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1 Introduction

The interplay between combinatorics and commutative algebra has been a suc-
cessful and fruitful interlinkage for both areas [76, 92-94]. In this survey, we
focus on the interaction between methods in prime characteristic and combinato-
rial commutative algebra.

We showcase several combinatorial results that were proven using methods of
prime characteristic. For example, we discuss several properties of the ordinary
and symbolic powers of determinantal ideals (see Sect. 5). We also present the
characterization of Gorenstein binomial edge ideals obtained by Gonzalez-Mar-
tinez [42] (see Theorem 3.7). We give a prime characteristic proof of a result
by Sturmfels on the regularity of normal toric varieties. This proof relies on the
Hochster-Roberts Theorem [62] regarding a-invariants of graded F-pure rings.

Stanley-Reisner rings are one of the main bridges between combinatorics and
commutative algebra. They are also one of the main examples of F-pure rings.
One idea that has inspired recent research, and that we showcase in this survey,
is that “a property that holds for Stanley-Reisner rings is likely to hold for F-pure
rings”. For instance, after it was shown that squarefree monomial ideals satisfy
Harbourne’s Conjecture (Conjecture 4.6), Grifo and Huneke [44] proved that
this is also satified for ideals defining F-pure rings (see Theorem 4.8). Yanagawa
[107] gave a formula of the Lyubeznik numbers in terms of the dimension of the
zero degree part of certain Ext modules (see Theorem 6.15). The same formula
was later obtained by Grifo, the first and third authors for F-pure rings [27] (see
Theorem 6.15). In the other direction, there are results that have been obtained
for Stanley-Reisner rings in all characteristic using Frobenius-like morphisms. In
particular, the limit of depths and normalized regularities are shown to exist for
symbolic powers of these ideals. In Sect. 5 we discuss these methods and include
generalizations of the known results. In this section we also survey the results in
the literature regarding the limits mentioned above and highlight the open ques-
tions that remain on this topic.

There are results where the interactions of combinatorial commutative algebra
and methods in prime characteristic have gone full circle. Mustatd [79] showed that
if I is a squarefree monomial ideal in a polynomial ring S = Kk[x,, ..., x,], then the
natural map Extg(S /1,S) — H;(S) is injective for all i € Z (see Corollary 6.10). This
fact has useful consequences on the projective dimension of this type of ideal. Later
Singh and Walther [91] showed that this property in fact holds for ideals defining
F-pure rings. Ma and Quy coined the term F-full for a local ring (R, m, k) such that
the image of the Frobenius map on an (R) generates H' in (R) as an R-module. It turns
out that if S/ is F-full, then the natural map Extg(S /1,S) > H ;'(S) is injective for all
i € Z (see Proposition 6.6). In fact, Singh and Walther’s proof [91] gives that every
F-pure ring is F-full (see Theorem 6.7, and also [72]). This inspired Dao, Ma and
the first author [25] to develop the theory of cohomologically full rings (see Defini-
tion 6.4). This theory was employed by Conca and Varbaro [18] to show that the
extremal Betti numbers of a squarefree Grobner deformation coincide with those of
the original ideal (see Theorem 6.2).
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We point out that this survey is not comprehensive. For instance, we did not
include recent connections of combinatorial commutative algebra with code theory
[75], where there are results that were obtained using F-pure rings [83].

2 Background

Throughout this paper, R always denotes a Noetherian commutative ring with
identity.

2.1 Graded algebras

A Z,-graded ring is a ring R which admits a direct sum decomposition
R =D, R, of Abelian groups, with R, - R; C R,,; for all i and j. Note that Ry, is
a Noetherian commutative ring with identity, and R is an Rj-algebra. In this setup,
let M =@, ., M, and N = P,_, N, be graded R-modules. An R-homomorphism
@ . M — N is called homogeneous of degree c if p(M,) C N, for all n € Z. The
set of all graded homomorphisms M — N of all degrees form a graded submod-
ule of Homg(M, N). In general, it can be a proper submodule, but it coincides with
Homg(M, N) when M is finitely generated [13].

Given a Z-graded ring R, there exist fi, ..., f, € R homogeneous elements such
that R = Ry[f}, ... ,f,], which is equivalent to @,,(R, = (f}, ... .f,) [13, Proposition
1.5.4]. If Ry is local, or Z-graded over a field, choosing the elements fi, ..., f, min-
imally gives rise to a unique set of integers {d,, ..., d, }, namely the degrees of such
elements. We call these numbers the generating degrees of R as an R, -algebra.

LetS = Ryly,, ... ,y,] be a polynomial ring over R, with deg(y;) = d,;forl <i<r,
and let ¢ : S = R be an Rj-algebra homomorphism defined by ¢(y;) =f; for
1 < i < r. Consider the ideal .# = Ker(¢). We call any minimal set of homogeneous
generators of .# the defining equations of R over R,,.

2.2 Stanley-Reisner rings and monomial edge ideals

In this subsection, we recall the basic notions of Stanley-Reisner theory. For more
details we refer to a survey [37] and a book [76] on this subject. We also refer to Vil-
larreal’s book on monomial algebras for this and related topics [104].

Definition 2.1 A simplicial complex on [d] is a collection A of subsets, called faces,
of [d] such that for given ¢ € A, if 0 C o, then § € A. A facet is a face that is maxi-
mal under inclusion. The dimension of a face o € A is |o| — 1, and the dimension of
Ais max{dim(c) | 0 € A}.

Definition 2.2 The f-vector of a simplicial complex A of dimension r — 1 is defined
by

F(A) = (1 (A), ... [ (D)),
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where f;(A) denotes the number of faces in A of dimension i. The h-vector ofA is
defined by

h(B) = (ho(B), ..., h, (D)),

where /;(A) is given by the identity

D fat= 17 = Y hay .
=0 i=0

Let S = k[x,, ..., x;] denote the polynomial ring in d variables over a field k,
andm = (x,...,x,). Let[d] = {1,...,d}. There is a bijection between the square-
free monomial ideals in S and simplicial complexes on d vertices via the Stanley-
Reisner correspondence.

Definition 2.3 Given a simplicial complex A, the Stanley-Reisner ideal of A is
defined by

Iy= (5, x| {ifse i) € A).

The quotient k[A] = S/1, is called the Stanley-Reisner ring associated to A. Given a
squarefree monomial ideal / C S, the Stanley-Reisner complex of [ is given by

A= {{il’---,if} C [d] Ixil o ¢I}

Theorem 2.4 (Stanley-Reisner Correspondence) There is a bijective correspondence
between the set of squarefree monomial ideals in S and simplicial complexes on [d]
given by the maps A — I, and I — A,

Under the correspondence in  Theorem 2.4 we have that
dim(S/I1,) = dim(A) + 1. In addition, the minimal primes of S/I, correspond to
the facets of A.

A special class of squarefree monomial ideals are given by monomial edge ideals.
These were introduced by Villarreal [103] about thirty years ago, and they have been
a source of intense research (see a recent survey on this topic [100].

Definition 2.5 [103] Let G = (V(G), E(G)) be a simple graph on the set [d] and
S = kilx,, ..., x,]. The monomial edge ideal, I, of G is defined by

I = (xx; | for {i.j} € E(G)).
It turns out that every monomial edge ideal corresponds to a simplicial complex.

Definition 2.6 Let G be a simple graph on [d]. We say that a set W C [d] is inde-
pendent if no edge of G connects two vertices in W.

The collection of all independent sets of a graph G gives a simplicial complex,
which we denote by A(G).
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Proposition 2.7 Let G be a simple graph on the set [d], S = kl[x,,...,x,;] and let
A(G) be the simplicial complex of independent sets of G. Then the monomial edge
ideal I; coincides with the Stanley-Reisner ideal 1, g

An immediate consequence of the Proposition and the results previosuly dis-
cussed is the following.

