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RESUME

Des études récentes sur le terrain et expérimentales montrent que les modeéles de
mobilité pour les humains présentent une dynamique non locale sans échelle avec
des distributions & queue lourde caractérisées par des vols de Lévy. Etudier la
propagation géographique a longue distance des maladies infectieuses, dans cet
article nous proposons un modale épidémique sensible-infectieux-sensible avec des
vols de Lévy dans lequel la dispersion des individus sensibles et infectieux suit une
distribution de sauts & queue lourde. En raison de la diffusion fractionnaire décrite
par un Laplacien de Neumann fractionnaire spectral, le modéle de diffusion non
locale peut étre utilisé pour traiter la dynamique spatio-temporelle entrainée par
la dispersion non locale. Les principaux objectifs sont 'existence et la stabilité
d’équilibres sans maladie et endémiques et l'impact des taux de dispersion
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et des puissances fractionnaires sur les profils spatiaux de ces équilibres. Une
caractérisation variationnelle du nombre de reproduction de base Zy est obtenue et
sa dépendance aux taux de dispersion et aux puissances fractionnaires est également
examinée. Ensuite %, est utilisé pour étudier les effets de I’hétérogénéité spatiale
sur la dynamique de transmission. On montre que %, sert de seuil pour déterminer
I’existence et l’inexistence d’un équilibre épidémique ainsi que la stabilité des
équilibres sans maladie et endémique. En particulier, dans les régions a faible risque,
les taux de dispersion et les puissances fractionnaires jouent un réle critique et sont
capables de modifier la valeur seuil. Des simulations numériques ont été réalisées
pour illustrer les résultats théoriques.

© 2023 Elsevier Masson SAS. All rights reserved.

1. Introduction

In studying the spatiotemporal properties of biological phenomena, such as the population dynamics of
biological species and transmission dynamics of infectious diseases, classical reaction-diffusion equations are
usually used to simulate the geographic diffusion and interaction of individuals (Murray [32], Okubo and
Levin [35], Ruan and Wu [38]). In such models, Laplace operators are employed based on the assumption
that the diffusion process can be described by Brownian motion, namely a group of particles spreads as a
whole according to the irregular motion of each particle, and the fact that the probability density function
of the continuous random walk (a Gaussian distribution) is a solution of the Fickian diffusion equation
(Murray [32], Okubo and Levin [35]).

Note that Fickian diffusion applies to a diffusion process that corresponds to the random walk only
when the step size and time size are small compared with the spatial variable and time, respectively.
Consequently, classical reaction-diffusion equations only characterize spatial properties of biological systems
locally. However, recent studies have shown that mobility patterns for humans exhibit scale-free dynamics
with heavier tails distribution, a characteristic of Lévy flights (Mandellbrot [30], Zaburdaev et al. [54]). Lévy-
flight patterns have been observed in human traveling by analyzing the circulation of banknotes (Brockmann
et al. [7]), mobile phone data (Gonzalez et al. [21]), hunter—gathers data when foraging for a wide variety of
food items (Raichlen et al. [36]), as well as in the dispersal patterns of many biological species (Viswanathan
et al. [45], Zaburdaev et al. [54]).

It has been shown that the density function representing the population with Lévy flight diffusion is
the solution of a fractional-order diffusion equation and fractional-order derivatives are nonlocal integro-
differential operators which can be used to characterize memory effects and long-distance diffusion processes
(Chaves [14], Metzler and Klafter [31]). Such diffusion processes are often mathematically described by the
spectral fractional Laplacians (—Ay)® and (—Ap)*®, where 0 < s < 1, (the precise definition of (—Ay)*® will
be given soon), which are the fractional counterparts of —A depending on the boundary condition under
consideration (Neumann and Dirichlet). We refer to some recent studies by Caffarelli and Stinga [11], Grubb
[22], Stinga [41], Stinga and Torrea [42], and Zhao [51], a survey of Vazquez [44], and the monographs of
Bucur and Valdinoci [8] and Dipierro [16] on the fundamental theories of fractional diffusion equations.
For studies on specific equations, we refer to Gui and Zhao [23] and Ma et al. [29] on the Allen-Cahn
equation with a fractional Laplacian, Cabré and Roquejofire [9], Caffarelli et al. [10], Felmer and Yangari
[19], and Stan and Vézquez [40] on fractional Fisher-KPP equation, Estrada-Rodriguez et al. [18], Salem
[39], and Stinga and Volzone [43] on Keller-Segel model with fractional diffusion, Bendahmane et al. [5]
and Dannemann et al. [17] on Lotka-Volterra systems with Lévy flight. It is worth noting that, as shown
n [11], (—An)® can be represented by a nonlocal diffusion operator with a singular integral kernel, which
highlights the nonlocal nature of (—Ax)® and is yet contrast with the bounded nonlocal diffusion operators
studied in Bates et al. [3], Bates and Zhao [4], Andreu-Vaillo et al. [2], Xu et al. [48], Yang et al. [49], Zhao
and Ruan [52], and references therein.
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The geographical spread of infectious disease through a population consists of two processes, the short-
range local transmission and the long-range travel of infectious individuals, with the latter introducing
the infectious diseases to new locations and causing potentially global outbreaks (Murray [32], Ruan [37]).
Hence, it is the tail of the probability distribution of diffusion that has a significant impact on the spatial
transmission dynamics of infectious diseases. It is believed that utilizing a heavy-tailed human movement
process such as the Lévy flight can serve as a starting point for developing a new class of epidemic models
for the spread of human infectious diseases (Brockmann et al. [7]). Indeed, epidemic models with fractional-
diffusion have been developed to simulate the spatial spread of epidemics driven by long-range displacements
in the infectious and susceptible populations, see Hanert et al. [24] and the references cited therein.

In this paper, we propose a susceptible-infectious-susceptible (SIS) endemic model with fractional diffu-
sion of the following form

wn+ (—duy)u = a(w)u — bt — PO 4 oo, (ta) € R x @
(1.1)

vy + (—dyAn)*2v = o q(x)v, (t,z) e RT x Q,
U(O,CL') = UO(x)a U(va) = UO(x)a

where u(z,t) and v(z,t) are the densities of a susceptible population and an infectious population at
location = € © and time ¢, respectively, @ C RY (N > 1) is a bounded domain with smooth boundary,
0 < s < 1( = 1,2) are the fractional powers of the diffusion operator —Ay, which is the Neumann
realization of —A in a suitable function space. For any given d > 0 and 0 < s < 1, the spectral fractional
Neumann Laplace operator (—dAy)* is defined by

> ds OoeANtu—u

_ A S — S\ S —

(—dAN)*u k§—1d RUE Pk F(s)/ st
= 0

where e®nt

is the semigroup generated by Ay, (Mg, ¢r)i>, are eigen-pairs of —Ay, and u(zr) =
> ukpr(x) in which uy = (u, ), and (-,-) is the inner product in L*(Q2). d,, and d, are two posi-
tive constants that stand for the dispersal rates of u and v. We assume that, in the absence of the disease,
the population has a density-dependent demographic structure (Gao and Hethcote [20]); that is, its growth
is governed by a logistic term a(x)u — b(z)u?, where a(z) is the intrinsic growth rate and b(z)/a(z) is the
carrying capacity of the environment. p(x) and ¢(z) denote the transmission rate and recovery rate of the
infectious individuals, respectively. It is assumed that a(x),b(z), p(x), ¢(x) are Hélder continuous in Q. In
addition, b(x), p(x), g(x) are non-negative. In (1.1), the local susceptible population is subject to the logistic
growth, hence the size of total population is not constant. It is also assumed that the movements of u(z,t)
and v(z,t) are both described by a power law probability distribution and are modeled by two spectral
fractional Laplacians. Note that when s; = s = 1, system (1.1) along with other diffusive epidemic models
have been intensively investigated, see Allen et al. [1], Huang et al. [25], Li et al. [26], Li et al. [27], Murray
[32], Webb [46], and the references cited therein.

The present paper is the second piece of a two-part series of studies on fractional diffusion equations, with
the first part dealing with singularly perturbed fractional diffusion eigenvalue problems (Zhao and Ruan
[53]). Our interest in (1.1) arises from a desire to understand its spatiotemporal transmission dynamics
driven by nonlocal diffusion. Since the susceptible and infectious populations rarely display the exactly
same dispersal behavior, it seems reasonable to assume that the movements of these two groups follow jump
distributions at different microscopic scales, so s1 # so in general. Similar to Allen et al. [1], to gain a better
understanding of the effects of spatial heterogeneity on the occurrence of an endemic, a threshold, being
referred to as the basic reproduction number %, and characterized by a variational formula, is introduced
in the present work. Much like the conventional diffusive models considered in [1], in high-risk regions
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(g < p) it always holds that Z; > 1. Given that %, > 1, our analysis shows that (1.1) possesses an endemic
equilibrium under the condition that ¢ < p < a, where ¢,p, and a are the averages of ¢(z),p(x), and
a(x) over €, respectively. Hence in a high-risk region where population growth is sustainable, an endemic
is bounded to occur. On the other hand, (1.1) has no endemic equilibria if %y < 1. For low-risk regions
(g > p) and inf,ecqlq(x) — p(x)] < 0, then for each s there exists a threshold value of dg, such that %, <1
if d > dog whereas %y > 1 if d < dy. Furthermore, if dy > )\%,
—Ay over €, then the aforementioned s is also a threshold value in the sense that %y < 1 when d > dy and
0 > s, and %y > 1 provided that d = dy and 0 < 6 < s, where 6 stands for a different fractional power. In
particular, as long as d > %27 then %, is decreasing in s. Thus, from the perspective of disease prevention

where Ay is the second least eigenvalue of

and control, in such regions, increasing s is likely to reduce potential risks of infection. This also underscores
the importance of the underlying geometry of €.

The paper is organized as follows: Section 2 collects a series of properties concerning the basic reproduction
number %, and presents sufficient conditions that ensure the existence of an endemic equilibrium. Emphasis
is placed on the dependence of % on dispersal rates and fractional powers. In this section, we also examine
possible influences of dispersal rates d,, and d, on the spatial profiles of the aforementioned equilibrium.
Section 3 focuses on the stabilities of the disease-free and endemic equilibria. More specifically, we will
show that the disease-free equilibrium is globally asymptotically stable when %y < 1. On the other hand,
if Zy > 1 and the endemic equilibrium is independent of z, then it is globally asymptotically stable. In
particular, a universal bound is also obtained for solutions of (1.1) regardless of their initial data. Finally,
Section 4 presents numerical simulations that simulate the global asymptotic stabilities of disease-free and
endemic equilibria under the condition that all coefficients are constants.

For future reference, we adopt all notations used in [53]. Given any two functions « and v, u > v means
that v > v and w and v are not identical. Also, v < v indicates —u > —wv, and v V v = max{u,v},
uAv = min{u,v}, uy =uV0, u_ =uA0. Given any w € L'(Q), the average of w over Q is defined by
w = f, wdz. Given u,v € L*(Q2), the inner product of u,v is defined by (u,v) = [, uvdz.

