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Abstract: Surface wave testing is a powerful tool for noninvasive seismic site characterization. It includes a wide variety of active-source and
passive-wavefield methods [e.g., spectral analysis of surface waves (SASW), multichannel analysis of surface waves (MASW), microtremor array
measurements (MAM)] that can be applied to many different field conditions. The dispersion data collected with all these methods can be inverted
to produce (one-dimensional) 1D shear wave velocity (VS) profiles of the subsurface. A critical part of this inversion procedure is the need to
develop several trial model parameterizations with different numbers of layers as a means for investigating epistemic uncertainty and nonunique-
ness when attempting to fit the experimental dispersion data. This is especially important when a priori information either is not available or does
not extend to great enough depths to constrain the inversions. These trial parameterizations are used to vary the number of potential layers present
in the subsurface models and to set the acceptable search ranges for depths to boundaries and stiffness in each layer. The inversion results are
highly affected by the parameterizations. When performing high-quality inversions, it is important to use different parameterization options to
fully explore potential conditions at the site and characterize the epistemic uncertainty of the inversion process. While this practice allows for a
robust analysis of the experimental dispersion data and its uncertainty, it also generates many potential subsurface models for the site, which can
represent a challenge for engineers when deciding which VS profiles best represent the true subsurface layering for use in subsequent analysis and
design (e.g., seismic site response). This paper presents an approach, called the DeltaVs method, for systematically evaluating the depths of layer
boundaries across all acceptable models determined from several different inversion layering parameterizations as a means to identify distinct
clusters of boundaries. Using these clusters, the number and location of meaningful layer boundaries can be determined for many sites, thereby
allowing for the elimination of some parameterization options containingmore, or fewer, boundaries and a reduction in epistemic uncertainty. The
distributions of layer boundaries within these clusters can then be used to determine statistics for the depths of layer boundaries that are consistent
with the epistemic uncertainty of the models produced by the inversion procedure. The DeltaVs method is demonstrated on 12 synthetic ground
models as well as one field data set. DOI: 10.1061/JGGEFK.GTENG-10893. © 2022 American Society of Civil Engineers.

Introduction

Surface wave testing is a powerful tool for noninvasive seismic site
characterization. It comprises a wide variety of active-source and
passive-wavefield methods [e.g., spectral analysis of surface waves
(SASW), multichannel analysis of surface waves (MASW), micro-
tremor array measurements (MAM)] that can be applied to many
different field conditions. While the exact procedures for collecting
and analyzing data using these methods may differ, they all consist
of the same three general steps: field data acquisition of stress
waves with strong surface wave content, processing of the wave-
forms to extract experimental dispersion data, and inversion of the
experimental dispersion data to obtain one-dimensional (1D) sub-
surface velocity models (Foti et al. 2015). Field data acquisition
involves recording wavefields at the surface of the site generated
during the test (active) and/or by external phenomena (passive).
Active sources range from simply striking the ground with a ham-
mer, to more complex devices such as a vibroseis shaker. Passive
noise sources include natural phenomena such as wind, ocean

waves, or seismic microtremors, as well as anthropogenic sources
such as nearby traffic or industrial activity.

The processing stage involves transforming the wavefield data
into surface wave dispersion data (Zywicki 1999). The dispersion
data sets from individual acquisition methods and source locations
can then be combined statistically into a single data set that shows
site-specific behavior (i.e., mean and standard deviation) of surface
wave phase velocity as a function of frequency and/or wavelength.
This statistical representation of dispersion data contains both alea-
tory and epistemic sources of uncertainty. Aleatory variability is
included in the dispersion data due to inherent spatial variability
in the soils beneath the surface wave arrays. Epistemic uncertainty
is included in the dispersion data due to choices made during data
collection and processing (e.g., various wavefield transform meth-
ods). The combined effects of aleatory variability and epistemic
uncertainty on the dispersion data are effectively impossible to
decouple (Griffiths et al. 2016; Teague and Cox 2016) and are
often simply referred to as dispersion uncertainty in the literature
(e.g., Lai et al. 2005; Foti et al. 2009; Cox and Wood 2011; Teague
et al. 2018; Yust et al. 2018; Vantassel and Cox 2022). This overall
dispersion uncertainty is generally believed to be normally distrib-
uted and should be propagated through to the final inversion results
when possible (Lai et al. 2005; Vantassel and Cox 2021a).

The third and final stage of surface wave testing, inversion, in-
volves finding one or more layered earth models whose theoretical
dispersion curves match the experimental data. These trial models
consist of stacked horizontal layers of infinite lateral extent whose
thickness, mass density, and velocity (shear-wave velocity, VS,
being of primary interest) are constrained by the parameteriza-
tion chosen prior to inversion. The inverse problem is inherently
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ill-posed, nonlinear, and mix-determined, with no unique solution
(Vantassel and Cox 2021b; Foti et al. 2015). In many cases, this
results in a very large number of velocity models fitting the exper-
imental dispersion data and the data’s associated uncertainty.

The nonuniqueness issue associated with surface wave inversion
is compounded by the need to consider multiple trial model
parameterizations with different numbers of layers as a means for
investigating epistemic uncertainty when attempting to fit the ex-
perimental dispersion data (Vantassel and Cox 2021b; Cox and
Teague 2016; Di Giulio et al. 2012). This is especially important
when a priori information either is not available or does not extend
to great enough depths to constrain the inversions. These trial pa-
rameterizations are used to vary the number of potential layers
present in the subsurface models and set the acceptable search
ranges for depths to boundaries and stiffness of each layer. The
inversion results are highly affected by the parameterizations, and
performing high-quality inversions requires analysts to use differ-
ent parameterization options to fully explore potential conditions at
the site and characterize the epistemic uncertainty of the inversion
process. While this practice allows for a robust analysis of the ex-
perimental dispersion data and the associated uncertainty, it also
generates many potential subsurface models for the site, which
can present a challenge for engineers deciding which VS profiles
best represent the true subsurface layering for use in subsequent
analysis and design. For this reason, analysts need a systematic
and quantitative approach to evaluate all of these VS profiles
and determine which one(s) can most reasonably be expected to
represent the true subsurface conditions at the site. While individual
analysts should apply their engineering judgment and experience, it
is important to investigate new approaches that enable more con-
sistent performance of these evaluations across analysts so that
engineers using the results can be confident in their quality.

This paper presents a new approach, called the DeltaVs method,
for systematically evaluating the depths of layer boundaries across
all acceptable models determined from several different inversion
layering parameterizations as a means to identify significant sub-
surface layers from distinct clusters of layer boundaries. Using
these clusters, the number and location of meaningful layer boun-
daries can be determined for many sites, even in the absence of a
priori information, thereby allowing elimination of some parame-
terization options containing more, or fewer, boundaries and reduc-
tion in epistemic uncertainty. The distributions of layer boundaries
within these clusters can then be used to determine statistics for the
depths of layer boundaries that are consistent with the epistemic
uncertainty of the models produced by the inversion procedure.

Here, the DeltaVs method is first explained and then demon-
strated on 12 synthetic ground models published by Vantassel
and Cox (2021b). The method’s strengths and weaknesses are dis-
cussed in light of its performance in identifying significant layer
boundaries and accurately characterizing the subsurface VS asso-
ciated with each synthetic model. Then it is applied to a field data
set where its performance is evaluated relative to subsurface layer-
ing obtained from cone penetration test (CPT) data. As a good
understanding of inversion uncertainty and nonuniqueness, particu-
larly when caused by the choice of layering parameterization, is
critical to applying DeltaVs, additional background information
on the inversion phase of surface wave testing is discussed next.