Corollary 2.8 Let G be a simple graph on the set [d], S = Kklx,, ..., x,] and I be the
monomial edge ideal of G. Then,

dim(S/1;) = max{|W| | W C [d] is independent }.

2.3 Grobner deformations

In this subsection we recall the basic notions on monomial orders and initial ide-
als with respect to a given weight.

Definition 2.9 Let S = k[x,,...,x,] be a polynomial ring over a field. Let < be a
total order on the set of monomials of S. We say that < is a (global) monomial order
if

o Va#0, 1<x%
e Va,0,y x* < x%implies x*x" < x%x7.

Given a non-zero element f € S we let in_(f) = max{x* | x* € Supp(f)}, where
Supp(f) denotes the set of monomials which appear with non-zero coefficient
in f. Given an ideal I C S, we define the initial ideal of / (with respect to <) as

in (1) = (in() | f € D.

. . . a a,
Given a weight a)=(a)1,...,cod)eZio and a monomial x“=x11---xdd

in S, we let o(a)= 2?21 w;2;. Given a nonzero f€S, we let
o(f) = max{a(a) | x* € Supp()}. If f =X, 2,47, we let in, () = X oo 4a”
be the initial form of f with respect to w. Given an ideal 71 C S, we let
in, (/) = (in,(f) | f € I) be its initial ideal with respect to the weight @.

The following result shows that, when considering the initial ideal of a given
ideal with respect to a monomial order, one can always reduce to considering the
initial ideal with respect to a weight.

Theorem 2.10 [95, Proposition 1.11], [102, Proposition 3.4] Let S = k[x,, ..., x,]
be a polynomial ring over a field, and < be a monomial order on S. There exists a

weight w € (Z.)" such that in_(I) = in, ().

Let T = S[1] = Klx, ..., x,.7]. Given f =Y, 4,x* €S and a weight w € Z¢
we define the w-homogenization of f as
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hom,,(f) = Z Axt1@D=0@ e .
[4

Given an ideal I C S we let its w-homogenization be hom, (/) = (hom,(f) | f € I).
Note that hom, (/) is homogeneous in 7 with respect to the grading deg(x;) = w; and
deg(f) = 1. In particular, by restriction of scalars, hom, (/) is a graded k[¢]-module
with respect to the standard grading on k[7].

Remark 2.11 Since k[¢] is a PID, a module M is flat over k[¢] if and only if it is tor-
sion-free. In particular, if M is graded, we have that r — a is a non-zero divisor on M
for all @ € k ~ {0}, and ¢ is a non-zero divisor on M if and only if M is flat over k[7].

Lemma 2.12 [102, Proposition 3.5] Let I C S be an ideal, o € Z‘io be a weight,
and set J =hom(I) C T = S[t]. Then t — a is a non-zero divisor on R = T /J for all
a € k. Moreover, R/(t — a) = S/I for all a € k~ {0}, while R/(t) = S/in,(I).

Proof Since J is graded with respect to the grading deg(x;) = w; and deg(?) = 1
on T, it is also graded with respect to the standard grading on k[¢]. Therefore, by
Remark 2.11 we have that ¢ — a is regular on 7/J for all a # 0, since the latter is
also a graded k[¢]-module. To see that ¢ is regular as well, assume that ¢f € J for
some f =f(x,,...,x;t) €T, which we may assume being homogeneous with

respect to the grading on 7. We then have that #f = ). g;hom,(f;), for some g; € T
and f; € I. By setting t = 1 we immediately see that J_‘ =f(xy,...,x4 1) €1, since
hom,,(f) = =/f; €1 and g;(x,,...,x,;,1) €S. As a consequence, we have that

homm(}_” ) € J. Since f € T was chosen to be homogeneous, it follows from the defi-
nition of homogenization that f = t’homw(]_‘ ) for some r > 1, and therefore f € J.
We now pass to the second part of the lemma. For brevity, we only show the
first isomorphism for a = 1; for the general case we refer the reader to [102, Prop-
osition 3.5]. Since for any f €S we have that hom,(f),-; =f, it follows that
hom,(f) —i(f) € (t — 1), where 1 : S < T is the natural inclusion. From this it is
clear that (J, — 1) = (IT, ¢t — 1), and therefore R/(t — 1) = S/I. On the other hand,
again by definition of homogenization we have that hom (f) — 1(in,(f)) € (f). From

this, it is again clear that (J, 1) = (in,(I)T, ¢), and thus R/(¢) = S/in,(I). O

Putting together the considerations made above, Theorem 2.10, and
Lemma 2.12 we deduce the following.

Remark 2.13 Let I C S = k[x|, ..., x;] be an ideal, < be a monomial order on S and
let T = S[t] = k[x, ...,x,, t]. There exists a weight o € Z‘io such that, if we set
J=hom, (/) CTand R =T/J, then

1. Ris aflat k[¢f]-module.

2. R/(t—a)R=S/Iforeverya € k) {0}
3. R/tR=S/in_(I).
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4. [33, Theorem 15.17] R ® g, k() = S/ @y, k().

It turns out that an ideal and its initial ideal share several properties. For instance,
we have that I and in_(/) have the same Hilbert function. As a consequence, they
have the same dimension and Hilbert-Samuel multiplicity. We also have the follow-
ing important well-known result, we include its proof for sake of completeness.

Theorem 2.14 Let I C S = Kk[x,, ..., x,] be an homogeneous ideal, and < a mono-
mial order. Then,

B (S/D) < B (S/in (D).

Proof We follow the notation from Remark 2.13. Let F be a minimal graded free
T-resolution of R. From Remark 2.13 (4) it follows that F ®y, k(7) is a (not nec-
essarily minimal) graded free resolution of S/I ®; k(). On the other hand, from
Remark 2.13 (1) and (3) it follows that F ®y,, (k[t]/(¢)) is a minimal graded free
resolution of S/in_(J). It follows that,

ﬂ[J(S/I) = ﬁiJ(S/I ® k(1)) < ﬂi,,'(R) = ﬂiJ(S/in<(1))s

and the conclusion follows. O

Finally, we recall the next result, which points to the fact that the topology of the
spectra of S/I and S/in_(I) share similar features (see [2] and [101] for more results
in this direction).

Theorem 2.15 [65, Theorem 1] Let p C S = Kk[x,, ..., x,] be a prime ideal, and < a
monomial order, then S/in_(p) is an equidimensional ring.

2.4 Binomial edge ideals

We now recall the definition of binomial edge ideals [50, 85]. These are related to
conditional independence statements [50]. In addition, there are relations between
homological properties of the binomial edge ideal and the connectivity of the under-
lying graph [4].

Definition 2.16 [50, 85] Let G = (V(G),E(G)) be a simple graph such that

V(G) = [d]. Let k be a field and S = k[x,, ..., x;¥;,...,¥,] the ring of polynomials
in 2d variables over k. The binomial edge ideal, J;, of G is defined by

Jo = (xy; —xy; | for {i,j} € E(G)).

We recall that binomial edge ideals have an square-free Groebner deformations.
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Theorem 2.17 [50, Theorem 2.1], [85, Theorem 3.2.] Let G be a simple graph on
[d], S = Kklx,.... x5 Y5 ..., ¥4, and J; be the binomial edge ideal of G. Then, there
exists a monomial order < on S such that in_(J;) is a squarefree monomial ideal.

2.5 Methods in prime characteristic

In this subsection we assume that R is reduced and that it has prime character-
istic p > 0. For e € ZZO, let F¢ : R —» R denote the e-th iteration of the Frobe-
nius endomorphism on R. If R/7" is the ring of p*-th roots of R, we can identify
F¢ with the natural inclusion 1 : R < R'/7. Throughout this survey, any R-linear
map ¢ : R'/P° — R such that ¢po1 = id, is called a splitting of Frobenius, or just a
splitting.
For an ideal / generated by {fi, ... ,f,} we denote by /7] the ideal generated by
P, fI'}). We note that IR/ = (IP1)!/r",
In the case in which R = @,5R, is Z,-graded, we can view R'/7 as a #220
-graded module in the following way: we write f € Ras f=f, +... +f;, with

fu, € Ry Then, fur =fdl]/‘"g + ... +fdl/pe where each fdlv/pg has degree d;/p¢. Simi-
. , ; :

larly, if M is a Z-graded R-module, we have that M'/7" is a [%Z-graded R-module.