Let ¢ € RT\ N and s = p — [u], where [u] denotes the integer part of u. Let H*(£2) be the Sobolev-
Slobodeckii space defined by

\a|w g ()2
H"(Q) = {alaw e L2(Q), 0 < |o| < [y]] [w)%4,. = Z // 9 y|2+25( vl dydz < oo}.

la|=0 ¢
If p> 3, set Hi(Q) = {w € H*(Q) | 22 |po= 0}, where n is the outward unit normal on 9. Throughout

this paper, we let ((—Ax)®-| ) : H(Q2) x H?(Q2) — R be the bilinear form associated with (—Ax)?®, which
is defined by

(~An)u | v) = / / Ko n () () — u@)o() - v@)ldyds w0 € H(Q), (1.2)
Q Q

where K n(z,y) is given by

Gn(t,x, y
Ks n(x,y) 2\1“ T / e t, (1.3)

and Gy (t,z,y) is the heat kernel of €A~ |;~y. As shown in Caffarelli and Stinga [11], K,y is symmetric
and enjoys two-sided Gaussian estimates, and there exist two positive constants c.(s, ) and ¢*(s, Q) such
that

c«(8,9Q)

c*(s,9)
g = ()2

= W’ T #y. (1.4)
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2. Existence of endemic equilibria

In this section, we consider the existence of endemic equilibria of (1.1). That is, the existence of
component-wise positive solutions to

(—duAN)* u = a(z)u — b(x)u? — p(@)uv +q(z)v, z€Q,
(z)uw utv (2.1)
(—dyAn)%2v = pu S q(z)v, x € Q.

The following are the assumptions that will be used throughout the rest of the paper.

(H1) a,b,p,q € C*(Q) for some 0 < a < 1;b >0, ¢ >0, and p > 0 for all z € Q.
(H2) @ > 0 if a is a non-constant function, or @ > 0 if a is a constant.

2.1. Basic reproduction number

From now on, we set

- su (p(x)w, w)
3%‘_weH39>{«—dAN>%u|w>+<¢xymu»}- (2.2

Ry is referred to as the basic reproduction number, which is defined in the manner similar to that of Allen
et al. [1], where ((—dAn)*w | w) = d*((—An)*w | w), and ((—Apn)°w | w) is defined in (1.2). It can be
shown that % is well defined, which is confirmed in the next proposition.

Proposition 2.1. Let %2y be defined in (2.2). Then g < Zy < supgeq %. In addition, let A\, , =
infweHs(Q)’”w”Lz(m:l((—dAN)sw | w) + ([g(z) — p(x)]w,w), that is, A\pq is the principal eigenvalue of
(=dAN)* + la(2) — p(x)[I. Then

1
signhp, ¢ = sign(iO - 1>. (2.3)

Proof. We start to show the first part with an observation similar to Yang et al. [49] that

(ol w) < 20 (gt w)
(—dAN)*w | w) + (g(z)w,w) ~ zea q(x) ((—dAN)*w | w) + (¢(z)w, w)
p(z)
= sup q(z)”

Meanwhile, by choosing w = 1 in (2.2), we find that %, > g. Thus, ZEE < Ho <supyeq b Let I: H*(Q) = R
be given by I(w) = ((—dAN)*w | w) + (¢(x)w,w), w € H*(). Thanks to the fact that I is weakly lower
semi-continuous, by the standard arguments (see the proof of Theorem 2.4 of [12]), it can be shown that
Xy is attained by a maximizer w* € H*(Q). In particular, it is not difficult to see that w* does not change
sign. Indeed, given any w € H*(2), we can see that

(=AN)*|w| | [w]) = / Ens(2,y) (wi(2) = wi(y) + w-(2) — w-(y))*dydz

QxQ

=/KmmMm@—m@Wwv
QOxQ
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+ [ Ky oo @) - w-)Pdyds

Qx0
2 [[ Ky @ wdyds
QxQ
< [ Bva@ e - v
QxQ

where Ky s(z,y) is given in (1.2). Note that ((—An)*|w| | |w]) < ((-An)*w | w) if both {z | w > 0}
and {z | w < 0} have positive measures, it then follows that w* does not change sign. Now, to show (2.3),
let ¢ be a positive eigenfunction corresponding to A, 4, and w* be a positive maximizer associated with
Ry, respectively. Due to the Holder continuity of p and ¢, Theorem 1.4 of Caffarelli and Stinga [11] and
Lemma A.4 imply that w* > 0 and ¢ > 0 on €. Then, similar to [1], we have

(=dAn)* ¢ [ w") + ([g(z) = p(2)]o, w") = Ap ¢ (&, w")

and
(mdAn)*w™ | ¢) + ([a(z) — p(z)]w", ¢) = (L - 1) (p(z)w”, ¢).

Subtracting these two equations yields that

/\pyq/cbw*d:c = (glb - 1) /p(:n)w*d)dx.
Q Q

Namely,

1
signp 4 = sign(— — 1).
p.q %0
The proof is completed. O

Proposition 2.1 together with Proposition A.6 immediately yield the following.

Proposition 2.2. Assume that (H1) is satisfied, then

(i) Zo > 1 if < p and q — p is a non-constant function, or ¢ < p and q — p is a constant;

(i) Zo=11ifq=p;

(i) %o <1 if 42 p;

(iv) If ¢ > p and inf,eqlq(z) — p(z)] < 0, then there exists dy > 0 such that %o > 1 when d < dy whereas
Fo<1ifd>dy.

The next proposition deals with the dependence of %y on p, q,d, and s.

Proposition 2.3. Assume that (H1) is satisfied, then

| = 0. Moreover, Zy — sup,.cq % uniformly in s for s € [n,1) as d — 07,

p(z)

(i) limg_,o+ %o — sup,eq (@)

where 0 < n < 1;
(if) limgoo | %0 — §| =0;
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(i) If d\y > 1, then %o is non-increasing in s, where Az is the second least eigenvalue of —An in Q.

Proof. Given any w € H*(Q) with w # 0, it follows from the definition of %, that

/[p(x) — Roq(x)|wdr < Bo{(—dAN)w | w).

Q

Let m = sup,cq (i) and z* € Q be such that ’q’gz*; = SUP,cq (5 Also, let z, be defined as that in
Proposition A.6. That is, xz, = «* if 2* € Q, whereas x, = z* —|— rnt(z*) if 2* € 99, where n't(z*)
is the inward unit normal to Q at z* € 99, and 7 > 0 is chosen such that B,(z,) C Q. Let again
or(x) = (r* — |z — z,]*)%.. As shown in Proposition 2.1 that Zy < m, we then have

m((—dAN)*or | or) = / [(m — RBo)q(z) + (% — m) q(a:)}pfdx

BT(IT)

> m-Aae?) [ Gos [ n-Flao) - a@letds
By (z) B (zr)

o [ [(28 -l

B, (z,)

Note that ((—dAN)*or | ©r)/{or @r) < CNd*r=2% where CV > 0 is the constant given in the proof of
Proposition A.6. Dividing both sides of the above inequality by q(z*){¢, ¢r) gives

oy < {mCN(%Y—i-Zm sup o) — )|+ sup (o) sup[(p/a)(e) il

z€Br(zr) zeQ z€Br ()

Fix 0 < n < 1. Thanks to the continuity of ¢ and p/q, given € > 0, r and d can be chosen sufficiently small
such that m — %y < € for all s € [n, 1), this together the fact that %y < m confirm (i).
(ii) Let wq be the maximizer of (2.2) with [|wql|z2(q) = 1. Then

_ q(z)wg | plx)wg
g dsRy

(—AN)*wy

ST

By arguing along the same lines as those in Proposition A.6, we reach the conclusion that %, — £ as

d — 0.

(iii) Instead of %y, we temporarily denote the basic reproduction number by Zy(s) to emphasize its
dependence on s. Given that s; < sg, let ws, € H*2(Q) be a maximizer of (2.2) for s = sy. Clearly,
ws, € H* () as s3 > s1. Then, from the condition that dA2 > 1, it follows that

o0

(—dAN)" wsy | wey) = Y (AN |w32z|2<2dA 2wy o2 = (—dAN) 2wy, | ws,),

=2

where ws, ; = (Ws,, pi) and (i, ;)52 are eigen-pairs of —Ay. The inequality is strict if dAs > 1. Thus,

<p(:17)w32, wsz>
P01 2 T gR N rw,, | W) + (q@weg ) = 0052)

This completes the proof. O
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2.2. Ezistence of endemic equilibria

Now we study the existence of endemic equilibria.

Proposition 2.4. Let (u,v) € H**(Q) x H*2(2) be any non-negative solution of (2.1). Then

2 4 a?(x) 2 Sup,eq p(7) 2 2
u dr < - dzx, vide < | ——————= u“dx.
inf,ecq b(x) b(x) inf,cqq(z)
Q Q Q

Q

For any 0 > 1,

lullzo ) + [[v]lLe) < C,
where C' > 0 is a constant depending on 0, a,b,p, and q only.

Proof. Note that

/a(x)ud:r — /b(w)qua: = ((—=duAN)"'u | 1) + ((—dyAN)*2v | 1) = 0.
Q Q
It immediately follows from the Hoélder inequality and the Young inequality that

/b(x)u2dx < %/b(x)u2dx+2/a;((;))dx.
Q

Q Q

This confirms the first inequality.
u

Also, in conjunction with the facts that |

oo <1 and |uL+v‘00 < 1, using the Holder inequality and
Young inequality again gives rise to

*(z
/q(w)v2dx+ ((—dAN)°v | v) < /p(:c)uvdx < %/q(x)vzdx + 2/mu2d:ﬂ.
Q

q(x)
Q Q Q

Hence, the second inequality follows.
Given any k > 1, in light of Lemma A.2 of Brasco and Parini [6], we have

ddr ek o ka1 . Ads2e,k | b .
(k.+ 1)2 [’U, 2 ]%—Isl S <(_duAN) u | Uk>, m[’l} 2 ]%_152 § <(_d’L)AN) v | Uk>,

where ¢, > 0 is the constant given in (1.4). Then, as in Li et al. [26], multiplying the first and second
equations of (2.1) by u* and v*, respectively, yields that

/b(x)uk+2dzc < /|a(x)|uk+1dx+/q(x)vukdx
Q Q

o\ L 1
< +1 k41, k+1
_/(a(m)|+k+l>u dx—|—k+1/q (x)v" " dx
Q
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and

1 |2k pFti(x)
k+1 k+1 J k
/q(:c)v dzx < 3 /q(x)v dx + i 1/ @) udz.
Q

Q Q

Therefore,

/uk+1dx < C(a,b,q,k)[/ukdx—i—/vkdx}, /vkﬂdaz < C’(p,q,k)/ukdx.
Q Q Q

Q Q

Given any 6 > 2, by virtue of the inequalities given above, the implementation of finite iterations yields
llull o) + vl o) < C for C > 0 depending on a, b, p,q and ¢ only. The proof is completed. O

In the following we always let % be defined in (2.2) with s = s

Proposition 2.5. Assume that (H1) is fulfilled and %o < 1. Then (2.1) has no positive endemic equilibria.
Suppose further that (H2) is satisfied, then (2.1) possesses only one semi-positive solution (u1,0), which is
the disease-free equilibrium, where uy is the unique positive solution to

(—duAN)*w = (a(z) — b(z)w)w. (2.4)
Proof. Again, let A, be the principal eigenvalue of (—d, An)*2+[g(x) —p(z)]I. Since %y < 1, Proposition 2.1
shows that A, > 0. Assume to the contrary that (2.1) has a positive endemic equilibrium (u,v). Then

Propositions A.3, A.2 and Lemma A.4 imply that u > 0 and v > 0 on Q. Let 1 be a positive eigenfunction
corresponding to \,, Lemma A .4 again implies that ¢ > 0 on . Observe that

v

((=duAn)*2v | 1) +/ {q(x) — l%} vipde =0
Q

and

(—duAn)™0 | V) + / lq(2) — pla)visda = A, / vda.

