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Convex bodies and graded families of monomial ideals

Yairon Cid-Ruiz and Jonathan Montafio

Abstract. We show that the mixed volumes of arbitrary convex bodies are equal to
mixed multiplicities of graded families of monomial ideals, and to normalized lim-
its of mixed multiplicities of monomial ideals. This result evinces the close relation
between the theories of mixed volumes from convex geometry and mixed multipli-
cities from commutative algebra.

1. Introduction

The connection between volumes of convex bodies and algebraic-geometric invariants
has long been explored by researchers and it has led to numerous applications in various
fields of mathematics. To highlight some of these, we have the Bernstein—Koushnirenko—
Khovanskii theorem [1, 19, 20], Huh’s proof of the log-concavity of characteristic poly-
nomials of matroids [14], and the theory of Newton—Okounkov bodies [17,21] and its
applications to limits in commutative algebra [6].

The goal of this paper is to expand on this fruitful research line by showing that the
mixed volumes of arbitrary convex bodies are equal to mixed multiplicities of graded
families of monomial ideals, and also equal to normalized limits of mixed multiplicities
of monomial ideals (Theorem C). This is an extension of the main result in [24], where
the case of lattice polytopes is treated. Our proof is based on two intermediate results of
interest in their own right (Theorems A and B).

Let R be a d-dimensional standard graded polynomial ring over a field k and let
m = [R]4+ be its graded irrelevant ideal. For homogeneous ideals Jy, ..., J, and for an
m-primary homogeneous ideal /, there exist integers e(g,,ay(/ |J1, ..., Jr) > 0 for every
do e N,d = (dy,...,dr) € N" withdy + |d| = d — 1, called the mixed multiplicities of
J1,...,Jr with respect to I, such that

gmn, ymnr
dimy (%) I1J J
llm Inom‘ll "'J" _ e(d(),d)( | 15+ r) I’ld0+1nd1 _”ndr
m=—>00 d - do + Ddy!---d,! 0 ! r
m do+ld/=d—1 (do + 1)!dy r
for every ng,ni,...,n, > 0 (see [25] for a survey).
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On the other hand, by Minkowski’s theorem, for a sequence K, ..., K, of convex
bodies in RY, the mixed volumes MV, (Kp,, ..., K,,) of sequences (Kp,, ..., Kp,) of
convex bodies with 1 < p;,..., pg < r satisfy the following equation:

d dyy 2 d d,
Vol (A1 Ky + -+ A K,) = > vad(Kll,...,K, yAd.. . pd
d=(dy,...,d;)eN"
dy+-+d,=d

for every A1,...,A,; > 0 (see Theorem 3.3 on p. 116 of [10]); here Kid" denotes d; copies
of K;. The relation between these two sets of invariants is established in [24], where the
authors show that mixed volumes of lattice polytopes coincide with the mixed multiplicit-
ies of certain monomial ideals. However, this relation does not extend to arbitrary convex
bodies as the associated sequences of ideals are no longer powers of ideals but rather (not
necessarily Noetherian) graded families of ideals.

A sequence of ideals I = {/,},en is a graded family if Io = R and I;1; C I;4;
for every i, j € N. The family is Noetherian if the corresponding Rees algebra R(I) =
@Bnen Int" € Rt] is Noetherian. The study of mixed multiplicities of graded families was
pioneered by Cutkosky—Sarkar—Srinivasan [8] for the case of m-primary filtrations (in
more general rings), that is, when each [, is m-primary and /,,4; € I, for every n € N.
Their strategy is to first show the existence of these multiplicities for Noetherian filtrations,
and then pass to arbitrary filtrations using the theory of Newton—Okounkov bodies [17]
(see also [6] and [21]). In our first result, we prove the existence of mixed multiplicities
for arbitrary graded families of monomial ideals under a mild assumption. Our approach
differs from the one of [8] in that we exploit Minkowski’s theorem to show the existence
of the polynomial leading to the definition of mixed multiplicities.

In order to present our first result, we need to introduce some prior notation. Let
I = {I,}nen be a (not necessarily Noetherian) graded family of mi-primary monomial
ideals and let J (1) = {J(1)n}nen, ..., J(r) = {J(r)n}nen be (not necessarily Noeth-
erian) graded families of monomial ideals in R. We further assume that the degrees of the
generators of J(i), are bounded by a linear function on n for each 1 <i < r. We note
that the latter condition is similar to others that have been considered in previous works
regarding limits of graded families of ideals (see, e.g., Theorem 6.1 in [6]).

Theorem A (Theorem 3.13, Lemma 3.14). Under the notations and assumptions above,
the function

dimy (J(l)mnl te J(r)mnr / Imno J(l)mnl ce J(r)mn,)

F(ng,ny,...,n;) = lim 7
m—00 m
is equal to a homogeneous polynomial G(ng,n) = G(ng,n1,...,n,) of total degree d with
non-negative real coefficients for all ng € N and n = (ny,...,n,) € N'. Additionally,
G(ng,n) has no term of the form an? = ozn‘li1 ---n‘ri’ with0#a eR,d= (dy,...,d;) €
N"and |d| = d.

Furthermore, the coefficients of the polynomial G(ng,n) can be explicitly described
in terms of mixed volumes of certain Newton—Okounkov bodies.
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We note that Theorem A is new even when the graded families are all m-primary. In
this case, our theorem is an extension of that of [8] for monomial ideals (also, see [18]).
For this reason, we isolate the m-primary case in Theorem 3.5.

The polynomial G (19, n) from Theorem A can be written as

1
G(no,n) = Z me<d0,d)(H|J(1),...,J(r))n?.i"“n“;

(do,d)eN"F1
do+|d|=d—1

here, ifd = (di,...,d;), thend! = d;!---d,!. For each (dy,d) € N"*! with dy + |d| =
d — 1, we define the real numbers e(g,,a)(I|J(1),...,J(r)) > 0 to be the mixed multipli-
cities of J(1), ..., J(r) with respect to I (see Definition 3.15).

The volume and multiplicity of a graded family B = {B,},en of zero dimensional
ideals in a Noetherian local ring S of dimension s are defined, respectively, as

vols (B) = lim sup MS—M and eg(B) = lim M,
n—soo  N°/s! p—>oo  pS
where A(N) denotes length of an S-module N and es(J) denotes the Hilbert—Samuel
multiplicity of an ideal J. Several works prove the equality of these two invariants under
certain assumptions (see [5,6,9,21,22]). The general version of the so called volume =
multiplicity formula is due to Cutkosky, and it is shown on any S for which the limit in
the definition of volume exists [7]. In our next result we show the existence of a “volume
= multiplicity formula” for mixed multiplicities of graded families of monomial ideals.

Theorem B (Theorem 4.7). With the above assumptions and notations, for each dy € N
andd = (dy,...,d;) € N" withdy + |d| = d — 1, we have the equality

e(do,d)(lp | J(l)p» ceey J(r)p)
p? '

ey 1J(),....T(r) = plii‘é‘o

With the previous results in hand, we are ready to present the main result of this paper.
Here we express mixed volumes of arbitrary convex bodies as mixed multiplicities of
graded families of monomial ideals and as normalized limits of mixed-multiplicities of
ideals.

In a subsequent work [4], we extended the results of Theorems A and B to more
general settings. We showed the existence of mixed multiplicities and a “volume = mul-
tiplicity formula” for arbitrary graded families of ideals on Noetherian local rings under
mild assumptions.