Here M7 denotes the R-module which has the same additive structure as M and
scalar multiplication defined by f-m!'/? := ("' m)'/?*, for all f€R and
m!/P e M7, As a submodule of R!/?°, R inherits a natural ,%ZZO grading, which

is compatible with its original grading. In other words, if f € R is homogeneous
of degree d with respect to its original grading, then it has degree d = dp®/p¢ with
respect to the inherited #220 grading in R'/7",

Definition 2.18 Let R be a Noetherian ring of positive characteristic p. We say
that R is F-finite if it is a finitely generated R-module via the action induced by the
Frobenius endomorphism F : R — R or, equivalently, if R'/? is a finitely generated
R-module. If (R, m, k) is a Z-graded k-algebra, then R is F-finite if and only if k
is F-finite, if and only if [k : k”] < oo. R is called F-pure if F is a pure homomor-
phism, that is, if and only if the map R ® M — R'/? ®, M induced by the inclu-
sion 1 is injective for all R-modules M. The ring R is called F-split if 1 is a split
monomorphism. A local ring or Z,-graded ring (R, m, k) is called F-injective if the
map induced by Frobenius on an(R) is injective for all i € Z. Finally, an F-finite
ring R is called strongly F-regular if for every ¢ € R not in any minimal prime, the
map R — R'/7* sending 1 ~ c!/7* splits for some (equivalently, all) e > 0.

Remark 2.19 We have that R is F-split if and only if R is a direct summand of R'/”*
for some e > 0 or, equivalently, for all e > 0. If R is an F-finite ring, then R is F-pure
if and only it is F-split [62, Corollary 5.3]. Since throughout this survey we assume
that R is F-finite, we use the word F-pure to refer to both.
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Theorem 2.20 (Fedder’s Criterion [36, Theorem 1.12] Let (S,n,Kk) be a regu-
lar local ring, and I C n be an ideal. Then, R =S/I is F -pure if and only if
1PV 1 ¢ alPlfor some e > 0, if and only if 1P : 1 ¢ w!Pl for all e > 0.

Remark 2.21 Assume R is an F-finite regular local ring, or a polynomial ring over
an F-finite field, then Homg(R'/7, R) is a free R'/?"-module [36, Lemma 1.6]. If ®
is a generator (homogeneous in the graded case) of this module as an R'/”*-mod-
ule, then for ideals 7,J C R we have that the map ¢ :=f/7" . & = &(f/7*-), with

f €R, satisfies ¢(J'/7") C I if and only if f1/7" € (IRVP" e JV/P°) or, equiva-
lently, f € (") : J) [36, Lemma 1.6]. In particular, ¢ is surjective if and only if
fUP° ¢ mRYP thatis f ¢ mPl,

Now, assume that R = k[x,, ..., x,]is a polynomial ring and that y : k'/7* — kis

a splitting. Let @ : R'/?" — R be the R-linear map defined by
q)<cl/p"x‘f1/Pc xzd/p”>

_ y(cl/p")x(lal—ﬂe+l)/l’e ,__x((jad_p”+1)/[7“ ifPe|(015 _pe + 1) Vl,
0 otherwise.

We have that @ is a generator of Homg(R'/7*, R) as an R'/"-module [9, Page 22].
The map @ is often called the trace map of R. We point out that, if k is not perfect,
@ depends on y, but this is usually omitted from the notation.

Definition 2.22 [1] Let (R, m, k) be either a standard graded k-algebra or a local
ring. Assume that R is F-finite and F-pure. We define

I(R) :={reR| o(r'/¥) € m for every @ € HomR(Rl/”e,R)}.

In addition, we define the splitting prime of R as Z(R) := (), I(R) and the splitting
dimension of R to be sdim(R) := dim(R/ Z#(R)).

We note that for a homogeneous element r, r & I,(R) if and only if there is a
homogeneous map ¢ € Homg(R'/?, R) such that o(r'/7") = 1.

We are now able to define an important invariant to study singularities in prime
characteristic (see [6] for a survey on this and related invariants). We note that
the definition presented here is not the original one (see [29, Proposition 3.10] for
details).

Definition 2.23 [98] Let (R, m, k) be either a standard graded k-algebra or a local
ring. Assume that R is F-finite and F-pure, and let

b(p®) = max{s € Z,, | m’ ¢ L(R)}.

The F-pure threshold of R is defined by

@ Springer



396 Sao Paulo Journal of Mathematical Sciences (2023) 17:387-429

fpt(R) = lim b

e—00 pe ’

2.6 Local cohomology and Castelnuovo-Mumford regularity

For an ideal I C R, we define the i -th local cohomology of M with support in I
as H;(M) = H‘(C'(f;R) ®r M), where é‘(f;R) is the Cech complex on a set of

generators f =fj,...,f, of I. We note that H;(M) does not depend on the choice
of generators of I. Moreover, it only depends on the radical of I. The cohomo-
logical dimension of I is defined by

cd() = max{i € Z, | Hi(R) # 0}.

We note that, by the construction of the Cech complex, cd(l) < u(I), where u(l)
denote the minimum number of generators of /. Furthermore,

cd(l) < ara(l) = min{u(J) | V7 = V1),

where ara(/) denotes the arithmetic rank of /. We recall that the i-th local cohomol-
ogy functor H;(—) can also be defined as the i-th right derived functor of I';(—),
where I'(M) = {v € M | I"'v =0 for some n € Z,}. If I = m is a maximal ideal
and M is finitely generated, then an (M) is Artinian.

Given a finitely generated Z-graded R-module M, the Castelnuovo-Mumford
regularity of M is defined as

reg(M) = max{a;(M) +i|i € Z,}.

Remark 2.24 If R = Ry[x,,...,x,] is a polynomial ring over R, such that x; has
degree d; > O forevery 1 < i <r, thenreg(R) =r — 2;1 d,.

Proposition 2.25 [23, Theorem 3.5] and [22, Theorem 2.2] Let R=@®,5R,
be a Zgraded Noetherian ring. Let di,...,d, be the generating degrees
of R as Ryalgebra. Let M be a finitely generated Z-graded S-module. Then,
ag(M) < regM) + Z;l(di — 1), where ag(M) denotes the top degree of a minimal
homogeneous generator of M.

If R is reduced with prime characteristic p >0 and M = @leLle is a

pe P
ézw-graded R-module, and we let R, = @, R,. then H}, (M) is a #Z-graded
R-module. Moreover, [H;'e (M)]» is a finitely generated Ry -module for every
neZ, and H;e (M)» =0 for n>0 [11, Theorem 16.1.5]. We define the g;

-invariant of M as

@ Springer



Sao Paulo Journal of Mathematical Sciences (2023) 17:387-429 397

a,(M) = max { Z ‘ [H, (M)]x # 0}
pE + e
if Hl, (M) # 0, and a,(M) = —oo otherwise.

Remark 226 If M is Z-graded and finitely generated, we have that
a(M'/?") = a(M)/p¢ for all i € Z. In fact, H, (M'/P") = H' (M)'/?" since the

functor (—=)!/7* is exact.

3 Castelnuovo-Mumford regularity and depth
3.1 Bounds on Castelnuovo-Mumford regularity

To the best of our knowledge, the first result regarding the Castelnuovo-Mumford
regularity via Frobenious is the bound obtained by Hochster and Roberts [62].

