
Forking a Sketch: How the OpenProcessing Community Uses
Remixing to Collect, Annotate, Tune, and Extend Creative Code

Blair Subbaraman Shenna Shim Nadya Peek
b1air@uw.edu shenns@uw.edu nadya@uw.edu

University of Washington University of Washington University of Washington
Seattle, Washington, USA Seattle, Washington, USA Seattle, Washington, USA

Figure 1: We pair network analysis with qualitative techniques to capture high-level patterns and meaningful details about
how creative coders remix sketches. An excerpt of a remix subgraph is shown. Roni Kaufman iterates on their original sketch
(A) in multiple ways (B, C). Code snippets highlighting example changes are shown below.

ABSTRACT
Creative coders create programs that generate visual output. Frame-
works such as p5.js support sketching with creative code. Given the
focus on expressivity over functionality, code reuse in creative cod-
ing practice is distinct from other programming contexts. Remixing
facilitates iteration on existing code, but we have yet to under-
stand how creative coders use remixing in practice. To understand
creative coder remixing strategies, we studied the community of
OpenProcessing, a site dedicated to sharing code-generated art-
works. We found that 30% of the 1.2 million sketches in our data set
were involved in remixing. For in-depth insight, we qualitatively
analyze source code and visual output of 350 antecedent-remix
pairs. We present on the diversity of ways that authors remix to
curate projects, annotate process, explore variations, and transform
existing sketches. We discuss the prevalence of these types and

This work is licensed under a Creative Commons Attribution International
4.0 License.

DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9893-0/23/07.
https://doi.org/10.1145/3563657.3595969

implications for supporting a multiplicity of remixing strategies in
creative work.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and mod-
els; Empirical studies in HCI .

KEYWORDS
Creative Code, Remixing, p5.js, Processing, Creativity, Digital Art

ACM Reference Format:
Blair Subbaraman, Shenna Shim, and Nadya Peek. 2023. Forking a Sketch:
How the OpenProcessing Community Uses Remixing to Collect, Annotate,
Tune, and Extend Creative Code. In Designing Interactive Systems Conference
(DIS ’23), July 10–14, 2023, Pittsburgh, PA, USA. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3563657.3595969

1 INTRODUCTION
In the early 1970s at Bell Labs, artist-in-residence Lillian Schwartz
was advising statistician John Chambers on the use of color in his
visualizations [50]. The visuals, intended for a scientifc audience,
were produced using an early domain-specifc language for creat-
ing still and moving images with code [26]. In their work together,

326

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3563657.3595969
https://doi.org/10.1145/3563657.3595969
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563657.3595969&domain=pdf&date_stamp=2023-07-10

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Subbaraman et al.

Chambers identifed lines of the program for Schwartz to edit. Re-
fecting on the experience in a 2014 interview, Schwartz recalled
how “miraculously, just changing that one line changed the whole
image” [58]. The ensuing collaboration turned into “Papillons”,
one of Schwartz’ many computer-generated flms which are now
genre-defning early works of computational art [49]. Schwartz was
able to explore visual outputs by creatively reusing existing code,
transforming a mathematical visualization into a novel artwork.

We can view Schwartz’ story as an example of remixing: re-
purposing an existing media artifact into something new. At the
same time that Schwartz was creating her early computer visu-
als, music producers in Jamaica were stripping vocals from songs
and re-recording them with new sonic efects. It is this creative
practice that informs contemporary understandings of a remix cul-
ture which champions the free exchange of ideas [39]. Remix in
music hit popular culture in the 1980s concurrently with the frst
personal computers, and the ability to easily edit digital media cat-
alyzed remixing practices across a range of content creation areas.
Competing social theories advocate for remixing as a site of open
innovation [28] and deride it for generating unoriginal content [23].
Following this work, HCI researchers have empirically investigated
what makes some projects more suitable for remixing than others
[4, 15, 41], when a remixed creative project is of higher quality than
the original [14], and how remixing can support computational
thinking with code [8]. This prior work successfully evaluates mo-
tivations for and efects of remixing. By contrast, our research is
focused on how creative practitioners use remixing in their work.
Artists value quickly exploring new ideas [31], and remixing has
emerged as a way to iterate on existing code. As our starting insight
for this work, we hypothesize that creative practitioners’ approach
to code reuse is distinct from other programming contexts.

Since Schwartz’s early explorations, artists have developed nu-
merous domain-specifc software tools to support programming
for expressivity over functionality, including Processing, p5.js, and
openFrameworks [32, 46, 57]. While each is anchored around a
specifc creative focus, all combine artistic practice with general
purpose programming to ofer new opportunities for creative ex-
pression. These software tools have evolved into communities of
practitioners who together have come to be known as creative
coders: “artists, designers, architects, musicians, and poets who use
computer programming and custom software as their chosen media”
[30]. In this paper, we focus on OpenProcessing: an online commu-
nity dedicated to sharing p5.js and Processing projects. Authors
on OpenProcessing can browse artworks, post new projects, and
remix existing work. The site therefore ofers an empirical setting
to investigate remixing in the context of creative practice.

We aim to shed light on the diversity of current remixing practice.
To this end, we ask: What remixing strategies do creative coders
employ to reuse code? While code reuse has been studied in various
software engineering [9] and novice programming [54] contexts,
we focus on creative coders. HCI researchers have increasingly
considered how digital tools can support expressive practices [20];
our intent is not to classify what a remix can or cannot be, but rather
to help situate the development of useful tools by understanding
the actions of existing communities.

To examine creative code remixing strategies, we designed a
three phase analysis. We frst conducted a network analysis of

OpenProcessing, an existing creative coding community. Using a
comprehensive data set of 1.2 million projects, we recreated the
network of all projects which are remixed or remixes. We leveraged
this remixing graph to surface subgraphs relevant to our research
questions, including the most remixed projects and the longest
chains of remixes. In the second phase, we used these subgraphs as
feld sites for refexive thematic analysis. Using traditional qualita-
tive coding approaches in conjunction with fle comparison tools,
we analyzed remixed code and conceptualized four themes which
we believe speak to current remixing practice. While remixing is
commonly appreciated for the generation of new artifacts, we fnd
creative coders collect artifacts without making any code changes;
we see a variety of annotations which use inline code comments to
log personal process and informally version code snippets; small
code edits can have large visual consequence, and we see creative
coders tune existing parameters to explore variations in output; and
fnally, we explore the range of ways that creative coders extend
sketches with precise stylistic interventions and larger reinterpreta-
tions of existing code. Beyond a single remix, we moreover see how
remixing is used to manage families of changes which pursue multi-
ple aesthetic directions. In a fnal phase, we measure the prevalence
of these strategies in the community using our themes as codes in a
content analysis. The results provide an additional layer of insight
to our initial community analysis, indicating that over half of all
remixes tune pre-existing parameters while comparatively fewer
add code or inline comments. We discuss the implications of both
our methodology and fndings for building systems which support
creative code and other exploratory programming community. As
creative code is increasingly used to support computational educa-
tion, we fnally consider the implications of our remixing strategies
for understanding and facilitating informal learning.

In summary, our overall contributions are:

• An interpretive analysis of remixing on OpenProcessing;
• A set of remixing strategies and their prevalence;
• Design provocations for HCI systems which seek to support
creative community through remixing.

2 BACKGROUND & RELATED WORK
Our work contributes to two areas of HCI research: (1) studies of on-
line remixing behavior, and (2) inquiry into creative practice. Build-
ing on existing remixing research, we complement community-
scale network analysis with qualitative techniques to analyze code
changes between remixed programs. Doing so grants insight into
specifc creative code reuse practices. We further situate our work
against related software engineering and end-user programming
research to distinguish creative coding from previously studied
programming settings. In this section, we provide an overview of
related work and detail how our approach builds upon prior studies.

2.1 Remixing in HCI
While remixing has been the subject of theory and analysis across
disciplines from the humanities to the social sciences, we focus on
HCI research to contextualize our contributions. Large remixing
communities which grew online over the last 15 years ofered an
opportunity to empirically investigate social theories at a scale not

327

Forking a Sketch DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

previously possible. One thread of this research has focused on or-
ganizing and quantifying community-scale data. Cheliotis and Yew
[5] undertook a network analysis of a music remixing community
to understand structural patterns. They found, for example, that ar-
tifacts which inspire multiple new remixes (i.e. branching patterns)
were the most common in the community. While we use tools from
social network analysis, we also use the results to surface feld sites
for subsequent qualitative analysis. In this way, we take inspiration
from Oehlberg et al. [41]. Following a network analysis of remix-
ing on the digital design fle sharing site Thingiverse, the authors
thematically cluster highly remixed source fles to identify patterns.
Our approach difers in that we are concerned with specifc changes
made between remixed code fles. Textual programming fles ad-
ditionally permit qualitative analysis techniques not possible with
3D design fles. We undertake an inductive thematic analysis to
conceptualize remixing strategies.

