

v0(x, y) = 0.2 + 0.01 sin(2πx + 0.1) cos(4πy), (x, y) ∈ (−1, 1) × (−1, 1).

Concerning the asymptotic stability of the endemic equilibrium, we assume that the spatial domain is 

either Ω = (−1, 1) ⊂ R or Ω = (−1, 1) × (−1, 1) ⊂ R
2, and the parameters take the following values:

s1 = s2 = 0.6, du =
0.6
√

0.8, dv =
0.6
√

0.7, a = 2, b = 1, p = 0.3, q = 0.2.

Clearly, (3.1) has an endemic equilibrium (2, 1). In addition, Proposition 2.2 and Theorem 3.5 show that 

(2, 1) is globally asymptotically stable (Figs. 4.3 and 4.4). The asymptotic stability of (2, 1) is demonstrated 

by the convergence of the solutions with the same initial data in (−1, 1) or (−1, 1) × (−1, 1) given above.
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Fig. 4.1. R0 < 1. The snapshots of the solution (u(t, x), v(t, x)) of (3.1) in the spatial domain (−1, 1) at t = 0, 4, 7, 10, which 
converges to the disease-free equilibrium (2, 0).

Fig. 4.2. R0 < 1. The snapshots of the solution (u(t, x, y), v(t, x, y)) of (3.1) in the spatial domain (−1, 1) × (−1, 1) at t = 0, 4, 7, 10, 
which converges to the disease-free equilibrium (2, 0).

Fig. 4.3. R0 > 1. The snapshots of the solution (u(t, x), v(t, x)) of (3.1) in the spatial domain (−1, 1) at t = 0, 4, 7, 10, which 
converges to the endemic equilibrium (2, 1).
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Fig. 4.4. R0 > 1. The snapshots of the solution (u(t, x, y), v(t, x, y)) of (3.1) in the spatial domain (−1, 1) × (−1, 1) at t = 0, 4, 7, 10, 
which converges to the endemic equilibrium (2, 1).

5. Discussion

Spatial movement of the host is the most crucial factor for the geographic spread of infectious diseases. 

Classical reaction-diffusion equations have been used extensively to model the spatial spread of various 

infectious diseases (Murray [32], Ruan and Wu [38]) based on the fact that Laplace operators can be 

employed to describe the random walk of the host population. Note that the probability density of the 

continuous random walk is a Gaussian distribution and reaction-diffusion equations only describe the local 

spatial spread of infectious diseases.

In modern times, humans travel on many spatial scales ranging from a few kilometers to thousands 

of kilometers over short periods. In a series of recent studies, it was observed that mobility patterns for 

humans exhibit scale-free dynamics with heavier tails distribution, a characteristic of Lévy flights (Brock-

mann et al. [7], González et al. [21], Mandellbrot [30], Zaburdaev et al. [54]). Roughly speaking, around 

80% of people travel in short distances (locally) and about 20% of people travel in long distances (non-

locally). Interestingly, Brockmann et al. [7] commented that “We believe that these results can serve as 

a starting point for developing a new class of models for the spread of human infectious diseases because 

universal features of human travel can now be accounted for in a quantitative way.” It seems that these 

observations about human travel patterns and Brockmann et al.’s message have not been well-received by 

the community of mathematical modelers of infectious diseases, and the ongoing COVID-19 pandemic has 

confirmed these observations: it is the small fraction of long-distance travelers who spread the virus from 

countries to countries and from continents to continents. The random Laplace diffusion certainly is not suit-

able to describe such long-distance geographic spread of the virus and fractional diffusion is a reasonable 

approach.

Since Lévy flights are drawn from a probability distribution function with heavier tails rather than 

a normal distribution, they are superdiffusive as they disperse particles faster than a Gaussian random 

walk and large displacements and long jumps are more likely. Motivated by these recent observations of 

human travel patterns and the comment of Brockmann et al. [7], in this paper, we proposed a susceptible-

infectious-susceptible epidemic model with Lévy flights, i.e., fractional diffusion. By using our recent results 

on fractional diffusion equations (Zhao and Ruan [53]), we established the existence and the stabilities of 

disease-free and endemic equilibria and studied the impact of dispersal rates and fractional powers on spatial 

profiles of these equilibria. The basic reproduction number R0 was obtained and was used to investigate the 

effects of spatial heterogeneity on the transmission dynamics. It was also used to determine the existence 

and nonexistence of an epidemic equilibrium as well as stabilities of the disease-free and endemic equilibria. 

It was found that for low-risk regions both dispersal rates and fractional powers play a critical role and are 
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capable of altering the threshold value. Numerical simulations were carried out to confirm the theoretical 

results.