Theorem 3.1 [62, Proposition 2.4] Let S =Kkl[x,,...,x;] be a polynomial ring
with positive grading on the variables, and 1 C S be a homogeneous ideal such
that R=S/I is an F-finite and F-pure ring. Then, a;(R)<0. In particular,
reg(R) < dim(R).

Proof Since R is F-pure, for all i € Z we have that the map induced by Frobenius
on H! (R) is injective, and so is any of its iterations F* : H' (R) — H! (R). If there

exists v € Hin(R) of positive degree 0, then F¢(v) # 0 and it has degree p°8 for every
e = 0. This contradicts the fact that [H] (R)], = 0 for z > 0, since H, (R) is an Arti-
nian R-module. It follows that a,(R) < 0. Since reg(R) = max{a;(R) +i|i € Z},
we have that reg(R) < dim(R) by Grothendieck Vanishing Theorem. O

We point out that the conclusion of Theorem 3.1 also holds for F-injective rings,
as the key element in its proof is the injectivity of Frobenius on local cohomology
modules. In particular, this applies to Stanley-Reisner rings over any field, because
the proof of this result can be reduced to the case of a polynomial ring over a per-
fect field of prime characteristic [60]. As a consequence, we recover a bound for the
regularity of quotient rings by a monomial edge ideal.

Corollary 3.2 Let G be a simple graph on [d], S = Kklx,, ..., x;] be a polynomial ring,
and I; be the monomial edge ideal of G. Then,
reg(S/1;) < max{|W| | W C [d] is independent }.

Proof 1f k is a perfect field of prime characteristic, the claim follows immediately
from Theorems 2.8 and 3.1. The result for any field of prime characteristic follows
by extending to the algebraic closure, as regularity and dimension are not affected
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by this extension. The claim for fields of characteristic zero follows from reduction
to characteristic p [60]. O

Corollary 3.2 was improved by bounding reg(S/I;) with the matching num-
ber of G [47, Theorem 1.5]. For a graph, this numbers is bounded above by
max{|W| | W C [d] is independent }.

Theorem 3.1 result was recently improved by adding a relation with the F-pure
threshold.

Theorem 3.3 [29, Theorem B] Let S = k[x,, ..., x,] be a polynomial ring, and I C S
be a homogeneous ideal such that R = S/I is an F-finite and F-pure ring. Then,
a;(R) < —fpt(R). In particular,

reg(R) < dim(R) — fpt(R).
Proof Let m denote the maximal homogeneous ideal of R. We set
b, =max{¢ € Z | m? ¢ 1,}. Then, there exists f, € mbe, of degree b,, such that

fi,: R(—%) — RYP" gplits, where 1, : R — R/ denotes the natural inclusion.
Then, the induced map

. b ; e
H, (R(=-2)) — H, (R)'/"".
»° "

splits, and so, it is injective. Then,

e

be 1/p°
a;(R) + l? <a(RP) =

By taking limits as e goes to infinity, we obtain that a,(R) + fpt(R) < 0, which
implies that a;(R) < —fpt(R) and thus reg(R) < dim(R) — fpt(R). O

Letd € Z,, and &= {a,,...,a,} € Z% be a subset. We denote by Z,</ the
semigroup generated by <7, i.e.,

2y = {nja; + - +na |ng,..,n €7Zy,}

Let k be an arbitrary field. For each a« € Z,,%/ we consider the monomial
" € k[ff,....5;]. We note that the set {r*|a € Z,,o/} spans the algebra
k[ 1= k[, ..., %] C Ik[tI—', ,t:f] as a k-vector space. Let x, ..., x, be indeter-
minates and consider the k-algebra map

7 Kk, x ] — K 1]

that sends x; to #% for 1 < i < r. Clearly the image of x is the algebra k[.27]. The ker-
nel of z, denoted by 1, is the foric ideal of <7 . The ideal I , is prime and binomial,
i.e., generated by binomials. The variety X, := V(I C k' is the affine toric variety
associated to .27
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Let cone () = R,/ C R< be the cone spanned by .27. The semigroup 2y is
normal if 7,9/ = Z./N cone (). This condition is equivalent to the affine toric
variety X, being normal and to k[.¢7] being integrally closed in its field of fractions
[95, Proposition 13.5].

As an immediate consequence of the previous result, we obtain the following
bound for the regularity of toric ideals.

Theorem 3.4 [95, Theorem 13.14] Let d € Z., and </ C Z¢ a finite set such that
24/ is a normal semigroup and such that I,,C S = k[x,, ..., x,] is homogeneous.
Then,

reg(S/1,) <d—-1.

In particular, 1, is generated in degree at most d.

Proof Let R = S/I,= k[2/]. We first assume that k has prime characteristic. We
note that dim(R) = d. Since R is a direct summand of a polynomial ring [56, Lemma
1], it is an strongly F-regular ring [58, Theorem 3.1]. Since R is an strongly F-regu-
lar ring of positive dimension, fpt(R) > 0. Then, by Theorem 3.3, we have that

regg(S/1,) < d — fpt(R).
Hence, reg¢(S/1,) < d — 1. As a consequence,
reg(l,) =regy(S/1,)+1<d,

and so, I, is generated in degree at most d. The result in characteristic zero follows
from reduction to prime characteristic [60]. O

Methods in prime characteristic have also played a role in classifying graphs
whose binomial edge ideals are Gorenstein. We first need a result that guaran-
tees that the singularities defined by an ideal with a squarefree Grobner defor-
mation are at least F-injective.

Theorem 3.5 [42, Theorem 5.2] and [68, Corollary 4.11] Let S = k[x|, ..., x;] be a
standard graded polynomial ring over a field, k, of prime characteristic. Let I be a
homogeneous ideal and < a monomial order such that in_(1) is squarefree. Then, S/I
is F-injective.

Corollary 3.6 Let G be a simple graph on [d], S = kx|, ..., x4, ¥1, ..., ¥4], and J; be
the binomial edge ideal of G. Then, S/J is F-injective.

We are ready to characterize the graphs that give Gorenstein ideals.
Theorem 3.7 [42, Theorem A] Let G be a connected graph on [d],

S=klx),...,x5 ¥, -.., ¥4, and J; be the binomial edge ideal associated to G. If
S/J g is Gorenstein, then G is a path.
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Proof It suffices to show that reg(S/J;) = d — 1[66, Theorem 3.4]. We first assume
that k has prime characteristic. We have that S/J; is F-injective by Theorem 3.5.
Since S/J is a Gorenstein ring, we have that S/J; is also F-pure [36, Lemma 3.3].
We have that JKd is a minimal prime over J,;, because G is connected [50, Corol-
lary 3.9]. Note that Ji is the ideal of minors of a 2 X d generic matrix. In particu-
lar, since §/J;; is equidimensional, we have that dim(S/J;) = dim(S/Jx ) =d + L.
Then,

reg(S/J;) = dim(S/J ;) — fpt(S/J) > (d+ 1) =2 =d — 1,

because fpt(S/J;) < pt(S/Jx ) = 2 [29, Theorem 4.7]. The same inequality in char-
acteristic zero follows from reduction to prime characteristic [60]. O

3.2 Bounds on depth

The Peskine-Szpiro Vanishing Theorem is an important result in local cohomol-
ogy that only works in prime characteristic.

Theorem 3.8 [87, Proposition 4.1 and remark afterwards] Let S be a reg-
ular local ring in prime characteristicc and 1 CS be an ideal. Then,
cd(l) < dim(S) — depth(S/I).

The proof of Theorem 3.8 follows from the flatness of Frobenious for regular
rings in prime characteristic. The same result can be obtained for monomial ide-
als in § = k[x,, ..., x,], without any assumptions on k. The proof is similar to
the one of Theorem 3.8 using in the Frobenous-like map of k-algebras ¢ : § — §
defined by x; — x™ for some m > 1.