A related body of work empirically tests social theories around
remixing. The Scratch online community features heavily in this
scholarship. Scratch ofers a visual, block-based programming lan-
guage targeted at novice programmers and students. Scratch is the
largest online remixing community, composed of a core audience
of 8-16 year olds [47]. Hill and Monroy-Hernández [14] utilized
Scratch projects to test the theory that remixed artifacts are of
higher quality than individually authored projects. They found that
remixes receive lower peer-ratings than single-authored works.
Related work also reveals a trade-of between generativity and
originality in remixed works on Scratch [15]. Given Scratch’s fo-
cus on young programmers, researchers have additionally studied
ways remixing can support informal learning [8]. Our research is
similarly interested in understanding how remixing plays out in a
real-world community. We difer in employing inductive, descrip-
tive methods to speak to the diversity of ways that practitioners
remix. Additionally, we propose a novel group of practitioners (i.e.
creative coders) in a novel community setting (i.e. the creative cod-
ing platform OpenProcessing). To this end, our study of remixing
intersects with accounts of collaborative art practice [22], error and
surprise in creative practice [21, 53], and the repurposing of found
objects [18]. In our analysis, we focus on specifc remixing practices
distinct to creative code.

2.2 Creative Coding Tools and Community
Frustrated by the incongruence between their creative goals and the
software available to them, visual artists have developed domain-
specifc software tools surrounded by vibrant communities [32, 35,
46, 57]. Our work focuses on a related set of creative coding tools
and associated communities. Processing is a popular Java-based pro-
gramming software started in 2001 [46]. The project has since been
reinterpreted for the web as p5.js, which has over 1.5 million users
[34]. p5.js (or p5 for short) provides a Javascript library to make
sketching with code as intuitive as sketching with paper and pen.
These tools are used diverse settings, from computer science class-
rooms to professional artworks [43]. The website OpenProcessing
is an independently created social website which supports shar-
ing and remixing projects made with Processing and p5.js. To our
knowledge, it is the largest online community for sharing creative
code projects.

Prior HCI work has engaged creative code in a variety of ways.
Li et al. [31] set out to understand how artists use and develop
custom software. To do so they interview visual artists, several of
whom report the use of Processing or p5.js. Their results surface
frictions between the priorities of commercial tools the goals of
artists, and suggest collaboration opportunities between artists and
systems designers. Related work has similarly argued for pairing art
production with tool production, as artists already actively shape
the tools they use [19]. Verano Merino and Sáenz [62] further refect
on the particularities of creative coding through interviews with
code artists. The intimate relationships between artists and their
technical tools motivates our interest in creative coders’ remixing
practices. Recent research also probes how creative practitioners
across a range of mediums use version histories in their process
[56]. The authors fnd that conventional version control systems are
misaligned to creative practice. In line with this work, our fndings
suggest ways that artists appropriate remixing as a method of
informal version control. Related systems support creative coders’
creative process through integrated version control systems [45]
and screenshot driven version control approaches [33]. Overall,
our study builds on this rich body of work concerning code and
creative practice. Where previous work focuses on practitioners’
individual practice through interview-based methodologies, we
focus on the computational artifacts themselves. In particular, we
isolate remixing as one key aspect of creative coding practice which
is particularly important in building and sustaining community.

2.3 Tailoring and Customizing Software
In the HCI literature, creative coders have been cited as end-user
programmers [e.g. 25, 27]. We follow Ko et al. [27] in their defnition
of end-user programming as coding for personal, rather than public,
use. We similarly note that this distinction does not denote inexpe-
rience. In addition to domain expertise in the visual arts, creative
coders can have years of programming experience and might also
work as professional software developers. OpenProcessing hosts
projects from creative coders with a variety of backgrounds and
expertise including students, hobbyists, and professional artists.

The framing of creative coders as end-user programmers allows
us to make connections to prior literature. Mørch [38] defned cus-
tomizing, integrating, and extending as three levels of end-user
software application tailoring. Only the fnal category, extending,
involves adding new code. This context difers from remixing on
OpenProcessing, where all changes involve editing code. In refer-
ence to this prior work we renamed our fnal theme “extending”.
The defnition of our theme did not change in the renaming pro-
cess, consistent with our inductive approach to thematic analysis.
Creative coding has also factored in more contemporary literature
around exploratory programming. Kery and Myers [25] defne ex-
ploratory programming as a task wherein (1) programming is used
as a medium to experiment with new ideas, and (2) the program-
mer is not coding to a predefned specifcation. Research around
exploratory programming has largely focused on data scientists.
Our focus on creative coders thus contributes to this existing body
of literature.

Finally, our focus on coding practices intersects with prior work
in software engineering. Prior work has studied the relationship

328

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Subbaraman et al.

Figure 2: The OpenProcessing browser-based interface. Users can look at both the code (left) and corresponding visual (middle).
Edits can be made directly to the code to observe output. These changes can be saved and published as a fork, or remix. Users
can view all projects which fork the current sketch in a sidebar (right). The sketch shown is by caaatisgood.

between inline code comments and documentation [13], how soft-
ware developers forage for relevant information [9], and how to
automatically detect sections of code which might beneft from
refactoring [61]. In its pursuit of creativity over functionality, we
are interested in how creative coding compares and difers from
traditional software engineering contexts.

3 EMPIRICAL SETTING: OPENPROCESSING
To gain insight into creative code remixing strategies, we turn to
an existing online community. OpenProcessing is an online com-
munity for creative coders to write and share projects. It supports
code written using the popular creative coding libraries p5.js and
Processing. OpenProcessing was independently founded by Sinan
Ascioglu, separate from the development of the p5.js library itself
[52]. Ascioglu continues design and development of the website.
The site has accumulated over a million creative code projects since
launching in 2008. It is free to make an account and paid features are
also available with particular relevancy for educators and students.
The site development is active and the creator regularly adds new
features, such as a recent ChatGPT integration to help debug code
errors.

We walk through the OpenProcessing interface, defning several
key terms along the way. A creative code project is called a sketch. A
sketch is comprised of a visual output and the code used to generate
the visual. Sketches on OpenProcessing are uploaded by authors
with optional descriptions. The site’s landing page shows trending
projects; upon selecting one, users are shown the visual (Figure
2 center). Importantly, users can not only view a sketch’s source

code (Figure 2 left) but also fork it. A common feature in software
engineering contexts, an author who forks a project duplicates
the sketch to their own account. They can then edit the code and
re-publish it under their username. In doing so, the relationship
between the fork and its source is preserved. When navigating to a
forked sketch, a pop-up will appear linking to the parent project.
Forks are contrasted with de-novo sketches, which are projects
directly published by the author. To consolidate language, we will
refer to the original sketch as the antecedent and the sketch which
is a fork as a remix. Notably, these actions can be chained. One
project’s antecedent might be another project’s remix. A tree rep-
resenting all sketches derived from the current project is navigable
from a sidebar (Figure 2 right), though traversing up the tree must
happen manually.

4 METHODS
Our analysis of remixing on OpenProcessing was conducted

in three phases. Phase one uses the tools of social network anal-
ysis to discover all sketches involved in remixing. In addition to
presenting community-level data, network analysis helps us select
productive feld sites for subsequent qualitative investigation. Phase
two consists of a refexive thematic analysis wherein we sample
antecedent-remix pairs from subgraphs identifed in phase one. We
make use of source code comparison software to make easily visible
the changes between a remix and its antecedent. We subsequently
use this ‘code dif’ as a key piece of data to qualitatively analyze in
our thematic analysis. We conceptualize themes which we present
as distinct remixing strategies; phase three uses these themes in a

329

Forking a Sketch DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

1 function myCircle (x , y, rad) {
2 let numLayers = 200
3 for (let i = 0; i < numLayers ; i ++) {

1function myCircle (x, y , rad) {
2let numLayers = random(100, 300)
3for (let i = 0; i < numLayers ; i ++) {

4 let vertices = [] let vertices = [] 4
5
6
7
8
9
10 for (

5let flick = random(10,11)
6// for(
7// let theta = 0;
8// theta < TAU;
9// theta += TAU / random(10,30)) {
10for (

11 let theta = 0; let theta = 0; 11
12 theta < TAU; theta < TAU; 12
13 theta += TAU / 20) {
14 ...

13theta += TAU / flick) {
14...

Figure 3: Illustrating our qualitative coding process using an antecedent (left) and remix (right) pair from our data set. In
remixing a sketch from user Taiki Saito, Owaun Scantlebury demonstrates tuning (blue), creative code extensions (purple),
generic extending (green), and annotating (yellow).

content analysis to measure their relative frequency. We detail our
methods in this section.

4.1 Network Analysis
Sketch metadata on OpenProcessing can be retrieved by querying
an API with the sketch ID. In the case of a remix, this includes the
ID of the sketch’s antecedent. We collected data from all possible
identifcation numbers in May 2022. As our analysis is interested
in identifying remixing patterns which might be atypical, compre-
hensive data collection is necessary over representative sampling.

A social network is commonly abstracted as a graph wherein
nodes represent individuals and edges communicate a relationship
between them [64]. Our goal is to create the remixing graph where
each node is a sketch, and edges point from an antecedent sketch
to a remixed sketch. We used custom Python code to prepare the

collected data for analysis, the NetworkX library [11] to analyze
the data, and the open-source software Gephi [1] to visualize the
network. Howard [17] contends that network analysis is useful to
justify case selection for subsequent qualitative analysis. We take
such a network ethnography approach, using the remixing graph
to identify sources of remixing which would be otherwise invisible.