We now fix the following slightly different notation. Let (K7y,.. ., K,) be a sequence of
convex bodies in ]R‘io and let Ko C R4 be the convex hull of the points 0,e;,...,e5 € R4,
where 0= (0,...,0) e R? ande; = (0,....1,...,0) denotes the i-th elementary basis vec-
tor for 1 <i < d. Denote by K the sequence of convex bodies K = (Ky, K1, ..., K;). For
each (do.d) = (do. ....d) EN"*1, let K (4,.a) be the multiset Ky q) = Uj—o U, {Ki}
of d; copies of K; foreach0 <i <r.Herelet Rbea (d + 1)-dimensional standard graded
polynomial ring over a field k, and let mt = [R]4 be its graded irrelevant ideal. We let Ml
be the graded family Ml = {m"}, eN.
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Theorem C (Theorem 5.5). Under the notations and the assumptions above, there exist
graded families of monomial ideals J(1) ..., J(r) in R such that, for each (dy,d) € N"+1
with dy + |d| = d, we have the equalities

ey ay(m? | J(D)p, ..., J(r)p)

MV (Kity) = €M (1), ... 3() = lim e
~ lim ey, (| J(1)p, ..., J(r)p)’
p—>00 p|d|

In particular, when r = d, we obtain the equalities

MV, (Ky,....Kg) = e@q,.,nM[J(1),....d(d))

_ i @1 p@? | J(D)p, ..., J(d)p)

p—00 pdtl
J(Dy,...,J(d
— 1im €@,1,..., 1)(m| (Dp ( )p)'
p—>00 pd

Finally, we briefly describe the content of the paper. In Section 2 we set up the notation
and include some preliminary results that are used in the rest of the paper. In Section 3 we
include the proof of Theorem A, and in Section 4 the one of Theorem B. Lastly, Section 5
includes the proof of our main result Theorem C.

2. Notation and preliminaries

In this section, we set up the notation that is used throughout the article. We also include
some preliminary information needed for our results.

For a vector n = (n1,...,n,) € N”, we denote by |n| the sum of its entries. We also
denote by 0 the vector (0,...,0) e N".Forn= (n;...,n,)and m = (my,...,m,)in N’
we write n > m if n; > m; for every 1 < i < r. Moreover, we write n > 0 if n; > 0 for
every 1 <i < r. We also use the abbreviations n™ = n'ln1 ceen? andn! = nq!--on, .

Below we recall the definitions of graded families of ideals and filtrations of ideals.

Definition 2.1. A graded family of ideals {/; };cN in aring R is a family of ideals indexed
by the natural numbers such that /o = Rand I;/; C I;4; foralli, j € N.

(i) If (R, m) is a local ring (or a positively graded ring with m = [R]4) and [; is
m-primary for i > 0, then we say that {/; },eN is a graded family of w-primary
ideals.

(i) If we have the inclusion I; D [;4; for all i € N, then we say that {/;};eNn is a
filtration of ideals in R.

(iii) We say that {/; };en is Noetherian when the corresponding Rees algebra €, oy / it
C R|[t] is Noetherian.
(iv) When R = k[xy,..., x4] is a standard graded polynomial ring over a field k and

each /; is a monomial ideal, we say that {/; };eN is a graded family of monomial
ideals.
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2.1. Mixed volumes of convex bodies

Let K = (K4, ..., K,) be a sequence of convex bodies in R?. For any sequence A =
(A1,...,Ar) € N7 of non-negative integers, we denote by AK the Minkowski sum AK :=
MKy + -+ A-K,, and by K, the multiset K := | _,; U]A’ZI{K,} of A; copies of K;
foreachl <i <r.

For any convex body K C R?, we denote by Vol (K) the d -dimensional volume. The
following important and classical theorem says that the volume Vol (AK) of the convex
body AK is a polynomial of degree d in A (see Theorem 3.2 on p. 116 of [10]). For more
details regarding the topic of mixed volumes the reader is referred to [10], Chapter I'V.

Theorem 2.2 (Minkowski). Volg (AK) is a homogeneous polynomial of degree d that
satisfies

Volg(Ki 4+ A K) = D V(Kpsoos Kp) dpysoos dpys
p1=1,...,04=1
for certain coefficients V(K,,, ..., K,,), where the summation is carried out independ-

ently over the p; for 1 <i <d.
Theorem 2.2 leads to the following definition (see Theorem 3.3 on p. 116 of [10]).
Definition 2.3. The mixed volume of d convex bodies K1,..., Kz C R4 is defined by
MV4(Ky,...,Kg) :=d!'V(Ky,...,Kg).

Note that under the current notations, we have the following equation:

2.1) Volg(AK) = Y~ %MVd(Kd))Ld.

deN"
ld|=d

2.2. Semigroups, Newton—Okounkov bodies, and limits of lengths

In this subsection, we describe the notions and methods of Newton—Okounkov bodies and
recall some important results from [17].

Here we use a slightly simpler setting. Suppose that S C Z4¢*! is a semigroup in
74+ Fix a linear map 7: R4*! — R with integral coefficients, that is, 7(Z¢*1) C Z.

Let L = L(S) be the linear subspace of R4*+! which is generated by S. Let M =
M(S) be the rational half-space M(S) := L(S) N 7 1 (Rsp), and let IMz = OM N
74+, Let Con(S) C L(S) be the closed convex cone which is the closure of the set
of all linear combinations ) ; A;s; withs; € S and A; > 0. Let G(S) C L(S) be the group
generated by S.

We say that the pair (S, M) is admissible if S C M ; additionally, if Con(S) is strictly
convex and intersects the space dM only at the origin, then (S, M) is called a strongly
admissible pair (see Definition 1.9 in [17]).

Following [17], when (S, M) is an admissible pair we fix the following notation:

o [Sl:=SNnal(k).
o m=ind(S, M) := [Z : 7(G(S))].
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e ind(S,0M) := [dMz : G(S) N IM].
o A(S,M) :=Con(S) N7~ (m) (the Newton—Okounkov body of (S, M)).
e g = dim(dM).
* Vol, (A(S, M)) is the integral volume of A(M, S) (see Definition 1.13 in [17]); this
volume is computed using the translation of the integral measure on M .
The following result is of fundamental importance in our approach.
Theorem 2.4 (Kaveh—Khovanskii, Corollary 1.16 in [17]). Suppose that the pair (S, M)
is strongly admissible. Then
i FLSlom _ Volg(A(S, M))
k—oco k4 ind(S, M)

Remark 2.5. Whenever the rational half-space M is implicit from the context, we write
A(S) instead of A(S, M).

3. Mixed multiplicities of graded families of monomial ideals

Throughout the present section we use the data below.

Setup 3.1. Let k be a field, let R = k[xy, ..., x4] be the standard graded polynomial
ring, and let mt C R be the graded irrelevant ideal mt = (xy,...,xg). Following the
notation in Section 2.2, we fix the linear map 7: R*! — R given by the projection
(@1.....0q.0441) € R4 > oy 1 € R. Let m;: R4 — R9 be the projection given
by (o1, ..., g, ag4+1) € R4 > (arq, ..., aq) € R%. Let M be the rational half-space
M = 77 (Rso) = R? x Rxo.

For a semigroup S C N9+! and m € N, we denote by [S],, the level set

[S]m = SN~ (m) = S N (N? x {m}).

3.1. Mixed multiplicities of m-primary graded families of monomial ideals

In this subsection, we prove the existence of mixed multiplicities of graded families of
monomial m-primary ideals in a polynomial ring. This extends the main result from [8] in
the setting of monomial ideals. Here our proof depends directly on the Minkowski theorem
(Theorem 2.2).

We begin by introducing the following setup.