By subtracting the second equation from the first one, we find that

/p(:c)[l— ui ]vwdajg().

v
Q

Note that sup,cq 45 < lasu > 0and v > 0 on Q). Hence, we have reached a contradiction. The
contradiction implies that (2.1) has no positive endemic equilibria. Additionally, with (H2), the existence

of the disease-free equilibrium is an immediate consequence of Lemma A.8. The proof is completed. O

The next theorem is the main result of this section that gives sufficient conditions for the existence of an
endemic equilibrium.

Theorem 2.6. Suppose that (H1) is satisfied and %o > 1. Assume that Ag, o—p < 0, where g, o—p is the
principal eigenvalue of (—d,An)®t — [a(x) —p(z)|I. Then (2.1) has at least a positive endemic steady state.
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Proof. We will obtain the existence of a positive endemic steady state by the homotopy invariance of
Leray-Schauder degree. To this end, the following auxiliary system is considered:

(=duAN)*u = [a(z) — p(x) — b(x)u]u, 25)
(=dyAN)*2v = [M - q(x)]v. .

U+ v

Notice that (2.5) is a weakly coupled system, it is relatively easier to establish the existence of positive
endemic steady states of (2.5). Since Ag, q—p < 0, it follows from Lemma A.8 that the first equation of
inf

(2.5) has a unique positive solution u; > 0 on Q. Set [y = — =52 Now consider the existence of positive

solutions to
(—dyAN)%2v = vh(z,u,v), h(z,u,v)=

Note that h(z,wy,-) is differentiable in (I, 00) and h(z,u;, 0) = p(x) — g(x). Since %y > 1, (2.3) implies that
Ady.p—q < 0, where \g, ,_, is the principal eigenvalue of (—d,An)*> — [p(z) — ¢(x)]I. Again, Lemma A.8
shows that the equation has a unique positive solution v;. Namely, (2.5) has a unique positive endemic
steady state (u;,v;). Clearly, u; > 0,v; > 0 on Q.

Set X = C(Q) x C(Q), we next consider the spectrum of the linearization of (2.5) at (u;,v;), which is
the linear operator .¢ : dom(.¥¢) C X — X given by

(—duAN)u + [20(2)u; — a(z) — p(x)]u 0
f(u,v) = ()02 p(@)u?
(uz+vzl)2 w (=dvAn)*2v +[q(z) — (uz+vzl)2]v

Since (—dAxy)?® has compact resolvent, . is a Fredholm operator of index zero. In particular, it is not
difficult to see that

o(L)\ {+00} = 0,(L) = op((~du AN)* + era(@)D) | op ((—doAx)* + ez (2)]),

where o,(-) denotes the point spectrum of an operator, and ci1(z) = 2b(z)w — a(x) — p(x), c(z) =

q(x)— (51(?5;2 . Let A1 be the principal eigenvalue of (—d,,An)*+c11(2)] and Ag be the principal eigenvalue of

(—dy AN )2 +ca2 (). Note that 0 is the principal eigenvalue of (—dy Ay )*2+[q(z)— 22T as (—dy Ay )*2 v+

ur+v;
[q(z) — %]vl = 0. Since c2(x) > [g(x) — %], it follows that Ay > 0. For similar reasons, Ay > 0. Thus,
5(Z) = inf{ReX | A € 0(ZL)} > 0.
Next write

Fl(a,u) = [a(z) = p(a) = ba)ulu, [ (2, u,0) = [a(e) = b(a)uu + g(w)v

and

fé(z,u,v) = |a(z) — b(x)u — Z(%)z u+q(x)v, g(z,u,v)= [Z(i)z _ q(g;)] v.

Obviously, for all = € €,
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fl(q"’u) § fc(l',u,v) § f’r(m?u’v)

provided that u > 0 and v > 0 on €.

We now select sub- and super-solutions to form the domain for the needed Leray-Schauder degree. Chose
0 < e < 1 and set @ = eu;. Then we have (—d,An)*11; < f'(x, ). Accordingly, let ©; be the positive
solution to (—d,An)®2v = g(z, 4, v). As shown above, the existence and uniqueness are a consequence of
Lemma A.8. That is, (—d,An)*2%; = g(z, @y, 7;). On the one hand, since u; > @; on €, and 9,9(x,u,v;) > 0,
we have (—d,An)%2v; = g(x,u,v;) > g(z, 4, v;). On the other hand, since g(x,u;,v) = vh(z, 4, v) and
Oyph(z,77,v) < 0, from Lemma A.4 and Proposition A.7, it follows that v; > @; on Q. Later, (4, 7;) serves as
a lower bound. To obtain an upper bound, let C' > 0 be such a number that sup,cq p(z) < Cinfieq q(x).

Also, let m > 1 and set u, = m, v, = Cm. Simple calculation shows that g(z,u,,v,) = Cm[g(f)l —q(x)] <0
on Q. In addition, let m be so chosen that f.(x,u,,v,) = a(x)m — b(z)m? + q(z)Cm < 0 on Q. Apparently,
u, and v, are independent of d,,d,, and s; (i = 1,2), and @ < u; < u,, 9 < v; < v, on Q. Now it is
straightforward to verify that

(7duAN)Slal § fl(xaal) -,<«- fc(lL',ﬂl,’U), ((E,U) € ﬁ X [6177)1”]7
(7dUAN)SQﬁl < g(I,U,lNJl), (,I,U) € ﬁ X [’LNLZ,UTL

and

(—duAN)S Uy > f7 (2, U, v) > f(2,u,v),  (z,0) € Q X [0, v,],
(—duAN)*2v, > g(o,u,v,),  (,u) € Q X [, uy).

Next set
O={(u,v) €CQA) xC(Q) |t <u<u, i <v<v, x€Q},
and let .Z; : [0,1] x O — C(Q) x C(22) be defined by

sy ([ D (=0 o) 4170
o (—dyAn)™ + 1) o + gla,u,0)]

Clearly, .%; is compact for ¢ € [0,1]. As indicated by the above calculation, (u,v) # %#;(u,v) on 0O for any

€ [0,1]. Thus, deg(I — %, 0,0) is well defined and is independent of ¢. Since [I — F](u,v;) = 0 and
s(&) > 0, it follows from Nirenberg [34] that deg(I — %y, 0,0) = 1. Thus, deg({ — %#1,0,0) = 1 and F;
has a fixed point in O, which is a positive endemic steady state of (2.1). Thanks to (H1), Proposition A.2
shows that u € C*172*(Q)) with s; < 3 and 251 +2a < loru € C32%(Q) with s; > 3 and 251 + 20 < 2.
Likewise, v € C?%272%(Q) with s < § and 255 +2a < 1 or v € > 7>*(Q) with s5 > 1 and 2s5 + 2a < 2.
The proof is completed. O

Corollary 2.7. Assume that ¢ < p < a. Suppose further that ¢ < p if ¢ — p is a constant, and p < a if p—a
is a constant. Then, for any 0 < s; <1 (i=1,2), d, >0, and d, > 0, (2.1) has at least a positive endemic
steady state.

Proof. The assumptions and Proposition A.6 imply that Ag, o—p < 0 for any 0 < s; < 1 and d,, > 0. In
addition, Proposition 2.2 shows that %, > 1 for any d, > 0 and 0 < sy < 1. Thus, the desired conclusion
follows from Theorem 2.6. O
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2.8. Influence of diffusion rates

We next analyze the impacts of d, and d, on the spatial profiles of the positive endemic steady state
established in Theorem 2.6. We begin with the case d,, — 0.

Theorem 2.8. Suppose that (H1) is satisfied, o > 1, and infcqla(x) —p(x)] > 0. Then (2.1) has a positive
endemic steady state (u,v) for any 0 < s; <1 and d,, > 0. Moreover,

Jm = wollo@ =0, lim o= wollem =0

for some (ug,vg) € C(Q) x C(Q), where ug > 0, vg > 0 on Q, and (ug,vo) solves

PENO% 4 g2

la(z) — b(z)uglug — wo + v 0=0, (2.6)
(—duAN)%2vy = [% - Q(Z)} V0. |

Proof. Under the condition that inf,cqla(z) — p(z)] > 0, Proposition A.6 shows that Ag, .—p < 0 for any
0 < s1 <1 andd, > 0. Hence, it follows from Theorem 2.6 that (2.1) has a positive endemic steady state
for any 0 < s1 < 1 and dy > 0.

Now let u; be the unique positive solution of (—d,Ax)**w = (a(z) — p(x) — b(x)w)w and let zo € Q be
such that w;(x¢) = infeq v;. Then Proposition A.5 implies that

[a(w0) = p(x0) = b(xo)ui(o)]ui(xo) < 0.

Since w;(zg) > 0, wi(zg) > a(z%)(;f)(m) > inii;‘i?ﬁ)’(’igz) := Iy > 0. Subsequently, it follows from Proposi-

tion A.7 that u > u; > Iy on Q. Next let v; be the unique positive solution of

(dan) = [P0 — gt

Then, Lemma A.4 implies that inf,cq v; > Csup,cq vi, where C' > 0 is a constant depending on p, ¢, d, > 0,
and Q only. Hence, inf,cqv; := kg > 0. Since u > ly, we have

oz B2 g

Hence, it follows again from Proposition A.7 that v > v; > kg on Q. On the other hand, as a consequence of
Propositions A.3, 2.4 and Theorem 1.5 of Caffarelli and Stinga [11] (or see Grubb [22]), there exist constants
0 <v <land C > 0 such that ||[v][z=2() + [[v]|cv@) < C. Here C' > 0 depends on dy, s2, p, and ¢, and
lv]|L2(qy- Thus, upon the extraction of a subsequence of d,,, we have

li - g =0, v—"uwy in H>(Q
Jim (o = vollgugy =0, v = vp in H*(Q)

for any 0 < p <, vo € C*(2) N H*2(1).
We then turn to
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Set

2 s

g(z,v,u) =u, h(z,v,u)=a(z)—blx)u—

To complete the proof, we just need to show that h(z,-,-) satisfies the assumptions of Corollary A.9. Fix
x € Q and consider

VN /) LN T C)
A, vofa),7) = ae) —b(a)7 — —EES ()

Clearly, for each fixed z € , as a function of 7, h is defined in (0, 00). In particular, h — oo as 7 — 0T, and
h — —oo as 7 — oo. Thus, h(z,vo(z),7) = 0 has at least one root 7(x) > 0 in (0, c0). Simple calculation
shows that

p(x)vo(z) q(x)vo ()

he(z,vo(x), 7) = —b(z) — p(z) — o) + 77 ~ <0, 7€(0,00).