Inversion Procedures

Before an inversion can begin, a target needs to be created that in-
cludes all the experimental dispersion data to be inverted. The an-
alyst must determine which Rayleigh and/or Love mode(s) may

have contributed to the dispersion data. This decision relies on
the experience and judgment of the analyst to select a reasonable
interpretation, and it can have a significant impact on the results of
any subsequent inversions (Yust et al. 2018). Once the inversion
target has been established, the first step associated with inverting
surface wave dispersion data is developing a trial subsurface model,
which is composed of a certain number of layers, each assigned a
thickness (h), mass density (ρ), VS, and compression wave velocity
(VP) or Poisson’s ratio (ν). The second step is to obtain a theoretical
dispersion curve for the trial model by solving the forward problem,
for which the Thomson-Haskell transfer matrix (Thomson 1950;
Haskell 1953) is the most common approach. The relationships
between individual model parameters, such as layer thickness and
velocity, and the resulting dispersion curve are complex and
interconnected. Different combinations of parameters (e.g., a stiff,
thin layer or a soft, thick layer) may have similar effects on the
theoretical dispersion curve, which contributes to inversion non-
uniqueness. The third step is to calculate the level of agreement
(i.e., misfit) between the theoretical and experimental dispersion
data as a means to judge the goodness of the trial model. The three
steps are repeated iteratively, changing the trial model within the
bounds of the parameterization for each iteration, in an attempt
to increase agreement (i.e., minimize misfit) between the theoreti-
cal and experimental dispersion data.

While numerous misfit functions have been used for inversion
optimization, they are generally in the form of an L2 norm of re-
siduals, or a normalized version of such (e.g., root-mean square
error). For example, the misfit equation proposed by Wathelet et al.
(2004), as implemented in the Dinver inversion module of the
popular open-source Geopsy software package (Wathelet et al.
2020), functions as a root-mean square error normalized by the
dispersion uncertainty at each frequency. Consequently, the misfit
value represents the difference, in terms of the number of standard
deviations, between the theoretical dispersion curve and the mean
values of the experimental dispersion data. A value of 1.0 indicates
that, on average, across all points in the experimental dispersion
data, the theoretical curve is one standard deviation away from
the mean. Generally, misfit values below 1.0 are considered reason-
able, with values below 0.5 indicating very good agreement
between the theoretical curve and the mean trend of the experimen-
tal data, and values below 0.2 indicating exceptional agreement,
which can be difficult to achieve with dispersion data collected
at geologically complex sites (Yust 2018).

The search/optimization algorithms used to perform the trial
model iterations generally fall into two categories: local search
and global search. Local search algorithms only search the param-
eter space near the initial trial model and generally use linear opti-
mization methods, such as least-squares regression (Nocedal and
Wright 2006), to determine the single lowest-misfit (i.e., “best”)
model. These algorithms can be successful in providing a single
velocity model that acceptably fits the experimental data, but the
results are substantially influenced by the choice of the initial trial
model and are highly susceptible to problems associated with local
minima convergence (Socco et al. 2010). Additionally, the inher-
ently convergent nature of the local search algorithm means that the
results may fit the average trends in the experimental data but likely
will not significantly represent the data’s uncertainty.

Despite these limitations, and because of their relatively low
computational requirements, local search algorithms still find
use in practice, particularly for applications where large numbers
of data sets are being inverted. Two prominent examples of these
cases are the reports by Yong et al. (2013) and Kayen et al. (2013),
which characterized 191 and 301 sites, respectively, using local
search methods to invert surface wave data. Nonetheless, it is
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difficult to propagate dispersion uncertainty into estimates of VS
uncertainty using local search methods. Thus, when estimates of
VS uncertainty are desired, global search methods are typically em-
ployed (e.g., Lai et al. 2005; Foti et al. 2009; Teague et al. 2018;
Yust et al. 2018; Vantassel and Cox 2021b).

Global search algorithms include a wide variety of methods,
including Monte Carlo, importance sampling, and genetic algo-
rithms (Socco and Boiero 2008; Sambridge 1999a, b; Yamanaka
and Ishida 1996). Other advancements in global search methods
include the adaptive simulated annealing technique developed
by Pei et al. (2007) and the joint analysis of Rayleigh-wave particle
motion data presented by Dal Moro et al. (2018). These algorithms
explore the entirety of the parameter space, repeatedly varying all
model parameters within their prescribed bounds to find suites of
the lowest-misfit models, making them much more computation-
ally intensive than local search methods. The size of the parameter
space can significantly affect the results from a global search algo-
rithm (Socco et al. 2010; Di Giulio et al. 2012), so the parameter
space must be broad enough to contain all reasonable results, while
being sufficiently constrained to avoid wasting resources by inves-
tigating unreasonable models.

Model Parameterization

When a priori information like borehole lithology logs is available,
the inversion parameter space should be constrained based on that
information in order to reduce epistemic uncertainty and provide
results that are most representative of true subsurface conditions.
For example, if the depths to one or more significant impedance
contrasts are known, the parameter space can be fixed such that
layer boundaries occur at those depths (e.g., Teague et al. 2018).
If no such information is available, particularly for layer boundaries
that are deeper than existing boreholes, the analyst may be able to
use supporting data, like fundamental frequency from H/V mea-
surements (Thabet 2019; Yust et al. 2018; Fairchild et al. 2013)
or regional velocity models (Shaw et al. 2015; Ramírez-Guzmán
et al. 2012; Pratt and Schleicher 2021), to constrain depths to sig-
nificant impedance contrasts. However, when a priori information
either is not available or does not extend to great enough depths to
constrain the inversions, true inversion uncertainty cannot be cap-
tured without considering multiple layering parameterizations.

As noted previously, the parameter space defines the number of
layers within the velocity model as well as the properties of those
layers (h, ρ, VS, VP). Each parameter must be either fixed or as-
signed a bounded range of acceptable values. Generally, when es-
tablishing parameterizations, the greatest emphasis is put on the
number of layers, their thicknesses, and VS, as these parameters
most strongly effect the theoretical dispersion curve. Unfortunately,
it is common for analysts to simply use a single layering parameter-
ization when inverting surface wave data. For example, analysts
will set up the inversion parameterization using a large number
of thin layers with uniform thickness that are intended to allow
the inversion to accurately resolve thin layers and anomalies. This
practice is inconsistent with the decreasing ability to resolve thin
layers as depth increases due to the vertical averaging inherent in
surface wave propagation (Park et al. 1999), and can result in a
significantly overparameterized model and poor results from the
search algorithm (Socco et al. 2010; Crocker et al. 2021).

While the overparameterized model with many layer boundaries
can be easily manipulated to fit the experimental data, inverted
velocity models may not accurately reflect true subsurface condi-
tions. For example, a site with sharp velocity contrasts, when in-
verted with too many layers, is likely to spread contrasts over

several thinner layers, resulting in a more gradual change in veloc-
ity over a larger depth range. The opposite is also possible, where a
site with gradual changes in velocity is overly simplified, resulting
in high impedance contrasts being placed where they are not
present. Literature has shown that the presence of high impedance
contrasts can have a significant impact on site response (Baise et al.
2016) and that too many or too few layers can cause under- or over-
prediction of site response, particularly at high frequencies (Shible
et al. 2018; Kaklamanos and Bradley 2018). Thus, accurately cap-
turing the true subsurface layering is important.

Several studies have looked at the effects of using multiple layer-
ing parameterizations to investigate uncertainty and nonuniqueness
associated with surface wave inversions. Di Giulio et al. (2012) in-
verted data sets from 14 European strong-motion stations using four
distinct layering parameterizations and then ranked the results using
the Akaike criterion to determine the most appropriate parameteriza-
tion when considering misfit and model complexity. Hollender et al.
(2018) characterized 33 French accelerometer stations with multiple
layering parameterizations before utilizing available a priori informa-
tion to eliminate results from some that were incompatible with
known subsurface conditions from invasive testing, such as depth
to bedrock or the presence of a low-velocity layer. Cox and Teague
(2016) developed the layering ratio (LR) approach to systematically
consider multiple layering parameterizations during inversion as a
means to rigorously investigate epistemic uncertainty in the resulting
VS profiles. More recently, Vantassel and Cox (2021b) developed a
new inversion parameterization approach called layering by number
(LN), which they showed in many cases slightly outperforms LR. As
LN inversion parameterization is used in the present study, it is de-
scribed in greater detail next.

