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ARTICLE INFO ABSTRACT

Keywords: This paper presents a frequency-velocity convolutional neural network (CNN) for rapid, non-invasive 2D shear
Machine learning wave velocity (Vs) imaging of near-surface geo-materials. Operating in the frequency-velocity domain allows for
CNN

significant flexibility in the linear-array, active-source experimental testing configurations used for generating
the CNN input, which are normalized dispersion images. While normalized dispersion images retain the most
important aspects of near-surface wavefields, they are relatively insensitive to the exact experimental testing
configuration used to generate and record the wavefields, accommodating various source types, source offsets,
numbers of receivers, and receiver spacings. We demonstrate the effectiveness of the frequency-velocity CNN by
applying it to a common near-surface geophysics problem, namely, imaging a two-layer, undulating, soil-over-
bedrock interface. The frequency-velocity CNN was trained and tested using 100,000 synthetic near-surface
models with variable soil-over-bedrock conditions. Then, the ability of the frequency-velocity CNN to gener-
alize across various acquisition configurations was rigorously tested using thousands of synthetic near-surface
models with different acquisition configurations from that of the training set. Lastly, it was applied to experi-
mental field data collected at the Hornsby Bend site in Austin, Texas, USA and found to produce a subsurface 2D

Subsurface imaging
Surface waves
Insitu testing
Geophysical testing

image that was in great agreement with ground truth from invasive site characterization data.

1. Introduction

Non-invasive subsurface imaging techniques based on stress wave
propagation have gained increased interest over the past few decades
due to their significant cost savings over traditional invasive site char-
acterization methods and their potential to cover large areas. The cur-
rent study proposes a frequency-velocity domain, deep-learning
technique for rapid, non-invasive 2D shear wave velocity (Vs) imaging
of near-surface geo-materials. The ultimate vision of this type of imaging
approach is that when fully developed for a wide range of geological
conditions, it may be used as a cost-effective and accurate alternative to
current pseudo-2D multichannel analysis of surface waves (MASW) (e.
g., Park 2005) imaging, or in developing 2D starting models for more
rigorous imaging methods like full waveform inversion (FWI) (Tar-
antola, 1984; Mora,1987). The information provided below illustrates
the need for new approaches to near-surface site characterization, pre-
sents background information on previous work related to deep-learning
subsurface imaging, and explains why a frequency-velocity domain
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approach is desirable for field application flexibility.

At depths of greatest interest to geotechnical engineering (less than
~ 30 m), surface waves dominate the energy of the elastic wavefield
(Miller and Pursey, 1955). As a result, surface wave methods are the
most common techniques for developing 1D Vg profiles for near-surface
application (e.g., Stokoe et al., 1994; Park et al., 1999; Foti, 2000; Louie,
2001; Okada, 2003; Tokimatsu et al., 1992). Surface wave methods
work by exploiting the dispersive properties of surface waves in verti-
cally heterogeneous media to develop 1D Vg profiles through the solu-
tion of an inverse problem. Solving the inverse problem involves
assuming a 1D model with elastic properties (Foti et al., 2014; 2018) and
iteratively solving a theoretical wave propagation problem (i.e., the
forward problem) until the theoretical dispersion curves from the
assumed model match the dispersion data extracted from experimental
measurements of surface waves phase velocity. The surface wave inverse
problem, commonly referred to as surface wave inversion, has been
explored extensively in the literature and is known to be particularly
challenging due to it being ill-posed and without a unique solution
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(Vantassel & Cox 2021a, b; Cox & Teague 2016; Foti et al., 2014; 2018).
Despite these challenges, surface wave methods have been applied
widely in practice and are commonly used to develop 1D, and even
pseudo-2D, subsurface models, with methods such as 2D MASW (Park
2005; Ivanov et al., 2006). It is important to note, however, that these
are not true 2D models due to the underlying 1D assumption in the
numerical solution of the surface wave dispersion data forward problem
used during inversion. Thus, the process of spatially interpolating be-
tween numerous 1D Vg profiles collected along a linear array produces a
pseudo-2D subsurface image rather than a true 2D subsurface image.
Presently, the only linear-array, active-source subsurface imaging
method capable of producing a true 2D subsurface image is FWL

While FWI can produce a true 2D model, it is less commonly used
than surface wave methods for near-surface imaging due to its more-
complex and more-time-consuming field acquisition and data process-
ing requirements. However, it is a more-promising approach for recov-
ering true 2D and 3D subsurface images, as it utilizes the entirety of the
seismic wavefield (rather than only the surface wave dispersion in sur-
face wave methods). FWI can be described as a data-fitting procedure
that seeks to minimize the misfit between the experimentally acquired
seismic waveforms and the synthetic wavefield obtained by solving a
wave propagation simulation through a candidate model. The FWI
optimization process can be performed using either a global or a local
search algorithm. Even though many numerical methods for modeling
the propagation of elastic waves through 2D and 3D earth models exist
(e.g., finite-difference, spectral-element), they are computationally
expensive, making global search methods, which are already computa-
tion demanding, uncommon for FWI (Virieux and Operto 2009). Local
search methods (e.g., Pratt et al., 1998; Pratt 1999; Nocedal and Wright
2006) are less computationally expensive, as they begin with a pre-
defined starting model and iteratively refine that model until the misfit
between the recorded seismic waveforms and the calculated wavefield
becomes sufficiently small. As a result, they require solving fewer for-
ward problems than their global counterparts, making them computa-
tionally less expensive. However, if the starting model is not sufficiently
similar to the true subsurface model, these methods are likely to be
trapped in a local minimum, or saddle point, that prevents them from
converging to the true solution (Monteiller et al., 2015; Smith et al.,
2019; Feng et al., 2021; Vantassel and Cox 2022). Given the sensitivity
of FWI results to the starting model (Shah et al., 2012; Vantassel et al.,
2022a), rapid and accurate ways of generating 2D and 3D starting
models are needed to more fully take advantage of FWI in engineering
practice.

There has been growing interest in the past few years in using deep-
learning methods to either enhance or completely replace FWI. An
extensive review on integrating these deep-learning methods in various
parts of the FWI can be found in (Adler et al., 2021). Several end-to-end
techniques, which aim to retrieve subsurface models directly from
seismic wavefield data are also available in the literature (e.g., Araya-
polo et al., 2018; Mosser et al., 2018a, b; Mao et al., 2019; Yang and Ma,
2019; Li et al., 2020). However, most previous works have either tar-
geted recovering crustal-scale subsurface velocity models, as indicated
by Vantassel et al. (2022a), or/and suffered from a weak generalization
ability, preventing them from being used for a wide variety of field
applications, as noted by Feng et al. (2021) and Liu et al. (2020).
Additionally, a significant portion of the deep learning seismic imaging
literature has focused on developing 2D velocity models using the
acoustic approximation (Araya-polo et al., 2018; Mosser et al., 2018a, b;
Mao et al., 2019; Yang and Ma, 2019; Li et al., 2020), which can only
recover compression wave velocity (Vp) and makes them poorly suited
for near-surface applications. In fully-saturated, near-surface soil de-
posits, Vp is mainly controlled by the compressibility of water in the
soil’s pore structure and as a result is much faster than the Vp of dry soils
(Foti et al., 2014). Hence, Vp is less revealing of the soil’s structure when
the materials are relatively soft and saturated. On the other hand, the
small strain shear modulus calculated from Vg represents that of the soil
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skeleton only and is independent of the ground saturation (Biot 1956a,
1956b). Due to the interest in retrieving Vs for engineering site char-
acterization and the predominance of surface waves in actively-
generated wavefields, deep learning approaches based only on the
acoustic approximation are not applicable for near-surface site charac-
terization. To the authors’ knowledge, the sole deep-learning, end-to-
end, 2D imaging technique for near-surface geotechnical engineering
purposes was proposed by Vantassel et al. (2022a).

Vantassel et al. (2022a) demonstrated the ability of deep-learning
methods in utilizing complicated wavefields comprised of surface and
body waves to image the near-surface. They designed a CNN that could
be used to generate 2D Vg images for subsurface profiles consisting of
soil over undulating rock. Their CNN could predict a 24-m deep and 60-
m wide Vg image directly from waveforms recorded by 24 receivers at a
2-m spacing, which is a common configuration for active-source, linear-
array subsurface imaging techniques. They used 100,000 synthetic soil-
over-rock models in training the CNN and tested it on an additional
20,000 synthetic models. Their CNN showed great promise for devel-
oping starting models for near-surface FWI and, in some cases, yielded
2D subsurface models that could not be improved upon by local-search
FWI. However, the authors acknowledged that their approach could not
generalize beyond the data acquisition configurations selected during
CNN training (e.g., source type, source location, number of receivers,
and receiver spacing).