4.2 Thematic Analysis
We follow Braun and Clarke [2] to conduct a refexive thematic
analysis. While the relevant data for a thematic analysis is tradi-
tionally text such as an interview transcript, our unit of analysis is
a antecedent-remix pair of OpenProcessing sketches; that is, the
program and visual output from both an antecedent sketch and
a fork of the antecedent. Our full data set was comprised of 350
antecedent-remix pairs identifed in our network analysis.

330

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Subbaraman et al.

Two researchers assigned qualitative codes1 to the data using
a browser-based tool. This tool provided links to remix and an-
tecedent sketches so that all relevant information could be inspected
online, including: the sketch program, its associated visual, author
descriptions, and user comments on the platform. After an initial
period of data familiarization, we observed that changes to the
program are crucial to understanding what occurred between an
antecedent and its remix. We therefore added a ‘dif’ view to our
tool which highlights the diferences between the remix and an-
tecedent programs. Such fle comparison utilities are common in
software engineering contexts to easily identify what has changed
between two fles.

Over 8 weeks, we developed a codebook using an inductive
open-coding approach. Over time, qualitative code categories in-
creasingly focused on changes made visible by the program dif.
We wrote memos to produce text that worked across the code set.
We ultimately conceptualized four themes which we believe each
capture a distinct remixing strategy. After naming and defning our
themes, we found they could productively be put into conversation
with prior research in end-user programming. In a fnal meeting,
we updated our theme names to align with prior work where rele-
vant. The defnition of our themes did not change in this process,
consistent with our inductive approach to thematic analysis.

4.3 Content Analysis
Each of our themes involve specifc program edits. These include
no change to the original code (collecting), adding inline comments
(annotating), editing pre-existing parameters (tuning), using func-
tionality exposed by the creative coding library (creative code ex-
tensions), and adding new code which does not require the creative
coding library (generic extensions). After we contextualized these
strategies in a thematic analysis, we sought to measure the preva-
lence of each on OpenProcessing. Two human coders analyzed a
randomly sampled collection of antecedent-remix pairs from the
remix graph. We coded sketches for the presence or absence of
each theme. In accordance with Neuendorf [40], we begin with a
norming stage wherein each researcher coded the same 100 projects
and disagreements were discussed. These disagreements were sub-
sequently accounted for in our coding process. In a reliability phase,
the coders then coded the same set of 200 projects. We found we
were able to code for each theme reliably with the following Krip-
pendorf’s alpha values: collecting (� = 0.97), annotating (� = 0.92),
tuning (� = 0.88), creative code extending (� = 0.91), and generic
extending (� = 0.92). An additional 100 projects were then coded
by a single coder for a total of 400 projects.

4.4 A Worked Example
While we further discuss the meaning and nuance of each theme in
our fndings, we walk through an example to clarify our qualitative
coding process. Figure 3 shows an antecedent-remix pair from our
data set alongside a matching excerpt from each program. We use
a unique color to diferentiate each change based on the qualita-
tive code we assign it. Line two edits the value of the pre-existing
variable numLayers (tuning), by way of the p5-specifc function

1To avoid confusion, we use ‘code’ in this section to refer to qualitative codes, and
‘program’ to refer to computer code.

random() (creative coding extension). The remix goes on to declare
the new variable flick (generic extension) and comments out a for
statement (annotation). We would therefore assign each of these
qualitative codes to this remix. Our qualitative coding process does
not measure intensity; although there are multiple instances of tun-
ing in Figure 3, we code only for presence or absence. Moreover, we
treat all inline comments as annotations and do not assign tuning
or extension qualitative codes to their contents. Finally, we do not
assign any qualitative codes to lines of the program which have
been removed.

4.5 Limitations
We note several limitations regarding our chosen methods. Our
focus on sketches themselves does not grant us insight into why
an author decided to remix. While we pair network analysis with
qualitative techniques to capture both high-level patterns and mean-
ingful details, interview based studies would complement our ap-
proach. An analogous study might create the network of authors
who remix each other; the resulting author remixing graph can
guide researchers in recruiting interview participants. Tseng and
Resnick [60], for example, found that most readers on the project
documentation website Instructables are searching for project ideas
and new techniques rather than recreating a project directly. Un-
derstanding the reasons why an author chooses to remix can add
additional depth to our analysis. Moreover, OpenProcessing does
not necessarily refect the practices of all creative coders. Commu-
nities built around other tools might have correspondingly diferent
interests and values. The practices of creative coders ofine might
be diferent from the ones demonstrated in a public platform. With
these limitations in mind, we aim to understand how the code reuse
practices of this community can inform future systems and studies.

5 UNDERSTANDING HIGH-LEVEL REMIXING
PRACTICES

At the onset of our research, the members of the OpenProcessing
community had shared over a million sketches on the platform.
We use the tools of social network analysis to make sense of this
data. Of the 1,500,800 queried sketches, 75% had publicly available
metadata, while the remaining 25% of sketches were either private,
deleted by the author, or removed for violating the terms of service.
We use the remaining 1,119,988 sketches for our analysis. We fnd
that 30% (356,946 sketches) of the accessible sketches were either
sources for remixing, remixes themselves, or both. This number
excludes 123 erroneous ‘self-loops’ in which sketches are their own
remix, likely due to an error at the time of upload. This percentage
speaks to the prevalence of remixing within the community.

The remixing graph is built as shown in Figure 4a, where nodes
are sketches and edges are directed from antecedents to remixes.
The full network is visualized with Gephi to make clusters of
remixes visible (Figure 4b). We note key takeaways from the remix-
ing graph. The entire graph is composed 79,453 subgraphs. Most of
these subgraphs are small, with a mean size of four nodes. This data
tells us that most sketches that are not heavily remixed. An example
of a smaller subgraph is shown in Figure 4c, where a de-novo sketch
is remixed fve times, one of which generates an additional two
remixes. Our network analysis allows us to flter and fnd subgraphs

331

Forking a Sketch DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

Figure 4: (a) We conceptualize remixing as a directed graph wherein nodes are sketches and edges points from antecedents to
remixes. (b) The OpenProcessing remixing graph consists of almost 80,000 subgraphs. 30% of accessible sketches are involved
in remixing. (c) An example subgraph consisting of 8 sketches. (d) We flter the remixing graph to fnd subgraphs with specifc
features. Shown is the largest subgraph in our data set consisting of 1594 total sketches. (b)-(d) were made using Gephi. [1]

by size. For example, the largest subgraph is shown in Figure 4d
and is made up of 1,594 sketches. Altogether, this data suggests that
sketches are remixed in a diversity of ways.

The proportion of sketches which are remixes (30%) aligns with
current statistic from the the Scratch community [65]. However,
we note two key diferences in our OpenProcessing data set. First,
Scratch does not allow remixes which do not make any changes to
the original sketch, whereas OpenProcessing does. Moreover, on
Scratch it is not possible to remix your own sketch. While there are
workarounds noted in the forums [65], the fact that it is against com-
munity guidelines hinders this behavior. No such guidelines exist
on OpenProcessing. In fact, we fnd it is common: we assembled the
graph of remixes which have the same author as its antecedent on
OpenProcessing and found that 49% of all remixed sketches (14.7%
of all publicly available sketches) are involved in such self-remixing.
We take note of this behaviour throughout our analysis.

We collate a selection of antecedent-remix pairs sampled from
the remixing graph for in-depth analysis. In addition to randomly
chosen antecedents and remixes, we identify a set of superlative
subgraphs which we hypothesize are productive sites for quali-
tative investigation. These include the largest overall subgraphs,
the sketches with the most direct descendants, and the longest
remix chains. Our fnal data set for qualitative analysis consisted
of 350 antecedent-remix pairs sampled from these feld sites, in-
cluding: 100 pairs randomly selected from the remixing graph, 5
pairs randomly selected from each of the 20 largest subgraphs, 5
pairs selected from each of the 20 most remixed sketches, and 1
pair selected from each of the 50 longest remixing chains. This data
set was used to conduct a refexive thematic analysis.

6 CONCEPTUALIZING REMIXING
STRATEGIES

We conceptualize four high-level remixing strategies, each of which
we tie to specifc code edits. While broadly applicable to any edited
code, we provide illustrative examples to distinguish the use of
these strategies in a creative coding context. While remixing is
often appreciated for its ability to create new artifacts, we see cre-
ative coders collecting sketches without making any edits. We see a

variety of annotations which use code comments to log personal
process and informally version code. Small code edits can have
large visual consequence, and we observe creative coders tuning
existing variables to explore a range of visual output. We fnally
see a broad set of extensions which add new code. In particular, we
observe remixes which make targeted changes to build on a sketch
in specifc ways, remixes which use the antecedent as conceptual
inspiration in larger changes, and families of remixes which ex-
plore multiple creative directions. A single remixed sketch might
demonstrate several of the behaviors we describe, and we there-
fore consider the productive interplay and frictions between each
strategy.