Corollary 3.9 Let S = k[x,, ..., x;] be a polynomial ring over any field k, and I C S
be a monomial ideal. Then, cd(I) < dim(S) — depth(S/I).

From Theorem 3.8, Banerjee and the third author showed a relation between
the projective dimension of a binomial edge ideal and the vertex connectivity,
k(G) of the underlying graph.

Theorem 3.10 [4, Theorem B] Let G be a simple connected graph on [d], and let S
beKklx,....x5 ¥, ..., ¥4l If G is not the complete graph, then

depth(S/Jg) < d +x(G) -2

Proof sketch From the primary decomposition of J; [50, Theorem 3.2] and Brod-
mann and Sharp’s [11, Theorem 19.2.7] extension of Grothendieck’s Connectedness
Theorem [46, Exposé XIII, Théoreme 2.1], we have that

cd(S/Jg) = d+ x(G) —2.

Then, the result follows from Theorem 3.8. O
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3.3 Serre’s conditions and h-vectors

In this subsection we discuss a relation between Serre’s condition (S,) and h-vec-
tors for F-pure rings. We start with some preliminary definitions.

Definition 3.11 Let k € Z,. A ring R satisfies Serre’s condition (S, ) if

depth(R,) > min{dim(R),k}.

We note that a ring is Cohen-Macaulay if and only if it satisfies (S;) for
k = dim(R) (or equivalently, for every k € Z,;). We recall that the condition
(S,) is related to equidimensinality [48, Remark 2.4.1], normality [45, Theo-
rem 5.8.6], and connectedness [59].

Definition 3.12 Let S = k[x,, ..., x,] be a standard graded polynomial ring, I C S be
a homogeneous ideal, and R = S/I. Suppose that r = dim(R). The h-vector of R is
defined as the vector A(R) = (hy(R), ..., h(R)) € Z | that satisfies

2

ho(R) + hy(R)t + ... + hy(R)*
1=y '

Y dim(R,)" =

neZs,

We note that if R[A] is a Stanley-Reisner ring then 2(A) = h(R[A]) (see Defi-
nition 2.2). If R is a Cohen-Macaulay ring, then the h-vector of R is formed by
non-negative integers. This can be shown by going module a regular sequence of
generic linear forms, after reducing to the case in which k is infinite.

The following result relates Serre’s conditions and /-vectors.

Theorem 3.13 [78, Theorem 1.1] Let A be a simplical complex on [d], and R[A] its
corresponding Stanley-Reisner rings. If R[A] satisfies Serre’s condition (S,,), then
h(A), ..., h,(A) =2 0.

Murai and Terai proved the following technical result, which plays a impor-
tant role in the proof of Theorem 3.13.

Theorem 3.14 [78, Theorem 1.4] Let S = k[x,, ..., x;] be a standard graded poly-
nomial ring, I C S be a homogeneous ideal, and R = S/I. Let Qg denote the graded
canonical module of S. I]‘reg(Extg_i(R, Q) <i—mforeveryi=0,...,d—1, then
h(R),...,h,(R) 2 0.

The bound on the regularity of Extg_i(R, €Qy), as in Theorem 3.14, was proven
using squarefree modules [106], and Hochster’s Formula [57]. Since Stanley-
Reisner rings are good representative of the class of F-pure rings, it is natural to
ask whether Theorem 3.13 holds for the class. This was recently showed by Dao,
Ma, and Varbaro.
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Theorem 3.15 [26, Theorem 1.2] Let S = k[x,, ..., x;] be a standard graded poly-
nomial ring, and I C S be a homogeneous ideal such that R = S/I is F-finite and
F-pure. If R satisfies Serre’s condition (S,,), then h (A), ..., h,,(A) = 0.

The proof of Theorem 3.15 uses Frobenius actions on Extg_i(R, ) with ideas
in the spirit of Theorems 3.1, and 3.14.

4 Symbolic powers

Symbolic powers have been the subject of intense research. We refer the inter-
ested reader to a recent survey on this subject [24].

Definition 4.1 Let R be a Noetherian domain. Given a radical ideal I C R, its n-th
symbolic power is defined by

1™ = ﬂ ("R, NR).
peming(R/I)

For many purposes, one can focus on symbolic powers of prime ide-

als. In fact, if I = p, Nn... N p, is the primary decomposition of I, we have that
n) — (n)
™ =p"n...np]
component of p”.
We now recall the characterization of of symbolic powers with differential

operators.

. We note that if p is a prime ideal, then p®™ is the p-primary

Theorem 4.2 (Zariski-Nagata Theorem [109] and [81] If R is a polynomial ring over
a perfect field, and I C R is radical ideal. Then,

1" = feR‘ ;i&---iﬂ el Ya+..a,<n—1
“1! ...ad! axll axdd

One can interpret the n-th symbolic powers as the function whose vanishing
order along V(I) is n, as the following theorem makes precise.

Theorem 4.3 [34, Theorem] Let I C S = Kk[x,, ..., x,] be a radical ideal. Then,

I('l) - ﬂ mn
me&MaxSpecR, ICm

From the definition it follows that I" C I™ for every n. In fact, they are equal
for radical ideals generated by a regular sequence. This is true in particular for
ideals generated by variables in polynomial rings. In general, symbolic powers
do not coincide with the ordinary powers. For instance, if I = (xy, xz,yz), then
xyz € I® \ I?. However, it is possible to find a uniform constant, ¢, such that
I C I" for smooth varieties over C, as the following theorem makes explicit.
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Theorem 4.4 [31, Theorem A] Let p be a prime ideal of codimension h in the coordi-
nate ring of a smooth algebraic variety over C. Then, p!™ C " for all n > 1, where
h = height(p).

Hochster and Huneke extended the previous result to regular rings containing
a field using tight closure arguments. Another slightly different proof was done in
a recent survey [24, Theorem 2.20]. We recall that the bigheight of a radical ideal
is the largest height of its minimal primes.

Theorem 4.5 [61, Theorem 1.1] Let R be a regular ring of prime characteristic p. If
1 is a radical ideal of bigheight h, then I C I" for alln > 1.

A key element in the proof of the previous result is that for alle € Z
1 ¢ 7] ¢ IP", 4.1

where the first containment follows from the Pigeonhole Principle. This is
because Equation 4.1 can be verified locally at every minimal prime of /, and if
a, + ... a;, = hp° then there exists i such that a; > p°. Then, in prime characteristic p,
the uniform containment for the particular case that n = p° follows from this princi-
ple. In fact, Equation 4.1 can be refined further to obtain that

Jh@ =D+ C Il c ) 4.2)

for every e € Z. This motivated the following conjecture.
Conjecture 4.6 (Harbourne) Let R = k[x|, ... ,x;]and I C R be a radical homogene-
ous ideal of bigheight h. Then
Jh=D+1) = .
We point out that this is related to a question raised by Huneke regarding whether
p® C p?, where p is a prime ideal of codimension 2 in a regular local ring.

Conjecture 4.6 was recently proven to be false in general [30]. However, the con-
jecture is true for special classes of ideals.

Proposition 4.7 [5, 8.4.5] Let R = k[x,, ... ,x;]and I C R be a squarefree monomial
ideal of bigheight h. Then,

Jhe=D+D)
foreveryn € Z,,

Proof We fix n € Z,. We consider the Frobenius-like map ¢» : R — R of k-algebras
defined by x; — x!. We note that ¢ is a faithfully flat morphism. We note that for an
ideal generated by variables J = (x; , ..., x; ), we have that J* C ()R =: J" by
the Pigeonhole Principle. Let p,, ..., p ; be the minimal primes of /. Then,
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I(h(n—l)+l) — (pl N N p_)(h(n—l)+l)
..np
— p(lh(n—])+l) n...n pj(‘h(n—l)+l)
_ [n]
=p/ n..ny,

= n...op
=" c

O

Following the idea that Stanley-Reisner rings are a good representative of
F-pure rings, one may wonder if Proposition 4.7 also holds for ideals defining
F-pure rings. This was showed by Grifo and Huneke.