Setup 3.2. Adopt Setup 3.1. Let J(1) = {J(D)n}neNs - - J(r) = {J(7)n}nen be (not
necessarily Noetherian) graded families of m-primary monomial ideals in R. Letc € N
be a positive integer such that

(3.1 J(@)y Dm ! foralll <i <r.
and ¢ > 2. Thus, it follows that

(3.2) J(@)y, Dm foralll <i <randn e N,
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For a vector n = (n1,...,n,) in N”, we shall abbreviate J, = J(1),, -+ J()n,.
We identify each monomial x™ = x}"! ---me € R with the corresponding vector m =
(my,...,my) € N9 . We now connect our setting with the information in Subsection 2.2.
Letn = (ny,...,n,) € N” be an r-tuple of non-negative integers. Thus, for each m > 1,
equation (3.2) yields the following:

(3:3) dimy (R/ Jun) = dimy (R /w1 — dimg (Jun/m T,
Motivated by the last term in (3.3), we define the following set:
= {(m,m) = (my,...,mg,m) € N4+1 | x™ € Jun and jm| < cm|n|}.

The next lemma provides some basic properties of I'y,.

Lemma 3.3. The following statements hold:
(i) T is a subsemigroup of the semigroup N¢+1.
(i) G(Tn) = Z* and so L(Ty) = R4+1,
(iii) The pair (T'y, M) is strongly admissible, with dim(0M) = d and ind(T'y, M) =
ind(Ty, dM) = 1.

@{iv) Foranyn e Nand1 <i <r, we have
A (Tne;) = (nmy (A(Tg;)) . 1)

Proof. (i) Suppose that (m, m), (m’,m’) € Ty, that is, X™ € Jun, X™ € Jypm, m < cm|n|
andm’ < cm’[n|. As J(1),...,J(r) are graded families of ideals, it follows that x™+™ ¢
Jn+mnn- Thus, the inequality jm + m’| = [m| + |m’| < cm(n| + cm’|n| = c(m + m’)|n|
yields the result.

(ii) By (3.1), we can choose m = (m,...,mg) € N such that x™ € J, and |m| =
c|n| — 1. Since x™T% ¢ J, and |m + e;| = c|n| forall 1 <i <d, it follows that {e;,...,ez}
€ G(I'y) (here e; denotes the i-th elementary basis vector in N¢*1). The equation

e =ml)—mie; —---—myey

implies that eg+; € G(I'y), and so the result follows.

(iii) The fact that (I'y, M) is strongly admissible follows from the way that I',, was
defined. The other claims are obtained directly from part (ii).

(iv) By definition, for all m > 0 we have 71 ([[ye;]lm) = 71 ([I'¢;]lnm) - Hence, one
obtains

T1(A(Tne;)) = m1(Con(Tne;) N~ (1)) = 71 (Con(Fey) N ™" (n)) = ny(A(Ty,)),
and so the result follows. [

Let A =J,,0(Am,m) and B = J,,- o (Bm,m) be two subsets of N¢*! = N4 x N.
Following §1.6 in [17], we define the levelwise addition of A and B as the set A &; B C
N4+1 such that (A @; B)m = Am + B, for every m € N. The following proposition
decomposes I’ as a levelwise sum of simpler semigroups. This basic result can be seen
as the main step in our proof.
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Proposition 3.4. Assume Setup 3.2. We have the equality Ty = Uy e; @t -+ @Br Tnye, -

Proof. The result is obtained from Proposition 3.11 (ii) and the fact that 8(J(i),) < cn

forall 1 <i <randn € N (see the assumptions and notations in Setup 3.8). [
From (3.3), and the fact that J(1),...,J(r) are graded families of monomial ideals,
we obtain that
(3.4) dimg (R/Jpmm) = dimg (R /m™+1) — dimy (Jn/m ™1
cmn| +d
- ( '; ) — #[Talm.

After the previous preparatory results, we are ready for the main result of this sub-
section. The following theorem shows the existence of a homogeneous polynomial that
can be used to define the mixed multiplicities of the graded families J (1), ..., JJ(r). As
a consequence of the proof, we describe the coefficients of the polynomial explicitly in
terms of the mixed volumes of certain Newton—Okounkov bodies.

Theorem 3.5. Assume Setup 3.2. The function

F(nl, . ,nr) = lim dimy, (R/J(l)mnl J(r)mn,))

m—00 md

is equal to a homogeneous polynomial G(n) = G(ny,...,n,) of total degree d with real
coefficients for allm = (ny,...,n,) € N". Explicitly, the polynomial G (n) is given by

G = I 45! ~ MV (D))
|dl=d

where A(T") denotes the sequence A(I') = (A(Ty,), ..., A(Te,)) of Newton—Okounkov
bodies.

Proof. Letn = (ny,...,n,;) € N”. By using Theorem 2.4, Lemma 3.3 (iii) and (3.4), we
obtain the equation

cm|n|+d din|d
. . #[T c?In
(35 F@ = lim ( nf )_mlE%o [m';]m = 0|l | — Vol (A(I'n)).

Due to Proposition 3.4, Lemma 3.3 (iv) and Proposition 1.32 in [17], we get the equality

T (A(rn)) = nl(A(Fnlm)) + -+ ”I(A(Fnrer))
=m i1 (ATe)) + - + nrmi (AT,)).

Thus, (2.1) implies that

(3.6)  Volg(A(Ty)) = Volg (1 (A(Th)))
1
= > GMVam@am))n' = 3 %MVM(F Ja) 0.
jal=a ai=d =

where 71 (A(I")) denotes the sequence w1 (A(I")) = (71 (A(Te,)), ..., 71 (A(,))) of
convex bodies. Finally, the result follows by combining (3.5) and (3.6). ]
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Proposition 3.6. Assume Setup 3.2 and use the same notation of Theorem 3.5. Let d =
(di,....d,) € N" with |d| = d. Then, one has that % — MV, (A(T)4) > 0.

Proof. Let © C R? be the polytope given as the convex hull of the points 0, ce;,...,cey
C R4, Consider the polytope A = ¥ x {I} ¢ R4+ and notice that by construction we
have A D A(Ty,) for all 1 <i < r. Since Volg(A) = ¢?/d! and MV4(A, ..., A) =
d!Volg (A), the inequality

¢ =MV (AD) g, ...ay) =MVa(A,....A) =MV4(A(D)g,...a9) = 0
follows from the monotonicity of mixed volumes (see, e.g., equation 5.25 in [23]). ]

With Theorem 3.5 in hand, we are ready to define the mixed multiplicities of graded
families of m-primary monomial ideals. Due to Proposition 3.6, the mixed multiplicities
defined below are always non-negative.

Definition 3.7. Assume Setup 3.2 and let G(n) be as in Theorem 3.5. Write
Gm)= > éed(J(l), .., J(r)nd.
|d|=d
Foreachd = (dy,...,d,) € N” with |d| = d, we define the non-negative real number
eaJ(),....dJ(r) =0
to be the mixed multiplicities of type d of J(1) = {J()n}tneN, ..., I () = {J()n}neN.

3.2. Mixed multiplicities of arbitrary graded families of monomial ideals

In this subsection, we introduce the notion of mixed multiplicities for arbitrary graded
families of monomial ideals under mild conditions. We begin with the following setup
that is used in our results.

Setup 3.8. Adopt Setup 3.1. Let I = {I,,},en be a (not necessarily Noetherian) graded
family of mi-primary monomial ideals. Let J (1) = {J(1)n}neN, - - - J () = {J(7)n}neN
be (not necessarily Noetherian) graded families of monomial ideals in R.