The LN approach requires the analyst to select a total number of
layers (i.e., an LN value) for each inversion parameterization con-
sidered. Several LN values should be used as a means to investigate
epistemic uncertainty in the inversion results. For shallow profiling
(e.g., d ≤ 30 m), LN values of 3, 5, or 7 may be appropriate, while
for deeper profiling (e.g., d ≥ 30 m) values of 10, 15, or 20 may be
required. Regardless of the number of layers considered for a given
LN parameterization, the minimum thickness (hmin) of each layer is
controlled by the minimum resolved wavelength, λmin, and set to
λmin=3, while the maximum bottom depth is controlled by the
maximum resolved wavelength, λmax, and set to a value chosen
by the analyst, ranging from λmax=3 to λmax=2 (often referred to
as the resolution depth, dres), consistent with the resolution capa-
bilities of the experimental dispersion data (Garofalo et al. 2016b).
Both λmin and λmax depend on the array geometry (i.e., array length
and sensor spacing) and the frequency content of the source. The
minimum bottom depth for each layer is constrained by the bottom
of the layer above it plus the minimum thickness value. If some a
priori information is known, the depth and/or velocity values of
some layers can be fixed while the remaining unfixed layers are
free to vary according to the general constraints of the parameter-
ization. The LN approach allows the inversion algorithm the free-
dom to distribute the layer boundaries in many different ways
throughout the various trial models as the best possible solutions
are sought. This freedom allows the LN approach to produce rea-
sonable parameterizations for a wide variety of site conditions.

Profile Selection

While systematically exploring different parameterizations helps
analysts investigate the epistemic uncertainty of inversion results,
it does not change the fact that global search methods produce
a large number of nonunique velocity models to be considered
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for any given parameterization. This is particularly true when im-
plementing uncertainty-consistent inversions, as recently devel-
oped by Vantassel and Cox (2021a), wherein at least 250 VS
profiles were required for each parameterization to appropriately
replicate the uncertainty contained in the experimental dispersion
data. The uncertainty in the final suite of inversion results can be
broken down into two categories: intra- and interparameterization
uncertainty. Intraparameterization uncertainty is due to the non-
uniqueness of the global search inversion process as well as the
uncertainty of the experimental data, and results in the variation
of VS profiles produced by a single parameterization. Interparame-
terization uncertainty arises from the need to consider multiple
layering parameterizations, as the analyst often has no way of
knowing which one is “correct” or most reasonable.

An example of interparameterization uncertainty is illustrated
by the surface wave inversion results presented in Fig. 1, where
the theoretical dispersion curves and VS profiles resulting from
three LN inversion parameterizations are shown. Specifically,
the fundamental Rayleigh mode (R0) experimental dispersion data
(generated using a synthetic ground model) and its uncertainty are
plotted in terms of phase velocity versus wavelength in Fig. 1(a).
Note that the dispersion uncertainty has been set equal to a 5%
coefficient of variation (COV) for this synthetic example to be
consistent with experimental dispersion uncertainties from several
blind studies (Garofalo et al. 2016a; Cox et al. 2014). The data were
inverted using Dinver, which utilizes a global importance sampling
algorithm known as the neighborhood algorithm (Sambridge
1999a, b; Wathelet et al. 2005; Wathelet 2008), to find suites of
models that fit the experimental dispersion data equally well when
considering data uncertainty. Three options for subsurface layering
parameterization are shown, ranging from models with 4 layers
(LN ¼ 4) to models with 14 layers (LN ¼ 14). The 100 “best”
(i.e., lowest-misfit) models for each layering parameterization
are illustrated in terms of VS in Fig. 1(b). While all 100 theoretical

dispersion curves from each of these LN parameterizations fit the
experimental dispersion data well, with misfit values ranging from
0.06 to 0.32 (note that the range of misfit values for each parameter-
ization is provided in the figure legend in brackets), there is sig-
nificant scatter in the VS profiles and uncertainty regarding the
true subsurface stiffness and layering. The single “best” model
for each parameterization is shown in Fig. 1(c). The profiles shown
in Figs. 1(b and c) demonstrate both intra- and interparameteriza-
tion uncertainty. Intraparameterization uncertainty is shown by the
variation among profiles from the same parameterization. For ex-
ample, LN ¼ 7 profiles have velocities ranging from roughly 500
to 1,000 m=s at a depth of 45 m. Interparameterization uncertainty
of the results is shown by the variation in overall behavior and
trends in each set of VS profiles, such as where significant layer
boundaries occur. For example, if the LN ¼ 4 results are believed,
a significant layer boundary occurs at about 23 m. However, if the
LN ¼ 7 results are believed, a significant layer boundary occurs at
about 26 m, and if the LN ¼ 14 results are believed, the impedance
contrasts are more moderate, with several less abrupt layer boun-
daries spread between 20 and 30 m.

If a priori information is available, it can be used to eliminate
parameterizations inconsistent with known site conditions, such
as in Hollender et al.’s (2018) study noted previously, which sub-
sequently reduces interparameterization uncertainty. However,
when sufficient a priori information is not available, one must either
retain all results and carry them forward into subsequent analyses
(at the expense of significant epistemic uncertainty) or somehow
determine a smaller number of profiles that best represent subsur-
face conditions. While the simple option of selecting only the
single lowest-misfit profile across all parameterizations [e.g., the
LN ¼ 4 best profile with misfit ¼ 0.06, as shown in Fig. 1(c)]
has been used by some, this approach does not allow consideration
of any intra- or interparameterization uncertainty. Another option is
to calculate and retain statistical median VS profiles from the results

Fig. 1. Example inversion results for synthetic ground Model L: (a) the synthetic R0 experimental dispersion data and inversion-derived theoretical
dispersion curves for the 100 lowest-misfit trial models from each LN parameterization (300 models total); the range of misfit values for the 100 best
models from each parameterization is shown in brackets in legend; (b) the 300 inversion-derived VS profiles; (c) the single lowest-misfit profile for
each LN parameterization; the corresponding dispersion misfits are 0.06, 0.19, and 0.17 for LN ¼ 4, LN ¼ 7, and LN ¼ 14 parameterizations,
respectively; and (d) the median VS profiles for each LN parameterization and discretized median VS profile across all 300 profiles shown in (b).
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for each parameterization, as illustrated in Fig. 1(d) with medians
produced for the 100 best profiles from each parameterization.
While this option allows for some consideration of both intra-
and intermethod uncertainty and results in a manageable number
of profiles, it does not help one determine which layering sce-
nario(s) is most appropriate. A third option is to generate a single,
discretized median profile calculated from the selected results of all
parameterizations. Since each parameterization contains different
numbers of layers, the profiles from all parameterizations must first
be discretized into common, smaller depth intervals prior to calcu-
lating a median. The discretized median derived from the 300 se-
lected profiles (the 100 best from each parameterization) is shown
in Fig. 1(d). This approach does account for both inter and intra-
parameterization uncertainty, but discretized median VS profiles
tend to smooth layer boundaries, as shown in Fig. 1(d), by mixing
results from different parameterizations, some of which may not
represent true subsurface layering. The discretized median ap-
proach is improved if interparameterization epistemic uncertainty
can be reduced by using results only from parameterizations that
best represent the true layering. This was the initial motivation for
developing the DeltaVs method.

DeltaVs Procedure

The DeltaVs method seeks to estimate the number and depth of
meaningful layer boundaries beneath a site from a large number
of trial velocity models produced using global search inversions
with multiple layering parameterizations. This is accomplished
by identifying distinct clusters of layer boundaries within the large
population of VS profiles that fit the experimental dispersion data.
Using these clusters, the number of meaningful layers can be de-
termined for many sites, thereby allowing some parameterization

options to be eliminated and epistemic uncertainty to be reduced.
The distribution of layer boundaries within these clusters can then
be used to determine statistics for the depths of layer boundaries
that are consistent with the epistemic uncertainty of the models pro-
duced by the inversion procedure. To illustrate the steps of the Del-
taVs procedure, its steps are first demonstrated on a synthetic
ground model, denoted F, one of the 12 synthetic ground models
from Vantassel and Cox (2021b) used to develop an inversion
workflow called SWinvert, which uses the Dinver module of the
opensource software Geopsy (Wathelet et al. 2020) as an inversion
engine. Results obtained from applying the DeltaVs method to the
rest of the 12 synthetic ground models are discussed further
subsequently.