Theorem 4.8 [44, Theorem 1.2] Let R be a regular ring and I be an ideal of
bigheight h such that R/l is F-pure. Then,

Jn=D+D) =

foreveryn € 7,

Proof We can assume that R is a regular F-finite local ring, with maximal ideal n.
We fix n € Z,,. Let f € " : I, and note that f7"=D*D  JIP"] Then we have
that

f(l(h(n—1)+1))[p“] gf(l(h(n—nﬂ))p”
C (ﬂ(h(n—])+l)) (I(h(n—1)+1))1’”—1
c 1) 1<h(n—1>+1>)1’”—1_
We now note that, for e > 0,

(10D ¢ gD+t -1)
C [ =Dn=Dhn=1)

c (1% [61, Theorem?2.6]
C (IW])"_l by Theorem 4.5.

Thus,
f(1<h(n—1>+1>)[l’el C ([[pf])” = (",
Since f was any element inside /”°! : I, we conclude that

R R e IR (e R PR (UL R
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By way of contradiction we assume that /#*"=D+D ¢ " Then, [ : [H0=D+D C g
It follows that 11 : [ C (I” : I(h(”")“))[p ' w* for some e > 0, and this contra-

dicts Fedder’s Criterion (Theorem 2.20). O

It is not easy to find conditions under which symbolic and ordinary powers coin-
cide. Even for monomial ideals this has been a difficult task. There is a important
conjecture in optimization theory due to Conforti and Cornuéjols [19], which was
translated into the context of symbolic and ordinary powers by Gitler, Villarreal and
others [40, 41]. This conjecture is known as the Packing Problem (for more details
see a recent survey on this subject [24, Sect. 4.2]). We now state one of the most sig-
nificant results in this direction.

Theorem 4.9 [90, Theorem 5.9] Let G be a simple graph on [r], S = Kklx|, ..., x,],
and 1 be the monomial edge ideal of G. Then, IE?) = I}, for every n € Z, if and
only if G is bipartite.

Aiming to study the Packing Problem the second and third authors provide a finite
condition to test if ordinary and symbolic powers coincide for monomial ideals.

Theorem 4.10 [77, Theorem 4.8] Let I C S = K[x,, ..., x,] be an squarefree mono-
mial ideal generated by u elements. Then, I = I" for every n € Zs,, if and only if
I = I" for every n < %

Theorem 4.10 was proven using Frobenius-like morphisms. From this criterion,
we obtain one for certain homogeneous ideals. For this, we first need to recall a
result by Sullivant.

Proposition 4.11 [96, Proposition 5.1] Let k be a perfect field, S = k[x, ... ,x;]1 be a
polynomial ring, and I C S be a radical ideal. Suppose that there exists a monomial
order < such that in _(I) is a squarefree monomial ideal. Then,

in (1) = (in.(1)"

foreveryn € Z,,.

We note that Sullivant stated the previous result for algebraiclly closed fields, but
the same proof works for perfect fields.

Theorem 4.12 Let k be a perfect field, S = k[x,, ..., x,;] be a polynomial ring, 1 C S
be a radical ideal, and n € 7. Suppose that there exists a monomial order < such

that in_(I) is a squarefree monomial ideal. If(in<(1))(n) = (in<(1))n, then I™ = .

Proof We have that
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(in.(D)" Cin (") Cin (™) = (in<(1))(n), 4.3)
where the containment in the middle follows from Proposition 4.11. Since the two
ideals in the extremes in Equation 4.3 are equal, we have that in_(/") = in <(I(")).
Since I" C I™, we conclude that I" = [, O

Theorem 4.12 gives a different proof that the symbolic and ordinary powers coin-
cide for binomial edge ideals of closed graph [50], which was first shown by Ene
and Herzog [35].

Definition 4.13 A graph G is closed if one can label its vertices with {1, ..., n} such
that if G has edges {i,j} and {k,/} with i <j and k < [, then {j,/} is also an edge if
i =k,and {i,k}is also an edge if j = [.

Corollary 4.14 [35, Theorem 3.3 and Corollary 3.5] Let G be a simple graph
on [r], S=Xklx,....x.,y,....¥,] be a polynomial ring, J; be the binomial
edge ideal associated to R, and < be the lexicographical monomial order. If
(in<(JG))(”) = (in<(JG))n for every n € 7, then Jg) = Ji, for every n € Z,. In
particular, if G is a closed graph, then ng) = J¢ foreveryn € Z,,

Proof This follows from Theorem 4.12, because in_(J;) is a radical ideal [50, Theo-
rem 2.1]. The claim about closed ideals follows from two facts. First, there exists
a lexicographical order such that in_(J/;) is a monomial edge ideal associated to a
bipartite graph [50, Theorem 1.1.]. Second, the ordinary and symbolic powers coin-
cide for monomial edge ideals of bipartite graphs by Theorem 4.9. a

Theorem 4.15 Let k be a perfect field, S = k[x, ... ,x,]1 be a polynomial ring, I C S
be a radical ideal and < be a monomial order. Suppose that in_(I) is a squarefree
monomial ideal generated by u elements. If(in<(1))(n) = (in<(l))nf0r every n < g,

then I = I" for every n € Zs,,

Proof This follows from Theorems 4.10 and 4.12. O

5 Asymptotic growth of regularity and depth of graded families
of ideals

Throughout this section we assume R is a Noetherian ring and / C R is an ideal,
which is homogeneous in the graded case. We begin with the following definition.

Definition 5.1 A sequence of ideals .# = {1, },e7_ in R is a graded family if I, = R,
and I,1, C I, for every m,n € Z,. A graded family is a filtration if I,,; C I, for

m'n = “n+m
every n € 7y,
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We include below some examples of graded families of ideals. For more informa-
tion see [32] and [64].

Example 5.2 The following are examples of graded families of ideals.

1. Regular powers. The powers of the ideal /, i.e., {1" }nGZ>0'
2. Integral closures: An element y € R is integral over [ if there exists an integral
relation y" +a,y"! + --- + a, = 0 for some a; € V. The integral closure of I,

denoted by 1, is the ideal generated by all the integral elements over /. The integral
closures of the regular powers of /, i.e., (I }nEZ form a graded family.

3. Colon ideals: Given another ideal J in R, the colon ideals {(I" :p J"°)}nGZ
form a graded family. In particular, if (R, m,k) is local, the satumnons
In= {d" :xgm )}nez form a graded family of ideals.

4. Symbolic powers: The symbolic powers of I, I? = ﬂ (I"R, NR), form a

pEmMIn(/)
graded family {I"},7_ (cf. Sect. 4).

5. [Initial ideals: If R is a polynomial ring over a field, and 7 is a homogeneous ideal,
the initial ideals {in_(/") },,€Z>0 with respect to any monomial order (cf. Sect. 2.3)
form a graded family.

6. Ideals arising from valuations: If R is an integral domain (rank one) valu-
ation on R is a function v : R\ {0} — Ry, such that v(xy) = v(x) + v(y) and
v(x +y) = min{v(x), v(y)} for every x, y. For each n € Z,, we define the ideal

I,(v) = {x € R | v(x) > n}. The ideals {In(v)}nEZ>0 form a graded family.

Given a graded family .#, we can define the following graded ring whose
components are the members of .7.

Definition 5.3 Let .= {I,},c  be a graded family of ideals. The Rees algebra of
J is the graded ring () = @,z I,1" C Rl1].

It is an active research topic in commutative algebra to study the asymptotic
behavior of homological invariants of graded families. In the following problem
we include some of these invariants.

Problem 5.4 Assume (R, m, k) is Noetherian local, or Zy-graded over a local ring
Ry, my) with m =m, @, R,. Given a graded family of ideals .¥'={I,},c7 .
study the asymptotic behavior of the following sequences. .