We have decided not to anonymize the OpenProcessing user-
names of the authors whose work we include in this paper. We
have contacted or attempted to contact the 20 accounts whose work
we include. All eleven who have responded have asked for their
usernames to be included alongside their work. Given that commu-
nity members have a preference for public attribution, we believe
it is still appropriate to use the usernames of the accounts from
whom we did not receive a response– for an in-depth discussion of
when not to anonymize in internet research, see [12]. We have also
added all usernames to this paper’s acknowledgements section. We
present all code as it was published on OpenProcessing, with the
exception of small formatting changes for clarity in presentation.

6.1 Collecting Sketches Without Making
Changes

Conventional understanding of remixing focus on the creation
of new artifacts. However, we fnd that many remixes on OpenPro-
cessing contain identical code and therefore visual output. We call
this behavior collecting. The most straightforward of our themes,
we defne collecting as a remix with no changes made to the code.
It is therefore the only mutually exclusive remixing behavior we
present.

While users of OpenProcessing have the ability to ‘like’ sketches,
we see some accounts dedicated to collecting. Several usernames
in our data set include “Best Sketches” or similar language in their

332

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Subbaraman et al.

/* for each pair of agents for whom there is no
other agent nearer to either, draw a wall */

Figure 5: Neill Bogie explains how walls are being drawn in
Naoki Tsutae’s sketch.

handle. These accounts feature only collected sketches, appropriat-
ing the remixing features of the platform to curate projects. Prior to
manual investigation, there is no way to know what has changed
between an antecedent and remixed program. This can make navi-
gating the remixing history of a sketch difcult, as it is not apparent
if a past or future version is any diferent that the current one.

6.2 Annotating Sketches with Inline Comments
Not all changes to code necessarily afect the visual output. We

fnd that annotating code using inline code comments frequently
occurs in our data set. Code commenting is well-studied in software
engineering [13] and other exploratory programming contexts such
as data science [24]. Here we present examples from our data,
noting overlaps and diferences from prior work. In particular, we
see annotations used to learn about others’ sketches, log personal
process, and informally version lines of code.

In our analysis, we see comments used in remixes to annotate
sketches as the remix author learns how it works. In Figure 5,
an antecedent visual is shown above a remixed code excerpt, with
additions made in the remix presented in orange. Neill Bogie remixes
a sketch by Naoki Tsutae. In the description of the sketch, they write
that they are “breaking down Naoki Tsutae’s work to learn from it.”
Throughout the code, the remix adds comments which provide
high-level explanations of various functions. The original sketch
animates the position of various particles, or ‘agents’. The remixed
excerpt shown notes how the walls are being drawn between these
particles. After annotating this sketch, the remix author goes on to
create several de-novo sketches in which they re-implement this
algorithm themselves. While leaving explanatory comments in code
is not new behavior, remixing serves as a way for other authors to
annotate a sketch as they learn how it works. We additionally see
examples of annotations which extend inline comment explanations
and fx grammatical errors. We also saw several examples of remixes
which translated comments into diferent languages.

We contrast explanatory annotations with process-oriented ones.
Process-oriented comments log personal process in ways distinct
to creative code. In our data set, process-oriented comments were
often brief expressions of an issue or frustration left by authors
remixing their own sketch. A particularly illustrative example is
shown in Figure 6. A year after posting their original sketch, Aaron
Reuland (a_soluble_fsh) remixed it to annotate their process. These
comments include links to references they draw from including
other OpenProcessing authors and online examples, explanations of
what various sections of code accomplish, and refections on what
they have learned in the past year. Throughout, these comments
make transparent the author’s process. In the excerpt shown, they
describe where they sourced the code snippet to create a “papery”
texture. While they say they copy-pasted it at the time of the original
sketch, in their annotation they take time to explain its use. In other
sections, they clarify what techniques are original and similarly
cite inspirations. Comments such as these would not usually be
found in production code. In a creative coding context however,
such comments reveal process in a public setting. We moreover see
these annotations as a way to reckon with attribution; a remix can
only have a single antecedent, but code might be inspired by many
prior works. The efort of manual credit-giving has been shown to
be valued by community members in prior research [37].

/* ok, this texture algorithm I definitely stole. 98% sure
it was from **Che-Yu Wu (openprocessing.org/user/139364)**
an amazingly talented artist, who also adds lots of
in-progress stuff to openProcessing- nice to learn from
(not that I learned from this at the time I made this,
so much as I copied and pasted it) creates a nice papery
texture by applying noise to the pixel array, that is
blended with the rest of the ’art’ later on. */

Figure 6: Annotations can log personal process in addition
to providing explanations. Aaron Reuland (a_soluble_fsh)
remixed their own sketch a year later, adding explanatory
details, sources of inspiration, and refections.

function drawJoiningWalls () {

333

Forking a Sketch DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

margin = mySize / 100;
for (let i =0; i < int (random (50 , 100)); i ++) { ... }
theShader . setUniform (

'u_time ',
millis () / 1000

);
let version = random ([1 ,2 ,4 ,6 ,8]) *100;
let c = random (2000 , 5000) ;
colorMode (HSB , 360 , 100 , 100 , 100) ;

margin = mySize / 10;
for (let i =0; i < int (random (500, 100)); i ++) { ... }
theShader . setUniform (

' u_time ',
millis () / 1
);

let version = random ([200,150,77,50,140]*100;
let c = random (1000, 2000);
colorMode (HSB , 21, 10, 10, 10);

Figure 7: Remixes can explore variations in visual output by tuning existing parameters. A remix by naha (right), achieves
distinct visual output through editing pre-existing paramters set in the original by SamuelYAN (left). All of the changes made
are shown in the accompanying code block, with edits in orange. Note that these tuned lines appear throughout the sketch, and
are presented sequentially here to illustrate the efects of tuning.

While the explanatory and process-oriented comments above are
straightforward to interpret, others require contextualization in the
remixing history. Figure 8 shows a matching line from an antecedent
and remix in our data set. In the remix, it is not immediately clear
where the number 150 comes from. By consulting the antecedent
sketch, we see that this was the previous value for this variable. This
strategy to archive previous values before changing them recurs
throughout our data set. We also see new values left as comments.
We infer that such comments are values which yielded output that
authors wished to save. In this behavior, we surmise that authors
of these remixed sketches are using inline comments to quickly
backup, or version, individual lines of code. This informal version
control aligns with previous studies of data scientists [24]. A key
diference distinct to OpenProcessing is how archiving parameters
can become collaborative. It is often not the original author who is
versioning the previous line of code but others building from it.

Finally, comments can directly afect visual output. By comment-
ing out lines with visual or interactive consequence, remixes can
afect the look and feel of a sketch. Examples in our data set include

var length = 150; var length = 100; // 150

Figure 8: The value 150 is left as a comment in the remix
(right). Comparing the code with the antecedent shows us
that this was the previous value for the variable line.

commenting out lines which draw shapes to the screen or limit the
number of frames to be drawn each second. Deliberately comment-
ing out lines can produce diferent output; by commenting instead
of deleting the line entirely, the remix retains a strong trace to the
antecedent. Notably, this permits exploring visuals without writing
any new code. This use of comments aligns with prior studies of
computational notebooks for data science wherein comments are
used to control program fow [48].

334

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Subbaraman et al.

pal = bigpal (3 , pal);
br . disp (150)
this . swarm = new swarm (40 , 29 , 20)

pal = bigpal (6, pal)
br . disp (110 + random(-50, 50));
this . swarm = new swarm (10, 29 , 20)

Figure 9: By tuning existing variables in code, authors can generate a set of possible visual outputs. After implementing a base
algorithm, Trrrrrr remixes their own sketch multiple times to tune a set of relevant variables. The visual diferences shown are
a result of manipulating existing values. The code showing the tuned variables is shown. Note that these tuned lines appear at
diferent locations in the sketch code and are shown here sequentially to illustrate the efects of tuning.

6.3 Tuning Existing Parameters to Explore
Visual Outputs

One way to explore visual outputs is to manipulate values in existing
code. We observe such tuning frequently in our data set. In Figure
7, we see naha remixing a sketch by SamuelYAN. A distinct visual
output is reach solely through tuning existing paramters; all of the
changes made in the remix are shown in the accompanying code
block. In particular, we see the remix manipulating the values of pre-
existing variables, the arguments to functions such as colorMode(),
and the end condition of a for loop. We take all of these changes
to be instances of tuning, defned by the explicit manipulation of
an existing value in code.

In our data, we see that highly remixed sketches feature many
tuning remixes. For example, the longest remixing chain on Open-
Processing at the time of our data collection was 106 sketches long.
The source sketch consists of a face drawn with simple shapes,
whose eyes follow the mouse as it moves. Almost all of the remixes
of this sketch involve other authors tuning colors.

In addition to tuning others’ sketches, we see that remixes by
a single author can be used to manage variations. Figure 9 shows
a set of sketches by Trrrrrr. After implementing a base algorithm,
they manipulate various parameters to generate a set of distinct
outputs. The code edited between two of these variations is shown;
while these lines appear throughout the code, we present them

sequentially to highlight the efects of tuning. Trrrrrr remixed the
original sketch several times, making slight changes to the base
algorithm each time to explore the possible outputs.