The present work aims to show that developing a CNN with a
frequency-velocity domain input image can yield comparable accuracy
to the time-distance domain input approach proposed by Vantassel et al.
(2022a), while providing the flexibility in the experimental testing
configurations necessary to generalize for a broader range of field ap-
plications. We demonstrate that once trained for an appropriate set of
geological conditions, the proposed frequency-velocity CNN approach
can be used to instantly generate a 2D subsurface Vg image directly from
a normalized dispersion image obtained from linear-array, active-source
wavefield measurements. While normalized dispersion images retain the
most important aspects of near-surface seismic wavefields, they are
relatively insensitive to the exact experimental testing configuration
used to generate and record the wavefields, allowing for greater flexi-
bility in the choice of source type, source offset, numbers of receivers,
and receiver spacings used for testing. Furthermore, normalized
dispersion images can be easily generated due to their wide use in sur-
face wave testing. The effectiveness of our frequency-velocity CNN is
demonstrated by applying it to a common near-surface geophysics
problem; namely, imaging a two-layer, undulating, soil-over-bedrock
interface. A total of 100,000 synthetic soil-over-bedrock models with
variable subsurface conditions were developed to train and test the
frequency-velocity CNN. The ability of the proposed frequency-velocity
CNN to generalize across various acquisition configurations is first
tested using thousands of synthetic near-surface models with different
acquisition configurations from that of the training set, and then applied
to experimental data collected at the Hornsby Bend site in Austin, Texas,
USA. We also compare the performance of the frequency-velocity CNN
with the time-distance CNN for different near-surface models.

2. Overview of the frequency-velocity CNN

The 2D Vg imaging approach proposed herein builds on the time-
distance CNN work of Vantassel et al. (2022a) by developing a
frequency-velocity CNN that is accommodating of different linear-array,
active-source experimental testing configurations. A schematic illus-
trating the similarities and differences between the time-distance CNN
(left) and the frequency-velocity CNN (right) required for subsurface Vg
imaging is illustrated in Fig. 1. The time-distance CNN proposed by
Vantassel et al. (2022a) receives an input seismic wavefield recorded at
specific receiver locations relative to a single source type and location
and predicts a 2D Vg image. The proposed frequency-velocity CNN
generalizes beyond specific receiver locations, source types and source
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Fig. 1. Time-distance CNN framework proposed by Vantassel et al. (2022a), which follows the blue arrow’s path (left), and the new frequency-velocity CNN

framework, which follows the green arrow’s path (right).

locations by using a frequency-dependent normalized dispersion image
as its input for predicting a 2D sub-surface Vg-image. Unlike the time-
distance CNN, which would require additional training and tuning to
handle multiple source types and receiver spacings, the frequency-
velocity CNN is significantly less sensitive to the experimental testing
configuration and, therefore, saves the network from needing to learn
that additional complexity. In both cases, time-distance and frequency-
velocity, developing and training the CNN takes a significant amount of
time and effort, but after it has been trained it can be used to instanta-
neously produce a Vg image from the input.

To demonstrate the key difference between training a CNN using a
time-distance input (i.e., seismic wavefield) versus a frequency-velocity
input (i.e., dispersion image), several synthetic seismic wavefields ac-
quired with different testing configurations on the same subsurface
model are shown in Fig. 2 along with their associated dispersion images.
Fig. 2a depicts a synthetic soil-over-rock Vg image. At its surface, 48
receivers with 1-m spacing and two source locations at 5 m and 20 m to
the left of the first receiver are shown. Fig. 2b through 2i show the
seismic wavefields resulting from several different source and receiver
configurations and their associated dispersion images. For example,
Fig. 2b and 2c show the wavefield sampled by 48 receivers at a 1-m
receiver spacing and its corresponding dispersion image, respectively,
due to a 30-Hz Ricker wavelet source (Fig. 3a) at 5-m distance from the
first receiver. This will be referred to as the base configuration. The
experimental configuration used to obtain the seismic wavefield and
dispersion image illustrated in Fig. 2d and 2e, respectively, differs from
the base configuration in that the source is excited at 20 m from the first
receiver. While the wavefield image in Fig. 2d is clearly different from

the wavefield image of the base configuration (Fig. 2b) due to the
increased travel time associated with a greater source offset, the
dispersion images from both configurations (Fig. 2c and 2e) are similar.
The experimental configuration used to obtain the wavefield and
dispersion image illustrated in Fig. 2f and 2 g, respectively, differ from
the base configuration in that the 30-Hz Ricker wavelet excited 5 m from
the first receiver is now recorded by only 24 receivers at a 2-m spacing (i.
e., using half the number of receivers at two-times the spacing). Once
again, the wavefield image for the alternate testing configuration
(Fig. 2f) is clearly different from the base configuration (Fig. 2b) due to
wavefield sampling at one-half the spatial resolution, but the dispersion
images (Fig. 2c and 2 g) are very similar. Fig. 2h shows a wavefield
sampled by 48 receivers at a 1-m receiver spacing from a source located
5 m from the first receiver (similar to the base configuration), however,
the source function is now a 12-second-long linear chirp from 3-Hz to
80-Hz (Fig. 3c). Once again, while this wavefield is drastically different
from the base configuration wavefield (Fig. 2b), its dispersion image is
visually identical to the others. These figures demonstrate that the
frequency-velocity transformation used to obtain the dispersion images
mitigates unimportant differences in the near-surface wavefields (e.g.,
time lags due to source position and the exact nature of the source
forcing function), while still retaining the most important information
present in the wavefields (i.e., the dispersive properties of a wavefield
dominated by surface waves).

To quantitatively illustrate the good agreement between the
dispersion images across different experimental testing configurations,
the mean structural similarity index (MSSIM) proposed by Wang et al.
(2004) is used. In this case, the MSSIM is used to compare the similarity
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Fig. 2. (a) a 104-m wide and 24-m deep soil-over-rock 2D model with a 47-m array of receivers at 1-m spacing and two source locations at 5 and 20 m off the end of
the array. (b) the seismic wavefield recorded by 48 receivers from a 30-Hz Ricker source at the 5 m source location and (c) its associated dispersion image. (d) the
seismic wavefield recorded by 48 receivers from a 30-Hz Ricker source at the 20 m source location and (e) its associated dispersion image. (f) the seismic wavefield
recorded by 24 receivers from a 30-Hz Ricker source at the 5 m source location and (g) its associated dispersion image. (h) the seismic wavefield recorded by 48
receivers from a 3-Hz to 80-Hz chirp/sweep over 12-seconds at the 5 m source location and (i) its associated dispersion image. The mean structural similarity index
(MSSIM) of each dispersion image relative to the base case (i.e., panel c) is presented above each panel.

between the base configuration dispersion image (Fig. 2c¢) and the
dispersion images obtained using the varied testing configurations (refer
to Fig. 2e, 2 g, and 2i). The value of the MSSIM index between two
images can range between 0 and 1, where a value of 0 indicates no
structural similarity, while a value of 1 means perfect structural simi-
larity. More information about MSSIM is provided in Section 5.1. The
high values of MSSIM for the dispersion images obtained from different
testing configurations (0.81 — 1.0) echo the qualitative observations
made previously, that the four dispersion images are very similar to one
another. This similarity between dispersion images acquired using
different configurations of sources and receivers grants the frequency-
velocity CNN approach the flexibility needed to predict on diverse
testing configurations independent of the training dataset on which the
CNN was trained, which is imperative for field applications.

The present study is structured as follows. We start by describing the
synthetic soil-over-bedrock models developed for this study. Next, the
details of the wave propagation simulations and the post-processing of
the results used in constructing the dataset for this study are presented.
We then outline the architectures of the time-distance and frequency-

velocity CNNs and evaluate their relative performances on the devel-
oped dataset. Subsequently, we demonstrate the advantages of oper-
ating in the frequency-velocity domain in terms of flexibility and
generalization across different testing configurations that are not pre-
sent in the training set. Lastly, we validate the potential of the
frequency-velocity CNN for handling experimental data based on com-
parisons with field observations at the Hornsby Bend site in Austin,
Texas, USA.