1. In the graded case, the regularities {reg(/,)},ez_-

2. The depths {depth(R/In)}neZ>0; equivalently, the projective dimensions
{pd(R/In)}nEZ>0 if R = k[x,, ..., x,]is a polynomial ring.

In the following subsections we discuss each of the parts of this problem in more

detail, including its history, the contributions made using positive characteristic
methods, and some open questions.
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5.1 Regularities

In this subsection R is a Noetherian Z-graded ring over a local ring (R,, m,)
with m = m, @, R,,. The study of regularities of graded families of ideals began
with the work of Chandler [14] and of Geramita-Gimigliano-Pitteloud [39] where
it was shown that over a polynomial ring R and homogeneous ideal I, once has
reg(I") < nreg(l) for every n € Z, provided dim(R/I) < 1. This fact was conjec-
tured to be true for arbitrary 7 [14, Conjecture 1]. This conjecture was partially
solved by Swanson who showed the sequence {reg(In)},,€Z>0 is bounded by a linear
function [97, Theorem 1]. Although Chandler’s conjecture in its original form seems
to be open, the sequence of regularities was shown to coincide with a linear function
for n sufficiently large. We include below a more general version of this result.

We recall that for an R-module M, an ideal J C I is a M-reduction of I if
I"'M = JI"M for n > 0. If d(N) denotes the maximal degree of a generator in a
minimal homogeneous generating set of the R-module, M, we define

o) :={d(J) | J is an M-reduction of /}.

Theorem 5.5 [20, 67, 99] Let R = Ry[R,] be a standard graded Noetherian ring,
I C R a homogeneous ideal, and M a finitely generated graded R-module. Then there
exists an integer e such that

reg(I"M) = py,(Dn + e

forn> 0.

Remark 5.6 The version of Theorem 5.5 with R a polynomial ring over a field and
M = R was shown idependently by Kodiyalam [67] and Cutkosky, Herzog, and
Trung [20]. The version presented here was shown by Trung and Wang [99].

The following statement follows directly from Theorem 5.5. We recall that
a (numerical) quasi-polynomial on Z., is a function f : Z,, — Q such that
there exists a € Z,,, and polynomials p,(x) € Q[x] for i =0,...,a — 1 such that
f(n)=p,m)ifn=1i (mod a).

Corollary 5.7 Let R and M be as in Theorem 5.5, and let .9 = {I,},,_ be a graded

family of ideals. Assume the Rees algebra %(.9) is Noetherian, then reg(I"M) agrees
with a linear quasi-polynomial for n > 0.

Proof Since %(.#) is Noetherian, threre exists c such that I, = I" for every n € Z,,
i.e., the subalgebra A = @,z 1., € Z(7) is standard graded (see e.g., [43, Lemma
13.10] or [S1, Theorem 2.1]. Moreover, each M; = @,¢/,,,;M for j=0,...,c =1
is a finitely generated A-module. The result now follows by applying Theorem 5.5

withI=ICandM=M_l-forj=O,...,c—1. O
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We are not aware of a counterexample in the literature to the following question.

Question 5.8 Let .# = {I,},c7_ be any of the graded families in Example 5.2. Does
the limit :

. reg(l,)
lim

n—oo n

5.1
exist?
Remark 5.9 The following facts provide some evidence that supports this question.

1. Question 5.8 was asked for symbolic powers and initial ideals of powers of homo-
geneous ideals in a polynomial ring R by Herzog, Hoa, and Trung [52]. In this
same paper, the authors answered affirmatively this question for initial ideals of
powers of I provided dim(R/I) < 1. Previously, Chandler had shown the limit
exists for symbolic powers of ideals 7 such that dim(R/I) < 2 [14].

2. Limit (5.1) was shown to hold for symbolic powers of squarefree monomial ide-
als by Hoa and Trung [55, Theorem 4.9]. Since the Rees algebra of the symbolic
powers of arbitrary monomial ideals is Noetherian [51, Theorem 3.2], it follows
from Corollary 5.7 that for I monomial the sequence {reg(/ (n))}n€Z>0 eventually
agrees with a linear quasipolynomial for n > 0. However, the sequence is not
always polynomial if one considers non-squarefree monomial ideals [54, Example
3.10].

3. Incharacteristic zero, using representation theory techniques, Raicu showed that
for symbolic powers of generic determinantal ideals, the sequence {reg(/") Ynez.,
is eventually linear and then limit (5.1) exists. Also in characteristic zero, the
same result was shown for ideals of Pfaffians by Perlman [86]. We recall Raicu’s
result below and explain the ideas behind the proof of the analogue result in posi-
tive characteristic [28].

4. For integral closures of homogeneous ideals in a polynomial ring, Cutkosky,
Herzog, and Trung showed that {reg(l_”)},,EZZO is eventually linear [20, Corollary
3.5]. More generally, if R is an analytically unramified domain, the same result
holds [99, Corollary 3.4].

5. Limit (5.1) holds for {reg(1~”) }nelzo’ saturations of powers of homogeneous ideals
in a polynomial ring [21, Theorem 3.2].

In fact, the following weaker question also seems to be open.

Question 5.10 Let . = {,},c  be any of the graded families in Example 5.2. Is

the sequence {reg(/,)},cz_, bounded by a linear function?

We now describe some important features of the new notions of F-pure filtra-
tion and symbolic F-purity [28]. The development of these notions is motivated
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by the wish to prove the positive characteristic analogue of following result by
Raicu.

Theorem 5.11 (Raicu [88]) Let X = (x;;) be an mXr matrix of variables with
m 2 r and let I, C C[X] be the ideal generated by the t-minors of X for some integer
0<t<r.Then forn > r— 1we have reg(lt(")) = tn. In particular,

reg(1”)
lim —— =+
n—o0o n
We would like to point out that this theorem has recently been extended to poly-
nomial rings over fields of any characteristic also in an upcoming book of Bruns,
Conca, Raicu and Varbaro [12].
We now include the definition of the aforementioned new notions.

Definition 5.12 Assume R is a F-finte and F-pure ring of characteristic p > 0. We
say that a filtration .# = {I,} ez, 18 F-pure if there exists a splitting ¢ : R'/P R
such that ¢((1,,,,1)'/?) C 1,,, for every n € Z,,. An ideal I is symbolic F-pure if the

symbolic powers {I™},,, form an F-pure filtration.

Remark 5.13 We note that if the filtration .%'= {1, },c_ is F-pure, the ideal /; must
be F-pure. ]

In the following example we include a complete list of the classes of ideals from
combinatorial commutative algebra that are known to be symbolic F-pure.

Example 5.14 Let k be an F-finite field of characteristic p > 0. The following classes
ideals are symbolic F-pure; for details and proofs we refer the reader to a recent pre-
print [28].

1. Squarefree monomial ideals I C k[x, ..., x,] a squarefree monomial ideal.
Generic determinantal For X = (x;;) an m X r generic matrix of variables, the
ideal 1,(X) C k[X] generated by the ~-minors of X.

3. Symmetric determinantal ForY = (y; ,j) an m X m generic symmetric matrix, i.e.,
Yij = Vi for every 1 < i,j < m, the ideal /,(Y) C k[Y] generated by the #-minors
of Y.

4. Pfaffians For Z = (z;;) an m X m generic skew symmetric matrix, i.e., z;; = —z;;
foreveryl <i<j<m,andz;=0foreveryl < i< m, the ideal PZ,(Z) c Ik[Z]
generated by the 2¢-Pfaffians of Z.