Model F is identified by Vantassel and Cox (2021b) as a low-
variance data set that can be inverted with reasonable accuracy.
While it is one of the lower-complexity models the researchers
studied, it is by no means the least complex in the suite and serves
as a good example to illustrate the DeltaVs method. Model F has
three layers (Fig. 2): a surface layer with H ¼ 4 m and VS ¼
100 m=s, an intermediate layer with H ¼ 10 m and VS ¼ 200 m=s,
and a half-space with VS ¼ 400 m=s. The synthetic experimental
dispersion data and 600 inversion-derived theoretical dispersion
curves for Model F are shown in Fig. 2(a). All 600 of the theoretical
dispersion curves (the best 100 from six LN parameterizations) fit the
synthetic experimental data well, with misfit values ranging 0.02–
0.39, falling well within the 5% COV error bars. While the inverted
velocity profiles [Fig. 2(b)] follow a relatively consistent trend across
the various LN parameterizations, the parameterizations with fewer
layers indicate abrupt velocity contrasts while those with more layers
tend to smooth out the contrasts. The median profiles from each LN
parameterization are shown in Fig. 2(d) and display the same general
behavior as the individual inverted profiles. Without the overlain true
VS profile, pinpointing the exact locations of the layer boundaries is

Fig. 2. Summary of inversion results for synthetic ground Model F: (a) the synthetic R0 experimental dispersion data and inversion-derived the-
oretical dispersion curves for the 100 lowest-misfit trial models for each LN parameterization (600 models total); the range of misfit values is shown in
brackets in legend; (b) the 600 inversion-derived VS profiles shown with the true VS profile and lognormal median�σln of statistical layer boundaries
identified by the DeltaVs method; (c) the average change in δVS;avg with depth and the depth ranges used to determine layer boundaries shown in (b);
and (d) the median VS profiles for each LN parameterization, true VS profile, and the DeltaVs median profile derived from 100 lowest-misfit trial
models from parameterization developed from the DeltaVs results.
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challenging and uncertain using either the hundreds of inverted VS
profiles or their respective medians.

The DeltaVs method provides analysts with a tool for locating
significant layer boundaries in a systematic way that is not depen-
dent on having a priori information. First, the VS profiles from the
different LN parameterization inversions need to be standardized in
terms of depth discretization. This is accomplished in Step 1, by
discretizing all of the VS profiles at common depth intervals and
to a common maximum depth. The depth discretization interval
(ddisc) should be selected such that it is small enough to retain suf-
ficient accuracy in the locations of layer boundaries but large
enough to prevent an excessive number of data points. Generally,
the depth discretization interval can be set at 0.1 m, as it was here
for Model F. The maximum discretization depth should be set to
dres as determined from the experimental data used for the inver-
sions. For Model F, dres was set to a value of λmax=3 ¼ 50 m.

Once the velocity models have all been discretized, the DeltaVs
method proceeds to Step 2, calculating the change in velocity (δVS)
between every pair of successive discretized points within each
velocity model. This results in δVS profiles that have one fewer
sample than the original depth-discretized VS profiles, and corre-
sponding depths located halfway between the original depths of the
discretized profiles (e.g., the sample corresponding to the change in
velocity from 10 m to 10.1 m is located at a depth of 10.05 m).
Next, in Step 3, the δVS profiles are averaged together at each
common depth to get a single profile that represents the average
change in velocity with depth across all trial models and all param-
eterizations. This profile is then, in Step 4, smoothed using an arith-
metic moving average, with the number of samples (n) equal to
hmin=ddisc rounded up to the nearest whole number. For Model
F, with hmin ¼ λmin=3 ¼ 0.67 m and ddisc ¼ 0.1 m, seven samples
were used to smooth the arithmetic mean. The resulting smoothed
δVS;avg profile for Model F is shown in Fig. 2(c). This δVS;avg pro-
file is then used in Step 5 to identify depth ranges over which sig-
nificant velocity changes occur.

When a wide variety of layering options are used for inversion
parameterizations, it is often relatively simple to identify parame-
terizations that do not have a large enough number of layers to
properly characterize the site, as the inversions results have rela-
tively high misfit values compared with other parameterizations.
However, when more than enough layers are present in a param-
eterization, the search algorithm can easily fit the experimental data
by effectively merging several thinner layers with similar velocities.
As such, depth ranges where there are high δVS;avg should be se-
lected such that they are likely to contain all parts of a potential real
layer boundary that may have been split across multiple layers. For
example, for Model F, two distinct depth ranges of high δVS;avg are
easily identifiable as spikes/peaks [Fig. 2(c)]. The bounds of each
depth range are denoted by red ×’s where the δVS;avg profile crosses
a threshold of 0.5, marked by a vertical dashed line. In the course of
this work, several values for this threshold were investigated, and it
was found that 0.5 worked well for identifying the bounds of each
meaningful depth range. Peaks are considered to be the range of
depths between which the δVS;avg values exceed 0.5, with one sig-
nificant maxima in between. Again, referring to Fig. 2(c), the depth
range bounds for the two potential layer boundaries are 2.85–
5.96 m for the first layer and 11.35–16.85 m for the second layer.
While not the case for Model F, if the δVS;avg profile does not fall
below the 0.5 threshold between two significant maxima, the depth
corresponding to the local minima should be used as the ending
value for the first distribution and the starting value for the second.
This can occur when layer boundaries are close to one another.
Furthermore, if the δVS;avg profile exceeds the threshold for an ex-
tended range of depths, the analyst must use judgment to assess

whether any maxima within that range represent a distinct peak
for which a depth range can be bounded. More complex examples
illustrating these points are provided next.

Once the upper and lower depth range bounds have been iden-
tified, the individual discretized δVS profiles are used in Step 6 to
develop a list for each depth range that characterizes the locations
and magnitudes of the velocity changes for all layer boundaries
within that range. For each layer boundary in each δVS profile,
the corresponding depth is added to the list multiple times propor-
tional to the magnitude of the velocity change across the layer
(e.g., a velocity change of 5 m=s at a depth of 10 m results in the
value 10 being added to the list five times), which favors the im-
portance of stronger velocity contrasts or depths at which a greater
number of contrasts occur. These two factors, the number and mag-
nitude of velocity contrasts, are coupled within the δVS profile.
This weighting results in a long list of layer depths where the
number of times an individual depth appears in the list is directly
proportional to the total magnitude of all velocity changes at that
depth. The weighting applied here is also consistent with the
assumption made in the LN parameterization scheme that velocity
changes occur at discrete depths within the VS profile. Analysts
may wish to adjust the weighting depending on the expected behav-
ior at their site (e.g., gradual transitions in velocity). In Step 7, each
list of layer boundary depths is transformed into log space and, in
Step 8, the mean and standard deviation values for each layer boun-
dary are calculated assuming a normal distribution. In Step 9 these
values are transformed back into linear space as the lognormal
medians and standard deviations (σln) of the layer boundaries.
The two statistical layer boundaries identified and characterized us-
ing this process for Model F are shown in Fig. 2(b) with their medi-
ans and �1σln. The first statistical layer boundary has a lognormal
median and a standard deviation of 4.17 m and 0.12, respectively.
The second statistical layer boundary has a lognormal median and a
standard deviation of 14.01 m and 0.07, respectively. Both boun-
daries are in very good agreement with the layer depths from the
true VS profile, which occur at 4 and 14 m, respectively.

If an analyst were to simply select the single best trial model
across all parameterizations with the lowest misfit, the resulting
trial model would be a 4-layer profile (LN ¼ 4) with a misfit value
of 0.02 and layer boundaries at depths of 3.92, 4.59, and 13.97 m.
Or, if by some a priori information the analyst knew that the correct
number of layers for Model F was three, the resulting lowest-misfit
trial model from the LN ¼ 3 parameterization could be used to es-
timate layer boundaries. For this case, that model would have a
misfit value of 0.03 and layer boundaries at 4.00 and 13.85 m.
While both of these approaches to determining the most likely layer
boundaries would be quite accurate, neither approach would allow
for a rigorous consideration of uncertainty in a real-world applica-
tion where the true subsurface VS profile is unknown. Furthermore,
without a priori information regarding the anticipated layering be-
neath the site, one would struggle to justify choosing only one or
two most likely trial models, particularly since the misfit values for
all parameterizations are very low.