Hence, 7(x) is the only root in (0, 00). The implicit function theorem implies that 7(x) € C(Q).
We next show that 7(z) is bounded from below by a positive number. Note that

(e, 0(2),7) > ala) — bo)r — pla) + L2020@) _ [o@) = plolr = Me)r” + glxjuo(z)

which implies that

a(z) —p(z) + V[a(z) — p(@)]* + 4b(z)q(z)ve(x) _
3(z) =ro(x) < 7(2).

The assumption that inf,cqla(z) — p(z)] > 0 implies that inf,ecqra(z) := rv > 0. Set 91 = 0 and 53 = 0.
Obviously, h(z,-,-) € C%Y(Q x (n1,00) X (n3,00)) and h,(z,vo(z),7) < 0 for all z € Q. Rename 7(x) by
uo(x). That is, (ug,vo) solves the first equation of (2.6). On the other hand, set 7o = —1. Since g(x, v, u) = u,
g € CL(Q x (n1,00) x (12,00)). Also, d3g = 1 > 0. Thus, Corollary A.9 yields that

li — o = 0.
f(lﬁ Ju UOHC(Q)

u

Returning to v, since u > Iy > 0 and v > ko > 0 on , —%& — —“_ in C(Q) as d, — 0. Thus,

? utv uo+vo

lim
d,—0t
Q

p(x)uv p(x)ugug
U+ v q(m)v o Ug + Vo + q(ac)vo

v+

Then, in view of Proposition A.2, the continuity of (—d,Ax)%2 + I)~! yields

lim
dy,—0t

:07

U + Vo H52(Q)

v — (—dyAN)*2 + 1)1 [UO + ZM — q(x)vo]

and it follows from the definition of (—d,An)%? + I)~! that

(=)o | ) = | [m - q<x>] -y

Uuo + Vo
Q
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for any ¢ € H*2(Q2). It is not difficult to see that wug is Holder continuous. Hence, Theorem 1.4 of [11] shows
that vy € C?*2720(Q) with s, < % and 2so +20 < 1 or vy € 012\,5”26(5) with so > % and 2so + 20 < 2 for
some 0 < 0 < 1, and (ug, vg) solves the second equation of (2.6). The proof is completed. O

The next theorem is concerned with the spatial profiles of the positive endemic steady state (u,v) of
(2.1) as d, — 0.

Theorem 2.9. Suppose that sup,cq[p(x) — q(z)] > 0 and \g, a—p < 0. Assume that (H1) is satisfied. Then
there exists d* > 0 such that (2.1) has a positive endemic steady state (u,v) for any 0 < d,, < d*. Moreover,

. o : _ .t .
thI(l)+ ||U - UOHC(Q) =0, d,,,h—r>%+ ”U Yo ||C(Q) =0

v

for some (ug,v) € C(Q) x C(Q), where ug >0 on Q, v = vy V 0 := max{vy(x),0}, and (ug,vo) solves

p{T)upvo
POV | oy,

(_duAN)SIUO = [a’(x) - b(x)uo]uo - U + vo (27)

[p(x) = q(@)]uo(2) = g(x)vo ().

Proof. Under the condition that sup,cq[p(z) — ¢(z)] > 0, Proposition 2.2 implies that there exists dy > 0
such that Zy > 1 for all 0 < d < dp, where dyp may depend on ss. Fix d* < dy, then %, > 1 for any
0 < d < d*. Thus, in terms of Theorem 2.6, (2.1) has a positive endemic steady state (u,v) for any
0 <d, <d* aslong as d,, and s; (i = 1,2) are fixed.

Let w; be the positive solution given in the proof of Theorem 2.8. Since d, > 0 and s; are fixed,
Lemma A.4 shows that infycqu; > Csup,cqw, where C > 0 depends on d,, s1, a, and p only. Hence,
lop = infycqu; > 0. It then follows from Proposition A.7 that u > u; > lg > 0. Now chose 0 > %, then in
view of Proposition 2.4, we see that [[v|| (o) < Cg for some Cy > 0 depending on a,b, p, g and 6 only. Also
note that

(=duAn)*tu [ ¥) < (a(z)u, ¢) + (g(2)v, )

for any ¢ € H®'(Q) satisfying ¢» > 0. Consequently, Proposition A.3 and Theorem 1.5 of Caffarelli and
Stinga [11] imply that [lullg=1 () + [[ullcv@) < C for some 0 < v < 1 and C' > 0 depending on d, s1,
|a]oo, [q]oo, and [[v]|Lo(q). By extracting a subsequence of d, if necessary, we obtain

1. - n(Q) :07 L i H81 Q
d}g{lﬁ llu = wollow () u Up 1N (€)

1

for any 0 < p < 7, ugp € H**(Q) N C*(Q). We next turn to v. Note that

() = () o= o) atae)
and set
gl uv) = =, hla,uv) = [p(x) — g@)u gz}

As done in Theorem 2.8, we proceed to show that g and h satisfy the assumptions of Corollary A.9. Clearly,

h(z,uo(x),v) = 0 has a unique root vo(z) = W and vy € CH(Q) for some 0 < B < 1. Let m = 2,

No = —lzo, and 13 = —2|vg|eo. Then
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g€ C™HQx (n,00) x (112,00)), € C™H(Qx (1, 00) x (113,00))

and

u

9,,0) =0, Og(x,,7) 2 g(x,,07), Drglw,u,7) = o

>0, O-h(z,u,7)=—q(z)<O0.

Here @ > 1 and 7 > 0 are arbitrary. Note that vd > 0 as sup,cq[p(®) — ¢(z)] > 0 and uy > ly. Thus,
Corollary A.9 implies that

lim |jv— o ||~y = 0.
Jim o= o o)

Now, by employing the same arguments used in the proof of Theorem 2.8, we infer that (ug,vo) solves the
first equation of (2.7). This completes the proof. O

We next study the spatial profiles of the positive endemic steady state of (2.1) as either d,, — oo or
dy — 00.

Theorem 2.10. Suppose that (H1) is satisfied and %o > 1. Assume that @ > p. Then (2.1) has a positive
endemic steady state (u,v) for any d, > 0. Moreover,

Jimu = sl =0, Tim v = velloq@) =0

for some (oo, Voo) € C(Q) x C(Q), where s, > 0 and ve, > 0 0n Q, Uy is a constant, and (Ueo, Voo) Solves

Q/ [a(z) — b(z)uo]tsodz = ! [% - q(x)} vaoda, .
(A, = | PO )

Uso + Voo

Proof. In terms of the condition that @ > P, Proposition 2.2 implies that Mg, o—p < 0 for any d,, > 0. Thus,
the existence of an endemic steady state is obtained via Theorem 2.6 for any d,, > 0. As d,, > 0 and s9 are
fixed, with the same reasoning shown in the proof of Theorem 2.8, we obtain

li — Voo llou(m) = 0, Y o In H?(Q
g [v = ves |l V= VU 1N ()
for some 0 < p1 < 1, voo € CH(Q) N H*2(Q). Again, notice that

(AN u | 9) <d,(a(z)u, P) + d, (qg(x)v, P)

for any ¢ € H**(Q) with ¢ > 0. Hence, it follows from Proposition A.3 and Theorem 1.4 of Caffarelli and
Stinga [11] that

HUHC251+29(§) <C,

where 0 < 6 < 1 is such that 251 +20 < 1if 0 < s1 < %, and 2s1 + 20 < 2 if 51 > %, C > 0 is independent
of d, as long as d, > 1. Then, as in the proof of Proposition A.6, we have u — s, in Q as d,, — 0o, where
Uso > 0 is a constant. In particular, by passing the limits in
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0= {((—d,AN)"u]|1) = / [a(m)u — b(z)u® — pqEﬂil:}U + gq(z)v|dz,

we infer that (e, Vso) solves the first equation of (2.8).

Next we show e, > 0 and vee > 0 on Q. Let again wu; be the positive solution of (—d,An)*'w =
[a(z) — p(z) — b(z)w]w. In view of the fact that ((—d,An)tuy | u%> < 0 (see the discussion at the end of
Section 3 of [53]), we have

F @y = Flate) - plo)da.

Q Q

The inequality is strict unless w; is a constant. Since u > u; on Q and limg, oo ||u — Uso || ¢ = 0, we have
Uso > ? := lp > 0. In addition, it is clear that u > %0 on Q if d, is sufficiently large. Now let v; be the
positive solution of

z)low
(—dyAN)>w = ]ljo(—k) ;w —q(z)w

Since d,, and sy remain unchanged, as shown before, inf,cqv; := kg > 0. Because u > %’ once d, is large
enough, Proposition A.7 shows that v > v; > ko on Q if d,, is sufficiently large. As a result, vse > ko on
Q. Finally, the same arguments used in Theorem 2.8 imply that u. and vs satisfy the second equation of
(2.8). The proof is completed. O

Theorem 2.11. Suppose that (H1) is satisfied and Mg, a—p < 0. Assume that D > G. Then (2.1) has a positive
endemic steady state (u,v) for any d, > 0. Moreover,

1. - o0 ) — 5 1' —_ 0o =\ —
dvgnm Ju—u HC(Q) 0 d,,gnoo [v—w ||C(Q) 0
for some (Uoo, Voo) € C(Q) x C(Q), where us > 0 and voo > 0 0n Q, V4 is a constant, and (Uoo, Vo) s0lves

(—duAN)* use = [a(x) — b(2)Uoo|Uoo — % + q() Voo,

/ {p(x)%" — (z) | voodz = 0. (2.9

Uso + Voo

Proof. The proof is mainly the same as that of Theorem 2.10. We present a sketch with a few key details.
First, as in the proof of Theorem 2.10, we have u — Uy and v — V4 in Q for some (Uso, Vo0 ) € C(Q) x C(Q),
where vy, > 0 is a constant. As d,, is fixed, we still have u > w; > Iy := inf cqu; > 0, where u; is the
positive solution given in the proof of Theorem 2.10. Hence us, > lp on Q.

It remains to show that ve, > 0. Similar to Ni [33], we consider w = Then

v
HUHL2(Q).

(—dyAn)*2w = {Z(i)z - q(z)} wdz.

By using Proposition A.3 and Theorem 1.4 of [11] again, we obtain that w € C?52+29(Q) for some 0 < 6 < 1.
Then, the same arguments show that w — w., in Q for some positive constant ws, as d,, — co. In particular,

/ [% - q(x)} dz = 0.
Q
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Note that vy, > 0, otherwise, we would have p = ¢, which contradicts the assumption. By passing the limits
in (2.1), we find that (4o, Veo) solves (2.9). The proof is completed. O

Corollary 2.12. Suppose that (H1) is satisfied and ¢ < p < a. Then (2.1) has a positive solution (u,v) for
any d,, >0, d, >0, and 0 < s; <1 (i =1,2). Moreover,
(%o — 1)

u— =, v-—

S| QI
S QI

uniformly in Q as d, — oo and d,, — co.