We emphasize the close relationship between tuning and anno-
tating. In Figure 8, we saw how previous values of tuned variables
were archived with inline comments. In other cases, we see tun-
ing can make inline documentation obsolete. One such example is
shown in Figure 10. In the remixed sketch, the RGB values which de-
fne the color of lines drawn on the screen are changed from a shade
of red to black. The comment, however, is now out of alignment.

stroke (244 , 37 , 37 , 60) ; // red

stroke (0, 0, 0); // red

Figure 10: Tuning can result in inline documentation becom-
ing outdated.

6.4 Extending Sketches with New Code
Our themes so far have not involved writing new code. In analyz-

ing our data set, we found that many remixes make visually impact-
ful additions by using Processing and p5.js-specifc functionality.
These creative coding libraries provide functionality to aid graphics

335

Forking a Sketch DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

acc = new PVector (0 ,0) ;
lifeSpan = int (random (30 , 90));
decay = random (0.75 , 0.9) ;

c = color (random (255) , random (255) ,255) ;

acc = new PVector (0 ,0) ;
lifeSpan = 90;
decay = 0.75;
this.h = h;
h += 0.5;
if (h > maxH) {

h = minH+h-maxH;
}
c = color (h, 255, 255, 10);

Figure 11: Extensions involve adding new code in a remix. Jason Labbe (right) remixes Raven Kwok’s (left) sketch. The remix
stays close to the original source material; in the code excerpt shown, the remix tunes several values and specifes color. The
remix tunes and adds additional code in other locations.

programming. Among these include functions to render lines (e.g.
line(), curveVertex())) and shapes (e.g. ellipse(), box()) to
the screen, change and blend colors (e.g. fill(), stroke()), and
handle device input events (e.g. mouseClicked(), keyIsDown()).
All of this functionality is tailored to the task at hand: creating visu-
als and interactivity using code. We defne changes which require
the creative coding library as creative coding extensions. For exam-
ple, shrike changed a single function in Sasha T.’s face generator
to make smooth, rounded curves (Figure 12). Instead of connect-
ing points directly with vertex(), curveVertex() is another p5.js
function which will generate a spline between points. By taking
advantage of the creative coding library, the remix is able to make
a small but visually substantial change to the sketch.

We distinguish creative coding extensions from changes which
do not require specifc use of the creative coding library. Instead,
generic extensions rely only on the general purpose programming
language and can be run without the use of the creative code library.
Common examples of generic extensions in our data set include
declaring new variables, writing custom functions and classes, and
implementing control fow statements (e.g. for loops) to specify
behavior. We distinguish between creative code and generic ex-

Figure 12: The only change between Sasha T.’s antecedent tensions to gain analytic insight in our content analysis; here, we
(top) and shrike’s remix (bottom) is the use of the curveVertex consider sketches which make use of both.
command to join points using curved splines rather than Extensions can be used to achieve a desired result through tar-
straight lines. This results in rounded shapes in the face geted interventions. One example is shown in Figure 11. In remixing
generator. a sketch by Raven Kwok, Jason Labbe left an inline comment that

they “Changed how it renders to feel more stylized”. To accomplish

vertex (xPosition , yPosition);

curveVertex(xPosition , yPosition);

336

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Subbaraman et al.

function randomShape (x_ , y_ , w_ , h_ , col) {
let grfx = createGraphics (w_ , h_);
let rnd = int (random (6));
let num = int (random (1 , 4));
...
for (let i = 0; i < num ; i ++) {

let w = random (5 , w_ * 0.35) ;
let h = random (5 , h_ * 0.35) ;
let x = (random (1.4) -0.2) * grfx . width ;
let y = (random (1.4) -0.2) * grfx . height ;
...

}

function drawTrees(x_ , y_ , w_ , h_ , col) {
let grfx = createGraphics (w_ , h_);
count = int (random (30));

...
for (let i = 0; i < count; i ++) {

let w = random (2, 10);
let h = w * random (2, 5);
let x = (random (1.4) -0.2) * grfx . width ;
let y = (random (1.4) -0.2) * grfx . height ;
...

};

Figure 13: Okazz created a generated series of panels (left). In each, random circles, triangles, and quadrilaterals are drawn
according to a specifed set of rules. JFrench reuses and expands parts of the original sketch to create landscapes within each
panel (right).

this goal, the remix edits pre-exiting variables in the original parti-
cle simulation (i.e. tuning), adds a function to cycle through preset
colors instead of using a random number generator (i.e. generic
extending), and makes use of various built-in math functions (i.e.
creative code extending). Much of the antecedent code is left in tact
with specifc sections changed to achieve the desired efect. Figure
11 shows a section of the remixed code. Specifc variables are tuned
to explicit values, and additional code has been added to set the
color and size of the of the shapes drawn. These edits stay close to
the source material to “stylize” the sketch in a new way.

In other examples, we see targeted changes used to add function-
ality to the antecedent sketch. Common examples include adding
camera orbit controls, binding keystrokes to reset the elements of
the sketch, or adding mouse interactivity. Author Richard Bourne
has over 11,000 sketches on OpenProcessing, many of which are
forks. Consulting their user page, we see they frequently remix
sketches to add built-in functions for saving still images from the

sketch when a user clicks their mouse. We fnally note that remixes
which make targeted extensions can occur by the same author
as the original sketch. For example, Figure 14 (left) shows how
garabatospr remixed their original sketch into a grid of outputs.
Among other small edits, the remixed code abstracts elements of
the original code into functions which can then be called multiple
times.

Extensions can also reuse, repeat, and reinterpret the antecedent.
Okazz’s sketch in Figure 13 (left) creates a grid of panels. Each panel
is flled with a diferent set of random shapes. JFrench remixed this
sketch to create generative landscapes. In the code excerpts shown,
we can see how the same code which draws random triangles has
been slightly modifed to give the efect of trees; the same technique
is used with larger triangles to create the mountains. While the code
shown highlights how the remix repurposes this particular excerpt,
the remix additionally makes larger changes to the overall code
organization. For example, it also adds a function to style the sun

337

Forking a Sketch DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

Figure 14: A set of antecedents (top) and remixes (bottom). In each, we see the remixes repurposing and repeating code from
the antecedent. (Left) garabatospr remixes their own sketch to create an array of outputs. (Center) Hans Peter remixes Sayama
to turn generative birds into owls. (Right) Naoki Tsutae remixes themselves to add circle packing to their collision-free paths.

and moon in the sky, ensuring exactly one circle is drawn. Similarly,
Hans Peter reworks Sayama’s generative birds into owls (Figure 14
center), and Naoki Tsutae remixes themselves to add circle packing
to their collision-free paths (Figure 14 right). Across these examples,
we see the remix stays conceptually connected to its antecedent
through reusing prior code, even in code-intensive changes.

The remixes considered till now have involved one antecedent
and one remix. We see authors can explore multiple creative di-
rections in a family of remixes. Figure 15 shows a subgraph of
remixed sketches beginning with “Square packing study” by Roni
Kaufman; however, we only show sketches by the original author.
We see the author remixes the original sketch in three diferent
ways. They then elaborate on the resulting sketches. We highlight
two takeaways from this subgraph.

First, the relationship between sketches in distinct chains is ob-
scured without a top-level view of the whole subgraph. Second,
in lieu of presenting the code changes between each sketch, we
note the edit distance between each remix and antecedent. The
edit distance between two texts is quantifed by the number of
character insertion, deletions, and replacement must be made to

transform between the two [29]. It is has been widely used in soft-
ware engineering contexts as a metric of originality. We point out
that the edit distance decreases over each chain. These measure-
ments map to larger bursts of extending over the frst generations
of remixes, followed by shorter extensions and tuning. We noted in
our network analysis that 49% of all remixed sketches are involved
in self-remixing. Filtering the self-remix graph by subgraph size,
we fnd that 48,600 sketches (14.4% of all remixed sketches) are a
part of self-remix subgraphs with fve nodes or more. This statistic
speaks to the frequency with which authors manage families of
versions through remixing.

7 MEASURING THE PREVALENCE OF
REMIXING GENRES

Our themes provide an interpretive analysis of remixing behav-
iors in the OpenProcessing community. We seek to measure the
prevalence of the remixing strategies in our data set. To do so, we
conducted a content analysis. Table 1 reports the overall frequency
with which we observe each strategy in a content analysis of 400
projects. Notably, tuning occurs in over half of all remixes. In our

338

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Subbaraman et al.

Figure 15: A self-remixing subgraph with sketches by Roni
Kaufman. The original sketch is taken in three distinct di-
rections. Each of these ideas is then further pursued. Com-
ponents of this graph are also shown in Figure 1.

content analysis, we divide extending into the subcategories of
creative code extensions and generic extensions, as discussed in
Section 6.4. This distinction shows that code additions which makes
use of the creative code library are more common than those which
rely solely on the general purpose programming language. Finally,
approximately a quarter of remixes are collections with no changes.

Theme Frequency
Collecting 26.3%
Annotating 29.8%
Tuning 55.3%
Creative Code Extending 40.3%
Generic Extending 32.5%

Table 1: The frequency with which we observe each remixing
strategy in a content analysis. With the exception of collect-
ing, multiple strategies can be present in a given sketch.

While this is the least frequently occurring of our themes, we note
that each of the other strategies might difer in scope and scale. All
collections, on the other hand, are remixes with no changes made
to the code.