3. Development of synthetic near-surface models

The synthetic near-surface models developed for this study used a
slightly modified version of the framework developed by Vantassel et al.
(2022a) for generating realistic soil-over-undulating bedrock subsurface
models. A brief description of the models with changes relative to those
implemented by Vantassel et al. (2022a) is highlighted in this section. A
total of 100,000 synthetic near-surface models representative of soil
overlying weathered rock were developed to train and test the CNN. A
104-m wide and 24-m deep domain was utilized in the present work.
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Fig. 3. Source functions used in this study and their associated normalized Fourier amplitude spectra. (a) the time series of a 30-Hz Ricker wavelet. (b) the time series
of a 15-Hz high-cut filtered spike wavelet. (c) the time series of a 3-Hz to 80-Hz linear chirp/sweep over 12-seconds. (d) the normalized Fourier amplitude spectra of

each source function.

This domain is larger than the 60-m by 24-m domain used by Vantassel
et al. (2022a) to accommodate the different receiver and source con-
figurations required for testing the abilities of the proposed frequency-
velocity approach to generalize across different field acquisition setups.

Similar to Vantassel et al. (2022a), the base Vg images were con-
structed by first assuming the vertical variation of Vg in the overlying

Table 1

The upper and lower bounds of the material parameters utilized for creating the
subsurface synthetic models used in this study. These parameters were varied
simultaneously based on their respective uniform distributions to produce

100,000 unique 2D seismic images comprising stiff soil overlying weathered
bedrock.

stiff soil layer (i.e., the upper part of the image) followed the approxi-
mate relationship between Vs and mean effective confining pressure for

dense granular soils proposed by Menq (2003). To avoid unrealistically
low velocities, the Vg relationship was truncated near the ground surface
(i.e., at low mean effective stresses) to ensure no Vg less than 200 m/s.
The Vg of the soil at greater depths was inherently limited to approxi-
mately 360 m/s based on Menq's (2003) relationship and the maximum
depth of the soil (refer to Table 1). To incorporate a broader range of
realistic dense soil-velocities into the models, the relationship was
scaled up and down by a random variable, the soil velocity factor, be-
tween 0.9 and 1.1. The average interface boundary between the stiff soil
layer and bedrock ranged between 5 m and 15 m in depth. Several

Material Parameter Lower Upper
bound bound

Shear wave velocity of stiff Soil (m/s) 200 360

Soil velocity factor (#)° 0.9 1.1

Shear wave velocity of weathered rock 360 760

Average depth to soil-weathered rock interface for 5 15
undulating models (m)

Overlapping frequencies to create the highly 1/60, 1/20, 1/20, 1/10,
undulating soil-weathered rock interfaces (1/m) 1/10 1/5

Overlapping frequencies to create the slightly 1/60, 1/30, 1/30, 1/20,
undulating soil-weathered rock interfaces (1/m) 1/20 1/10

Left and right (1, r) depth to soil-weathered rock 55 20, 20

interface for the linear interface models (m)

different soil-to-bedrock interface conditions were simulated as a means
to vary the vertical and horizontal irregularity of the contact; namely,
30 % of the models had highly undulating interfaces (e.g., Fig. 4a
through 4f), 60 % had slightly undulating interfaces (e.g., Fig. 4g
through 4r), and 10 % of the models had linear soil-rock interfaces (e.g.,
Fig. 4s and 4 t). Note that Vantassel et al. (2022a) used only highly
undulating interfaces in the synthetic subsurface models for their time-
distance CNN. We chose to incorporate a wider range of soil-bedrock
interface conditions so that the training data would be less biased

# The shear wave velocities for the stiff-soil layer were calculated by applying
the soil velocity factor to the approximate relationship between mean effective
stress and shear wave velocity developed by Menq (2003).

towards one interface type, allowing the CNNs to recognize less-varying
interfaces as well as highly irregular ones. These percentages of models
with different bedrock undulation conditions were preserved
throughout the CNN training, validation, testing, and generalization
evaluation stages. Three overlapping spatial undulation frequencies
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Fig. 4. Twenty randomly selected synthetic, near-surface 2D Vs images from the 20,000 models used to test the convolutional neural networks (CNNs). The first six
images (from a to f) have a highly undulating soil-rock interface, the following 12 images (from g to r) have a slightly undulating soil-rock interface, and the last two

images (s and t) have a linear soil-rock interface.

were used to control the interface undulation intensity, as illustrated in
Table 1. While the spatial frequencies used for the highly undulating
interfaces were the same as those used by Vantassel et al. (2022a), the
spatial frequencies for the slightly undulating interfaces were smaller,
which results in less variable soil-bedrock interfaces. The bedrock Vg
was randomly varied following a uniform distribution between a lower
bound of 360 m/s and an upper bound of 760 m/s. Lateral and vertical
perturbations were imposed on both the soil and rock portions of the Vg
model to simulate inhomogeneities present in natural materials. The
small-scale irregularities introduced by the perturbations were 1 m to 2
m in the vertical direction and 4 m to 6 m in the horizontal direction.
Further details on the computations used to introduce these small-scale
irregularities, including the assumed correlation structure, can be found
in Vantassel et al. (2022a).

The 100,000 synthetic models were developed by randomly chang-
ing the stiff soil Vg multiplier values, the weathered rock Vs, the Vg
lateral and vertical perturbations, the interface depth, and the interface
undulation frequencies within the upper and lower bounds for each
variable illustrated in Table 1. Following the development of each Vg
image, a Vp image was generated by using a Poisson’s ratio of 0.33 for
soil and 0.2 for rock (Foti et al., 2018). The mass density image was
constructed by assigning a value of 2000 kg/m® for soil and 2100 kg/m®
for rock (Holtz et al., 2011; Foti et al., 2018). Twenty randomly selected
Vs images generated using the procedures described above are shown in
Fig. 4. Note that while the Vg images in Fig. 4 have been selected at
random, the number of images for each of the three model types (i.e.,
highly undulating, lightly undulating, and linear) have been selected to
follow the distribution of model types in the training set (i.e., 30 %, 60
%, and 10 %, respectively).

4. Development of synthetic seismic wavefields

The 2D finite-difference software DENISE (Kohn and s.n. , 2011;
Kohn et al., 2012) was used to simulate elastic wave propagation
through the synthetic models. Forty-eight receivers were placed at 1-m
spacing across the center of the 104-m wide models to sample the

wavefield generated by a source located 5 m to the left of the first
receiver. This contrasts with the 24 receivers at a 2-m spacing and source
located at the center of the array used by Vantassel et al. (2022a). The
receivers occupied the distance between 28 m and 75 m, so they were as
far away from the model boundaries as possible (refer to Fig. 2a). A 30-
Hz Ricker wavelet (Fig. 3a) was used as a forcing function during the
development of the training, validation, and testing datasets. This is a
higher-frequency wavelet than that used by Vantassel et al. (2022a),
allowing, in theory, high-resolution predictions to be developed. The
finite-difference simulations were used to model two seconds of wave
propagation to allow for recording of all wave types by the receivers. A
sixth-order finite-difference operator in space and a second-order finite
difference operator in time were utilized during the simulations.
Perfectly matched layer absorbing boundaries (Komatitsch and Martin,
2007) were placed at the sides and the bottom of the domain, while the
ground surface was modeled using a free boundary condition (Levander,
1988). Prior to wave propagation simulations, the soil models were
interpolated from 1-m pixels to 0.2-m pixels to avoid numerical artifacts
and instabilities, as recommended by Kohn et al. (2011). A 5E-5 s time
step was used to satisfy the Courant-Friedrichs-Lewy criterion (Courant
et al., 1967). The waveforms at each receiver location were recorded at a
400-Hz sampling rate. The simulations were performed on the Texas
Advanced Computing Center’'s (TACCs) high-performance cluster
Stampede?2 using a single Skylake (SKX) compute node. Each simulation
took approximately five seconds to complete.