Proof. The existence of a positive solution (u,v) of (2.1) is a special case of Corollary 2.7. The convergence
of u and v and the positivity of the corresponding limits are established via the same arguments employed
in the proofs of Theorems 2.10 and 2.11. Let uo, and v, be the limits of u and v, respectively. Clearly, o

and v, are two positive constants. Then

/[a(x) — b(T)UooUcodr = / {m — q(z) | voode,

Uso + Voo

Q @
/ [M - q(x):| Vs = 0,
Q

Uoo + Voo

— 1). Meanwhile, by Proposition 2.3, we have Zy — £ as d,, — oo. Thus,

ST

Therefore s = % and v = %(

the desired conclusion follows. O

ST

3. Stability of disease-free and endemic equilibria

This section focuses on the stability of the disease-free and endemic equilibria that were obtained in
Section 3. We first consider time-dependent positive solutions to

ur + (—du AN)* u = a(z)u — b(z)u? — pqiaﬁz;v +q(z)v, (t,z) e RT x Q;
v+ (~dyAy)o = p@w — qla)v, (t,x) € R* x ©, (3:1)
utv

u(0,z) = uo(z), v(0,2) = vo(x),

where (ug,vp) € X = C(Q) x C(Q). According to Yosida [50], —(—dAny)* is the infinitesimal generator of
an analytic semigroup given by

oo
e~ (TAAN)TLy, — /Ts,t(T)edANdeT,
0
where T, ; € LY(R™) are a family of non-negative functions satisfying

/Ts,t(T)dT =1, t>0; Toy#Tay="Tarry t,n>0, Tay(r) =t +Tur(t™57), t > 0.
0

The analytic semigroup generated by —(—dAp)* on L2(Q) and Co(Q2) can be defined in a similar way.
The following lemma summarizes a few basic estimates of (—dAy)7e~(Z4AN)"t and (—dAp)7e=(-4Ap)" in
either L2(Q) or C(Q) (Co(Q) for e~ (—4A0)"t) a5 t — o0, where 0 < 0 < s
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—(—dAN)°t —(—dAp)?®

Lemma 3.1. Let e and e t be the analytic semigroups generated by —(—dAn)* and
—(—dAp)* in either L*(Q) or C(Q) (Co(Q) for e~ (—IA)"t) respectively. Then

) s

o0 o0
7( dAN /Tst dANT dT7 7( dAD /Tst dADT dT
0 0

Let 0 < o,s < 1. Then, for anyt > 0,

i) |le=(mdAN)ty, r2@) < |wllr2@), [(—dAn)7e” (—dAN) "ty r2) < Ce™

() | (@) (@)

(ii) e~ dan) tw”cm) < Collwlloy, (—dAN)Te” AN Tyl o) < Ct™ ||w||c(§)¢ where C > 0 are
constants depending on o, s, and Q, Cq > 0 depends on §2;

(111) He_(_dAD)Stw||L2(Q) <e —(dp1)® H( dAD)UB_(_dAD)SthLQ(Q) < Ce~

: —(— s —(du1)°t o —

(iv) [lemC922) M w]| oy < Coe™ 2 le\c(m [(=dAp)7e a8y ty|| gy < Ct™
w1 > 0 is the principal eigenvalue of —Ap in Q, C > 0 are constants dependmg on 0,8, and Q,
Cq > 0 depends on €.

(du1) t

t"||w||L2(Q),

where

Proof. We only prove (i) and (ii) as the proofs of (iii) and (iv) are parallel. To show (i), notice that
edANTy = 302 e T, where (Mg, ¢r)52, are the eigen-pairs of —Ay in L2(12), and wi = (w, ¢y).
From the Laplace transforms of Ts; [1>0 (see Sec. IX, 11 of Yosida [50]), it follows that

oo X 0
o (mdAN)Tt Z/Ts,t(T)e_dAdeka(Pk — Z e_(d)\k)stwk@k~ (32)
k=17 k=1

Note that e~ (=4A~)"t] = 1. Moreover, the Parseval’s identity implies that

7( dAN

lle ‘w20 < w2

To prove the second estimate of (i), we use the fact that (—dAyx)7pr = (dAg)? k. For the sake of simplicity,
we assume without loss of generality that d = 1. Then, it follows from (3.2) that

o0
(_AN)Ue—(—AN)Stw _ Z A(;:@_Aitwkwk
k=2

where 1, = ’\T’it Therefore, the Parseval’s identity implies that
oo
l(=An)7e™ AN e g < ( P Y (em) ¥ e
k=2

Observe that sup,-,(27) % e~2" = (22)¥ ¢=% < oo. Hence,
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s o A3t
I(=AN)7e™ 8 || 2y < Ot Fe™F w20

for some C > 0 depending on s, 0, and .
To prove (ii), assume that w € C(Q). Write w = w + (w — w). By results in Lunardi [28],

A

eANTw =0 + AN (w —w), |eVT(

w— )o@ < Clem X207y — 0| o)

where 0 < § < Ay and €’ > 0 depends on . Thus, by the definition of e~ (=A~)"t,

oo

le= AN )| o) < /Ts (M) (10l oy + 16237 (w — @) || oy ) dr
0

< || + C'e” P2l — | o

< Collwllc@)
for some constant Cq > 0. Furthermore, by [28] again, it holds that
I(=AN)e N wllom) < Com ™" llwllo@: 7> 0,

where C, > 0 depends on ¢ and ). Consequently,

oo

[(—Aw)ee A by o < / Ty (1)l (—An)7eA¥ T o gy
0

[T, ()
<Collle | r

T
0

oo

= Cot™ % wll /Q*UTQ NOLL

oo

1
<O, % |w||c(9)[/9 Ty d9+/T (e)da]
0 0

< Ct~

for a positive constant C' depending in o, s and €. Here we used the fact that T 1 (+) is bounded (see page 262
of Yosida [50]). Let Y denote either L2(Q) or C(9), when o = s, it is worth mentioning that the estimate
of [(—An)*e™ (=2~ ||y is already established in [50] where it was shown that

d s
—e~EAN < Ot wlly,
dt v

where C' > 0 is a constant. The proof is completed. O

3.1. Global existence and point dissipativity

We first establish the global existence of solutions and point dissipativity of the semiflow generated by
problem (3.1).
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Proposition 3.2. Suppose that (ug,vo) € X with ug > 0 and vg > 0. Then there exists a unique global positive
solution (u(t,ug,vo),v(t,ug,v9)) to (3.1) such that u(0,ug,vo)(x) = ug(x) and v(0,up,v9)(z) = vo(x).
Moreover, u(t,ug,vo) > 0 and v(t,ug,vo) >0 on Q for each t >0 if ug > 0 and vy > 0. In particular,

hmsup |u(t7u0,00)‘00 < Ca hmsup |’U(t, UO7UO)‘OO < Ca
t—o0 t—o0

where C > 0 is a constant depending on d,,,d,,s; (i =1,2), N, and a,p,q.

Proof. We shall first obtain the local existence and uniqueness of a positive solution with initial data (ug, vo).
For the sake of clearance, write again

Yz, u) = [a(z) — p(z) — b(z)ulu, [ (x,u,v) = [a(x) — b(x)ulu + g(x)v

and

Fo(z,u,0) = |a(z) — bla)u — Z(Lﬁz] u+tq(z), gz, u,v) = [Z(ﬁ)z - q(sc)]v.

Notice that the (mild) solution of (3.1) with initial data (ug,vo) is given by

t
u(t, z) = e~ (BN Tty () 4 / e~ (R ANTIET) fo(gp uy, v)dr,
0

+

t
v(t,x) = e~ (TRAN) Pty (1) /6_(_d”AN)SQ(t_T)g(x,u,v)dT.
0

Thus, the local existence and uniqueness of (u(t, ug,vo), v(t, ug,vg)) follow from the contraction mapping
theorem.
We next prove the positivity of (u(t, ug,vg), v(t, ug,vo)) given that ug > 0 and vg > 0. To this end, let

(ug(t, wo, vo), vi(t, ug, vo)) and (ur(t, uo, vo), vr(t, ug,vo)) be the solutions of

ug + (—du AN)*u = fi(z,u), ut + (—dyAN)Stu = f7(z,u,0),
(L) v + (—dy An)®2v = g(z,u,v), (R) ve + (—dyAn)*2v = g(z, u, v);
u(t,x) = uo(z), v(t,z) = vo(x); u(t,z) = uo(z), v(t,z) = vo(z),

respectively. Both systems are cooperative as d,f' = 0, 9,f" > 0, and 0,9 > 0 in XT, where XT :=
{(u,v) € X | w>0,v > 0}. The local existence and uniqueness of these two solutions are again established
by the contraction mapping theorem. In addition, thanks to the strong positivity of e~ (T4An~)"t lt~0 and
the comparison principle (see Lemma 2.1 of Chapter 8 of Wu [47]), we have

(0,0) < (w(t,ug,vo), vi(t, ug,v0)) < (ult, ug, vo),v(t, uo,v9)) < (ur(t, uo,vo), vr(t, uo, vo)) (3.3)

for 2 € Q over the maximal interval of existence shared by all three solutions. It is not difficult to see that
(u(t, w0, vo), v(t, ug, vo)) is a global solution. In fact, set @, = m and o, = mC, where m and C are two
positive constants satisfying sup,cq p(x) < Cinfzeq ¢(z) and m > 1 as in the proof of Theorem 2.6. It is a
simple matter to verify that

Oty + (—duAN)* ir > f1(2, 0, 0r), OOy + (—dpAN)*20r > g(x, 0, 0r),  (t,7) € RT X Q
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Let m be so chosen that |ug|e < @, and |vg|eo < 0. Then, the comparison principle implies that

(ul(tvUOavo) vl(t u07UO)) ( (t UO;”O) (t7UO7UO)) < (UT(tvan”O)avT(taumUO)) < (araﬁr)'

Thus, it follows from the continuation of solution that (u(t,uo,vo), v(t, ug,vo)) is a global solution.
We next show the second part. As the arguments are standard, only a sketch is given. We start to show
that there exists 0 < § < a < 1 such that

u(t, uo, vo) € CO%1F2([c 00) x Q),  uy(t, ug,v0) € C([g,00) x Q)
for any € > 0, where « is given in (H1). If s; > 3, then u(t) € C3*t?%(Q) for each ¢ > e. Likewise,
ot 1t0,0) € C¥% [z, 00) x ), wa(t, uoy o) € C([e, 00) x ).

To this end, select 0 < o < s1 such that o + o A § A sy > s1. By using the first equation of (3.1) and
Lemma 3.1, we find that, for any ¢ > 0,

t

I(-duAw)uloqy < €[ ualloqy + 1l - r
0

<Ot 5+t ),

where C' > 0 depends on $1,0,dy, ||, [V|co, and |fc\oo In view of Proposition 2.2.15 of Lunardi [28],
u € C?7(2). Assume without loss of generality that s; > %, (H1) and Proposition A.1 show that f¢ €
dom(—d,Ax)%. Employing Lemma 3.1 again gives that

t

I(—duAN)" T ull @ < Ct S5 Jugll o + I1(—dudn) T e / (t - ﬂ‘sﬁm}
0

<O ErED gt

for some C' > 0. Let 8 = o + ¢ — s1. Then u(t) € C?*172%(Q). In particular, u(t) € 012\731-5-2,3(@) if 51> 3.