8 DISCUSSION
Our analysis of OpenProcessing sheds light on a diversity of remix-
ing practices in the community. Practitioners collect, annotate, tune,
and extend code in ways which are difcult to discern without exam-
ining code directly. In this section, we discuss important takeaways
from our work. (1) We refect on lessons we can learn from Open-
Processing and our analysis, ofering design provocations for HCI
researchers interested in building systems which support creative
code and related practices through remixing. (2) While our fndings
are intimately tied to creative coding, we discuss the possible ben-
efts of our methodology in the study of other remix and coding
contexts.

8.1 Design Provocations to Support Creative
Community through Remixing

Our study of OpenProcessing provides insights relevant to the
development of HCI systems which seek to support creative pro-
cess and community. We outline design provocations derived from
our analysis. These provocations include incorporating code difs
within the interface to rapidly discern changes, tagging remixes for
refned discovery, supporting collaborative annotation of remixing
graphs, and decreasing the relevant unit of analysis from sketches
to individual lines of code when considering what makes a remix.
For each, we highlight how such a feature might support individual
creative coders as well as cultivate creative community. Rather than
informing the design of OpenProcessing–which already makes de-
sign improvements guided by the interests of their community–we
do so to bring empirical insight to prior HCI research. Recent re-
search notes that only 25% of HCI systems which support creativity
are made publicly available [10], and just 5% are intended to support
a specifc population [7]. OpenProcessing inverts this landscape,
and we focus on lessons we can learn from an active community.

8.1.1 Dif in the Loop Remixing. In our analysis, we found it was
impossible to know what changed in a remix without consulting
the code for both the antecedent and remix. This can be tedious,
particularly when it is unknown if there are any changes to be
found and when changes are scattered among several fles. “Dif
in the Loop” explores visualizing diferences in data sets to aid
exploratory analysis in data science contexts [63]. Our research

339

Forking a Sketch DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

approach to consult code difs suggests ways to make diferences
between remixed code more easily legible. In particular, we can
consider a live code dif view incorporated within the editor. With
such a view, a user might open a pair of sketches to immediately see
the diferences in both code and visual output. For creative coders,
this can help identify sections of code which produce desired visual
efects.

8.1.2 Tagging Remixes. In addition to examining code difs directly,
the remixing strategies we identifed can be used to tag remixes.
Currently, discerning the changes made among remixes requires
manually opening each sketch. By contrast, tags can be leveraged
to flter remixes which are collections, only show remixes which
extend the current one, or show all remixes which provide annota-
tions to help make sense of the sketch. This feature can aid creative
coders in the discovery of remixes of interest. Tagging posts when
sharing a project is already supported in OpenProcessing and other
similar online communities; our analysis suggests that tagging
remixes in particular can aid exploration.

8.1.3 Collaborative Annotation of the Remixing Graph. While remix-
ing is often presented as a method for collaborative peer produc-
tion, our analysis suggests ways that current remixing interfaces
limit collaboration. Linear navigation of remixes can hinder ex-
ploration by obscuring relationships between related sketches (as
shown in Figure 15). To elaborate possible correctives, we recall the
process-oriented annotations discussed in Section 6.2. While there
is a rich body of prior work around understanding code comments
to help programmers more easily fnd information [42, 51, 55],
these works focus on professional software engineering contexts.
Process-oriented comments like the ones we discuss exceed exist-
ing taxonomies. Creative coders’ process-oriented comments are
therefore closer to programmer note-taking, a comparatively less-
explored area [16]. Creative code remixing communities make for
productive sites to investigate such annotation systems as authors
are consistently confronted with code written by others.

Going beyond previous recommendations to make the remixing
graph visible to users, our analysis suggests we might promote
collaboration by allowing authors to share text, images, and notes
to annotate the remixing subgraph. In a similar vein, Quickpose
makes the versioning graph visible and editable in a canvas to
support version control requirements specifc to creative coding
[45]. Compared to managing versions in an individual’s creative
practice, we imagine public remix graphs can promote collaborative
production of new sketches. In the context of DIY maker projects,
Tseng [59] argues for process-oriented documentation tools which
facilitate storytelling over product-oriented write-ups. Such tools
can add depth to creative code sketches, making creative process
as open and transparent as the code itself.

8.1.4 Smaller Units of Analysis. Our analysis surfaced productive
connections between version control and remixing. While remix-
ing inherits a parent-child relationship between antecedents and
remixes from software forks, we see remixing often happens at
the level of function arguments and chunks of code. This behav-
ior aligns well with prior exploratory programming studies [24].

Our study therefore agrees with related work that similar micro-
versioning tools would also be useful for creative coders [62]. Be-
yond version control for individual practice, we can consider ways
that authors might remix smaller chunks of code. Since a remix can
have only one parent, the remix graph cannot capture relationships
to code snippets referenced from multiple sources. Considering
functions, classes, and other code snippets smaller than a full sketch
as remixable content can promote collaboration, with implications
for both how practitioners remix and the high-level remixing graph
characteristics.

8.2 Applicability to Other Remixing and Coding
Contexts

In our analysis, we see how creative coders leverage remixing
towards a variety of ends. What constitutes a remix is community-
dependent. We see this refected in community guidelines; Scratch
does not allow authors to remix their own projects, whereas self-
remixes constitute almost half of all remixes on OpenProcessing.
This diference is critical for the activity in question: in the context
of creative coding, we see self-remixing is a way to version sketches
and manage process.

There is an opportunity, then, to investigate how other commu-
nities employ remixing in application-specifc ways. Our identifed
strategies might be applied to other open remixing data sets such
as Scratch. Scratch is primarily aimed at younger students– as a
result, we expect the prevalence and use of remixing strategies to
difer. As Scratch is a visual programming language, our qualita-
tive coding methodology cannot map directly. In other visual arts
communities, our strategies might ft of-the-shelf. Shadertoy is an
online community dedicated to sharing shaders made with WebGL
[44]. Shadertoy also permits forking existing projects, and thus a
similar analysis can be undertaken. While aligned in its pursuit of
creative and visual output, shader programming is quite diferent
than the Javascript and Java based programming on OpenProcess-
ing. A comparative analysis of diferent remixing communities can
help discern productive idiosyncrasies specifc to each. We reiterate
the benefts that future interview-based studies can ofer in this
process. Our analysis has helped discern how remixing plays out
on OpenProcessing, but understanding why create coders choose
to remix would provide useful and complementary insights.

Our fndings might also prove useful to understand how remix-
ing is taken up in informal learning contexts. Dasgupta et al. [8]
found that users who remix more on Scratch go on to use a larger
variety of programming commands, and that exposure to compu-
tational concepts via remixing leads to a higher chance of using
those concepts in later projects. Creative coding communities like
OpenProcessing ofer novel empirical settings to investigate related
questions with a textual programming language. For example, do
authors who tune go on to make more code-intensive extensions, or
do annotations lead to larger programming repertoires? The strate-
gies which we present might be operationalized to pursue these
questions. Related research builds and uses an experimental editor
to teach creative coding in physical classrooms [36]. For online com-
munities, user-driven community resources tend to concentrate
around a limited set of mainstream interests. This has the efect

340

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Subbaraman et al.

of limiting sources of inspiration, thus unintentionally restrict-
ing participation by a broader audience [6]. Beyond participation,
supporting a diversity of niche interests is critical to developing
long-lasting community [3]. Future research into editors, remixing,
and other platform features can expound the relationship between
creative code and education.

9 CONCLUSION
Members of OpenProcessing reuse creative code in a diversity of
ways. In this paper, we have worked to understand creative code
remixing practices by pairing community network data with in-
depth qualitative analysis of code changes. We see creative coders
use remixes to collect artifacts, annotate process, version chunks of
code, explore generative variations, build on the work of others, and
manage personal practice. We showcased a range of community
work, paying attention to the ways that creative code corroborates
and complicates previous studies of remixing and code reuse in
other programming contexts. Creative code platforms nurture and
sustain active communities of artists, hobbyists, educators, and
students. In line with HCI interests to support each of these domains,
it is important to understand the successes of existing open source
communities. In doing so, we can learn from and work with creative
practitioners moving forward.

ACKNOWLEDGMENTS
We would like to thank Sinan Ascioglu for his work on OpenProcess-
ing along with the broader OpenProcessing community for sharing
their sketches. We’d like to specifcally thank the 20 creative coders
whose work is discussed here: Roni Kaufman, caaatisgood, Taiki
Saito, Owaun Scantlebury, Richard Bourne, Neill Bogie, Naoki Tsutae,
Aaron Reuland (a_soluble_fsh), naha, SamuelYAN, Trrrrrr, Sasha
T. (@tequibo), shrike, Raven Kwok, Jason Labbe, Okazz, JFrench,
garabotospr, Hans Peter, and Sayama . Many thanks to the p5.js and
Processing contributors and community. We’d like to thank Hannah
Twigg-Smith for her development on the open-source qualitative
coding tool we used, SuperCoder 3000. Thanks also to Mako Hill
and Jasper Tran O’Leary for feedback on this work. This research is
supported by NSF Award 2007045 and the Gordon and Betty Moore
Foundation.