4.1. Post-processing to obtain the wavefield and dispersion input images

To evaluate the relative performance between the time-distance and
frequency-velocity CNNs, two identical datasets for training and testing
of the two CNNs were developed. A total of 100,000 near-surface Vg
images and their corresponding seismic wavefields formed the image
pairs in the dataset developed for the time-distance CNN. The same soil
models and the dispersion images derived from their respective wave-
fields composed the dataset produced for the frequency-velocity CNN.
Even though the synthetic models were 104-m wide and 24-m deep, only
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the 48 m at the center of the models immediately below the receivers
were considered in training and testing the CNN, making the utilized soil
models 48-m wide and 24-m deep, as illustrated in Fig. 4. The near-
surface Vg images were then normalized by the maximum Vg value in
the training set to facilitate the training process. The waveforms recor-
ded by the 48 receivers used for the time-distance CNN were normalized
by the maximum amplitude across all receivers to preserve the rate of
amplitude decay. The input shape for the time-distance CNN was
48x800x1, which represents the 48-receiver wavefield sampled for two
seconds at 400 Hz.

The frequency-velocity CNN utilizes a normalized dispersion image
as input. The dispersion image is computed using a wavefield trans-
formation of the time-distance wavefield recorded by a linear array of
receivers. Several wavefield transformation techniques can be used to
generate a dispersion image from a recorded time-distance wavefield.
For example, the frequency-wavenumber (f-k) (Gabriels et al., 1987;
Nolet and Panza, 1976), slant-stack (McMechan and Yedlin, 1981),
phase-shift (Park et al., 1998), and frequency-domain beamformer
(FDBF) (Zywicki, 1999) transformations are all commonly used in
various commercial and open-source surface wave processing software.
The FDBF approach with a plane wave steering vector and no amplitude
weighting (Zywicki, 1999) was used in the present study to develop the
dispersion images used in training and testing the frequency-velocity
CNN. We chose the FDBF over the more common frequency-
wavenumber (f-k) approach because the FDBF technique allows the
transformation of time-distance wavefields collected using non-
uniformly spaced arrays of receivers and the calculation of dispersion
power above the aliasing wavenumber (Vantassel and Cox, 2022),
thereby making the inputs to the CNN easier to acquire in the field.
Furthermore, the FDBF approach has been judged to be superior to other
wavefield transformation methods as assessed by Rahimi et al. (2021).
Along with the FDBF, we use the plane wave steering vector to be
consistent with the wavefield simulations. In particular, the seismic
wavefield data were produced under the 2D, plane-strain assumption,
and as a result are representative of waveforms generated by a line
source (i.e., a plane wave source). Importantly, the FDBF method can be
adjusted when applied to field data that is truly 3D in nature by swap-
ping out the plane-wave steering vector and no amplitude weighting for
cylindrical-wave steering and square-root-distance weighting to appro-
priately compensate for the effects of radiation damping in 3D data
(Zywicki and Rix, 2005). This substitution removes the need to “correct”
3D waveforms collected in the field to 2D equivalents before dispersion
processing and use in the frequency-velocity CNN.

The dispersion images in this study were generated using a frequency
range of 5 Hz to 80 Hz with a 1-Hz frequency step and a phase velocity
range of 100 m/s to 1000 m/s with 2.25 m/s velocity step. The
dispersion image, therefore, had an input shape of 76x400x1 (i.e., 76
frequencies x 400 phase velocities). After computing the MASW
dispersion images we utilized frequency-dependent normalization to
further simplify the learning task of the CNN. With frequency-dependent
normalization, sources with different frequency contents, amplitudes,
and offsets appear more similar than with other forms of normalization,
such as absolute maximum normalization proposed by Park et al.
(1998). By performing frequency-dependent normalization, we remove
the need for the CNN to learn this aspect of the underlying physics,
allowing for better generalization across various source types and lo-
cations. All dispersion images in this study were generated program-
matically using the open-source Python package swprocess (Vantassel,
2021).

5. Time-distance and frequency-velocity CNN architectures

CNN s are an excellent tool for computer vision tasks and have shown
great potential for use in seismic imaging (Wu and Lin, 2019; Yang and
Ma, 2019; Liu et al., 2020; Vantassel et al., 2022a). The time-distance
and frequency-velocity CNNs developed in this study follow a similar

Computers and Geotechnics 156 (2023) 105305

architecture to that proposed by Vantassel et al. (2022a), consisting of
five convolutional layers interspersed with max-pooling layers. How-
ever, the two CNNs’ architectures were adjusted to accommodate their
respective input and output sizes, which were different from those of
Vantassel et al. (2022a). The convolutional layers employ a set of ker-
nels, also called feature detectors or stencils, to capture the relevant
patterns (i.e., feature maps) in the dataset images. Once the relevant
features of the images are detected, subsampling or pooling layers are
utilized to decrease the feature maps’ spatial resolution, which in turn
reduces the reliance on precise positioning within feature maps pro-
duced by the convolutional layers. Disregarding the exact position of
features within a feature map while maintaining the relative position of
features with respect to each other allows for a better CNN performance
on inputs that differ from the training data. Max-pooling layers were
used in the current study, as they were shown to be superior in capturing
invariances in image-like data compared to subsampling layers (Scherer
et al., 2010). The final convolutional layer is flattened and connected to
a fully connected layer to perform the regression task. Table 2 shows the
architectures used for the two CNNs developed in this study. Google
Colaboratory and the open-source machine learning library Keras
(Chollet et al., 2015) were used in training and testing the CNNs. 70 %,
10 %, and 20 % of the developed 100,000 image pairs were used in the
two CNNs training, validation, and testing stages, respectively. The
time-distance CNN has 14,830,176 trainable parameters, while the
number of trainable parameters for the frequency-velocity CNN is
8,342,112.

In addition to the networks’ architectures, the model’s hyper-
parameters need to be rigorously tuned to provide optimal performance.
In the present study, we tuned the following hyperparameters by vary-
ing them between the upper and lower bounds listed below. We then
selected the set that produced the best performance on the validation
set. The hyperparameters considered include: the learning rate (0.1 to
0.0001), batch size (8 to 64), number of training epochs (10 to 100),
optimizer (RMSprop and Adam), and loss function (mean squared error
and mean absolute error). Ultimately, a learning rate of 0.0005, batch
size of 16, training epoch of 40, Adam optimizer (Kingma and Ba, 2015),
and mean absolute error (MAE) were selected for both the time-distance
and frequency-velocity CNNs. We note these hyperparameters are
similar to the ones selected by Vantassel et al. (2022a) despite being
chosen after independent hyperparameter tuning exercises. Using Goo-
gle Colaboratory Pro, the final architectures and hyperparameters of the
time-distance and the frequency-velocity CNNs took 19 and 16 min to
train, respectively. The validation dataset MAEs for the time-distance
and frequency-velocity CNNs using the selected hyperparameters are
0.022 and 0.025, respectively.

Table 2
Architectures for the time-distance and frequency-velocity convolutional neural
networks (CNNs) developed in this study.

Network layer Time-distance CNN Frequency-velocity CNN

type Filter Size of output Filter Size of output
size layer size layer
2D Convolution 1x3 48x798x32 3x1 398x76x32
2D Max Pooling 1x3 48x266x32 3x1 132x76x32
2D Convolution 1x3 48x264x32 3x1 130x76x32
2D Max Pooling  1x3 48x88x32 3x1 43x76x32
2D Convolution 1x3 48x86x64 3x1 41x76x64
2D Max Pooling 2x3 24x28x64 1x3 41x25x64
2D Convolution 3x3 22x26x128 3x3 39x23x128
2D Max Pooling ~ 2x2 11x13x128 3x3 13x7x128
2D Convolution 3x3 9x11x128 3x3 11x5x128
Flatten 12,672 7040
Dense 1152 1152
Reshape 24x48 24x48
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5.1. CNNs accuracy evaluation

The accuracy of the time-distance and frequency-velocity CNNs were
evaluated using their respective 20,000 testing image pairs, which the
networks were not trained on. The mean absolute percent error (MAPE)
and MSSIM were used to provide a quantitative assessment of the CNN’s
performance. MAPE is the mean of the absolute value of the pixel-by-
pixel percent error of each predicted Vgimage in physical units. The
MSSIM index assess the quality of one image relative to another that is
deemed to be of perfect quality based on three key features: luminance,
contrast, and structure (Wang et al., 2004). MSSIM was calculated using
a Gaussian windowing approach to match the implementation of Wang
et al. (2004) and using a dynamic range equal to the difference between
the absolute maximum and minimum Vg values of the true models in the
testing set.