For a homogeneous ideal J, we denote 8(J) = max{j | [/ ®g k]; # 0}, that is, the
maximum degree of a minimal set of homogeneous generators of J. We assume that there
exists B € N satisfying

B(J()n) = pn
forall 1 <i <r andn € N; similar assumptions have been considered in previous works
regarding limits of graded families of ideals (see [6], Theorem 6.1). Let ¢’ € N be a
positive integer such that /; D m¢'; in particular, Iny D m”0¢ We set ¢ = max{f + 1,¢’}.

We have the following simple observation that plays an important role in our approach.
Lemma 3.9. We have that
m€@o+inh) A J. = m€@o+inh A Ing Jn

forallng € N andn = (ny,...,n,) € N”,
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Proof. Since B(J,) < B|n|, we obtain the following inclusion:

m€@otin) A IngJn D mE@otinh A eno J, = m€@otinh A 1.

The result follows. [
Letng € Nandn = (ny,...,n,) € N". We define the sets

(3.7) Tugn = {m,m) = (m1,...,mg,m) € NYT | x™ & J,,,, and |m| < cm(no + [n)}

and

(3.8

Cpon = {(m,m) = (my,....,mq,m) € NI x™ € 1o Jmn and [m| < em(ng + In))}.

The lemma below is equivalent to Lemma 3.3, and its proof follows verbatim.
Lemma 3.10. Let S C N*! be equal to either Tpyn or lqno,n. The following statements
hold:

(i) S is a subsemigroup of the semigroup

(i) G(S) =29 andso L(S) = R+,

(iii) The pair (S, M) is strongly admissible, with dim(0M) = d and ind(S, M) =
ind(S, M) = 1.

@iv) Foranyn e Nand1 <i <r, we have

Nd-i—l

A(Tone) = (1 (A(Toe;)), 1) and  A(Topne) = (1 (A(Toe)), 1)

(v) Foranyn € N, A(Tng) = (nm1(A(T1,0)), 1) and A(Tr0) = (n71 (A(T10)), 1).

The next proposition decomposes I',, n and f‘no,n as the levelwise sum of simpler
semigroups (this result plays the same role that Proposition 3.4 played in the previous
subsection).

Proposition 3.11. Assume Setup 3.8. We have the following equalities:
(1) l_‘no,n = I‘no,O SH FO,nlel P PERENS>Y’ l_‘O,n,e,-
(11) 1_‘no,n = I‘no,O Sy FO,nlel P PERENS>Y’ 1_‘O,nrew

Proof. (ii) For each m > 0, we need to show that

ﬂl([fno,n]m) = ﬂl([fno,o]m) + ”1([f0,n1e1]m) +t+m ([fO,nrer]m)-

Fixm e Z>0.

First, we concentrate on the inclusion “D”. Let wqg € [fno,o]m and, foreach1 <i <r,
let w; € [fO,niei]m~ Note that, for each 1 <i < r, there exists X™ € J(i)un, such that
w; = (m;,m) € N?+1_Similarly, there exists X™° € I,,,,,,, such that wo = (mg,m) € N¢+1,
Since |m;| < cmn; for 0 <i <r,itisclear that x™ ---x™ € [poJmn and [mo + - -+ +
m,| = |mg| 4 --- + |m,| < cm(no + |n|). Therefore, it follows that fno,n D fno,O ®;
i:‘O,rllel - Dy i-\‘O,nre,-



Convex bodies and graded families of monomial ideals 2043

~

Next, we focus on the inclusion “C”. Let w € [, nlm. Since I, J(1),...,J(r) are
graded families of monomial ideals, there exist X™ € I, and X™ € J(i)ny; such that
w=(mg+--+m,,m)e NIt

By assumption, we have that ) ; _,|m;| < cm(no + |n|). For ease of notation, we set
J(0), = I, foralln € N,

Let [(mo, ..., m;) := Y i_,max{|m;| — cmn;, O}. If [(my, ..., m,) = 0, it then
follows that |m;| < cmn; for 0 < 15 r, and so we obtain that mA(w) =m1(we) + -+
1 (wy), where wo = (Mg, m) € [Ty, 0lm and w; = My, m) € [T pe;lm for 1 <i <r.
On the other hand, suppose that /(my, ..., m;) > 0. Thus, there exist 0 < ji, j» < r such
that [mj, | > ¢cmnj, and |my,| < cmn;,. From the fact that B(J(j1)mn;, ) < cmnj,, we can
choose 1 < k < d such that x™1 7% ¢ J(jl)m,,jl.ForO < i < r,wenow set

m; —e ifi = ji,
’ . o .
X" € J({)mn; by m;=1{my,+e ifi=j,

m; otherwise.

Notice that 77 (w) =my + --- +m) and /(mg, ..., m}) = [(myg, ..., m,) — 1. Therefore,
by inducting on /(my, ..., m,), we obtain the other inclusion I';y n C g0 s Lonie, B
Dy 1—‘O,nrew

(i) This part follows similarly, for example by following the arguments of part (ii) with
I, = Rforalln € N. [ ]

From Lemma 3.9 and the fact that I, J (1), ..., J(r) are graded families of monomial
ideals, we obtain the following equalities:

dim]k (Jmn/lmnoJmn) = dlm]k (Jm“/(mcm(n0+|n|)+1 m Jmn))
— dimy (Imno Jmn/(mcm(no+|n\)+l n Imno Jmn))

(3.9) = #[Tugnlm — #[ Tng.nlm-

We are now ready for the main result of this section. We show the existence of a
homogeneous polynomial that allows us to define the mixed multiplicities of the graded
families I, J (1), ..., J(r). Additionally, we explicitly describe this polynomial in terms
of the mixed volume of certain Newton—Okounkov bodies.

Remark 3.12. We briefly describe the basic idea behind the proof of the following the-
orem. By utilizing the semigroups I',, » and fno,n and Theorem 2.4, we can study the
asymptotic growth of the graded families J(1), ..., J (r) with respect to I (see (3.9)). Due
to Proposition 3.11, we can decompose the Newton—Okounkov body of I'; , in terms of
the Newton—Okounkov bodies of semigroups that depend on each individual filtration (a
similar statement holds for the T’ no,n)- Then the existence of a polynomial that coincides
with the asymptotic function is a direct consequence of Minkowski’s theorem (2.1).

Theorem 3.13. Assume Setup 3.8. The function

Flno.nv,....ny) = lim dimg (J(Dmn, -+ J(@)mn, / TInngd Wmny =+ J(M)mn,)
m—

00 mé
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is equal to a homogeneous polynomial G(ng,n) = G(ng, ny, ..., n,) of total degree d
with real coefficients for allng € N andn = (nq,...,n,) € N”. Explicitly, the polynomial
G(ng,n) is given by

1 ~
Goom) = > 2 (MVa (A gy ) = MVa(AT) g 0)) ' n,
do+ldl=d "

where A(I') and A(f) denote the sequences of Newton—Okounkov bodies

A(l') = (A(T1,0). A(To,e)s -+, A(Toe,)) and
A) = (A(T1p), AToe,), -, A(Toe,)),

respectively.

Proof. The proof follows along the same lines of Theorem 3.5. Let ng € N and n =
(n1,...,n;) € N”. By using Theorem 2.4, Lemma 3.10 (iii) and (3.9), we obtain the
equation

~

F #[Lng.n #[Trgon
(no,m) = lim #llnoalm _ lim [n_oé]m
m—oo m m—oo  m

Vol (A(Tngn) — Volg (A(Tng.n))-

(3.10)

From Proposition 3.11, Lemma 3.10 (iv), (v), Proposition 1.32 in [17] and (2.1), we obtain
that

1
Volg (A(Tpyn)) = Z T1dl MV (AT (4y.a)) ng° n

do+ldl=d
and |
A - d
Volg (ATo)) = 37 s MVa(AT) gy ) 71” n.
dotld=d "0
So, the result follows. [

Lemma 3.14. Assume Setup 3.8 and use the same notation of Theorem 3.13. Let dy € N
andd = (dy,...,d;) € N" withdy + |d| = d. Then:

() MVg(AD)(gy.a) — MVa(AT)4.0) = 0.
(i) MVg(A(D)gy.0) — MV (A (gy.0) = 0 when do = 0.