On the other hand, the DeltaVs method utilizes all inversion re-
sults and still provides accurate layer boundaries with estimates of
uncertainty. Indeed, if desired, the layer boundaries from the Del-
taVs method can be used subsequently to justify considering only
those models/parameterizations that yield layer boundaries similar
to the ones obtained from the DeltaVs method (e.g., LN ¼ 3 and
LN ¼ 4). Finally, as a means to illustrate the DeltaVs method’s ro-
bustness, even if the inversion results from the LN ¼ 3 parameter-
ization are removed from consideration in the present example, and
only the VS profiles from the LN ¼ 4, 5, 7, 9, and 14 parameter-
izations are included, the lognormal median and standard deviation
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for the first boundary changes minimally to 4.20 m and 0.13, re-
spectively, while the statistics for the lower boundary stay the same.
This demonstrates that the boundary locations identified via the
DeltaVs method have not been significantly biased by a large num-
ber of the convergent LN ¼ 3 velocity profiles that closely match
the true VS profile, which also has exactly three layers. This also
shows that the DeltaVs method can determine the correct number
of layer boundaries even if that number had not been explicitly con-
sidered in the initial set of inversion layering parameterizations.

As can be observed, the DeltaVs method accurately identified
the two distinct layer boundaries in the true Model F. These results
correctly indicate that the true subsurface model is composed of
three distinct layers, with layer boundaries most probably located
within the calculated statistical ranges. These results can be used in
several ways to reduce the epistemic uncertainty in the inverted VS
profiles. One option is to simply choose the inversion parameter-
ization that most closely represents the layering determined from
the DeltaVs procedure. In this case, it is LN ¼ 3, which contains
two distinct layer boundaries. Or the locations of the DeltaVs layer
boundaries can be used to inform a new inversion with more re-
stricted layering parameterizations. To demonstrate this, a new
three-layer parameterization was developed for Model F where
the layer boundaries were constrained to depth ranges within
�2σln of the identified median depths. Next, the lognormal median
and standard deviation of all of the discretized VS profiles from the
original LN parameterizations were calculated for the regions be-
tween these depth ranges, and the velocity of each layer in the new
parameterization was constrained to be within �2σln of the median
velocity. The median profile from the resulting 100 lowest-misfit
profiles of this new layering parameterization is shown as a solid
black line in Fig. 2(d) and labeled in the legend “DeltaVs Median.”
In this case, the DeltaVs median very closely matches the true VS
profile. Similarly, the LN ¼ 3 median VS profile matches the true
VS profile quite well, suggesting that either approach is a reason-
able way to reduce epistemic uncertainty. While the example in
Fig. 2 shows that the DeltaVs method is promising, Model F also
contains very distinct layer boundaries with large impedance con-
trasts. In order to judge if the DeltaVs method identifies layer boun-
daries for different subsurface conditions (e.g., deeper layers, more
layers, layers with fewer impedance contrasts), more subsurface
models must be investigated.

Synthetic Ground Model Examples

In order to rigorously evaluate the efficacy of the DeltaVs method,
it has been applied to a suite of 12 synthetic ground models, one of
which is Model F. These 12 ground models were developed by
Vantassel and Cox (2021b) as part of the SWinvert inversion work-
flow and were designed to represent a broad range of subsurface
conditions from simple to complex. The models are open-access
and publicly available through the DesignSafe-Cyberinfrastructure
(Vantassel and Cox 2020). The information available for each in-
cludes the true VS profile (in fact, the entire subsurface ground
model) and the synthetic experimental R0 dispersion data with un-
certainty. The true VS profile for each synthetic ground model is
provided in Fig. 3. It will be noted that these profiles range from
1-layer models (left-hand column) to 7-layer models (right-hand
column), with layer impedance contrasts that range from moderate
[Figs. 3(a–e)] to strong [Figs. 3(i–l)]. The suite of models does not
have any profiles that include velocity reversals, however. Subsur-
face models with velocity reversals are especially hard to invert and
generally require a priori information to properly constrain their
true thickness and stiffness. Otherwise, the search algorithm can

simply combine very high and very low velocity layers of varying
thickness in unrealistic ways to fit the experimental data. As the Del-
taVs method has not been investigated relative to sites with velocity
reversals, one should not apply it to cases where the dispersion data
contain obvious signs of velocity reversals (e.g., dips or troughs in the
dispersion data). For these cases, one may wish to consider the adap-
tive simulated annealing technique developed by Pei et al. (2007).
However, caution must be exercised when applying any inversion al-
gorithm for the purpose of resolving low-velocity layers without sup-
porting information to better constrain the inversion results.

The dispersion data for each synthetic ground model consist of
20 log-wavelength samples ranging from wavelengths of 2 to
150 m with a COV of 5%. For the present work, this dispersion
data were converted from wavelength velocity to frequency slow-
ness in preparation for inversions using the Dinver module of
Geopsy. A total of six LN parameterizations were used to invert
the synthetic ground models with layer quantities of 3, 4, 5, 7,
9, and 14. The parameterizations for all 12 synthetic ground models
were set up with a minimum layer thickness of λmin=3 ¼ 0.67 m
and a maximum layer bottom depth of λmax=3 ¼ 50 m. Mass den-
sity was assigned a constant value of ρ¼ 2,000 kg=m3, allowing
impedance contrasts to be expressed simply as the ratio of the
layer’s velocities (Viþ1=Vi). The inversions for all 12 synthetic
ground models were performed in accordance with the SWinvert
workflow using the Dinver tuning parameters recommended by
Vantassel and Cox (2021b). Each inversion considered a total of
60,000 trial models, including 10,000 initial Monte Carlo models
and 50,000 global search models spread across 250 iterations.
These inversions each took about 1–2 min running on a moderately
powerful desktop computer. As with the SWinvert recommenda-
tions, each inversion was performed 10 times to account for the
variations that may result from the random starting seed of the
neighborhood algorithm. Hence, 60 inversions were performed
for each synthetic ground model (6 parameterizations with 10 ran-
dom starting seeds), resulting in 3.6 million trial models searched
(60 inversions each with 60,000 trial models). The 10 lowest-misfit
velocity models from each of the 10 inversion trials performed for
each layering parameterization were saved, yielding a total of 100
“best”/lowest-misfit subsurface models per parametrization. The
application of the DeltaVs method to the inversion results from
all 12 synthetic ground models is presented next.

Results for All Synthetic Ground Models

The layer boundaries identified for all 12 synthetic ground models
are shown in Fig. 3, along with the true VS profiles and the 100
lowest-misfit VS profiles obtained from inversion using each of
the six LN parameterizations (i.e., 600 total inverted VS profiles).
Across the 12 models evaluated, the DeltaVs method did a good,
but not perfect, job of identifying significant layer boundaries
present in the true ground models. As noted previously, the models
in the upper left-hand corner are the least complex, with fewer
layers and lesser impedance contrasts, while the models in the
lower right-hand corner are more complex, with more layers and
stronger impedance contrasts. The DeltaVs method accurately
identified all layer boundaries in the two- and three-layer synthetic
ground models [Figs. 3(a, b, e, f, i, and j)]. Across all six, the
median layer depths identified using the DeltaVs method were
within 5% of the true layer depths, with lognormal standard devia-
tions ranging from 0.04 to 0.13. It must be noted that every median
error greater than 2% occurred when the true depth of the layer
boundary was less than 10 m. This is not indicative of poorer iden-
tification of shallow layers but rather is a statistical result of smaller
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absolute errors having a larger relative impact at shallow depths
(e.g., an absolute error of 0.2 m results in a much higher percentage
error for a layer boundary at a depth of 3 m than one at a depth of
15 m). For the 6 synthetic ground models consisting of five or seven
layers [Figs. 3(c, d, g, h, k, and l)], the results were less general-
izable. For all of these models, with the exception of Model C, the
results from the LN ¼ 3 parameterization were rejected from con-
sideration prior to applying the DeltaVs method, as it was not pos-
sible to acceptably fit the dispersion data and obtain low misfit
values (≤1.0) when using only three layers. Results from 4 models
[Figs. 3(c, g, h, and l)] are discussed in detail as a means to further
illustrate the DeltaVs method’s strengths and weaknesses.