Proposition A.1 implies that (—d,Ax)*tu(t) € C(Q). Then the interpolation theory gives rise to the desired

estimates since uy = —(—d, An)* u+ f°(z, u,v). The regularity of v and v; follows from the same arguments.
We now are ready to prove the last part. Given any k£ > 1, note that

1 d k+1 4ds C* S k+1
iria ]’ dx + m Cxn ||HS2(Q) [p(x) + 4d32c, v d,
Q Q

where ¢, > 0 is the constant given in (1.4). Write w = v 3" Then the Sobolev embedding theorem implies
that

d 2 kr 253 / 2
Sdy < (k+1 adsze.|wde,
dt/ dx +k+1/w de < (k+1) [ [p(z) + 4d3 e, Jw da

Q Q Q

where r > 0 is a constant depending on s, ¢.,d5?, N only, and 2s5 = N 2 . Similar to the proof of Lemma
6.1.1 of Cholewa and Dlotko [15], it follows from the Bernoulli inequality that

lim sup |’U(t, uop, vO)‘oo S 07
t—o00
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where C' > 0 depends on ss, ¢, d;?, N, and p only. Likewise, we have

1 Ads,

d k+1 Yok kgL o / k1 / k

—_— —_— s < 4d%1 ¢, .

k—l—ldt/u dx + (k+1)2|\u T g < [ la(@) +4di eJu™ dr + | g(z)vu”dx
Q o) )

Hence, the same reasoning shows that

lim sup [u(t, uo, vo) | < C,
t—o0

where C' > 0 depends on s1, ¢y, d;}', N, and a, g only. The proof is completed. O
3.2. Stability of the disease-free equilibrium

Proposition 3.2 implies that the semiflow (u(t,ug,vg), v(t, ug,vo)) generated by (3.1) is point dissipative
in Xt where X* := {(u,v) € X |u > 0,v>0},and X = C(Q) x C(Q). This along with the compactness of
the trajectory of (u(t,ug,vo),v(t, ug, vo)) suggest the existence of a global attractor. The next two theorems
(Theorems 3.3 and 3.5) specify what the global attractor is under certain conditions.

Theorem 3.3. Suppose that all assumptions of Proposition 2.5 are satisfied. Assume that %y < 1. Then the
disease-free equilibrium (u1,0) is globally asymptotic stable, where uy is the unique positive solution of (2./).

Proof. As the first step, we show that lim;_, .o ||v(t,u0,vo)\|c(§) = 0. Thanks to (3.3), s < 1. Thus,
v+ (—=doAn)*v < [p(x) — q(2)]v.

Let 1 be the positive eigenfunction corresponding to Aq, p—q Wwith infycn1 > 1. Let C' be the constant
obtained in Proposition 3.2 and set ¢ = C,e~*v.r—ate), where C,, = C' V |vg|so. Then

&+ (—dvAN)™E = [p(z) — (@))€
Subsequently, it follows from the comparison principle that
0 < v(t,ug,vg) < Cpe Muvr=alyy 2 € Q.
Since Zo < 1, Adg, p—q > 0. This confirms that lim;, e [|v(¢, uo, v0)|| @) = 0-

Now it remains to show that u(t, ug, vy) converges to u; as t — co. Since u; > 0 on  and v(t, ug, vo) — 0
as t — oo, given any 0 < ¢ < 1, there exists Ty > 0 such that

[a(z) — b(z)uju — 6b(2)u? < us + (—duyAn)*u < [a(z) — b(2)u]u + 6b(x)u?, t > Ts.
Notice that there exists a unique positive solution ws+ to each of the following equations
(—duAN)*'w = [a(z) — b(z)w]w + 5b(zx)u?, (3.4)

respectively, as long as 0 < § < 1. As a matter of fact, set e~ = 1=VIZ49 s = (1 — € )ug; and

2
et = Y=L s = (1 + €t)uy. Direct calculation shows that

(—duAN)* ws— = [a(z) — b(x)ui|ws- = [a(z) — b(z)ws-|ws— — € (1 — € )b(z)u?
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and
(—du AN ) ws+ = [a(z) — b(z)ur|ws+ = [a(z) — b(z)ws+]ws+ + €T (1 + T )b(x)ui.

Namely, ws+ are positive solutions of (3.4) .
a(z)

We invoke the implicit function theorem to prove the uniqueness of ws+. To do so, let m = 2sup,cq b(2)

and define

a(x)r, 7<0,
Jjx,7) =S a(z)r —b(x)r?, 0<7<my
b(z)m? + a(x)r — 2b(x)mT, T >m.

Hence, j € C*1(Q x R). Also let .7 : H*(Q) x R — H—%(Q) be defined by
(P (w,6) | ) = {(—dwA) 1w | 0} — (G, w) + byl o), w0 € H(Q)
Note that .# € C1(H?*(Q2) x R). In addition,
F(u1,0) =0, 0ypF(u1,0) = (—d,An)** — [a(x) — 2b(z)us]1.

Since Ag,.a—2bu; > 0, (0wF (u1,0)w | w) > )\dwa_gbu1||w||%2(9), it follows that 0,% (u1,0) is invertible.
Therefore, the implicit function theorem implies that % (w,0) = 0 has a unique solution for § € (—¢,¢)
provided that ¢ > 0 is sufficiently small. Obviously, ws+ are two solutions of #(w,d) = 0 when 0 is
sufficiently small as j(x,7) = (a(x) — b(x)7)7 if 0 < 7 < m. So the uniqueness of ws+ follows.

Finally consider

{wt + (=duAN)S w = [a(z) — b(z)w|w — db(x)u?, (t,7) € (tg,00) x Q,

w(to, ) = u(Ts, ug, vo).

In terms of the theory of monotone dynamical systems, both ws+ are globally asymptotic stable. Hence,
there exists T.— > 0 for which w(t,tp) > ws- — € |u1|oo if t > T,.— +T5. Meanwhile, the comparison principle
shows that u(t, up,v9) > w(t,tg) for t > Ts. Thus, if t > T.— + Ty, then u; — 2e |u1|oo < u(t, ug,vg). For
the same reason, u(t,ug,vo) < uy + 2€7|ui|o. In view of the setups of €T, given any ¢ > 0, we have
|w(t, ug, vo) — u1|eo < € if ¢ is sufficiently large. This ends the proof. O

The following theorem accounts for the stability of (uy,0) when %, = 1. It shows that (uq,0) is still
stable as long as (vg, ¢1) is sufficiently small, where ¢, is a positive eigenfunction associated with Ag, ,—q-

Theorem 3.4. Suppose that all assumptions of Proposition 2.5 are satisfied. Assume that %y = 1. Then,
given any € > 0, there exist 6 > 0 and T > 0 depending on € such that

l[u(t, uo, vo) — ualloqm) + [lv(t; w0, vo)lo@y < €

whenever (vo, $1) < and t > T, where ¢1 is the positive eigenfunction corresponding to Aq, p—q satisfying

P11l L2y = 1.

Proof. Given any ¢ > 0 such that (vg, 1) < J, we first show that |v(¢, ug, v9)|c < C1d when t is sufficiently
large, where C; > 0 is a constant depending on ¢;. Since %y = 1, (2.3) says that Ag, ,—, = 0. Denote
(—d,AN)®2> — (p — q)I by A and consider A as a linear operator on L?(2) with dom(A) C L?(Q). In
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view of the proof of Lemma A.8, \I — A is invertible if A < 0 and |A| is sufficiently large. In particular,
(M — A)~! is compact. Namely, A has compact resolvent. Hence, the self-adjointness of A implies that
o(A) \ {oo} = 0p(A) = {11}, where v, € RY, v < vpyq, and v1 = Ag, p—q = 0. Moreover, v, are
characterized by the min-max formula

v = inf —du,AN)Pw | w) + — plw,w),
P el o AN T e )

Vg = inf <(_dvAN)32w ‘ ’LU> + <(q _p)w7w>7 k > 2u

weEXp 1 llwllp2gy=1

where X, = @le ker(A — ;1) and each v, has finite geometric multiplicity. Now we view A as a linear
operator on C(Q) with dom(A) C C(Q). The spectrum o, (A) remains the same. In particular, v; = A4, p—q
is a simple pole of (vI — A)~!. Since v; = 0, in terms of Proposition A.2.2 of [28], we have C(Q) =
ker(—A) @ range(—A). Note that range(—A) = {w € C(Q) | (w, 1) = 0}. According to Proposition 5.3.2 of
Carracedo and Alix [13], A is sectorial. Let P be the spectral projection associated with {0}, then Corollary
2.3.5 of [28] shows that

e~ = (w, ¢1)pr + e (I = Pw, [leT (I = P)wllogy < Cee™ "™ w]oq),

where w € C(Q), 0 < ¢ < vy and C. > 0 are two constants. Now let ( = e 4*vg. Clearly, ¢ solves
¢t + (—dyAn)®2¢ = [p(x) — q(x)]¢. By the comparison principle again, we have v(¢, ug, v9) < ¢. In view of
the estimate given above, it is easy to see that |v(t,ug, vo)|ec < C16 for some positive constant C; as long
as t is sufficiently large. Due to the arbitrariness of 4, given any € > 0, by employing the arguments used in
Theorem 3.3, we can reach the desired conclusion. The proof is completed. O

3.8. Stability of the endemic equilibrium

Our final result is about the stability of a homogeneous endemic equilibrium in system (3.1). We thereafter
assume that a,b,p, and ¢ are constants, and ¢ < p < a. Under these assumptions, one can construct a
Lyapunov function as done in Li et al. [26].

Theorem 3.5. Suppose that a,b,p, and q are constants, and ¢ < p < a. Then system (5.1) has a unique

endemic equilibrium (u*,v*) = (%7 a(’;’—;‘n) which is globally asymptotic stable.

Proof. As in [26], let V(u(t),v(t)) be given by

V(u(t),v(t)) = /[u —u*logu + v — v*logvldz.

In terms of the fact that ((—dAy)*w | 1) = 0, a straightforward calculation shows that

W = () ) 4 0 (~dAy) e | o)

Ll D)

<- Q/ { — (Z (T;(ufi);)]dx <o.
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Here we used the fact that ((—dAx)*w | w™t) < 0. It then follows from the theory of dynamical systems
that

Jim (Jlu = w* | 2) + lv = v*||L2()) = 0.

We next show that

[ —u*|oo + [0 = 0| < C([lu—u*||L2(0) + [0 = 0| L2(0))

for some positive constant C' > 0. This will complete the proof. To this end, write
1
c11(t,x) = /f{j(x,TW + (1 =—7m)w)dr, ca(t,x) = /fﬁ(a:,Tw + (1 —7)w*)dr,
0 0
1

Cgltl'

o\

1
gu(z, 7w 4+ (1 — T)Ww*)dT, caa(t, x) /gu x, W + (1 — 7)w™)dr,
0

where w = (u,v) and w* = (u*,v*). Due to Proposition 3.2, ¢; ; € L°(R" x Q), 1 <4, j < 2. Accordingly
we rewrite (3.1) as

{(u —u*)t + (—dyAN)" (u — u*) = c11(t, ) (u — u*) + c12(t, ) (v — v*),
(v —v")t + (—dpAN)*2 (v — v*) = co1(t, @) (u — u*) + caa(t, ) (v — v*).