Proof. Notice that A(T'; 9) D A(T'} 9) and that A(Tg¢;) = A(To,) forall 1 <i <r.The
result follows from the monotonicity of mixed volumes (see, e.g., equation 5.25 in [23]).
[ ]

After proving Theorem 3.13, we can define the mixed multiplicities of graded families
of monomial ideals. As a consequence of Lemma 3.14, these mixed multiplicities are
always non-negative and we can restrict ourselves to the terms of the form ng"'irlnd in the
definition below.
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Definition 3.15. Assume Setup 3.8 and let G(n¢, n) be as in Theorem 3.13. Write

1 do+1_d
Goom = 3 e TI(1)..... () o n
'd! ’
dotidimd—1 (do + 1)'d!

Foreach dy € N andd = (dy,...,d;) € N” with dy + |d| = d — 1, we define the non-
negative real number
e(do,d)(]HJ(l), ceey J(r)) >0

to be the mixed multiplicity of type (do,d) of J (1) ={J(D)n}neN,....d () ={J(r)n}neN
with respect to 1| = {I, }neN-

The following remark shows that Definitions 3.7 and 3.15 agree in the m-primary
case.

Remark 3.16. Assume Setup 3.8 and suppose that J (1), ..., J (r) are also graded families
of m-primary monomial ideals. For all m,no € N and n = (ny,...,n,) € N7, we have
the short exact sequence

0— Jmn/lmno Jmn — R/Imn()-]mn - R/Jmn — 0.

So, for each dy € N andd = (dy,...,d;) € N” with dy + |d| = d, we can deduce the
following:

(i) Ifdo =0,theney,ay(I,IJ(1),...,T(r)) =eaJ(1),...,I(r)).
(i) Ifdo > 0, then e, a)(I,I(1),...,d(r)) = e@g—1,0T | T(1),...,T(r)).

4. A “volume = multiplicity formula” for mixed multiplicities

In this section, we focus on proving Theorem B (see Theorem 4.7) which gives a “volume
= multiplicity formula” for mixed multiplicities. This can be seen as an extension of the
usual “volume = multiplicity formula” for graded families of ideals (see, e.g., Theorem 6.5
in [6]). Before that, we need to briefly recall the notion of mixed multiplicities for the case
of ideals (for more details, see, e.g., [24]).

Throughout this subsection, we adopt Setup 3.8 and the following extra piece of nota-
tion.

Notation 4.1. Assume Setup 3.8. Forevery p € Nandn = (ny,...,n,) € N", let J(p)"
denote the ideal J(1)p' -+ J(r)p".

Let I C R be ahomogeneous mi-primary ideal and let Jy,. .., J, C R be homogeneous
ideals. Since [ is m-primary, we have that

@41 T=TU|J.....J,) = P [rogp g [ ot g

no>0,n1>0....,n,>0

is a finitely generated standard N”T1-graded algebra over the Artinian local ring R/I.
From Theorem 1.2 (a) in [24], one has a polynomial Py (ng,n1,...,n,) €Qng,ny,...,n,]
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of degree d — 1 = dim(R) — 1 such that Py (v) = dimg ([T],) for all v € N"T1 with
v > 0. Furthermore, if we write
4.2)

Pr(ng.ny,....n,) = Z e(do’dl’_“,dr)(no+do)(n1+d1)”‘(nr—i-d,)’

do dy dy

then 0 < e(dy,d1,...,d;) € Zforalldy + dy +---+ d, =d — 1. Foreach dy € N and
d=(dy,...,d;) e N" withdy + |d| = d — 1, we say that

4.3) ewdg,ay(I | J1,....Jp) == e(do.dy,....dy)

is the mixed multiplicity of type (do,d) of J1, ..., Jr with respect to I. The following
lemma shows that the definition given in (4.3) agrees with the one given in Definition 3.15.

Lemma 4.2. Let I C R be a monomial w-primary ideal and let Jy,...,J C R be
monomial ideals. Consider the monomial filtrations {I"},en, {J{ }neN., ..., {J/ neN
given by the powers of 1, J1, ..., Jr. Then, we have the equality

e(do.d)({I"tnen [ {1 bnen. - AI Inen) = e@oy( | J1 ... Jr)
foreachdy € N andd = (dy,...,d;) € N  withdy + |d| =d — 1.

Proof. Let F(ng,n) be the function F(ng, n) = limy,_ e dimy (J™™ / 1m0 Jmm) /@
where n = (n1,...,n,) and J™ denotes the ideal J™ = J{""! ... JJ""" C R.
For each ny € N and n € N”, we have the following equality:

n()*l n()*l
dimg (J"/ 170" = Y dimg (153" / 1¥41 ™) = Y dimg ([T )
k=0 k=0
(where T is the algebra introduced in (4.1)). Let v = (vg, ..., v,) € N"*! be such that

Pr(ng,n) = dimg ([T](,,o’n)) for all (ng,n) > v. Thus, for all (n9,n) > v, we can write

vo—1 no—1
(4.4) dimg (" / 17°J" = Y dimk([T)gem) + Y, Pr(k.m).
k=0 k=v,

For any k € N, one has that [T ]k ,....x) = Ppse I ¥I"/I¥+1J" is a finitely generated
N7-graded module over the finitely generated standard N”-graded algebra [T](o «,... «) =
D=0 J“/IJ“. From Theorem 4.1 in [12] (also, see Theorem 3.4 in [3]), for all n > 0,
we obtain that

dimy ([T] k) = P (m)  for some polynomial Piry, .

,,,,,

with degree bounded by dim(MultiProj([T](o,«,... «))) (see §1 of [16], and Definition 2.2
in [2]). Since [ is an m-primary ideal, we have the equality

dim(MultiProj([T'](o,x,... x))) = dim(MultiProj(¥ (J1, ..., Jr))),

.....
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where ¥ (J1, ..., J;) denotes the special fiber ring ¥ (J1,...,J;) = R(J1,...,Jr) Qr
R /w. By using the Segre embedding, we get the isomorphism

MultiProj(R(J1, ..., Jr) ®r R/m) = Proj(R(J1--- Jr) ®r R/m).

where £(J; --- J,) denotes the analytic spread of J; --- J, and the last inequality follows
from Proposition 5.1.6 in [15].
By combining (4.4) and (4.5), we obtain the following equality:

d' mn I mn
F(no,n) = lim imge (J /d mngd™)
m—00 m
. Z(;_ol dimk([T](k,mn)) + Z’knggl_l PT (k, mn)
= lim ]
m—o00 m
oot pr(k, mn)
= lim —1 = .
m—00 m

Since deg(Pr(ng,n)) = d — 1, we can write

mno—1
: —o  Pr(k,mm)
Flow = Jim S8

Notice that

mno—1

> Pr(k.mn)

k=0

- Z e(do,d)(I|J1,...,J,)(

do,...,dr>0

ms;)_—i—lci())(mnldj—dl)m<mn,d;i—dr>.