Synthetic Ground Model C

Model C is a 5-layer model with layer boundaries at depths of 5, 15,
20, and 30 m. The impedance contrasts at two of these boundaries,
5 and 20 m, exceed 1.5, while the other two boundaries have
impedance contrasts below 1.2. The inversion results for Model
C are shown in Fig. 4, along with the true VS profile and the stat-
istical layer boundaries identified using the DeltaVs method. While
the model has four layer boundaries, only two distinct peaks
are easily identifiable in the δVS profile, with depth ranges of

3.95–6.65 and 16.65–24.15 m, respectively. The first statistical
layer boundary has a lognormal median and a standard deviation
of 5.16 m and 0.09, respectively. The second statistical layer boun-
dary has a lognormal median and a standard deviation of 20.37 m
and 0.07, respectively. Both identified boundaries are in very good
agreement (within 4%) with the actual high impedance contrast
boundaries in the true VS profile at 5 and 20 m. These results high-
light that the DeltaVs method works best at identifying significant
layer boundaries (those with high impedance contrasts). The low-
contrast boundaries simply appear not to have enough impact on
the curvature of the dispersion data to be resolved through the in-
version process. This is reinforced by the fact that Model C is the
only model with more than 3 layers for which the LN ¼ 3 param-
eterization results were acceptable. LN ¼ 3 was still able to fit the
target dispersion data with misfit values less than 0.1, despite hav-
ing two fewer layers than the true ground model. So the DeltaVs
method accurately resolved the number and location of the signifi-
cant layer boundaries, but it could not detect the weak impedance
contrasts. A DeltaVs median profile was developed for this model
using the same procedures outlined for Model F, with the new
inversion parameterization constrained by the layer boundaries
obtained from the DeltaVs results. As with Model F, this new
DeltaVs-informed profile also closely matched the true VS model

Fig. 3. Summary of inversion and layering results for all 12 synthetic ground models, including the true VS profiles, inversion-derived VS profiles for
each LN parameterization, and lognormal median �σln of statistical layer boundaries identified by the DeltaVs method for each synthetic model.
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[Fig. 4(d)]. However, the agreement in this case was not exact be-
cause only two of the four layer boundaries present in the true VS
model were identified.

Synthetic Ground Model G

Model G was explicitly identified by Vantassel and Cox (2021b) as
a high-variance data set that was challenging to accurately resolve
using surface wave inversions. It is a 5-layer model with boundaries
at depths of 3, 8, 18, and 28 m. All four of these boundaries have
impedance contrasts at or above 1.5. The inversion results for
Model G are shown in Fig. 5, along with the true VS profile
and the identified layer boundaries. Despite having high impedance
contrasts, only one distinct peak can be identified in the δVS profile.
The depth range for this peak extends from where the 0.5 threshold
is crossed at 2.05 m down to the first local minima at 5.85 m. The
δVS profile does not fall below the 0.5 threshold at this minima, but
does appear to briefly level off, providing a reasonable depth to end
the range. Below this minima, the δVS profile generally exceeds 2.0
for an extended range of depths, with no distinct individual peaks.
The sole depth range identified produces a lognormal median and a
standard deviation of 3.57 m and 0.20, respectively. This agrees
somewhat with the location of the true layer boundary at 3 m; how-
ever, the median error of 19% and the standard deviation of 0.20 are
higher than those for the accurately identified layer boundaries dis-
cussed thus far for other synthetic ground models. While the results
from Model C suggest that impedance contrasts >1.5 can be lo-
cated, the results from Model G seem to caution against drawing
a broad conclusion from this observation. In fact, Model G’s re-
sults suggest that not only does an impedance contrast need to
be relatively high; it also needs to be relatively isolated to be easily
identifiable using the DeltaVs method. When the large impedance
contrasts are grouped too closely together, their influences on the

dispersion data appear to smear together. The effect of this is vis-
ually displayed by the inversion VS profiles in Fig. 5(b), which do
not appear to have any coherent jumps or layer boundaries between
the surface and the top of the half-space. As the DeltaVs method
was not successful at identifying distinct layer boundaries, it is not
possible to perform new inversions with refined layering parame-
terizations for Model G as a means to reduce epistemic uncertainty.
Thus, when the DeltaVs method results in a δVS profile that is sim-
ilar to the one for Model G, analysts cannot accurately determine
layer boundaries and have to accept greater epistemic uncertainty
associated with the various LN parameterizations.

Synthetic Ground Model H

Model H is a 7-layer model with boundaries at 2, 5, 8, 16, 21,
and 31 m. Like Model G, Model H was explicitly identified by
Vantassel and Cox (2021b) as a high-variance data set that is chal-
lenging to accurately resolve using surface wave inversions. The
boundaries at 2, 8, 16, and 31 m have impedance contrasts at or
above 1.5, while the boundaries at 5 and 21 m have contrast at
or below 1.2. The inversion results for Model H are shown in Fig. 6,
along with the true VS profile and the statistical layer boundaries
identified by the DeltaVs method. Three distinct peaks can be iden-
tified in the δVS profile, although local minima were used to bound
the depth ranges where the value of δVS visually leveled off without
passing below the 0.5 threshold. The depth ranges identified are
1.05–3.45, 5.95–9.85, and 15.25–25.15 m. Despite being substan-
tially broader than the first two, the third peak is still highly distinct
from the δVS values of the surrounding depths and cannot be
ignored. The first statistical layer boundary has a lognormal median
and a standard deviation of 2.21 m and 0.19, respectively. The sec-
ond statistical layer boundary has a lognormal median and a stan-
dard deviation of 7.72 m and 0.11, respectively. The third statistical

Fig. 4. Summary of inversion results for Model C: (a) the synthetic R0 experimental dispersion data and inversion-derived theoretical dispersion
curves for the 100 lowest-misfit trial models from each LN parameterization (600 models total); the range of misfit values for 100 best models from
each parameterization is shown in brackets in legend; (b) the 600 inversion-derived VS profiles shown with the true VS profile and lognormal median
�σln of statistical layer boundaries identified by the DeltaVs method; (c) the average change in δVS;avg with depth and the depth ranges used to
determine layer boundaries shown in (b); and (d) the median VS profiles for each LN parameterization, true VS profile, and DeltaVs median profile
derived from 100 lowest-misfit trial models from parameterization developed from the DeltaVs results.
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layer boundary has a lognormal median and a standard deviation of
19.51 m and 0.11, respectively. The first and second statistical layer
boundaries agree well with the high-contrast layer boundaries in the
true VS profile at 2 and 8 m, respectively. The third statistical layer

boundary at 19.51 m does not agree particularly well with any of
the true layer boundaries. Instead, it appears that this peak in δVS
values is caused by the combined effects of three layer boundaries
in the true VS profile between 16–31 m. Two of these layers at 16

Fig. 5. Summary of inversion results for Model G: (a) the synthetic R0 experimental dispersion data and inversion-derived theoretical dispersion
curves for the 100 lowest-misfit trial models from each LN parameterization (500 models total); the range of misfit values for the 100 best models
from each parameterization is shown in brackets in legend; (b) the 500 inversion-derivedVS profiles shown with true VS profile and lognormal median
�σln of statistical layer boundary identified by the DeltaVs method; (c) the average change in δVS;avg with depth and depth ranges used to determine
layer boundary shown in (b); and (d) the median VS profiles for each LN parameterization and true VS profile.