The average values of MAPE and MSSIM for the time-distance CNN
are 5.3 % and 0.80, respectively, while the MAPE and MSSIM for the
frequency-velocity CNN are 6.0 % and 0.78, respectively (refer to
Table 3). While the time-distance CNN provides slightly better accuracy
than the frequency-velocity CNN, their performances are quite similar.
Furthermore, we will show that the advantages permitted by operating
in the frequency-velocity domain in terms of flexibility and generaliza-
tion across data acquisition configurations outweigh the minor loss of
accuracy. Figs. 5 and 6 show the Vg image predictions for the time-

Table 3

The mean absolute percent error (MAPE) and mean structural similarity index
(MSSIM) between the true Vs images and the Vs images predicted using the time-
distance and frequency-velocity convolutional neural networks for the testing
set and the different acquisition configurations. The values in the table represent
the average MAPE and MSSIM over the number of images used for each acqui-
sition configuration. The base acquisition configuration comprised 48 receivers
with a 1-m spacing, a source offset of 5 m relative to the first receiver in the
linear array, and a 30-Hz Ricker wavelet source forcing function.

Acquisition CNN used Deviation Number MAPE MSSIM
variation from base of (%)
configuration images
Base case Time- - 20,000 5.3 0.80
distance
Frequency- - 20,000 6.0 0.78
velocity
Varying Frequency- 24 receivers at 5,000 6.0 0.77
receiver velocity 2-m spacing
spacing 16 receivers at 5,000 9.9 0.65
3-m spacing
12 receivers at 5,000 24.0 0.32
4-m spacing
Varying Frequency- Source at 6 m 5,000 6.8 0.77
source velocity from first
location receiver
Source at 10 m 5,000 11.0 0.69
from first
receiver
Source at 20 m 5,000 12.7 0.64
from first
receiver
Average 5,000 8.1 0.73
between 5-m
source and 20-
m source offsets
Average 5,000 11.2 0.67
between 10-m
source and 20-
m source offsets
Varying Frequency- 15-Hz high-cut 5,000 5.9 0.78
source velocity filtered spike
forcing forcing function
function 3-Hz to 80-Hz 4,887 7.3 0.75
linear sweep
over 12-sec-
onds forcing
function

Computers and Geotechnics 156 (2023) 105305

distance and the frequency-velocity CNNs, respectively, for compari-
son with the 20 true images depicted in Fig. 4. As noted above, Fig. 4
depicts six highly undulating, 12 slightly undulating, and two linear soil-
rock interface models. The MAPE and MSSIM values for each CNN
prediction relative to the true image are also provided in Figs. 5 and 6.
While, on average, the time-distance CNN slightly outperforms the
frequency-velocity CNN in terms of overall MAPE and MSSIM, there are
some individual models for which the frequency-velocity CNN is slightly
more effective (e.g., model S in Fig. 5s and 6s). Furthermore, by-eye it
would be difficult to distinguish the time-distance and frequency-
velocity predictions from one another.

Fig. 7 shows the residuals between the predicted frequency-velocity
Vg images (Fig. 6) and the true images (Fig. 4). It can be seen that large
portions of the residual images have neutral colors, indicating relatively
small differences in Vg between the true and predicted images. Specif-
ically, the Vg of the soil and rock layers are generally well predicted,
whereas most of the error is concentrated at the undulating soil-rock
interfaces. While only shown herein for the frequency-velocity CNN,
similar, localized interface errors are present in the time-distance pre-
dicted images and were also reported by Vantassel et al. (2022a) for
their time-distance CNN. In fact, both the time-distance CNN and the
frequency-velocity CNN tend to produce predictions with higher errors
(i.e., higher MAPE values and lower MSSIM values) for models with
highly undulating interfaces when compared to those with slightly un-
dulating or linear interfaces, as shown in Table 4 for the three subsets of
interface shapes in the testing set. Nonetheless, the interface locations
and major undulations are still fairly well preserved in the predictions.

6. Generalizing the frequency-velocity CNN across acquisition
configurations

The acquisition generalization capabilities of the frequency-velocity
CNN are evaluated by simulating different testing configurations than
the base case configuration used during model training. The testing
setup variations investigated herein include modifications to the num-
ber of receivers and receiver spacings, the source offset, and the source
forcing function. The effects of each variation in the testing configura-
tion are assessed separately, while the remainder of the setup is main-
tained identical to the base case configuration used in training the CNN.
As a reminder, this base case training configuration was: 48 receivers
with a 1-m spacing, a source offset of 5 m relative to the first receiver in
the linear array, and a 30-Hz Ricker wavelet source forcing function
(refer to Fig. 2b). Due to the high computational costs required to run
numerous wave propagation simulations with various acquisition con-
figurations, only 5,000 of the 20,000 testing models were evaluated
during this stage. These 5,000 models were randomly selected, but with
the stipulation that this smaller population of models maintained the
same ratios of 30 % highly undulating interfaces, 60 % slightly undu-
lating interfaces, and 10 % linear soil-rock interfaces as the original
training and testing sets. We evaluated the performance of the
frequency-velocity CNN image predictions for these 5,000 testing
models with wavefields recorded using a wide range of simulated
acquisition testing configurations using the same MAPE and MSSIM
statistics used to evaluate the full 20,000 testing model set. The
following sections discuss the performance of the frequency-velocity
CNN for different testing configurations.

6.1. Generalizing to the number of receivers and receiver spacings

In the field, the number of receivers used to image the subsurface is
dependent on equipment availability, testing space, and the objective of
the experiment (e.g., better near-surface resolution versus greater im-
aging depth). Therefore, a CNN that can provide accurate 2D images
from wavefields collected with different numbers of receivers is desir-
able. To test the frequency-velocity CNN for such acquisition general-
ization ability, three sets of 5,000 input dispersion images were obtained
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Fig. 5. The time-distance CNN’s predictions of the true synthetic 2D Vg images presented in Fig. 4. The inputs used to obtain these predictions are the wavefields
recorded by 48 receivers at 1-m spacings, which were excited by a 30-Hz Ricker source wavelet at 5 m from the first receiver. The mean absolute percent error
(MAPE) and mean structural similarity index (MSSIM) of each predicted image are presented above each panel.
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Fig. 6. The frequency-velocity CNN’s predictions of the true synthetic 2D Vg images presented in Fig. 4. The inputs used to obtain these predictions are the
normalized dispersion images obtained by post-processing the wavefields recorded by 48 receivers at 1-m spacings, which were excited by a 30-Hz Ricker source
wavelet at 5 m from the first receiver. The mean absolute percent error (MAPE) and mean structural similarity index (MSSIM) of each predicted image are presented
above each panel.
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Fig. 7. The pixel-by-pixel difference between the twenty true 2D Vs near-surface images presented in Fig. 4 and the corresponding frequency-velocity CNN image
predictions shown in Fig. 6. The mean absolute percent error (MAPE) and mean structural similarity index (MSSIM) of each predicted image are presented above

each panel.

Table 4

Breakdown of mean absolute percent error (MAPE) and mean structural simi-
larity index (MSSIM) values between the true Vs images and the Vg images
predicted using the time-distance and frequency-velocity CNNs for the highly
undulating, slightly undulating, and linear interface images in the testing set.

CNN used Interface Number of MAPE MSSIM
condition images (%)
Time-distance Highly 6000 6.38 0.74
undulating
Slightly 12,000 4.81 0.84
undulating
Linear 2000 5.56 0.8
Frequency- Highly 6000 7.06 0.71
velocity undulating
Slightly 12,000 5.4 0.81
undulating
Linear 2000 6.07 0.78

from wave propagation simulations on the 5,000 testing models. The
first set of dispersion images was generated using the wavefields from 24
receivers at 2-m spacing, the second set from 16 receivers at 3-m
spacing, and the third set from 12 receivers at 4-m spacing. The accu-
racy of the CNN’s predictions for the three sets of inputs is presented in
Table 3 in terms of MAPE and MSSIM. From Table 3, it is clear that the
frequency-velocity CNN is capable of generalizing across various
numbers of receivers and receiver spacings, but only within reasonable
adjustments to the base configuration. For example, the MAPE and
MSSIM values for 24 receivers at 2-m spacing are equal to 6.0 and 0.77,
respectively, essentially equivalent to those from the base configuration.
The MAPE and MSSIM values for 16 receivers at 3-m spacing are equal to
9.9 and 0.65, respectively, indicating a slight degradation in perfor-
mance. However, the MAPE and MSSIM values for 12 receivers at 4-m
spacing are equal to 24.0 and 0.32, respectively, which show a signifi-
cant reduction in predictive capabilities as fewer receivers with larger
receiver spacings are used to record the wavefield. Reasons for these

10

observations are investigated further by considering plots presented in
Fig. 8.