REFERENCES
[1] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: an open

source software for exploring and manipulating networks. In Proceedings of the
international AAAI conference on web and social media, Vol. 3. Association for the
Advancement of Artifcial Intelligence, USA, 361–362.

[2] Virginia Braun and Victoria Clarke. 2012. Thematic analysis. In APA handbook
of research methods in psychology, Vol 2: Research designs: Quantitative, quali-
tative, neuropsychological, and biological. American Psychological Association,
Washington, DC, US, 57–71. https://doi.org/10.1037/13620-004

[3] Leah Buechley and Benjamin Mako Hill. 2010. LilyPad in the Wild: How Hard-
ware’s Long Tail is Supporting New Engineering and Design Communities. In
Proceedings of the 8th ACM Conference on Designing Interactive Systems (Aarhus,
Denmark) (DIS ’10). Association for Computing Machinery, New York, NY, USA,
199–207. https://doi.org/10.1145/1858171.1858206

[4] Giorgos Cheliotis, Nan Hu, Jude Yew, and Jianhui Huang. 2014. The antecedents
of remix. In Proceedings of the 17th ACM conference on Computer supported co-
operative work & social computing. Association for Computing Machinery, New
York, NT, USA, 1011–1022.

[5] Giorgos Cheliotis and Jude Yew. 2009. An Analysis of the Social Structure of Remix
Culture. In Proceedings of the Fourth International Conference on Communities and
Technologies (University Park, PA, USA) (C&T ’09). Association for Computing Ma-
chinery, New York, NY, USA, 165–174. https://doi.org/10.1145/1556460.1556485

[6] Ruijia Cheng, Sayamindu Dasgupta, and Benjamin Mako Hill. 2022. How Interest-
Driven Content Creation Shapes Opportunities for Informal Learning in Scratch:
A Case Study on Novices’ Use of Data Structures. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article
228, 16 pages. https://doi.org/10.1145/3491102.3502124

[7] John Joon Young Chung, Shiqing He, and Eytan Adar. 2021. The Intersection
of Users, Roles, Interactions, and Technologies in Creativity Support Tools. In
Designing Interactive Systems Conference 2021 (Virtual Event, USA) (DIS ’21).
Association for Computing Machinery, New York, NY, USA, 1817–1833. https:
//doi.org/10.1145/3461778.3462050

[8] Sayamindu Dasgupta, William Hale, Andrés Monroy-Hernández, and Ben-
jamin Mako Hill. 2016. Remixing as a Pathway to Computational Think-
ing. In Proceedings of the 19th ACM Conference on Computer-Supported Co-
operative Work &; Social Computing (San Francisco, California, USA) (CSCW
’16). Association for Computing Machinery, New York, NY, USA, 1438–1449.
https://doi.org/10.1145/2818048.2819984

[9] Scott D. Fleming, Chris Scafdi, David Piorkowski, Margaret Burnett, Rachel
Bellamy, Joseph Lawrance, and Irwin Kwan. 2013. An Information Foraging
Theory Perspective on Tools for Debugging, Refactoring, and Reuse Tasks. ACM
Trans. Softw. Eng. Methodol. 22, 2, Article 14 (mar 2013), 41 pages. https://doi.
org/10.1145/2430545.2430551

[10] Jonas Frich, Lindsay MacDonald Vermeulen, Christian Remy, Michael Mose
Biskjaer, and Peter Dalsgaard. 2019. Mapping the Landscape of Creativity Support
Tools in HCI. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–18. https://doi.org/10.1145/3290605.3300619

[11] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring network
structure, dynamics, and function using NetworkX. (Aug. 2008), 11–15.

[12] Eszter Hargittai and Christian Sandvig. 2016. When Should We Use Real Names
in Published Accounts of Internet Research? The MIT Press, Cambridge, MA, USA,
243–258.

[13] Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight. 2018.
When Not to Comment: Questions and Tradeofs with API Documentation for
C++ Projects. In Proceedings of the 40th International Conference on Software Engi-
neering (Gothenburg, Sweden) (ICSE ’18). Association for Computing Machinery,
New York, NY, USA, 643–653. https://doi.org/10.1145/3180155.3180176

[14] Benjamin Mako Hill and Andrés Monroy-Hernández. 2013. The cost of collab-
oration for code and art: Evidence from a remixing community. In Proceedings
of the 2013 conference on Computer supported cooperative work. Association for
Computing Machinery, New York, NY, USA, 1035–1046.

[15] Benjamin Mako Hill and Andrés Monroy-Hernández. 2013. The Remixing
Dilemma: The Trade-Of Between Generativity and Originality. American Behav-
ioral Scientist 57, 5 (2013), 643–663. https://doi.org/10.1177/0002764212469359
arXiv:https://doi.org/10.1177/0002764212469359

[16] Amber Horvath, Brad Myers, Andrew Macvean, and Imtiaz Rahman. 2022. Using
Annotations for Sensemaking About Code. In Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology (Bend, OR, USA) (UIST ’22).
Association for Computing Machinery, New York, NY, USA, Article 61, 16 pages.
https://doi.org/10.1145/3526113.3545667

[17] Philip N. Howard. 2002. Network Ethnography and the Hypermedia Or-
ganization: New Media, New Organizations, New Methods. New Media &
Society 4, 4 (2002), 550–574. https://doi.org/10.1177/146144402321466813
arXiv:https://doi.org/10.1177/146144402321466813

[18] Steven J. Jackson and Laewoo Kang. 2014. Breakdown, Obsolescence and Reuse:
HCI and the Art of Repair. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14). Association
for Computing Machinery, New York, NY, USA, 449–458. https://doi.org/10.
1145/2556288.2557332

[19] Jennifer Jacobs, Joel Brandt, Radomír Mech, and Mitchel Resnick. 2018. Extending
Manual Drawing Practices with Artist-Centric Programming Tools. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal
QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY,
USA, 1–13. https://doi.org/10.1145/3173574.3174164

[20] Jennifer Jacobs, David Mellis, Amit Zoran, Cesar Torres, Joel Brandt, and
Theresa Jean Tanenbaum. 2016. Digital Craftsmanship: HCI Takes on Tech-
nology as an Expressive Medium. In Proceedings of the 2016 ACM Conference
Companion Publication on Designing Interactive Systems (Brisbane, QLD, Aus-
tralia) (DIS ’16 Companion). Association for Computing Machinery, New York,
NY, USA, 57–60. https://doi.org/10.1145/2908805.2913018

[21] Laewoo Kang, Steven Jackson, and Trevor Pinch. 2022. The Electronicists: Techno-
aesthetic Encounters for Nonlinear and Art-based Inquiry in HCI. In Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems. 1–17.

[22] Laewoo (Leo) Kang, Steven J. Jackson, and Phoebe Sengers. 2018. Intermodulation:
Improvisation and Collaborative Art Practice for HCI. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada)
(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3173574.3173734

341

https://doi.org/10.1037/13620-004
https://doi.org/10.1145/1858171.1858206
https://doi.org/10.1145/1556460.1556485
https://doi.org/10.1145/3491102.3502124
https://doi.org/10.1145/3461778.3462050
https://doi.org/10.1145/3461778.3462050
https://doi.org/10.1145/2818048.2819984
https://doi.org/10.1145/2430545.2430551
https://doi.org/10.1145/2430545.2430551
https://doi.org/10.1145/3290605.3300619
https://doi.org/10.1145/3180155.3180176
https://doi.org/10.1177/0002764212469359
https://arxiv.org/abs/https://doi.org/10.1177/0002764212469359
https://doi.org/10.1145/3526113.3545667
https://doi.org/10.1177/146144402321466813
https://arxiv.org/abs/https://doi.org/10.1177/146144402321466813
https://doi.org/10.1145/2556288.2557332
https://doi.org/10.1145/2556288.2557332
https://doi.org/10.1145/3173574.3174164
https://doi.org/10.1145/2908805.2913018
https://doi.org/10.1145/3173574.3173734

Forking a Sketch

[23] Andrew Keen. 2007. The cult of the amateur: How today’s Internet is killing our
culture and assaulting our economy. Broadway Business, New York, NY, USA.

[24] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 1265–1276.
https://doi.org/10.1145/3025453.3025626

[25] Mary Beth Kery and Brad A Myers. 2017. Exploring exploratory programming.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, IEEE, USA, 25–29.

[26] Kenneth C Knowlton. 1970. Explor-a generator of images from explicit patterns,
local operations, and randomness. In Proceedings of 9th Meeting of UAIDE. 544–
583.

[27] Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scafdi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011.
The State of the Art in End-User Software Engineering. ACM Comput. Surv. 43,
3, Article 21 (apr 2011), 44 pages. https://doi.org/10.1145/1922649.1922658

[28] Lawrence Lessig et al. 2008. Remix: Making art and commerce thrive in the hybrid
economy. Penguin, London, England.

[29] Vladimir I. Levenshtein. 1965. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet physics. Doklady 10 (1965), 707–710.

[30] Golan Levin and Tega Brain. 2021. Code as Creative Medium: A Handbook for
Computational Art and Design. MIT Press, Cambridge, MA, USA.