Fig. 6. Summary of inversion results for Model H: (a) the synthetic R0 experimental dispersion data and inversion-derived theoretical dispersion
curves for the 100 lowest-misfit trial models from each LN parameterization (500 models total); the range of misfit values for the 100 best models
from each parameterization is shown in brackets in legend; (b) the 500 inversion-derivedVS profiles shown with true VS profile and lognormal median
�σln of statistical layer boundaries identified by the DeltaVs method; (c) the average change in δVS;avg with depth and depth ranges used to determine
the layer boundaries shown in (b); and (d) the median VS profiles for each LN parameterization, true VS profile, and DeltaVs median profile derived
from 100 lowest-misfit trial models from parameterization developed from the DeltaVs results.
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and 31 m have large impedance contrasts, while the layer at 21 m
has a smaller impedance contrast. The 19.51-m statistical layer
boundary’s proximity to the true layer boundary at 21 m appears
to be coincidental. Thus, another important observation is made;
that is, while a distinct peak may be present in the δVS profile,
it may not always correspond to a single, real layer boundary. This
suggests that distinct yet broad peaks in the δVS profile may indi-
cate the presence of more than one layer boundary within or near
the identified depth range of the peak. The DeltaVs median devel-
oped for this site using a new inversion with four layers is shown in
Fig. 6(d). In this case, the new DeltaVs median VS profile agrees
well with the true VS profile over the top 16 m. Below this depth,
the DeltaVs profile performs no better than the other LN
parameterizations.

Synthetic Ground Model L

Model L is a 7-layer model with boundaries at 2, 4, 11, 16, 24, and
39 m. The boundaries at 4, 11, and 24 m have impedance contrasts
at or above 1.5, while the boundaries at 2, 16, and 39 m have con-
trasts at or below 1.25. The inversion results for Model L are shown
in Fig. 7, along with the true VS profile and the statistical layer
boundaries identified by the DeltaVs method. Three distinct peaks
can be identified in the δVS profile, although the upper and lower
peaks are much more distinct than the middle one. Using the 0.5
threshold and local minima, the depth ranges identified around
these peaks are 2.25–5.65, 6.55–13.85, and 18.75–32.05 m. The
first statistical layer boundary has a lognormal median and a stan-
dard deviation of 3.69 m and 0.18, respectively. The second stat-
istical layer boundary has a lognormal median and a standard
deviation of 10.34 m and 0.18, respectively. The third statistical
layer boundary has a lognormal median and a standard deviation

of 24.02 m and 0.13, respectively. All three statistical layer boun-
daries agree well with the high-contrast layer boundaries in the true
VS profile at 4, 11, and 24 m. While the first and second statistical
layer boundaries have median errors of 8% and 6%, respectively,
they still provide useful information about the number of signifi-
cant layers and their approximate locations. The third statistical
layer boundary agrees extremely well with the true layer boundary
at 24 m. This accuracy is likely attributable to the high impedance
contrast of the boundary (1.875) as well as the fact that no other
significant impedance contrasts occur within 13 m above or 15 m
below the boundary. Unlike the behavior observed with Model H,
only one significant layer boundary is present in this depth range,
despite the high standard deviation and broad peak of the δVS pro-
file. Overall, the results for Model L are similar to those for Model
C and can be considered quite successful at resolving the locations
of significant layer boundaries. The DeltaVs median profile devel-
oped for this site based on a new inversion is shown in Fig. 7(d).
While this new median profile contains only three of the four layer
boundaries present in the true VS profile, it matches the profile
quite well over the full depth range and in fact agrees with the true
VS profile better than any of the median VS profiles from the initial
LN parameterizations.

DeltaVs Application to Real Field Data

In order to test the efficacy of the DeltaVs method on real field data,
it was applied to a surface wave data set collected at the Hornsby
Bend test site in Austin, TX. The data were collected using a 94-m
long MASW array consisting of 48, 4.5-Hz vertical geophones
placed at 2-m spacings. Three sources were used: the NHERI@U-
Texas T-Rex and Thumper mobile shakers (Stokoe et al. 2020) and

Fig. 7. Summary of inversion results for Model L: (a) the synthetic R0 experimental dispersion data and inversion-derived theoretical dispersion
curves for the 100 lowest-misfit trial models from each LN parameterization (500 models total); the range of misfit values for the 100 best models
from each parameterization is shown in brackets in legend; (b) the 500 inversion-derivedVS profiles shown with true VS profile and lognormal median
�σln of statistical layer boundaries identified by the DeltaVs method; (c) the average change in δVS;avg with depth and depth ranges used to determine
layer boundaries shown in (b); and (d) the median VS profiles for each LN parameterization, true VS profile, and DeltaVs median profile derived from
100 lowest-misfit trial models from parameterization based on the DeltaVs results.
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an instrumented sledgehammer. With the linear array running from
0 to 94 m, sources were located off both ends of the array at −40,
−20, −10, −5, 100, and 150 m. The surface wave data were
processed using the workflow and open-source SWprocess Python
package developed by Vantassel and Cox (2022), which enables de-
veloping experimental surface wave dispersion data with robust mea-
sures of uncertainty based on factors such as multiple source types
and source locations. The extracted experimental dispersion data
were determined to contain contributions from both the fundamental
(R0) and first-higher (R1) Rayleigh modes, and classified accord-
ingly [Fig. 8(a)]. The dispersion data were then inverted using Dinver
following the same SWinvert workflow and procedures used for the
synthetic models. A total of six layering parameterizations were used
with LN ¼ 3, 4, 5, 7, 9, and 14, and with hmin ¼ 1.1 m and dres ¼
30 m obtained from the R0 experimental dispersion data. After in-
version, the LN ¼ 3 parameterization results were rejected from fur-
ther consideration, as the theoretical dispersion curves did not
acceptably fit both the R0 and R1 dispersion data.

The inversion results for all other LN parameterizations are
shown in Fig. 8(b), along with the statistical layer boundaries iden-
tified by the DeltaVs method. The δVS profile for Hornsby Bend [
Fig. 8(c)] clearly shows three distinct peaks, with depth ranges of
1.75–4.05, 4.05–9.35, and 16.95–27.05 m. The first statistical layer
boundary has a lognormal median and a standard deviation of
2.83 m and 0.12, respectively. The second statistical layer boundary
has a lognormal median and a standard deviation of 6.94 m and
0.19, respectively. The third statistical layer boundary has a lognor-
mal median and a standard deviation of 21.99 m and 0.11, respec-
tively. The median VS profiles for each LN parameterization
are shown in Fig. 8(d). Three moderate velocity contrasts can be
observed in most of them, although these velocity contrasts occur
a different depths depending on the parameterization. Based on
the number of significant layer boundaries identified by the

DeltaVs method, an analyst can reasonably decide to use just
the LN ¼ 4median VS profile, or some subset of lowest-misfit pro-
files from that parameterization, to best represent the site. Or the
analyst can perform new inversions with layering constrained by
the DeltaVs method’s results. To demonstrate this, a DeltaVs
median profile was developed for Hornsby Bend using the same
procedure described for the synthetic ground models and shown
in Fig. 8(d). This new profile agrees quite well with the median
profiles from the initial LN parameterizations, showing the same
three velocity contrasts at slightly variable depths. Resulting from
rigorous inversion techniques and a high-quality layering parame-
terization constrained by the DeltaVs results, the DeltaVs median
profile is the most reasonable representation of the subsurface con-
ditions at Hornsby Bend. In order to verify this conclusion and
evaluate the efficacy of the DeltaVs method, it is important to make
comparisons with actual subsurface layering at the site.

CPT was performed at the Hornsby Bend site to help infer true
layer boundaries, and their spatial variability, beneath the 94-m-
long surface wave array. CPT was performed along the same line
as the MASW array at 0-, 25-, 50-, 75-, and 100-m locations. Col-
lecting invasive data at multiple points along the array is critical
for evaluating the spatial variability of subsurface conditions at
the site and its effect on the 1D inversion results. For each sound-
ing, the method developed by Robertson (2009) was used to clas-
sify the subsurface materials based on the normalized soil behavior
type index (Ic). These classifications, as well as the tip resistance
(qc), are shown for all five soundings in Figs. 9(a–e). The subsur-
face conditions vary beneath the array, with the three farthest
soundings (50, 75, and 100 m) showing more clean sand materials
with elevated tip resistance at depths <4 m that are not found in the
nearer locations (0 and 25 m). Even with this spatial variability,
based on the soil behavior type classifications, the subsurface lith-
ology can reasonably be approximated as a three-layer system

Fig. 8. Summary of inversion results for Hornsby Bend: (a) the R0 and R1 experimental dispersion data and inversion-derived theoretical dispersion
curves for the 100 lowest-misfit trial models from each LN parameterization (500 models total); the range of misfit values for the 100 best models
from each parameterization is shown in brackets in legend; (b) the 500 inversion-derived VS profiles shown with lognormal median�σln of statistical
layer boundaries identified by the DeltaVs method; (c) the average change in δVS;avg with depth and depth ranges used to determine layer boundaries
shown in (b); and (d) the median VS profiles for each LN parameterization, VS profiles from 5 CPT correlations, and DeltaVs median profile derived
from 100 lowest-misfit trial models from parameterization based on the DeltaVs results.
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down to 10 m depth, with conditions alternating between granular
material (sands and sand mixes), cohesive material (silt mixes and
clays), and then granular material again before CPT refusal. How-
ever, it is important to note that a change in material type does not
necessarily indicate the presence of a velocity contrast.