Fig. 8a shows the true Vs image depicted in Fig. 4j. Fig. 8b and 8c
show the input dispersion image and CNN output Vg image, respectively,
for the 48-receiver base configuration. The input dispersion images and
output Vg images for modified acquisition configurations are shown in
Fig. 8d and 8e, respectively, for 24 receivers and in Fig. 8f and 8g,
respectively, for 12 receivers. Also shown in all dispersion images are
the high frequency spatial array resolution limits (sometimes called the
f-k aliasing limits) for the respective receiver configurations, which are
plotted as dashed white lines. The f-k aliasing limits represent the largest
wavenumber (k), or equivalently the smallest wavelength (1), that can
be measured without concern for spatial aliasing. The spatial aliasing
limit is a constant wavelength that is equal to two-times the receiver
spacing (i.e., at least two measurements per spatial wavelength). Note
that proper spatial sampling is analogous to proper time-domain sam-
pling following the Nyquist sampling theorem. However, unlike in time-
domain sampling the presence of contaminating short wavelength (i.e.,
high frequency) waves are less common due to material damping, and as
aresult clear dispersion data above the spatial aliasing limit can be used,
albeit cautiously (Foti et al., 2018).

As can be seen in Fig. 8b, 8d, and 8f, the portion of the input
dispersion image that exists below the spatial aliasing line increases as
the number of receivers decreases and the receiver spacing increases.
This means that when larger receiver spacings are used the higher fre-
quency data may not be resolved accurately due to spatial aliasing. For
example, the high-power trend at frequencies greater than 60-Hz in
Fig. 8f is not a true higher mode, but rather an artefact of spatial aliasing.
While the frequency-velocity CNN can generalize across different
receiver spacings to a certain extent, as evident by comparing the Vs-
images MAPE and MSSIM values for the 48-receiver and 24-receiver
configurations (refer to Fig. 8c and 8e), it cannot accurately generalize
across receiver spacings that are drastically different from the base
configuration, as the high frequency portion of the input dispersion
images are affected by spatial aliasing. Even though the MAPE increases
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Fig. 8. (a) the true synthetic image from Fig. 4j. (b &
c) the input dispersion image and output frequency-
velocity CNN Vg image prediction, respectively, from
the base receiver configuration (i.e., 48 receivers at 1-
m spacing). (d & e) the input dispersion image and
output frequency-velocity CNN Vg image prediction,
respectively, from 24 receivers at 2-m spacing. (f & g)
the input dispersion image and output frequency-
velocity CNN Vg image prediction, respectively, from
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significantly when 12 receivers at 4-m increments are used (refer to
Fig. 8g), the CNN was still able to qualitatively predict the location of the
soil rock interface quite well. Nonetheless, the actual Vg values for the
soil and rock are not well resolved, a clear result of the limitations
imposed by the CNN’s training data (i.e., no spatial aliasing was present
in the training set).

6.2. Generalizing to source offset

When performing linear-array, active-source surface wave testing, it
is good practice to record the waveforms generated at several different
source locations with increasing offset distance to help identify disper-
sion data contaminated by near-field effects and quantify dispersion
uncertainty (Cox and Wood, 2011; Vantassel and Cox, 2022). Near-field
effects, which result from measuring low frequency (i.e., long wave-
length) waves too close to the source location, are known to bias phase
velocity estimates to lower velocities (Rosenblad and Li, 2011; Li and
Rosenblad, 2011; Yoon and Rix 2009). As such, one needs to be cautious
about placing an active source too close to a linear array. To complicate
matters, near-field affects are site-dependent and, as a result, it is diffi-
cult to know a-priori what source offset distances are appropriate at a
site. In addition to near-field effects, other wave propagation phenom-
ena like body wave reflections and refractions influence the recorded
seismic wavefield when varying source offset distances are used. This is
particularly true when the subsurface conditions are neither 1D nor
homogeneous. Therefore, a CNN that is capable of generalizing to
different, or possibly multiple, source offsets is desirable.

To test the frequency-velocity CNN’s ability to generalize in terms of
source offset distance, five sets of 5,000 input dispersion images were
obtained from wave propagation simulations on 5,000 testing models
using different source offset distances relative to 48 receivers with 1-m
spacing. Specifically, the first set of dispersion images was generated
using a 6-m source offset, the second set using a 10-m offset, and the
third set using at 20-m offset. The fourth and fifth sets of dispersion
images were generated by combining dispersion images from two

24
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different source offsets in the frequency-phase velocity domain as fol-
lows: the fourth set resulting from stacking dispersion images from a 5-m
and 20-m offset, and the fifth set from stacking dispersion images from a
10-m and 20-m offset. The accuracy of the CNN’s predictions for the five
sets of varied source offset inputs is presented in Table 3 in terms of
MAPE and MSSIM. From Table 3, it is clear that, as with the receiver
number and spacing discussed previously, the frequency-velocity CNN is
capable of generalizing across various source offset distances, but only
within reasonable adjustments to the base configuration. For example,
the MAPE and MSSIM values for the 6-m source offset are only slightly
worse than the base configuration, while the values for the 10-m offset
and 20-m offset show increasing error as the source offset distance in-
creases. Nevertheless, the average MAPE for the 20-m offset only in-
crease by approximately 7 % relative to the base configuration (i.e.,
12.7 % compared to 6.0 %).

Fig. 9a shows the true Vg image depicted in Fig. 4r. Fig. 9b and 9c
show the input dispersion image and CNN output Vg image, respectively,
for the 5-m source offset base configuration. The input dispersion images
and output Vg images for modified acquisition configurations are shown
in Fig. 9d and 9e, respectively, for a source offset of 10-m and in Fig. 9f
and 9 g, respectively, for a source offset of 20-m. Also shown in all
dispersion images are magenta dashed lines that delineate zones where
the low frequency (i.e., long wavelength) dispersion data from the
various source offset distances may be influenced by near-field effects.
These lines represent constant wavelengths set equal to two-times the
array-center distances that correspond to phase velocity errors less than
5 %, as presented by Yoon and Rix (2009). The array-center distance is
equal to the distance from the source to the center of the linear array.
Hence, the larger the source offset distance, the greater the array-center
distance, and the longer the maximum wavelength that can be extracted
from the dispersion data without contamination from near-field effects.
As noted above, near-field effects manifest in dispersion data as phase
velocity estimates that are lower than actual conditions. Near-field ef-
fects can be observed at low frequencies in the dispersion images shown
in Fig. 9 by comparing the peak power points from the 5-m, 10-m, and
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Fig. 9. (a) the true synthetic model from
Fig. 4r. (b & c) the input dispersion image
and output frequency-velocity CNN Vg image
prediction, respectively, from the base
receiver configuration (i.e., 5-m source
offset). (d & e) the input dispersion image
and output frequency-velocity CNN Vg image
prediction, respectively, from a 10-m source
offset. (f & g) the input dispersion image and
output frequency-velocity CNN Vg image
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prediction, respectively, from a 20-m source
offset. The magenta dashed lines represent
constant wavelengths set equal to two-times
the array-center distance that correspond to
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20-m source offset dispersion images. The peak power points from the
20-m offset have the highest phase velocity values at low frequencies,
while those from the 5-m offset have the lowest phase velocity values.
These differences are only visible for frequency-phase velocity pairs near
the magenta dashed lines that delineate zones where low frequency data
may be influenced by near-field effects. Other than these low frequency
zones, the dispersion images from the various source offsets appear very
similar to one another. As such, the increasing errors resulting from
increasing source offset are simply due to the fact that the CNN was
trained on dispersion images generated from only a single source offset
(i.e., 5 m) and this single source offset had dispersion data at lower
frequencies that were slightly biased to lower velocities due to near-field
effects. This does not imply that the dispersion images used for training
the CNN are incorrect, but rather that the network learned to associate
the near-field dispersion data with its corresponding true Vg image. We
observe that the dispersion images obtained from larger source offsets
have lesser near-field effects and, therefore, result in Vg image pre-
dictions that are stiffer at depth than the ones obtained from a 5-m
offset. This is the greatest source of increasing error when larger
source offset distances are used.