To the best of our knowledge, this is the first piece of theoretical study on epidemic models with Lévy 

flight (fractional diffusion). One of our key assumptions is that the susceptible and infected individuals 

under consideration do not leave the region Ω. Hence, spectral fractional Neumann Laplacian was adopted 

to describe the underlying transport process. In case that the region outside of Ω is uninhabitable, then 

spectral fractional Dirichlet Laplacians with different fractional powers would be a natural choice for the 

diffusion operators in the model, and it is anticipated that most results obtained in this paper would 

still hold. Nonetheless, technical details are obviously needed in this regard. In addition, there are more 

interesting questions about such models that deserve further consideration, such as the existence of traveling 

waves, spatial and temporal patterns, calibration of geographic epidemic data, etc.
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Appendix A

This section contains a sequence of results established in Zhao and Ruan [53] that were frequently used 

in the present paper. For readers’ convenience, these results are listed here without proofs. All proofs can 

be founded in [53].

Proposition A.1. Let Ω ⊂ R
n be a bounded domain with smooth boundary. Suppose that 1

2 ≤ s < 1. Let 

θ > 0 such that 1 < 2s + 2θ < 2. Set

C2s+2θ
N (Ω) :=

{

w ∈ C1,2s+2θ−1(Ω) | ∂w

∂n
= 0 on ∂Ω

}

,

C2s+2θ
0 (Ω) :=

{

w ∈ C1,2s+2θ−1(Ω) | w = 0 on ∂Ω
}

.

If 0 < s < 1
2 and 2s + 2θ < 1, then set

C2s+2θ
0 (Ω) :=

{

w ∈ C2s+2θ(Ω) | w = 0 on ∂Ω
}

.

(i) Assume that either w ∈ C2s+2θ
N (Ω) with s ≥ 1

2 and 2s + 2θ < 2 or w ∈ C2s+2θ(Ω) with 0 < 2s + 2θ < 1. 

Then, for any 0 ≤ α < θ,

‖(−ΔN )sw‖C2α(Ω) ≤ C‖w‖C2s+2θ(Ω)

for some positive constant C which depends on s, α, θ, and Ω only.

(ii) Assume that 0 < s < 1, 2s + 2θ < 2, and w ∈ C2s+2θ
0 (Ω). Then, for any 0 ≤ α < θ,

‖(−ΔD)sw‖C2α(Ω) ≤ C‖w‖C2s+2θ(Ω)

for some positive constant C which depends on s, θ, and Ω only.

Proposition A.2. Let u = ((−ΔN )s + I)−1g stand for the unique solution of

〈(−ΔN )su | ψ〉 + 〈u, ψ〉 = 〈g, ψ〉
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where ψ ∈ Hs(Ω) is arbitrary. Then

(i) u ∈ Hs(Ω) and

‖u‖Hs(Ω) ≤ C‖g‖L2(Ω),

where C > 0 depends on s and Ω only;

(ii) Suppose that g ∈ Lp(Ω), where N
2s

< p < N
(2s−1)+

. Then u ∈ Cα(Ω) for α = 2s − N
p

, and

[u]Cα(Ω) ≤ C(‖g‖Lp(Ω) + ‖g‖L2(Ω));

(iii) Suppose that s > 1
2 and g ∈ Lp(Ω), where p > N

2s−1 . Then u ∈ C1,α(Ω) for α = 2s − N
p

− 1, and

[u]C1,α(Ω) ≤ C(‖g‖Lp(Ω) + ‖g‖L2(Ω));

(iv) Suppose 0 < s < 1
2 and g ∈ Cα(Ω) for some 0 < α < 1

2 such that 0 < 2s + α < 1 Then u ∈ C2s+α(Ω)

and

‖u‖C2s+α(Ω) ≤ C‖g‖Cα(Ω);

(v) Suppose s ≥ 1
2 and g ∈ Cα(Ω) for some 0 < α < 1 such that 0 < 2s + 2α < 2. Then u ∈ C2s+α

N (Ω) and

‖u‖C2s+α(Ω) ≤ C‖g‖Cα(Ω).

Here the positive constants C in (ii)-(v) depend on s, N, Ω, and ‖g‖Lp(Ω) for p > N
2s

.

Proposition A.3. Assume that either u ∈ Hs(Ω) is a weak solution of (−dΔN )su = c(x)u + f . Namely, 

〈(−dΔN )su | ψ〉 = 〈cu + f, ψ〉 for any ψ ∈ Hs(Ω), or u ∈ Hs(Ω) is a weak sub-solution of (−dΔN )su =

c(x)u + f with u ≥ 0. That is, 〈(−dΔN )su | ψ〉 ≤ 〈cu + f, ψ〉 for any ψ ∈ Hs(Ω) with ψ ≥ 0, where 

c ∈ L∞(Ω) and f ∈ Lp(Ω) with p > N
2s

. Then

|u|∞ ≤ C(‖u‖L2(Ω) + ‖f‖Lp(Ω)),

where C > 0 is a constant depending on s, N, d; |c|∞, Ω, and ‖f‖Lp(Ω) only.