In order to make a more direct comparison between the DeltaVs
results and the CPT soundings, a correlated VS profile was devel-
oped for each sounding using the average of three CPT-to-VS cor-
relations (Andrus et al. 2007; Mayne 2007; Robertson 2009), as
recommended by Wair et al. (2012). These five correlated VS pro-
files are shown together with the inverted median VS profiles in
Fig. 8(d). In general, it can be observed that the five correlated
VS profiles agree quite well with the 1D inverted VS profiles; how-
ever, a more in-depth comparison is needed to judge how well the
statistical layer boundaries identified by the DeltaVs method agree
with the spatial variability of VS layer boundaries determined from
the CPT-to-VS correlations. As such, the five correlated VS profiles
are plotted individually in Figs. 10(a–e) for the CPT soundings at 0,
25, 50, 75, and 100 m, respectively. Also shown in Figs. 10(a–e) are
(1) the DeltaVs median VS profile determined from the new inver-
sion performed with layering informed by the DeltaVs results, and
(2) 1D statistical representations (�σln bounds) of the VS profile
beneath the array that were obtained from all of the surface wave
inversion results generated using the original acceptable LN param-
eterizations. The layer bounds shown in blue are the statistical
depth bounds identified by the DeltaVs method and originally
shown in Fig. 8(b). The VS bounds shown in red were developed
based on all of the VS values between the statistical depth medians
identified by the DeltaVs method. As can be seen, the VS profiles
from the CPT-to-VS correlations agree quite well with the DeltaVs
median profile and the statistical depth and VS bounds obtained
from the inversion results, despite the CPT soundings indicating
spatial variability in VS and depth of refusal ranging from approx-
imately 8–10 m across the site.

The depths of CPT refusal were 7.96, 7.99, 8.12, 9.78, and
9.47 m at the 0-, 25-, 50-, 75-, and 100-m locations, respectively.
A 1D method like MASW can only provide average properties and
layering within the bounds of the array, but the statistical represen-
tation of the subsurface developed from the DeltaVs layer bounda-
ries adequately captures the variability in the depths of refusal
for the first three CPT locations, which fall within one standard
deviation of the identified lognormal median boundary at 7.02 m.
Additionally, the CPT refusal depths for the soundings at 75 and
100 m (i.e., 9.78 and 9.47 m) fall within two standard deviations of
the median. This example illustrates the importance of using a
method like DeltaVs to obtain both a median or, most likely, 1D
representation of the layering beneath a surface wave array as well
as some uncertainty bounds that help reflect potential subsurface
variability. The CPT data also indicate some lateral variability over
the top several meters rather than a single, coherent boundary at the
depth of the first layer identified using the DeltaVs method (i.
e., 2.86 m). However, this first statistical layer boundary and the
DeltaVs median profile agree very well with an increase in corre-
lated VS for the CPT soundings at 50, 75, and 100 m.

Overall, the top two layer boundaries out of the three boundaries
identified by the DeltaVs method at Hornsby Bend appear to corre-
spond well to real velocity contrasts and their spatial variability across
the subsurface. Unfortunately, the CPT soundings at the site could not
penetrate deep enough to verify the presence of the third layer boun-
dary identified at approximately 22m. However, boreholes in the gen-
eral vicinity of the site are known to encounter a shale formation at
greater depths, and plans are currently under way to advance bore-
holes along the array in an attempt to verify the presence and depth
of the shale layer so that further comparisons can be made with the
DeltaVs method’s results. Nonetheless, this example shows that
the statistical layer boundaries identified by the DeltaVs method
can be used to refine surface wave inversion results and reduce epi-
stemic uncertainty associated with numerous acceptable layering

Fig. 9. Tip resistance (qc) and soil behavior type classification for the CPT tests performed at (a) 0 m; (b) 25 m; (c) 50 m; (d) 75 m; and (e) 100 m
along the MASW array at Hornsby Bend.
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parameterizations, while still capturing uncertainty that is consistent
with the spatial variability across the extent of the array.

Conclusions

Surface wave testing is a powerful tool for noninvasive seismic site
characterization; however, when data processing and inversions are
performed rigorously in an attempt to accurately identify and ac-
count for uncertainty, a significant number of nonunique VS pro-
files can be generated. The DeltaVs method provides analysts with
a statistical methodology for utilizing these nonunique profiles for
estimating the quantity and depth of significant layer boundaries at
a site. This information can then be used to inform subsequent
analysis and design, or to refine additional inversions as a means
to reduce epistemic uncertainty in the derived layer boundaries. The
DeltaVs method showed promising results when applied to many
of the 12 synthetic ground models tested here. Specifically, it suc-
cessfully identified and accurately located all layer boundaries for
the six synthetic models containing either two or three layers. For
the more complex synthetic models containing five or seven layers,
the DeltaVs method accurately identified many of the layer boun-
daries with impedance contrasts greater than 1.5, provided these
layers were sufficiently separated from each other as a function
of depth, and provided they were located at depths less than approx-
imately dres=2, with dres ¼ λmax=3. These conditions also appear
to affect whether individual layer boundaries in the synthetic
ground models have a distinct impact on the shape of the corre-
sponding dispersion data and, by extension, its nonuniqueness.

While the DeltaVs method cannot conclusively determine the
quantity or location of all significant layer boundaries for the com-
plex synthetic examples, the information it provides can still shed
light on conditions that are likely to exist beneath the array. For
example, if the δVS profile indicates no clear peaks but rather depth

ranges where broad and flat areas of elevated δVS values exist, it is
likely that (1) strong impedance contrasts do not exist beneath the
array, (2) layer boundaries are too close to distinctly separate/
resolve using surface wave methods, or (3) the site is potentially
complex, with layering beneath the array that is laterally variable.
Further synthetic studies of the complex factors affecting layer
identification, including layer depth, layer separation, impedance
contrast, and dispersion bandwidth, will provide improved guid-
ance on when the DeltaVs method can be reliably applied. In
the meantime, the method can be tested on inversion results without
any ill effects; if the δVS profile indicates strong, distinct peaks then
it is likely that significant layer boundaries are present near those
depths and this information can be used to reduce epistemic uncer-
tainty using the methods discussed here. However, if the peaks are
broad or extend over significant depth ranges, one must acknowl-
edge that epistemic uncertainty in layering cannot be reduced with-
out collecting additional invasive information at the site.

The DeltaVs method was further validated by applying it to
real surface wave data collected at the Hornsby Bend site and
by considering the spatial variability of layering at the site ob-
tained from five CPT soundings across the array. The DeltaVs
method successfully identified two layer boundaries that corre-
spond well with real velocity contrasts and their spatial variability
across the array, while a third, deeper layer boundary could not be
conclusively established by the CPT data because of its location
being greater than the depth of refusal. Further trial application of
the DeltaVs method to field sites with supporting information
from invasive testing will help to more rigorously assess the meth-
od’s efficacy. While not yet perfect for identifying all subsurface
layers without the aid of a priori information, the DeltaVs method
is a simple approach that works in many cases and can help an-
alysts better interpret the nonunique results from surface wave in-
versions that attempt to rigorously account for uncertainty.

Fig. 10. Correlated VS profiles for the CPT tests performed at (a) 0 m; (b) 25 m; (c) 50 m; (d) 75 m; and (e) 100 m along the MASWarray at Hornsby
Bend [(a–e) lognormal median�σln of statistical layer boundaries identified by the DeltaVs method, lognormal median�σln of VS values in between,
and DeltaVs median profile shown for comparison].
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