In what follows, for the sake of clearance and simplicity, we assume without loss of generality that d, =
dy =1and ¢, = 1. Let w = u—wu*, and m > 2 be even. Then by multiplying both sides of the first equation
of the system by w™ ™! and integrating the resulting equation over 2, we obtain

1d 4(m —1 m
Ea/wmdx_’_%”w?ﬁ{ﬁ(m S/‘cu—|—1|wmdx—|—/‘022||U—U*Hw|m—1dx
Q Q

el frres (e} (o))

m—1

C[!wmdx+<!wmdx) " }

where C' > 0 depends on ¢11, ¢12, [v — v*|s, and [Q]. Let &€ = w, then

IN

/ o+ LDl o) < OmI€la oy + 1€l ) (35
He1( > L2() L2(Q) J* .

By the Sobolev embedding theorem and interpolation inequality, we have

N—281

1€llz2 (@) < Csy 1€ 1571 Q)||§||L1 @y 0= N 128,
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Here we already assumed that N > 2 or N =1 > 2s;. It follows from the Young inequality that

1—-6
2(m —1) Cm20 17
2 2 2
Cmlelsy < 2 eln oy + |5 1€
Likewise,
2(m—1) Cmo (179))4—
L mo mo Om
Cmlelt, < " el + | S50 | T e
where 0, = %. By inserting these two inequalities into (3.5), we find that

(m—1)8

Cm20 17 [Cmp]mG050
4 /§d+ O < { 5| || O + 1€

Thus, Lemma 1.2.5 of Cholewa and Dlotko [15] shows that

/f dx < Cgm“(HfHLl(Q + ||§||L1 Q))

where p = 451 -V 2. Set m =2% k=1,2,---, then

k k—1 2 k—1 20k
/w2 dr < Cng“[(/wQ da:) + (/w2 dx) ],
Q Q Q

2k (1-0)—(1-0)

where 6, = S 1=0)70

. Given any to > 0 sufficiently large, let ji = sup;>,, ||’U}||L2k(Q). Then, we have

. L .2k 2+
i1 < (Cy2FH)3F []13 g

Note that {jx}72, is bounded and jr — |W|oo, O — 1 as k — oo. Hence, there exists x > 1 such that

k
j,z Ortr < /@j,%k. As a result, jii1 is dominated by j;_ , = [Co(1 + /f)2k“]2i’€j,’C with 77 = j1. As in the proof

of Lemma 9.3.1 of [15], we have
e 1
Jim g =g [T1Co(1+ 283 = O .
k=2
Through the passage of the limit, we obtain
[u —u*oe < Croollu —u||r2q), t > to.
Repeating the same argument for v — v* yields that

[V = v"]o0 < C20lv — U*HLQ(Q)y t >t
for a constant Cy o, > 0. Thus, the desired conclusion follows if N > 2 or N =1 > 2s;.

We now end the proof with a brief account for the cases that N =1 < 2sy or (N =1 < 2s5). Under these
circumstances, the conclusion can be reached via the regularity of u — u* (or v — v*). Chose 0 < o < sy,
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let —ﬁ = 6 — 1, assume without loss of generality that C' < 1, where C' is given in Lemma 3.1, and write

6= )‘TZ, then Lemma 3.1 implies that

[(~AN) w2y < e

t
ol 2 + / e (¢ — 1) Bl ey dr
0

o0

|w||L2(Q) + Hh/HLZ(Q) /ta_le_étdt
0

<e T lwllzz@) + CllhllL2), t>0.

e

S e—5tt— s1

Here h = c11(u — u*) + ¢12(v — v*) and C' > 0 depends on s7, A, 6. Since s; > %7 then o can be so chosen
that 20 > % Thus, the Sobolev embedding theorem shows that

U= v oo < C(flu—v"[L2() + lv—v"l|L2 ()
for some positive constant C'. The proof is completed. O
4. Numerical simulations

This section provides numerical simulations of solutions of (3.1) to illustrate the stabilities of both disease-
free and endemic equilibria under the condition that all coefficients are constant. Regarding the asymptotic
stability of the disease-free equilibrium, we assume that the spatial domain is either @ = (—1,1) C R or
Q= (-1,1) x (=1,1) C R?, and the parameters are given as follows:

s1=s82=06, d,= V08, d,= V07, a=2 b=1 p=0.3, ¢=10.

Then it follows from Proposition 2.2 and Theorem 3.3 that £y < 1 and the disease-free equilibrium (2, 0)
is globally asymptotically stable (Figs. 4.1 and 4.2). The asymptotic stability of (2,0) is manifested in the
solutions with initial data in (—1,1) or (—1,1) x (=1, 1) given below:

uo(z) = 1.001 + 0.05sin(5rz +0.1), =z € (—1,1)
vo(x) = 0.5 + 0.02 cos(3mx + 0.1) + 0.0005¢** sin(rx), z € (—1,1),

or

uo(z,y) = 1.001 4+ 0.05sin(3wx + 0.1) cos(5bny + 0.2), (z,y) € (=1,1) x (=1,1)
vo(z,y) = 0.2+ 0.01sin(27x + 0.1) cos(4dry), (z,y) € (—1,1) x (=1,1).

Concerning the asymptotic stability of the endemic equilibrium, we assume that the spatial domain is
either @ = (—1,1) CR or @ = (—1,1) x (—1,1) C R?, and the parameters take the following values:
51=5,=06, d,= V08, d,= V0.7, a=2, b=1, p=03, ¢=0.2.
Clearly, (3.1) has an endemic equilibrium (2, 1). In addition, Proposition 2.2 and Theorem 3.5 show that

(2,1) is globally asymptotically stable (Figs. 4.3 and 4.4). The asymptotic stability of (2, 1) is demonstrated
by the convergence of the solutions with the same initial data in (—1,1) or (—1,1) x (—1,1) given above.



270 G. Zhao, S. Ruan / J. Math. Pures Appl. 173 (2023) 243-277

u(0,x u(4,x
105 (0,x) 15 (4,x) ) u(7,x) 25 u(10,x)
(2] » 1.4 © 1.8 L2
= 5 1.3 516 S
0.95 1.2 1.4 1.5
-1 0 1 -1 0 1 -1 0 1 -1 0 1
x-axis x-axis x-axis x-axis
v(0,x v(4,X v(7,x
054 (0,x) 036 (4,x) 03 (7,x) 0z v(10,x)
@ 052 P o @ NV\
G 5 034 §0250 N\ \I% 018
> 05 > > s
0.48 0.32 0.2 016
-1 0 1 -1 0 1 -1 0 1 o 0 1

x-axis x-axis x-axis X-axis

Fig. 4.1. Z9 < 1. The snapshots of the solution (u(t,x),v(t,z)) of (3.1) in the spatial domain (—1,1) at ¢t = 0,4, 7,10, which
converges to the disease-free equilibrium (2, 0).

u(0,x,y ) u(4,x,y ) u(7,x,y ) u(10,x,y )

u-axis

u-axis
(6}

u-axis
[6,] n

—_

-
—_

1 1
. 4 0 ° a4 0
y-axis vOxy) x-axis y-axis v(4,x,y ) X-axis y-axis x-axis y-axis x-axis
Xy
. . v(7.Xy) v(10,x,y)
o _9 ‘ 0.19
X 02 s 02 2
g 9 % 0.18
0.19 0.18 >
] . b 0.17
11 1
-axis X-axi -axis -axi i S i i i
y axis Yy xaxis v axis x-axis y-axis x-axis

Fig. 4.2. Zy < 1. The snapshots of the solution (u(t, z,y), v(t,z,y)) of (3.1) in the spatial domain (—1,1) x (—1,1) at t = 0,4, 7, 10,
which converges to the disease-free equilibrium (2, 0).
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Fig. 4.3. Z9 > 1. The snapshots of the solution (u(t,z),v(t,z)) of (3.1) in the spatial domain (—1,1) at ¢t = 0,4,7, 10, which
converges to the endemic equilibrium (2, 1).



G. Zhao, S. Ruan / J. Math. Pures Appl. 173 (2023) 243-277 271

u(0,x
( XY ) u(4’x,y ) u(7’x’y ) u(1 O,X,y )
o M 14 15 2
X 1 2 1.2 ;% (>,_<) 15
i X ® 5]
0.9 5 1 5 1 S5 1
1 0 1 1 1 0 1 1 0 1
g O L , a0 1 °
y-axis x-axis y-axis X-axis y-axis x-axis y-axis X-axis
v(O.xy) viA.xy) viZxy) V(10,5 )
4, 021 PR ) @?
X 02 3 04 § 05 X1
> 0.19 > 02 > 0 >0
1 1 1
0 1 0 1 1
R _ T a0 g 0 O 44 0
y-axis x-axis y-axis x-axis y-axis x-axis y-axis x-axis

Fig. 4.4. Zo > 1. The snapshots of the solution (u(t,z,y),v(t,z,y)) of (3.1) in the spatial domain (—1,1) x (—1,1) at t = 0,4,7, 10,
which converges to the endemic equilibrium (2, 1).

5. Discussion

Spatial movement of the host is the most crucial factor for the geographic spread of infectious diseases.
Classical reaction-diffusion equations have been used extensively to model the spatial spread of various
infectious diseases (Murray [32], Ruan and Wu [38]) based on the fact that Laplace operators can be
employed to describe the random walk of the host population. Note that the probability density of the
continuous random walk is a Gaussian distribution and reaction-diffusion equations only describe the local
spatial spread of infectious diseases.

In modern times, humans travel on many spatial scales ranging from a few kilometers to thousands
of kilometers over short periods. In a series of recent studies, it was observed that mobility patterns for
humans exhibit scale-free dynamics with heavier tails distribution, a characteristic of Lévy flights (Brock-
mann et al. [7], Gonzdlez et al. [21], Mandellbrot [30], Zaburdaev et al. [54]). Roughly speaking, around
80% of people travel in short distances (locally) and about 20% of people travel in long distances (non-
locally). Interestingly, Brockmann et al. [7] commented that “We believe that these results can serve as
a starting point for developing a new class of models for the spread of human infectious diseases because
universal features of human travel can mow be accounted for in a quantitative way.” It seems that these
observations about human travel patterns and Brockmann et al’s message have not been well-received by
the community of mathematical modelers of infectious diseases, and the ongoing COVID-19 pandemic has
confirmed these observations: it is the small fraction of long-distance travelers who spread the virus from
countries to countries and from continents to continents. The random Laplace diffusion certainly is not suit-
able to describe such long-distance geographic spread of the virus and fractional diffusion is a reasonable
approach.

Since Lévy flights are drawn from a probability distribution function with heavier tails rather than
a normal distribution, they are superdiffusive as they disperse particles faster than a Gaussian random
walk and large displacements and long jumps are more likely. Motivated by these recent observations of
human travel patterns and the comment of Brockmann et al. [7], in this paper, we proposed a susceptible-
infectious-susceptible epidemic model with Lévy flights, i.e., fractional diffusion. By using our recent results
on fractional diffusion equations (Zhao and Ruan [53]), we established the existence and the stabilities of
disease-free and endemic equilibria and studied the impact of dispersal rates and fractional powers on spatial
profiles of these equilibria. The basic reproduction number %, was obtained and was used to investigate the
effects of spatial heterogeneity on the transmission dynamics. It was also used to determine the existence
and nonexistence of an epidemic equilibrium as well as stabilities of the disease-free and endemic equilibria.
It was found that for low-risk regions both dispersal rates and fractional powers play a critical role and are
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capable of altering the threshold value. Numerical simulations were carried out to confirm the theoretical
results.