Therefore, we obtain that F (79, n) coincides with the following polynomial:
1 do+1_d
F(I’lo,n)z Z € d)(]|J1,...,J,-)n0 n,
1dy 4o 0
dotdmd—1 (do + 1)'d!
and so the result follows. ]

Let ¢ be as in Setup 3.8. For ease of notation, we define the following functions (recall
Notation 4.1):

~ dimg (J(p)™ / (m€mP @Bo+InD+1 A J(ymn
(4.6) Hp(no.m) :=lim k(J(P)™/( e (»)™))

and

75 di 1o mn cmp(no+(nf)+1 n [ mn
@7 Hplgom) = tim SmeUp I/ (u7 > I(p)™)
m—00 m p

We note that the existence of these limits follow as in (3.10).
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The following technical proposition is needed to treat the Noetherian case of the for-
mula.

Proposition 4.3. Assume Setup 3.8. In addition, suppose that1,J (1),...,J(r) are Noeth-
erian graded families. Then, for fixed ng € N, n € N” and ¢ € R+, there exists pg € N
such that if p > po then

Volg (A(Tygn)) = Hp(nOv n) > Vol (A(Tpyn)) — ¢

and
Vol (A(f‘no,n)) > I?p(no, n) > Voly (A(f‘no,n)) —¢.

Proof. Similarly to (3.7) and (3.8), we now define
Ton(p) := {(m,mp) € N“*1 | x™ € J(p)™ and |m| < cmp(no + |n|)}
and

Taon(p) := {(m,mp) € N4T' | x™ & [0 J(p)™ and [m| < cmp(no + |n|)}.

For each (119,n) € N?*+1, we consider the graded families of monomial ideals {J( D)%} peN
={J()p" - J()p }pen and {I;°J(p)™}pen = {Lp° J(1)p" -+ J(r)p }pen. From these
graded families, we define the semigroups

Wpon := {(m, p) € N1 | x™ € J(p)" and |m| < cp(no + [n|)}

and
Bgn := {(m, p) € N1 | x™ € 17°J(p)" and |m| < cp(no + [n|)}.

By construction, for all p, m > 1 we have the inclusions

m x [%Ino,n]p C [Fno,n(P)]mp C [%Ino,n]mp
and R
m % [%no,n]p C [Fno,n(p)]mp C [%no,n]mp-

As a consequence of Proposition 3.1 in [21] (see also Theorem 3.3 in [6]) and The-
orem 2.4, for a fixed € € R, there exists pg € N such that if p > py then

#([Fno,n(p)]mp) #(m * [ano,n]p)

> lim
md pd 00 md pd

Vol (A(Upg,n)) = lim
m—>00
> Volg (A(Apyn)) — €
and

#([fno,n(p)]mp) > lim #(m * [%no,n]p)

VOld(A(EBno,n)) = mli_l;noo mdpd m—o00 mdpd

> Volg (A(Buyn)) —&.
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Therefore, using the notation of (4.6) and (4.7), we obtain the inequalities Vol (A(Uy.n))
> Hp(ng,n) > Volg (A(Upyn)) — € and Volg (A(Byyn)) = i-\Ip (no,m) = Volg (A(*Byg.n))
—eforall p > pg.

To conclude the proof, we only need to show that the equalities Volg (A(2,4.n)) =
Volg (A(Tg.n) and Volg (A(Br)) = Volg (A(Fy.n)) hold.

By the Noetherian assumption, there exists g > 0 such that

(4.8) J@)yg = J(i)ng and I =1y, foreveryn>0,1<i<r

(see, e.g., Lemma 13.10 in [11] and Theorem 2.1 in [13]). Hence J(mgq)" = Jmgn and
Iy J(m@)™ = Lngno Jmgn for all m > 0, and so Theorem 2.4 yields the required equalities

#[T #[A
Volg (A(Tyyn)) = lim % = lim % = Volg (A(Upyn))
m—oo  mq m—o00 méq
and
- #[T #B
Vol (A(Tng,n)) = lim % = lim % = Volg (A(Brgn))-
m—oo  méq m—oo  méq
Therefore, the proof of the proposition is now complete. ]
We now focus on approximating the graded families I, J(1), ..., J(r) by using suc-

cessive truncations of them. For that, we need to introduce some additional notation.

Notation 4.4. Let a > 0 be a positive integer. Let I, = {I,; ,}sen be the Noetherian
graded family generated by Iy, ..., I4, thatis, forn > a one has I, ,, = Z:’;ll Iailagn—i.
Likewise, define J (i), = {J()an}nen forall 1 <i <r.

For a vector n = (ny,...,n,) € N”, we abbreviate Jon = J(Dan, * - J(M)an, - As
in (3.7) and (3.8), we now define

Cangm = {(m,m) = (my,...,mg,m) € N4t | x™ ¢ Jamn and lm| < cm(ng + |n|)}

and

| :={(m,m) = (my,....mqg.m) eNH xMe I, nodamn and [m|< cm(no+(n|)}.
For every p € N and every n = (ny,...,n,) € N", let J(a, p)" denote the ideal

J(1)a!p -+ J(r)ap. Additionally, we have the following functions:

dimg (J(a, p)mn/(mcmp(no-i-\n\)-i-l ) J(Cl, p)mn))

Ha,p(no.m) := i md pd
and
7 dimg (1777 J(a, p)"™ /(mcmp(o+inD+1  ymno g, pymn
Hg p(ng,n) ;= lim k (Lo 3a. p)™/( a,p'J(a. p) )).

m—00 mdpd

The next technical proposition is used in the proof of Theorem 4.7. For its proof we
use an argument quite similar to the one used in Proposition 4.3 of [8].
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Proposition 4.5. Assume Setup 3.8. Then, for fixed ng € N, n € N” and ¢ € R, there
exists ag € N such that if a > ao, then

Volg (A(I'ng,n)) = Volg(A(Ta,ngn)) = Volg (A(I'ngn)) — €

and
VOld (A(Fno,n)) > VOld(A(Fa,no,n)) = VOld (A(Fno,n)) —¢&.

Proof. For a positive integer a > 0, since I, = I, , and J(i) = J(i)4,, foralln < a, for
all m > 1 we obtain the following inclusions:

m x [Fno,n]a C [Fa,no,n]ma C [Fno,n]ma and m x [fno,n]a C [fa,no,n]ma C [fno,n]ma~

Then, by Proposition 3.1 in [21] (see also Theorem 3.3 in [6]) and Theorem 2.4, for a
fixed € € R, there exists ag € N such that if a > ag, then

# Thon
Volg (A(Tngn)) = Volg(A(Tamga)) = fim 8 * Wnonda) o gop Aqm ) e
’ s m—00 mdad ’

and

r S # r
Volg (AP ) > Volg (A(Fangn) > fim T * [ronle)

Jim TR > ol (A(Fag)) e

So, the result follows. [

Finally, we are ready for our analog of the “volume = multiplicity formula” in the
case of mixed multiplicities. The following theorem expresses the mixed multiplicities of
graded families as normalized limits of mixed multiplicities of ideals.

Remark 4.6. We first provide a couple of general words regarding the proof of The-
orem 4.7. Despite a number of technical steps in the proof, the idea behind is quite simple:
we perform a double approximation process. First, we approximate the graded famil-
ies with successive truncations, which are Noetherian graded families. Then, under this
Noetherian hypothesis, we can choose suitable Veronese subalgebras of the Rees algeb-
ras corresponding to these truncations that are standard graded (see, e.g., Lemma 13.10
in [11], Theorem 2.1 in [13]). This means that these Veronese subalgebras are simply Rees
algebras of ideals. Finally, by certain technical steps, we can complete the proof.

We further extended this double approximation technique in [4], where we managed to
show the existence of mixed multiplicities of arbitrary graded families of ideals on Noeth-
erian local rings whose completion is reduced at minimal primes of maximal dimension
(in particular, it holds for analytically unramified local rings).