[31] Jingyi Li, Sonia Hashim, and Jennifer Jacobs. 2021. What We Can Learn From
Visual Artists About Software Development. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems (CHI ’21). Association for
Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/
3411764.3445682

[32] Zach Lieberman, Theo Watson, and Arturo Castro. 2021. openFrameworks.
https://openframeworks.cc/about

[33] Lingdong Huang. 2022. srcsnap. https://github.com/LingDong-/srcsnap
[34] Lauren McCarthy, Casey Reas, and Ben Fry. 2015. Getting started with P5. js:

Making interactive graphics in JavaScript and processing. Maker Media, Inc., USA.
[35] Lauren Lee McCarthy, Thomas Hughes, and Golan Levin. 2021. Open Source

Software Toolkits for the Arts (OSSTA): a Convening. https://github.com/
CreativeInquiry/OSSTA-Report

[36] Andrew M Mcnutt, Anton Outkine, and Ravi Chugh. 2023. A Study of Editor
Features in a Creative Coding Classroom. In Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems (Hamburg, Germany) (CHI ’23).
Association for Computing Machinery, New York, NY, USA, Article 121, 15 pages.
https://doi.org/10.1145/3544548.3580683

[37] Andrés Monroy-Hernández, Benjamin Mako Hill, Jazmin Gonzalez-Rivero, and
danah boyd. 2011. Computers Can’t Give Credit: How Automatic Attribution
Falls Short in an Online Remixing Community. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Vancouver, BC, Canada)
(CHI ’11). Association for Computing Machinery, New York, NY, USA, 3421–3430.
https://doi.org/10.1145/1978942.1979452

[38] Anders Mørch. 1997. Three levels of end-user tailoring: Customization, integra-
tion, and extension. Computers and design in context 1997 (1997), 61.

[39] Eduardo Navas. 2014. Remix theory: The aesthetics of sampling. Birkhäuser,
Switzerland.

[40] Kimberly A Neuendorf. 2017. The content analysis guidebook. sage, USA.
[41] Lora Oehlberg, Wesley Willett, and Wendy E Mackay. 2015. Patterns of phys-

ical design remixing in online maker communities. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems. Association
for Computing Machinery, New York, NY, USA, 639–648.

[42] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. 2009. Listening to Programmers
Taxonomies and Characteristics of Comments in Operating System Code. In
Proceedings of the 31st International Conference on Software Engineering (ICSE
’09). IEEE Computer Society, USA, 331–341. https://doi.org/10.1109/ICSE.2009.
5070533

[43] Christiane Paul, Carol Mancusi-Ungaro, Melva Bucksbaum, and Clémence White.
2018. Programmed: Rules, Codes, and Choreographies in Art, 1965–2018. https:
//whitney.org/exhibitions/programmed

[44] Inigo Quilez and Pol Jeremias. 2013. Shadertoy. https://www.shadertoy.com/
[45] Eric Rawn, Jingyi Li, Eric Paulos, and Sarah E Chasins. 2023. Understanding

Version Control as Material Interaction with Quickpose. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems. 1–18.

[46] Casey Reas and Ben Fry. 2014. Processing: A Programming Handbook for Visual
Designers and Artists (2 ed.). MIT Press, Cambridge, MA, USA.

[47] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60–67.

[48] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Ex-
planation in Computational Notebooks. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

’18). Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/3173574.3173606

[49] Lillian Schwartz. 1973. Papillon.
[50] Lillian Schwartz. 2013. Oral History of Lillian F. Schwartz.
[51] Yusuke Shinyama, Yoshitaka Arahori, and Katsuhiko Gondow. 2018. Analyzing

Code Comments to Boost Program Comprehension. In 2018 25th Asia-Pacifc
Software Engineering Conference (APSEC). 325–334. https://doi.org/10.1109/
APSEC.2018.00047

[52] Sinan Ascioglu. 2018. OpenProcessing. https://www.wiredpieces.com/
openprocessing/

[53] Katherine W Song and Eric Paulos. 2021. Unmaking: Enabling and Celebrating the
Creative Material of Failure, Destruction, Decay, and Deformation. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. 1–12.

[54] Sruti Srinivasa Ragavan, Sandeep Kaur Kuttal, Charles Hill, Anita Sarma, David
Piorkowski, and Margaret Burnett. 2016. Foraging Among an Overabundance
of Similar Variants. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (San Jose, California, USA) (CHI ’16). Association for
Computing Machinery, New York, NY, USA, 3509–3521. https://doi.org/10.1145/
2858036.2858469

[55] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. 2013. Quality analy-
sis of source code comments. In 2013 21st International Conference on Program
Comprehension (ICPC). 83–92. https://doi.org/10.1109/ICPC.2013.6613836

[56] Sarah Sterman, Molly Jane Nicholas, and Eric Paulos. 2022. Towards Creative
Version Control. Proc. ACM Hum.-Comput. Interact. 6, CSCW2, Article 336 (nov
2022), 25 pages. https://doi.org/10.1145/3555756

[57] the Processing Foundation. 2021. p5.js. https://p5js.org/
[58] Jer Thorp. 2014. Art at the Edge of Tomorrow. https://blprnt.medium.com/art-

at-the-edge-of-tomorrow-b78ad9302abe
[59] Tifany Tseng. 2016. Build in progress: Building process-oriented documentation.

In Makeology. Routledge, USA, 237–254.
[60] Tifany Tseng and Mitchel Resnick. 2014. Product versus Process: Representing

and Appropriating DIY Projects Online. In Proceedings of the 2014 Conference on
Designing Interactive Systems (Vancouver, BC, Canada) (DIS ’14). Association for
Computing Machinery, New York, NY, USA, 425–428. https://doi.org/10.1145/
2598510.2598540

[61] E. van Emden and L. Moonen. 2002. Java quality assurance by detecting code
smells. In Ninth Working Conference on Reverse Engineering, 2002. Proceedings.
97–106. https://doi.org/10.1109/WCRE.2002.1173068

[62] Mauricio Verano Merino and Juan Pablo Sáenz. 2023. The Art of Creating Code-
Based Artworks. In Extended Abstracts of the 2023 CHI Conference on Human
Factors in Computing Systems (Hamburg, Germany) (CHI EA ’23). Association
for Computing Machinery, New York, NY, USA, Article 271, 7 pages. https:
//doi.org/10.1145/3544549.3585743

[63] April Yi Wang, Will Epperson, Robert A DeLine, and Steven M Drucker. 2022.
Dif in the loop: Supporting data comparison in exploratory data analysis. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
Association for Computing Machinery, New York, NY, USA, 1–10.

[64] Stanley Wasserman, Katherine Faust, et al. 1994. Social network analysis: Methods
and applications. Cambridge university press, Cambridge, England.

[65] Scratch Wiki. 2022. Remix - Scratch Wiki. https://en.scratch-wiki.info/wiki/
Remix

342

https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1145/3411764.3445682
https://doi.org/10.1145/3411764.3445682
https://openframeworks.cc/about
https://github.com/LingDong-/srcsnap
https://github.com/CreativeInquiry/OSSTA-Report
https://github.com/CreativeInquiry/OSSTA-Report
https://doi.org/10.1145/3544548.3580683
https://doi.org/10.1145/1978942.1979452
https://doi.org/10.1109/ICSE.2009.5070533
https://doi.org/10.1109/ICSE.2009.5070533
https://whitney.org/exhibitions/programmed
https://whitney.org/exhibitions/programmed
https://www.shadertoy.com/
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1109/APSEC.2018.00047
https://doi.org/10.1109/APSEC.2018.00047
https://www.wiredpieces.com/openprocessing/
https://www.wiredpieces.com/openprocessing/
https://doi.org/10.1145/2858036.2858469
https://doi.org/10.1145/2858036.2858469
https://doi.org/10.1109/ICPC.2013.6613836
https://doi.org/10.1145/3555756
https://p5js.org/
https://blprnt.medium.com/art-at-the-edge-of-tomorrow-b78ad9302abe
https://blprnt.medium.com/art-at-the-edge-of-tomorrow-b78ad9302abe
https://doi.org/10.1145/2598510.2598540
https://doi.org/10.1145/2598510.2598540
https://doi.org/10.1109/WCRE.2002.1173068
https://doi.org/10.1145/3544549.3585743
https://doi.org/10.1145/3544549.3585743
https://en.scratch-wiki.info/wiki/Remix
https://en.scratch-wiki.info/wiki/Remix

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Remixing in HCI
	2.2 Creative Coding Tools and Community
	2.3 Tailoring and Customizing Software

	3 Empirical Setting: OpenProcessing
	4 Methods
	4.1 Network Analysis
	4.2 Thematic Analysis
	4.3 Content Analysis
	4.4 A Worked Example
	4.5 Limitations

	5 Understanding High-Level Remixing Practices
	6 Conceptualizing Remixing Strategies
	6.1 Collecting Sketches Without Making Changes
	6.2 Annotating Sketches with Inline Comments
	6.3 Tuning Existing Parameters to Explore Visual Outputs
	6.4 Extending Sketches with New Code

	7 Measuring the Prevalence of Remixing Genres
	8 Discussion
	8.1 Design Provocations to Support Creative Community through Remixing
	8.2 Applicability to Other Remixing and Coding Contexts

	9 Conclusion
	Acknowledgments
	References