To the best of our knowledge, this is the first piece of theoretical study on epidemic models with Lévy
flight (fractional diffusion). One of our key assumptions is that the susceptible and infected individuals
under consideration do not leave the region (). Hence, spectral fractional Neumann Laplacian was adopted
to describe the underlying transport process. In case that the region outside of €2 is uninhabitable, then
spectral fractional Dirichlet Laplacians with different fractional powers would be a natural choice for the
diffusion operators in the model, and it is anticipated that most results obtained in this paper would
still hold. Nonetheless, technical details are obviously needed in this regard. In addition, there are more
interesting questions about such models that deserve further consideration, such as the existence of traveling
waves, spatial and temporal patterns, calibration of geographic epidemic data, etc.
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Appendix A

This section contains a sequence of results established in Zhao and Ruan [53] that were frequently used
in the present paper. For readers’ convenience, these results are listed here without proofs. All proofs can
be founded in [53].

Proposition A.1. Let ) C R™ be a bounded domain with smooth boundary. Suppose that % < s < 1. Let
0 > 0 such that 1 < 2s + 260 < 2. Set

C220(Q) = {w € L2201 | g—: =0on GQ},
Coo (@) := {w € CH#H071(Q) | w = 0 on 00}
If0<s< % and 2s + 20 < 1, then set
Cyt0(Q) == {w € C*2(Q) | w =0 on 00}.

(i) Assume that either w € C3T2%(Q) with s > 2 and 254260 < 2 or w € C*T29(Q) with 0 < 2s+260 < 1.
Then, for any 0 < a < 6,

[(=AN) W] c20(q) < Cllw]|g2et20 ()

for some positive constant C which depends on s,a, 6, and 2 only.
(i) Assume that 0 < s < 1, 2s +20 < 2, and w € C2*T2%(Q). Then, for any 0 < a < 6,

[(=AD) wllcza@) < Cllwllczstas @
for some positive constant C' which depends on s,6, and 0 only.

Proposition A.2. Let u = ((—Ax)® + I)"Lg stand for the unique solution of

(AN u [ 9) + (u, ) = (g, )
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where ¢ € H*(Q) is arbitrary. Then
(i) we H*(Q) and

[ullzs @) < Cligllz2 (),

where C' > 0 depends on s and ) only;
(ii) Suppose that g € LP(QY), where 2% <p< ﬁ Then u € C%(Q) for o = 25 — %, and

(W@ < Clglle@) +1l9llr2@);
(iii) Suppose that s > % and g € LP(Q)), where p > Tl\il Then u € CY*(Q) for a = 25 — % —1, and
[Wcrag < Cllglle@) + 1l9llr2@);

(iv) Suppose 0 < s < 3 and g € C*(Q) for some 0 < a < 1 such that 0 < 25+ a < 1 Then u € C***(Q))
and

||U||c2s+a(§) < CHQ”C&(E);

(v) Suppose s > % and g € C*(Q) for some 0 < a < 1 such that 0 < 2s+2a < 2. Then u € Cxt*(Q) and
[ullgzeta@y < Cllgllca -

Here the positive constants C' in (ii)-(v) depend on s, N,Q, and ||g||z»o) for p > %

Proposition A.3. Assume that either v € H*(Q) is a weak solution of (—dAN)*u = c¢(x)u + f. Namely,
((—=dAN)*u | Y)Y = {(cu+ f,v) for any v € H?(Q), or u € H*(Q) is a weak sub-solution of (—dAn)°u =
c(x)u + f with u > 0. That is, ((—dAN)*u | ¥) < (cu+ f,9) for any v € H*(Q) with ¢ > 0, where
c € L*®(Q) and f € LP() with p > 2L, Then

[uloo < C(llullzz@) + [ fllzr @),
where C > 0 is a constant depending on s, N,d; |c|oo, 2, and || f| prq) only.

Lemma A.4. Suppose Q C RY is a bounded domain with 0 € C* (k > 2). Suppose that ug is a non-negative
function satisfying

H»(@Q)nCQ) if 0<s<3,
Ug € 2 —_ .. 3
Hy@Q)nC@Q) if 3<s<l

3, assume further that ug € Hy™>*(Q) N C(Q) for some 0 < a < 1 with s + a < 1.
Furthermore, assume that

In case that s = 3

co(z)ug < (—dAN)°ug < c1(x)ug, x € 9Q, (A1)
where cg,c; € L=(Q) with co < c1. Let x € Q and 6 > 0. Then

sup ug < C inf wug, (A.2)
Bs(z)N$ Bs (x)NQ

where C' > 0 is a constant depending on §,$,d, N; §,|coloo, and |c1|eo only.
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Proposition A.5. Assume that Q C RY is a bounded domain with smooth boundary. Given that v € H?*(Q)N
CQ) with 0 < s < 3 oru € HFQ)NCQ) with 2 < s < 1. If s = 3, assume further that u €
HJZ\;”Q”‘(Q) NC(Q) for some 0 < a < 1 satisfying s + a < 1. Then the following statements hold:

(i) Assume that u satisfies
(—dAN)°u < f(x), z€Q,

where f € C(Q). Suppose that u(zg) = max,.qu for some xo € Q. Then f(zg) > 0.
(ii) Assume that u satisfies that

(_dAN)éu > f(:c), HARS Q?
where f € C(Q). Suppose that u(zy) = min, g u for some xg € Q. Then f(x0) < 0.

We now gather a number of properties pertained to the principal eigenvalue problems associated with

(—An)*:
(—dAN) w + pe(x)w = Aw, (A.3)
where d > 0, ¢ € L*(Q0), and p € R. These properties will be used in Sections 3 and 4.

Proposition A.6. Assume that @ C R™ is a bounded domain with smooth boundary, d > 0, ¢ € L*°(Q)), and
w € R. Then (A.3) possesses a unique principal eigenvalue which is simple and is the least eigenvalue of
(—dAN)® + pc(x)I. The principal eigenvalue, denoted by \(d, s, uc), is given by

A(d, s, pe) = inf //dSKS_N(x,y)\u(a:) —u(y)|2dydx+/,uc(ax)u2dx
“6H5(9)7\|UHL2(Q):19 A : A

inf —dAN)%u | u) + {pcu, u),
ueHs(Q),HuHLZ(Q):l« N)%u | u) + (peu, u)

where K y(x,y) is given in (1.2). Then we have the following

(i) A(d, s, pc) is analytic with respect to d, s, and p. In particular, let g and Ay be the partial derivative
with respect to d and s, respectively, then A > 0, and A >0 if ¢ is not a constant. Moreover, 5\#“ <0,
where }‘uu is the second derivative of A with respect to p. In case that d\g > 1, then }\S > 0.

(ii) A(d, s, pe) < pe. In addition, \(d, s, uc) < pc if ¢ is a nonconstant function.

(iil) limg— oo A(d, s, uc) = pe. In particular, \(d, s, pc) — pé uniformly for s in [n,1) as d — oo, where
0<n<l.

(iv) Assume that cq € C(Q) are a family of functions such that limg_,o+ ||cqa — cllo@ =0, where c € c(Q).
Then limg_,o+ A(d, s, ucq) = infreq pe, where A(d, s, ucq) is the principal eigenvalue of (—dAN)*+pcql.
Moreover, \(d, s, cq) — inf eq pe uniformly for s in [n,1) as d — 0%, where 0 < n < 1.

(v) Ife >0 and inf,cq c < 0, then for each (s,u) € (0,1) x RY, \(d, s, ) = 0 has a unique root dy(s, )
such that A(d, s, ) > 0 for any d > dy, and \(d, s, ) <0 for any d < dy. In case that doMy > 1, then
Ad,o,p1) >0 for any d > dy and o > s. Moreover, A(dy,o, 1) < 0 for any 0 < o < s.

Proposition A.7. Suppose that ug,wg € H?*(Q2) N C(Q) with 0 < s < % and 0 < 25+ 2a < % or Ug, Wq €
H(Q)NC(Q) with 3 < s <1 and 1< 2s+ 2a < 2 satisfy
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(—dAN)S’U,d > f(xaud)a (_dAN)gwd < f(wid)7 T e Qa

where 0 < a < 1, uqg > 0 on Q, and f € C%Y(Q x (n,0)) for some 0 < p < 1 and n < 0. Furthermore,

f(z,0) =0 for all x € Q and f(z,70) < 7f(x,0) for all x € Q as long as § > 0 and 7 > 1. Then ug > wy
on Q.

Concerning the existence of positive solutions to (—dAy)*u = f(x,u), x € Q. The following assumptions
will be used in the rest of this section.

(A1) f e Cr(Q x (n,00)) for some 0 < < 1,7 <0, and f(z,0) =0 for all z € Q.

f(m"r) 0
(A2) Let h(z,r)={ 7 7
fr(z,0), 7=0,
(A3) There exists a constant m > 0 such that f(z,m) < 0 for all z € Q.
(A4) There exists ¢ € C(Q) such that inf,eq¢ > 7, h(z,{(z)) = 0 for all z € Q, and ¢, > 0, where

Co(2) = € v 0 := max{((x), 0}. ;

h € CHH (@ x (1,00)) and he (2, 7) < 0 in % (1,00).

Lemma A.8. Suppose that (A1), (A2) and (A3) are fulfilled. Assume that Mg < 0, where Mg is the
principal eigenvalue of (—dAn)® — h(z,0)I. Then there erists a unique positive solution ug € C?T2%(Q)
with 2s +2a <1 if 0 <s< i, orug€ C312(Q) with 25 +2a < 2 if s > 1 satisfying
(=dAN)’u = f(z,u), =€, (A.4)
where 0 < o < 1.
Corollary A.9. Suppose that
glx,--) € ot (ﬁ X (01, +00) X (77274-00))7 h(z,-,-) € cl (ﬁ X (01, +00) X (17374-00)),

where 0 < p < 1, m; (i = 1,2,3) are three constants, and 1y < 0. In addition, d3g(z,-,-) > 0 on Q x
(n1, +00) x [0, +00), g(x,-,0) = 0. For any 0 > 1 and 7 > 0, 0g(z,-,7) > g(=x,-,07) in Qx (1, +00). Assume
that there exist a family of functions vq € C(Q) such that vg > 11 on Q, and limg_,o+ ||vg — v le@ =0
for some v* € C(2). Moreover, dsh(z,v*(x),-) < 0 on Q X (n3,+00) and there exists ¢ € C(2) for which
h(z,v*(x),¢) = 0, infreq ¢ > n3, and {4 # 0. Moreover, for each vy, there exists uqg € C*12%(Q) with
25+20<1if0<s<3, oruge C312(Q) with 2s + 20 < 2 if 5 > 1 satisfying uq > 0, ug > 12 V13 on

Q, and
(—dAN)*u = g(z,va(), w)h(z,va(z),u), =€ Q,
where 0 < a < 1. Then
li — = = 0.
m, ua — C+llo@) =0
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