Theorem 4.7. Assume Setup 3.8. Then, for eachdy € N andd = (d;,...,d,) € N" with
do + |d| = d — 1, we have the equality

edo,a)(Up | J(D)p, ..., J(r)p) )
pd

e(do,d)(H |J(1), ey J(r)) = p]l)n;o
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Proof. Let p > 1, and consider the filtrations

I(p) = {1 }nen, J(M(p) = I (M)phnen, ... I(r)(p) = {J(r)p}nen.

By applying Theorem 3.13 to the filtrations

I(p) = I nen, IM(p) = {T(Dplnen. ... J(r)(p) = {J(r)p}nen,

let F,(no,n) be the function

(4.9) Fp(no.m) = lim dimy (J(p)"™"/ 15" 3 (p)™)

—>00 md

and let G, (19, n) be the polynomial of total degree d that coincides with F}, (19, n). From
Lemma 4.2, we can write

1 do+1

4.10) Gp(no.m)= Y~ @O edo.yIp | T(Vps ..., J(1)p) ng ' md.

do+|d|=d—1
Notice that we have the equation

1 ~
(4.11) p_de(nO,n) = Hy(ng,n) — Hp(no,n);
see (4.6) and (4.7).
Fix a positive real number ¢ > 0. By using Proposition 4.5, choose a >> 0 such that

4.12) Volg (A(T'ng.n)) = Volg (A(Tg,ngm)) = Volg(A(Thyn)) —&/2
and

(4.13) Vol (A(Twgn)) = Vola(A(Tangn) = Volg(A(Tamem)) — /2.

From Proposition 4.3, applied to the Noetherian graded families I,, J(1)q, ..., J(7)q,
choose p >> 0 such that

“4.14) Vold(A(I‘a,no,n)) > Ha,p(no,n) > Vol, (A(Fa,no,n)) — 8/2
and
(4.15) Volg(A(Tangm) = Ha p(no,m) = Volg (A(Tangn)) — /2.

Since 14, C I, and J(i)4,, C J (i), foralln € N, one has H,(ng,n) > H, ,(no,n) and
Hp(no,n) > H, p(no,n), and so from (4.12), (4.13), (4.14) and (4.15) one obtains

(4.16) Vol (A(Lpy ) = Hp(ng,m) > Hy p(ng,m) > Volg (A(Tyyn)) — €
and

(417) VO]d (A(fno,n)) 2 ﬁp (n()v n) Z ﬁa,p(”Ov n) Z VOld (A(fno,n)) —¢&.
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Therefore, by combining (3.10), (4.11), (4.16) and (4.17), we obtain the equalities
F(ng,m) = Volg (A(Tg.)) = Vol (A(ng.n))
. = . 1
= plggo(Hp(nm n) — Hy(ng,m)) = plgrolo p_d Fp(no,m)

for all ng and n € N”. Accordingly, it necessarily follows that the coefficients of the
polynomials pLde (no, n) converge to the ones of the polynomial G(n¢, n) (see, e.g.,
Lemma 3.2 in [8]). Therefore, by Definition 3.15 and (4.10), we obtain

e(do,d)(IIlU(l)pa cees J(r)p)
p? ’

e(do,d)(ﬂlqﬂ(]), ey J(}“)) = pll>r20

and so the result follows. [

5. Mixed volumes of convex bodies as mixed multiplicities

This section includes the proof Theorem C, which is the main result of this paper (see

Theorem 5.5). In this result, we describe the mixed volumes of (arbitrary) convex bodies as

the mixed multiplicities of certain (not necessarily Noetherian) graded families of ideals,

and as the normalized limits of the mixed multiplicities of certain monomial ideals.
Throughout this section we fix the following setup.

Setup 5.1. Let k be a field, let R = Kk[x1,...,xz+1] be the standard graded polynomial
ring, and let m C R be the graded irrelevant ideal mt = (x1,...,Xxg41). Let

T (RAFL ]Rd, (a1, .., 0g,0441) > (01, ...,0q),

be the projection into the first d factors. Let 7: R4T! — R be the linear map given by
(o1, .., 0g,0041) > o1+ +og +ag41-Let (K, ..., K;) be asequence of convex
bodies in RY,.

The notation below introduces a process that we call the homogenization of a convex
body.

Notation 5.2. Let K C R‘io be a convex body in ]R‘io. Choose hx € N a positive integer
such that |x| < hg for all x € K. We call hg a suitable degree of homogenization of K.
The corresponding homogenization of K (with respect to hg) is defined as the convex
body

K =(KxR)nz ' (hg) c RIS

Let Ck be the corresponding cone Ck := Cone(K). Consider the semigroup Sx C N4+1
given by
oo
Sk = Cx NN+ ( U n_l(th)).
k=1
Foreach 1 <i <r,let hg, be a suitable degree of homogenization for K;, and let Sk,
be the corresponding semigroup in N1 determined by the homogenization K;C ]R{‘ib"l.
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For each 1 <i < r, we consider the (not necessarily Noetherian) graded family of mono-
mial ideals

5.1) J@) ={J()n}nen, where J(i), = (" |m € Sk, and |m| = nhg,) C R.

Let Ko C R9 be the convex hull of the points 0,e;,...,e5 € R4 and let I?O be its homo-
genization Ko = {x € RZE)H | x| = 1} € R4*1; notice that hg, = 1 is a suitable degree
of homogenization for K. We let M be the graded family M = {m"},cn. Denote by K
the sequence of convex bodies K = (Ko, K1, ..., K;).
Let p > 0 be a positive integer. For each 1 <i < r, let K;(p) be the lattice polytope
given by
Ki(p) := m(conv({m € NeFL | x™ ¢ [J()plph, N).

where conv(—) denotes the convex hull of a finite set of points; the polytope defined
above corresponds with the generators of the ideal J(i),. Denote by K(p) the sequence
of lattice polytopes K(p) := (Ko, K1(p), ..., K;(p)). The next lemma shows that the
mixed volumes of K can be approximated with the ones of K(p).

Lemma 5.3. For each (dy,d) € N" T with dy + |d| = d, we have the equality

. MV (K(p)(dy,a)
MV, (K(do,d)) = p]i)ngo T(O) .

Proof. By construction, we have that %K,- (p) converges to K; in the Hausdorff metric
(see Definition 2.1 on p. 109 of [10]) when p — oo. Thus, Lemma 3.8 on p. 119 of [10]
yields that

converges to MV ; (K(4,,a)) when p — oo. Therefore, the result follows from the linearity
of mixed volumes (see, e.g., Lemma 3.6 on p. 118 of [10]). [

1 1
MV ( (Ko~ Ki(p). ..~ Kr(p))
p p (do,d)

Finally, the next theorem expresses the mixed volume of the convex bodies K1,..., K,
as a mixed multiplicity of the chosen graded families J (1),...,J (r). Additionally, we also
express the mixed volume of the convex bodies K1, ..., K, as two types of normalized
limits of mixed multiplicities of ideals. This result can be seen as an extension of The-
orem 2.4 and Corollary 2.5 in [24].

Remark 5.4. The proof of the following theorem is the combination of three main ingre-
dients. By the result of Trung and Verma (Theorem 2.4 and Corollary 2.5 in [24]), we can
express mixed volumes of lattice polytopes as mixed multiplicities of monomial ideals.
By Lemma 5.3, mixed volumes of arbitrary convex bodies can be written as the nor-
malized limit of the mixed volumes of certain lattice polytopes. These lattice polytopes
induce graded families of monomial ideals in a natural way (see (5.1)). Finally, everything
is glued together by Theorem 4.7, which gives our “volume = multiplicity formula” for
mixed multiplicities.
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Theorem 5.5. Assume Setup 5.1. Let J (1), ...,J(r) be the graded families of monomial
ideals defined in (5.1). For each (dy.d) € N" T with dy + |d| = d, we have the equalities

MV (Kgy,a) = €(do,ay(M [ J(1),....dJ(r))
e(do,y(m? [ J(1)p, ..., J(r)p)

= 1,1220 pd+1
— lim e(do’d)(m|J(l)p,...,J(r)p).