The dispersion images generated from several different offsets can be
stacked together to balance out the impact of near-field effects and other
differences in the wavefields caused by source location. Table 3 dem-
onstrates that the increased error caused by using larger source offset
distances can be combatted by stacking dispersion images from both
near and far source offsets. This stacking of dispersion images is facili-
tated by normalizing each image by its absolute maximum power to
counteract the varying dispersion image powers caused by the same
source type being excited at different offset distances (i.e., closer sources
having higher absolute dispersion power than distant sources). Once all
images are normalized by their absolute maximum power, the images
are summed and re-normalized by the maximum power at each

24
Width (m)

12

36

frequency (i.e., frequency-dependent normalization). As discussed
above regarding Table 3, this results in reduced MAPE values relative to
using only a single, larger source offset. Vg images obtained from the
frequency-velocity CNN after stacking the 5-m and 20-m source offset
dispersion images are shown in Fig. 10. These 20 predicted images can
be compared to their ground truth images shown in Fig. 4, time-distance
CNN predictions in Fig. 5, and the base case frequency-velocity CNN
predictions in Fig. 6. While the MAPE values associated with the pre-
dicted Vg images in Fig. 10 are slightly greater than those in Fig. 5 and
Fig. 6, the images, except for a few high and low velocity artifacts, do not
look significantly different. In fact, as detailed in Table 3, the average
MAPE values across all 5,000 testing models for the combined 5-m and
20-m source offsets are only about 2 % higher than the average MAPE
values for the base case configuration. This demonstrates the ability of
the frequency-velocity CNN to generalize to a number of different source
offset distances, enabling more flexible field data acquisition.

6.3. Generalizing to source forcing function

Different source types are commonly used to excite the ground sur-
face during linear-array, active-source wavefield testing. These active
sources can range from large shaker trucks, to accelerated weight drops,
to sledgehammers, depending on the desired depth of profiling and the
relative importance of the experiment. Therefore, a CNN that is capable
of generalization in terms of providing accurate Vg images from wave-
fields collected with different source forcing functions is imperative for
handling field applications.

To test the frequency-velocity CNN for acquisition generalization
ability in terms of source forcing function, two sets of 5,000 input
dispersion images were obtained from wave propagation simulations on
5,000 testing models using two different source forcing functions. Spe-
cifically, the first set of dispersion images was generated using a 15-Hz
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Fig. 10. The frequency-velocity CNN’s predictions of the true synthetic 2D vs images presented in Fig. 4. The inputs used to obtain these predictions are the
normalized dispersion images obtained by averaging the 5-m and 20-m source offset dispersion images. The mean absolute percent error (MAPE) and mean structural

similarity index (MSSIM) of each predicted image are presented above each panel.
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Fig. 11. The frequency-velocity CNN’s predictions of the true synthetic 2D Vg images presented in Fig. 4. The inputs used to obtain these predictions are the
dispersion images obtained by post-processing the waveforms recorded by 48 receivers at 1-m spacings, which were excited by a 12-seconds long 3-Hz to-80 Hz
sweep/chirp at 5 m from the first receiver. The mean absolute percent error (MAPE) and mean structural similarity index (MSSIM) of each predicted image are

presented above each panel.
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high-cut filtered spike wavelet, while the second set of dispersion images
was generated using a 12-second-long linear chirp over frequencies from
3 to 80 Hz. Recall that these two forcing functions, as well as the base
case forcing function (i.e., a 30-Hz Ricker wavelet), are shown in both
the time and frequency domains in Fig. 3. A filtered spike source is
similar in nature to a transient pulse source created by a hammer or
drop-weight impact, while the chirp signal is a forcing function that is
commonly generated by a vibroseis shaker truck. Thus, our choice of
forcing functions spans those types of sources commonly used for field
testing. It is clear from Fig. 3 that the time and frequency domains of the
source forcing functions are drastically different. However, we will
demonstrate that the exact frequency-dependent amplitude of the
source is not critical when using normalized dispersion images, provided
the source induces broadband energy across the frequencies of interest.

The accuracy of the CNN’s predictions for the two sets of varied
source forcing functions is presented in Table 3 in terms of MAPE and
MSSIM. From Table 3, it is clear that the frequency-velocity CNN is
capable of generalizing across source forcing functions that are drasti-
cally different from one another. For example, the MAPE and MSSIM
values for the 15-Hz high-cut filtered spike are virtually identical to
those of the base configuration, which used a 30-Hz Ricker wavelet.
Furthermore, the MAPE and MSSIM values for the 12-second chirp are
only slightly worse than those for the base configuration. Note that the
finite difference wave propagation simulations had to be extended to 13
s to capture the reflected and refracted waves from the extended chirp
propagating through the models, and a total of 113 models out of the
5,000 testing models had to be discarded due to significant numerical
artifacts caused by the length and complexity of the simulations. Despite
these challenges, the average MAPE based on the 12-second chirp was
less than 1.5 % greater than the base configuration.

The effects of using a 12-second chirp as a forcing function are more
clearly visualized in Fig. 11 by observing the Vg image predictions ob-
tained from the frequency-velocity CNN. These 20 predicted images are
for the same 20 true synthetic models shown in Fig. 4, and the results can
be compared directly to those shown for the time-distance CNN pre-
dictions in Fig. 5 and the base case frequency-velocity CNN predictions
in Fig. 6. On average, the MAPE values associated with the predicted Vg
images in Fig. 11 are higher than those in Figs. 5 and 6, but the differ-
ences are minimal, and the images appear to be quite similar. This ex-
hibits notable generalization capabilities for the frequency-velocity CNN
in terms of using different source forcing functions, provided they
contain energy across the CNN input frequency band.

24 receivers stacked waveforms Dispersion image
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7. Field application and validation

The proposed frequency-velocity CNN was used to predict the near-
surface 2D Vg image at the NHERI@UTexas Hornsby Bend site in Austin,
Texas, USA, where extensive site characterization studies have been
conducted in recent years (e.g., Stokoe et al., 2020; Vantassel et al.,
2022b). The wavefields used for testing the frequency-velocity CNN
were actively generated using a sledgehammer to strike vertically on a
square aluminum strike-plate. The wavefields were recorded by 24, 4.5-
Hz vertical geophones. Five distinct sledgehammer blows were recorded
at a distance of 5 m relative to the first geophone for subsequent stacking
in the time domain to increase the signal-to-noise ratio. The input to the
CNN was the dispersion image obtained from the FDBF with cylindrical-
steering vector and square-root-distance weighting. Fig. 12 shows the
stacked waveforms, input dispersion image, and the predicted
frequency-velocity CNN 2D Vg image. The predicted Vs image indicates
stiff soil (Vg ~ 200 to 300 m/s) overlying gently dipping rock, with an
interface at ~ 12 to 14 m.

Two boreholes were recently drilled at the Hornsby Bend site to
investigate subsurface layering down to rock; the first (i.e., B1) was
located 12.5 m from the start of the geophone array, while the second (i.
e., B2) was located 137.5 m away. Both borehole logs indicated a shale
layer at approximately 13.5 m below the ground surface. Fig. 12c shows
a schematic of the lithology and 1D layer boundaries obtained from
borehole log Bl superimposed at its correct location on the CNN-
predicted 2D Vg image. Based on Fig. 12c, the CNN was not only
capable of precisely determining the depth of the shale layer, but it was
also capable of characterizing the increase in stiffness from the near-
surface sandy silty clay (CL-ML) soils to the underlying clayey sand
(SC) soils. This is an interesting finding since the frequency-velocity
CNN was only trained on two-layer synthetic models (i.e., variable soil
overlying undulating rock). Nonetheless, the 2D Vg image predicted by
the frequency-velocity CNN appears to properly capture the expected
trends in Vs for this three-layer field site. This is a particularly notable
finding given that the boreholes at the site were drilled after the CNN
predictions were developed, such that the 2D Vg image was produced in
a truly blind manner without any a priori constraints from boring logs. It
is worth mentioning that the CNN input dispersion image in Fig. 12b was
generated in less than one minute, while the 2D Vg prediction in Fig. 12¢
took less than two seconds to obtain.