Lemma A.4. Suppose Ω ⊂ R
N is a bounded domain with ∂Ω ∈ Ck (k ≥ 2). Suppose that ud is a non-negative 

function satisfying

ud ∈
{

H2s(Ω) ∩ C(Ω) if 0 < s < 3
4 ,

H2s
N (Ω) ∩ C(Ω) if 3

4 < s < 1.

In case that s = 3
4 , assume further that ud ∈ H2s+2α

N (Ω) ∩ C(Ω) for some 0 < α < 1 with s + α < 1. 

Furthermore, assume that

c0(x)ud ≤ (−dΔN )sud ≤ c1(x)ud, x ∈ Ω, (A.1)

where c0, c1 ∈ L∞(Ω) with c0 ≤ c1. Let x ∈ Ω and δ > 0. Then

sup
Bδ(x)∩Ω

ud ≤ C inf
Bδ(x)∩Ω

ud, (A.2)

where C > 0 is a constant depending on Ω, s, d, N ; δ, |c0|∞, and |c1|∞ only.
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Proposition A.5. Assume that Ω ⊂ R
N is a bounded domain with smooth boundary. Given that u ∈ H2s(Ω) ∩

C(Ω) with 0 < s < 3
4 or u ∈ H2s

N (Ω) ∩ C(Ω) with 3
4 < s < 1. If s = 3

4 , assume further that u ∈
H2s+2α

N (Ω) ∩ C(Ω) for some 0 < α < 1 satisfying s + α < 1. Then the following statements hold:

(i) Assume that u satisfies

(−dΔN )su ≤ f(x), x ∈ Ω,

where f ∈ C(Ω). Suppose that u(x0) = maxx∈Ω u for some x0 ∈ Ω. Then f(x0) ≥ 0.

(ii) Assume that u satisfies that

(−dΔN )su ≥ f(x), x ∈ Ω,

where f ∈ C(Ω). Suppose that u(x0) = minx∈Ω u for some x0 ∈ Ω. Then f(x0) ≤ 0.

We now gather a number of properties pertained to the principal eigenvalue problems associated with 

(−ΔN )s:

(−dΔN )sw + μc(x)w = λw, (A.3)

where d > 0, c ∈ L∞(Ω), and μ ∈ R. These properties will be used in Sections 3 and 4.

Proposition A.6. Assume that Ω ⊂ R
n is a bounded domain with smooth boundary, d > 0, c ∈ L∞(Ω), and 

μ ∈ R. Then (A.3) possesses a unique principal eigenvalue which is simple and is the least eigenvalue of 

(−dΔN )s + μc(x)I. The principal eigenvalue, denoted by λ(d, s, μc), is given by

λ(d, s, μc) = inf
u∈Hs(Ω),‖u‖L2(Ω)=1

ˆ

Ω

ˆ

Ω

dsKs,N (x, y)|u(x) − u(y)|2dydx +

ˆ

Ω

μc(x)u2dx

= inf
u∈Hs(Ω),‖u‖L2(Ω)=1

〈(−dΔN )su | u〉 + 〈μcu, u〉,

where Ks,N (x, y) is given in (1.2). Then we have the following

(i) λ(d, s, μc) is analytic with respect to d, s, and μ. In particular, let λ̇d and λ̇s be the partial derivative 

with respect to d and s, respectively, then λ̇d ≥ 0, and λ̇d > 0 if c is not a constant. Moreover, λ̈μμ ≤ 0, 

where λ̈μμ is the second derivative of λ with respect to μ. In case that dλ2 ≥ 1, then λ̇s ≥ 0.

(ii) λ(d, s, μc) ≤ μc̄. In addition, λ(d, s, μc) < μc̄ if c is a nonconstant function.

(iii) limd→∞ λ(d, s, μc) = μc̄. In particular, λ(d, s, μc) → μc̄ uniformly for s in [η, 1) as d → ∞, where 

0 < η < 1.

(iv) Assume that cd ∈ C(Ω) are a family of functions such that limd→0+ ‖cd − c‖C(Ω) = 0, where c ∈ C(Ω). 

Then limd→0+ λ(d, s, μcd) = infx∈Ω μc, where λ(d, s, μcd) is the principal eigenvalue of (−dΔN )s+μcdI. 