In particular, when r = d, we obtain the equalities
MVy(Ki,....Kq) = e@,1,..,n(M[I(1),....d(d))
e©,1,...n? [ J(1)p,.... J(d)p)

= ,,113;0 pd+1
— lim eqo,1,..,n(m | J(i)p, o J(d)p)
p—00 p

Proof. By applying Theorem 2.4 and Corollary 2.5 from [24] to the generators of the
monomial ideals J(1)p, ..., J(r),, we readily obtain the identity MV ; (K(p)(4,4)) =
ey a)(m | J(1)p, ..., J(r)p). Thus, Lemma 5.3 yields the equality
e(do’d)(m | J(l)p, ey J(V)p) .

pldl

MV, (Kg,,0)) = lim
p—oo

Consider

- dimg (J(D)p " - T ()" ™m0 g (1) T ()™
Gi(no,m) = mlgnoo . : md+1 s .

and

. dimg (J(D)R - T () /()" g () T ()
GZ(no’n)zmlgnoo k(J(1)p (r)p n/qEZ_H) My (r)p )

By Theorem 3.13, the limits in G; and G, exist and are polynomials. Due to Lemma 4.2,
we have that

1
Gl(n(),n) = Z mE(do’d)(m|.](l)p,...,J(r)p)ngo+lnd.

do+|d|=d
and
1
Gz(no,n) = Z me(do’d) (mp|J(l)p,...,J(r)p) ng‘)Hnd.
do+ldl=d " ° o

Since G1(png,n) = Ga(ng, n), we obtain, by comparing the coefficients of G;(png, n)
and Ga(ng,n), that e, ay(W?|J(1)p, ..., J(r)p) = pPHle,a)(|J(Dp, ..., J(r)p).
Hence, the equality

@1 Iy T eIy T(0))
p—00 pd+1 p—>00 p|d|

is clear. Finally, the proof is concluded by invoking Theorem 4.7. ]



Convex bodies and graded families of monomial ideals 2055

Funding. The first author is partially supported by an FWO Postdoctoral Fellowship
(1220122N). The second author is supported by NSF Grant DMS #2001645.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(171

(18]

Bernstein, D. N.: The number of roots of a system of equations. Funct. Anal. Appl. 9 (1975),
no. 3, 183-185.

Castillo, F., Cid-Ruiz, Y., Li, B., Montaiio, J. and Zhang, N.: When are multidegrees positive?
Adv. Math. 374 (2020), 107382, 34 pp.

Cid-Ruiz, Y.: Mixed multiplicities and projective degrees of rational maps. J. Algebra 566
(2021), 136-162.

Cid-Ruiz, Y. and Montaiio, J.: Mixed multiplicities of graded families of ideals. J. Algebra 590
(2022), 394-412.

Cutkosky, S.D.: Multiplicities associated to graded families of ideals. Algebra Number The-
ory 7 (2013), no. 9, 2059-2083.

Cutkosky, S.D.: Asymptotic multiplicities of graded families of ideals and linear series. Adv.
Math. 264 (2014), 55-113.

Cutkosky, S.D.: A general volume =multiplicity formula. Acta Math. Vietnam. 40 (2015),
no. 1, 139-147.

Cutkosky, S. D., Sarkar, P. and Srinivasan, H.: Mixed multiplicities of filtrations. Trans. Amer.
Math. Soc. 372 (2019), no. 9, 6183-6211.

Ein, L., Lazarsfeld, R. and Smith, K. E.: Uniform approximation of Abhyankar valuation ideals
in smooth function fields. Amer. J. Math. 125 (2003), no. 2, 409-440.

Ewald, G.: Combinatorial convexity and algebraic geometry. Graduate Texts in Mathemat-
ics 168, Springer-Verlag, New York, 1996.

Gortz, U. and Wedhorn, T.: Algebraic geometry I. Advanced Lectures in Mathematics, Vieweg
+ Teubner, Wiesbaden, 2010.

Herrmann, M., Hyry, E., Ribbe, J. and Tang, Z.: Reduction numbers and multiplicities of
multigraded structures. J. Algebra 197 (1997), no. 2, 311-341.

Herzog, J., Hibi, T. and Trung, N. V.: Symbolic powers of monomial ideals and vertex cover
algebras. Adv. Math. 210 (2007), no. 1, 304-322.

Huh, J.: Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs.
J. Amer. Math. Soc. 25 (2012), no. 3, 907-927.

Huneke, C. and Swanson, L.: Integral closure of ideals, rings, and modules. London Mathem-
atical Society Lecture Note Series 336, Cambridge University Press, Cambridge, 2006.

Hyry, E.: The diagonal subring and the Cohen—Macaulay property of a multigraded ring. Trans.
Amer. Math. Soc. 351 (1999), no. 6, 2213-2232.

Kaveh, K. and Khovanskii, A. G.: Newton—Okounkov bodies, semigroups of integral points,
graded algebras and intersection theory. Ann. of Math. (2) 176 (2012), no. 2, 925-978.

Kaveh, K. and Khovanskii, A.G.: Convex bodies and multiplicities of ideals. Proc. Steklov
Inst. Math. 286 (2014), no. 1, 268-284.



Y. Cid-Ruiz and J. Montaiio 2056

(19]

(20]

(21]

[22]

(23]

(24]

(25]

Khovanskii, A. G.: Newton polyhedra and the genus of complete intersections. Funct. Anal.
Appl. 12 (1978), no. 1, 38-46.

Kouchnirenko, A. G.: Polyedres de Newton et nombres de Milnor. Invent. Math. 32 (1976),
no. 1, 1-31.

Lazarsfeld, R. and Mustatd, M.: Convex bodies associated to linear series. Ann. Sci. Ec. Norm.
Supér. (4) 42 (2009), no. 5, 783-835.

Mustata, M.: On multiplicities of graded sequences of ideals. J. Algebra 256 (2002), no. 1,
229-249.

Schneider, R.: Convex bodies: the Brunn—Minkowski theory. Second expanded edition. Encyc-
lopedia of Mathematics and its Applications 151, Cambridge University Press, Cambridge,
2014.

Trung, N. V. and Verma, J. K.: Mixed multiplicities of ideals versus mixed volumes of poly-
topes. Trans. Amer. Math. Soc. 359 (2007), no. 10, 4711-4727.

Trung, N. V. and Verma, J. K.: Hilbert functions of multigraded algebras, mixed multiplicities
of ideals and their applications. J. Commut. Algebra 2 (2010), no. 4, 515-565.

Received May 7, 2021; revised June 2, 2022. Published online August 25, 2022.

Yairon Cid-Ruiz

Department of Mathematics: Algebra and Geometry, Ghent University,
Krijgslaan 281, Building S25, 9000 Ghent, Belgium;
Yairon.CidRuiz@UGent.be

Jonathan Montafio

Department of Mathematical Sciences, New Mexico State University,
PO Box 30001, Las Cruces, NM 88003-8001, USA;
jmon@nmsu.edu


mailto:Yairon.CidRuiz@UGent.be
mailto:jmon@nmsu.edu

	1. Introduction
	2. Notation and preliminaries
	3. Mixed multiplicities of graded families of monomial ideals
	4. A "volume = multiplicity formula" for mixed multiplicities
	5. Mixed volumes of convex bodies as mixed multiplicities
	References