While the borehole lithology log from B1 provides great insights into
the 1D subsurface layering, it has not yet been used to perform downhole
Vs profiling and can therefore not be used to judge the accuracy of the Vg

Fig. 12. Application of the frequency-velocity CNN to

0.0 ?1000 (b) 0.0 _ linear-array, active-source wavefield measurements
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predictions. So, to compare the CNN predicted 2D Vg image with other
Vs estimates at the Hornsby Bend site, the extensive 1D surface wave
inversions performed by Vantassel et al. (2022¢) were used. Vantassel
et al. (2022c) processed MASW data collected at the Hornsby Bend site
and inverted it using four layering parameterizations of 3, 5, 7, and 9
layers, based on the layering by number (LN) approach, to investigate
subsurface layering uncertainty (Vantassel and Cox, 2021b). They re-
ported a suite of 1D Vg profiles representing the uncertainty in Vg across
the MASW array. The median 1D Vg profiles obtained from each of these
four layering parameterizations, along with the lognormal discretized
median Vg profile from all the inversion realizations investigated by
Vantassel et al. (2022¢), are provided in Fig. 13. The entire MASW
inversion process performed by Vantassel et al. (2022c) took
approximately-six hours to complete on four SKX nodes on the Stam-
pede2 supercomputer cluster. Vantassel et al. (2022c) also reported
three Vg profiles along the array that were obtained from correlations to
cone penetration testing (CPT) data, which are also shown in Fig. 13.
Each CPT-based 1D Vg profile was obtained from a CPT sounding by
averaging the correlated Vg values from three CPT-Vg relationships
developed by Hegazy and Mayne (2006), Andrus et al. (2007), and
Robertson (2009). To facilitate comparison between the CNN-predicted
2D Vg image and the 1D Vg profiles reported by Vantassel et al. (2022c),
the predicted 48-m wide 2D Vg image was discretized into 48 1D Vg
profiles by slicing vertically through the 2D Vg image at 1-m increments,
as shown in Fig. 13. As can be seen in Fig. 13, the median trend from the
1D MASW inversions reported by Vantassel et al. (2022c) is slightly
stiffer (higher Vs) than the median trend from the 1D slices through the
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Fig. 13. Comparison of 1D Vg profiles for the area imaged by the frequency-
velocity CNN at the Hornsby Bend site. The figure shows four layer-by-layer
median 1D Vg profiles from four layering by number (LN) inversion parame-
terizations, as well as the overall lognormal discretized median 1D Vg profile
from the 1D surface wave inversions performed by Vantassel et al. (2022c). The
figure also shows three Vg profiles obtained from correlations with three CPTU
soundings, as reported by Vantassel et al. (2022). These 1D Vg profiles are
plotted relative to the 48 1D Vg profiles extracted from the 2D Vg image ob-
tained from the frequency-velocity CNN and their lognormal median. To
compare the CNN prediction with the ground truth, we also present a borehole
log (B1).
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2D Vg image obtained from the CNN prediction over the top 13 m, and
slightly softer at depths greater than 13 m. Nevertheless, the agreement
between the CNN and MASW Vg predictions is quite good. Fig. 13 also
shows good agreement between the 1D Vg profiles from the CNN pre-
diction and the 1D Vg profiles obtained from the CPT-Vg correlations
reported by Vantassel et al. (2022c). Log B1 is also repeated in Fig. 13 so
that the expected soil-type lithology can be visualized relative to the 1D
Vg profiles. The increasing stiffness from the CL-ML soils to the under-
lying SC soils is further validated by observing the trends in the standard
penetration test (SPT) raw blow count (N) values, which are presented
next to the B1 lithology log.

The strong agreement between the CNN predictions and the 1D Vg
profiles derived from both MASW and CPT-Vj correlations, as well as the
precision in locating the rock depth relative to the ground truth (i.e., log
B1), demonstrate that the frequency-velocity CNN is capable of rapidly
generating accurate Vg images for geologic conditions similar to those
on which it was trained (i.e., stiff soil overlying rock). Furthermore, even
though the network was trained using a 30 Hz Ricker wavelet source
recorded by 48 receivers with a 1-m spacing, it was capable of utilizing
field data collected with sledgehammer impacts recorded by 24 re-
ceivers with a 2-m spacing. This illustrates that the proposed frequency-
velocity CNN can generalize across different field data acquisition
configurations.

To further assess the 2D Vs image predicted by the frequency-
velocity CNN, Fig. 14 compares the measured and predicted MASW
dispersion images. In particular, Fig. 14a shows the measured MASW
dispersion image that was computed from the stacked experimental
waveforms from the sledgehammer source at the Hornsby Bend site.
However, the predicted MASW dispersion image shown in Fig. 14b
required some extra work to obtain. First, the frequency-velocity CNN’s
predicted 2D Vg image (recall Fig. 12c) was used to obtain a full 2D
predicted subsurface model by applying the simple Vp and mass density
rules discussed above in regard to synthetic model development. Then,
finite difference wave propagation simulations were performed using a
30 Hz Ricker wavelet located 5 m from the array. The waveforms were
measured on a 24-receiver array at a 2-m spacing to be consistent with
the actual field data. Then, the dispersion image was obtained using the
FDBF with plane-wave steering vector and no amplitude weighting. For
the purpose of comparison, the peak dispersion data amplitudes in
Fig. 14a are repeated in Fig. 14b. Overall, we observe consistency be-
tween the modal trends in the measured and predicted MASW dispersion
image, with the RO mode between 10 and 40 Hz showing particularly
strong agreement. However, the higher modes observed in Fig. 14a are
not as pronounced in Fig. 14b. Nonetheless, on careful inspection of
Fig. 14b it is possible to observe some higher mode trends that show
some consistency with the locations of the higher mode dispersion data
present in the experimental wavefield. This comparison serves to
emphasize that, while not perfect, the 2D Vg image predicted by the
frequency-velocity CNN (i.e., Fig. 12b) is relatively consistent with the
experimental wavefield data and measured dispersion image (i.e.,
Fig. 12a) from the field experiment.

8. Conclusions

A frequency-velocity CNN has been developed for rapid, non-
invasive 2D Vg near-surface imaging using stress waves. The CNN uses
a normalized dispersion image as an input and outputs a 2D Vg image.
The proposed framework provides significant flexibility in the linear-
array, active-source experimental testing configuration used in gener-
ating the CNN input at a given site, accommodating various source
types, source offsets, numbers of receivers, and receiver spacings. Such
acquisition flexibility permits the use of the developed CNN as an end-to-
end imaging technique, or as a means for generating rapid starting
models for FWI. A total of 100,000 soil-over-rock synthetic models were
used to train and test the CNN. The testing metrics of the developed
frequency-velocity CNN revealed similar prediction accuracy to the
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Fig. 14. (a) dispersion image developed using field measurements, and (b) the dispersion image obtained from the predicted 2D Vs model. To allow comparisons
between the dispersion images, the peak power at each frequency in panel (a) is shown in panel (b) using white circles.

time-distance CNN recently developed within our research group, which
showed great promise but lacked flexibility important for field appli-
cations. The acquisition generalization ability of the proposed
frequency-velocity CNN was first demonstrated using sets of 5,000
synthetic near-surface models. For each set of 5,000 models, the inputs
to the CNN were dispersion images obtained using different testing
configurations than the ones used during training the CNN. The CNN
showed remarkable acquisition generalization ability with regards to
the number of receivers, receiver spacings, source offset distances, and
source forcing functions, as long as the testing configuration was not
drastically different relative to the base case configuration on which the
CNN was trained. Finally, the ability of the proposed CNN to handle field
data was demonstrated using the experimental tests conducted at the
Hornsby Bend test site in Austin, Texas, USA. The good agreement be-
tween the CNN’s predicted 2D Vg image and the actual subsurface
structure determined through 1D surface wave inversions, CPT-Vg cor-
relations, and boring logs reinforce the capabilities of the proposed CNN
for accurately retrieving 2D Vg images using field data from testing
configurations different from the one used during training. Nonetheless,
the proposed frequency-velocity CNN needs to be validated at more sites
where ground-truth information is available from invasive methods to
affirm its robustness for field 2D subsurface imaging purposes.
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