Moreover, λ(d, s, μcd) → infx∈Ω μc uniformly for s in [η, 1) as d → 0+, where 0 < η < 1.

(v) If c > 0 and infx∈Ω c < 0, then for each (s, μ) ∈ (0, 1) × R
+, λ(d, s, μ) = 0 has a unique root d0(s, μ)

such that λ(d, s, μ) > 0 for any d > d0, and λ(d, s, μ) < 0 for any d < d0. In case that d0λ2 > 1, then 

λ(d, σ, μ) > 0 for any d ≥ d0 and σ > s. Moreover, λ(d0, σ, μ) < 0 for any 0 < σ < s.

Proposition A.7. Suppose that ud, wd ∈ H2s(Ω) ∩ C(Ω) with 0 < s < 3
4 and 0 < 2s + 2α < 3

2 or ud, wd ∈
H2s

N (Ω) ∩ C(Ω) with 3
4 ≤ s < 1 and 1 < 2s + 2α < 2 satisfy
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(−dΔN )sud ≥ f(x, ud), (−dΔN )swd ≤ f(x, wd), x ∈ Ω,

where 0 < α < 1, ud � 0 on Ω, and f ∈ C0,1(Ω × (η, ∞)) for some 0 < μ < 1 and η < 0. Furthermore, 

f(x, 0) = 0 for all x ∈ Ω and f(x, τθ) � τf(x, θ) for all x ∈ Ω as long as θ > 0 and τ > 1. Then ud ≥ wd

on Ω.

Concerning the existence of positive solutions to (−dΔN )su = f(x, u), x ∈ Ω. The following assumptions 

will be used in the rest of this section.

(A1) f ∈ Cμ,1(Ω × (η, ∞)) for some 0 < μ < 1, η < 0, and f(x, 0) = 0 for all x ∈ Ω.

(A2) Let h(x, τ) =

{

f(x,τ)
τ

, τ �= 0

fτ (x, 0), τ = 0,
h ∈ Cμ,1(Ω × (η, ∞)) and hτ (x, τ) < 0 in Ω × (η, ∞).

(A3) There exists a constant m > 0 such that f(x, m) ≤ 0 for all x ∈ Ω.

(A4) There exists ζ ∈ C(Ω) such that infx∈Ω ζ > η, h(x, ζ(x)) = 0 for all x ∈ Ω, and ζ+ � 0, where 

ζ+(x) = ζ ∨ 0 := max{ζ(x), 0}.

Lemma A.8. Suppose that (A1), (A2) and (A3) are fulfilled. Assume that λd,h < 0, where λd,h is the 

principal eigenvalue of (−dΔN )s − h(x, 0)I. Then there exists a unique positive solution ud ∈ C2s+2α(Ω)

with 2s + 2α < 1 if 0 < s < 1
2 , or ud ∈ C2s+2α

N (Ω) with 2s + 2α < 2 if s ≥ 1
2 satisfying

(−dΔN )su = f(x, u), x ∈ Ω, (A.4)

where 0 < α < 1.

Corollary A.9. Suppose that

g(x, ·, ·) ∈ Cμ,1
(

Ω × (η1, +∞) × (η2, +∞)
)

, h(x, ·, ·) ∈ Cμ,1
(

Ω × (η1, +∞) × (η3, +∞)
)

,

where 0 < μ < 1, ηi (i = 1, 2, 3) are three constants, and η2 < 0. In addition, ∂3g(x, ·, ·) > 0 on Ω ×
(η1, +∞) × [0, +∞), g(x, ·, 0) = 0. For any θ ≥ 1 and τ ≥ 0, θg(x, ·, τ) ≥ g(x, ·, θτ) in Ω×(η1, +∞). Assume 

that there exist a family of functions vd ∈ C(Ω) such that vd > η1 on Ω, and limd→0+ ‖vd − v∗‖C(Ω) = 0

for some v∗ ∈ C(Ω). Moreover, ∂3h(x, v∗(x), ·) < 0 on Ω × (η3, +∞) and there exists ζ ∈ C(Ω) for which 

h(x, v∗(x), ζ) = 0, infx∈Ω ζ > η3, and ζ+ �= 0. Moreover, for each vd, there exists ud ∈ C2s+2α(Ω) with 

2s + 2α < 1 if 0 < s < 1
2 , or ud ∈ C2s+2α

N (Ω) with 2s + 2α < 2 if s ≥ 1
2 satisfying ud � 0, ud > η2 ∨ η3 on 

Ω, and

(−dΔN )su = g(x, vd(x), u)h(x, vd(x), u), x ∈ Ω,

where 0 < α < 1. Then

lim
d→0+

‖ud − ζ+‖C(Ω) = 0.
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