5. Hankel determinantal Let wy, ..., w, be variables. For an integer j such that
1 <j < d, we denote by W, the j X (d + 1 —j) Hankel matrix, which has the fol-
lowing entries
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Wi Wy e Wy

W2 W3 cee
W,=|wsy o o

W] cee cee Wd

For1 <t < min{j,d + 1 —j}, the ideal It(Wj) C k[w,, ..., w,] generated by the
t-minors of W;. The ideal /,(W;) only depends on d and ¢, that is, I,(W)) = I(W,)
foreveryt<j<d+1-1t

Binomial edge ideal Let G be a closed connected graph
with vertex set [r]={l,...,r}, the binomial edge ideal
I;= (xiyj — X | {i,j} is an edge of G) C k[x,, ..., x,,¥,,...,y,] provided it is
equidimensional.

Nearly commuting matrices Let A and B be r X r generic matrices in disjoint sets
of variables. For r =2 or 3, let I be the ideal generated by the entries of AB — BA
and J the ideal generated by the off-diagonal entries of this matrix. The ideals /
and J are symbolic F-pure.

The following are families of F-pure filtrations of monomial ideals. We refer the

reader to a recent preprint for more details [28].

Example 5.15

1.

Ideals arising form monomial valuations A valuation on a polynomial ring

R = Kk[x,, ..., x,;]is (normalized) monomial if there exists a vector f € Zio such
that v(x*) = « - § for any monomial x%, and for any polynomial f = Y ¢;x%, with
¢; € knonzero, one has v(f) = min{v(x*)}. If v, ..., v, are monomial valuations

and I, =1,(v;) N --- N1, (v,) for every n, the sequence {I, }"Ezz(] is an F-pure filtra-
tion of monomial ideals. Examples of filtrations arising this way include, rational
powers of monomial ideal and symbolic powers of squarefee monomial ideals
[28, Example 7.3].

Initial ideals of symbolic powers of determinantals Following the notation
from Example 5.14 (2)—(5), we have {in<(1,(X)(”))}n€Z>0 with p > min{t, r —t},
{in<(P2,(Z)(”))}nEZZO with p > min{2t,r — 2t}, and {in<(It(‘/Vj)(”))}nEZZO with

p > min{t, r — t} are all F-pure filtrations.

The importance of these new definitions to the study of regularities can be sum-

marized as follows. We refer to Sect. 2.6 for the definition of a-invariants.

Theorem 5.16 [28] Assume R is as in Definition 5.12 and that the filtration

I

1.

= {1, } ez, is F -pure, then

ai(I,) = p°a;(I; ny) for everyn, e € Z;yand 0 < i < dim(R/1I,).
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2. If #(F)is Noetherian, the limit lim rez,nﬂ exists.

n—oo

We obtain the following corollary.

Corollary 5.17 [28] Assume R is as in Definition 5.12. If I is as in Example 5.14 (1)—
(5), the limit

_ reg(I™)
lim —=

n—oo n

exists.

The F-purity of a filtration .#' = {I,},c,_ implies that the Rees algebra Z(.9)

and associated graded algebra gr(9) = @,¢7_1,/I,, have nice singularities.
Indeed, if .7 = {In},,ez>0 is F-pure then Z(.%) and gr(.#) are F-pure [28, Theo-
rem 4.7]. For the determinantal ideals in Example 5.14 (2)-(5) better results are
available: in some cases these algebras are strongly F-regular and the Rees alge-
bra Z(I) = ®nez>01"f" is F-pure [28, Sect. 6].

For filtrations of monomial ideals in arbitrary characteristic, we can use Frobe-
nius-like maps to obtain similar conclusions for the regularity of these filtrations
[70, 77]. We now include a slightly more general version of the known results and
show some applications to the study of regularities. In the following results we
do not assume k is necessarily of positive characteristic and we use the following
notation.

Let R = k[x|, ...,x;] be a polynomial ring over an arbitrary field k. We recall
a valuation v on R is monomial if V(Za Agx*) = min{v(x*) | 4, # 0}. In this case,
there exists w € @io such that v(x*) = w - a. We say that the monomial valuation
v is normalized if w € Zio. We note that if v is a monomial valuation, the ideals

I,(v) for n € Z are all monomial.
1/m

Let me Z,, and set Rl/’”=k[x}/m,...,xd ]. We note that R C R/™ We

denote by I'/™ the ideal of R'/™ generated by {f'/" | f € I monomial}.

Definition 5.18 For m € Z,, we define the R-homomorphism ®F : R'/™ — R
induced by

Roan _ x¥/™ o = 0 (mod m);
() = { 0  otherwise. ’
We note that <1)§1 is a splitting and thus R is a direct summand of R'/".

Lemma 5.19 Let v = vy, ---, v, be normalized monomial valuations on R. For each
n € Z we define the monomial ideal

Lw=Lv)n-nlLv)={feER|v(f)=2nforl <i<r}.
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Then
DR (L g ™) = 1,1, (V)

foreveryn € Z,p,m € Zy, and1 <j<m.

Proof Fix m € Z,,. For each1 <i < rand n € Z, we have 1,(v,) € (1,,,,(v,))'/™ and
thus

LW =L, (vp)n 01 (v) € Tppp,(v) NN I(n+l)m(vr))l/m
=L W)'"

It follows that 1, € ®F ((Z,,,)"/™) for every 1 <j < m.

Fix 1 <i<rand1<j< m. We note that (Inmﬂ(vi))l/"“ is spanned as a k-vec-
tor space by {(x")'/™|v,x*) > nm+j}. Let ()™ € (I, ;(v)'/™ such that
R ((x)1/m) # 0, then a/m € Zio and v,(x*) > nm +j. Since v;(x*/™) > n + iand ”

is normalized, we must have v;(x*/™) > n + 1 and then @R (x)!/™) € 1,,,(v;) as we
wanted to show. Finally, we have

OF (s (W)™) € BF (s ) ™) 1 oos 0 OF (L (v )™
< ]n+1(vl) N--N In+1(vr) = [,H_](!).

O

Example 5.20 We note that well-studied filtrations of monomial ideals appear as
{I, W}z, as in Lemma 5.19. Examples of these are:

1. Symbolic powers of squarefree monomial ideals. In this case, the valu-
ations v; correspond to the minimal primes of the squarefree monomial
ideal 1. That is, if I = Q, n--- N Q, is the prime decomposition of I, then
vi(f) =max{n € Z,, | f € O} forl <i<r.

2. Rational powers of monomial ideals. In this case, the valuations v, are suitable
multiples of the Rees valuations of the given monomial ideals [70, Proposition
4.4].

We are now ready to present the result on the regularities of the filtrations
{In(z)}nEZZO'

Theorem 5.21 Let R = Kk[x|, ... ,x;] be a polynomial ring over an arbitrary field k.
Letv = vy, -, v, be normalized monomial valuations on R and for eachn € Z, let
I,(v) be as in Lemma 5.19. Then,

. ad,v) > mai(I[q(g))for everyn,m € Z,,and 0 < i < dim(R/1,(v)).
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2. The limit }j, ehW) exists.

In particular, this result holds for the ideals in Example5.20.

Proof The proof of (1) follows as the one for symbolic powers of squarefree mono-
mial ideals [77, Theorem 3.4]. For part (2), we note that if ¥ = {In(!)}nez>o» then
Z(.#) is Noetherian [64, Corollary 9.2.1], [51, Theorem 1.1, Corollary 1./2] and
then, again, the proof follows as the one for symbolic powers of squarefree mono-
mial ideals [77, Theorem 3.5]. O

5.2 Depths

In this subsection (R, m, k) is a Noetherian that is either local, or an Z-graded ring
over a local ring (R, my) withm = m; @, R,,.

We now turn our attention to the sequence of depths {depth(R/In)}nEZZO of a
graded family of ideals. The first result in this topic is the celebrated result by Brod-
mann [10], who showed that the sequence of depths stabilizes for the regular powers
of an ideal 1. We include below the statement of this theorem. We recall that the
analytic spread of I, denoted by £(I), is the Krull dimension of its fiber cone, i.e.,
the graded algebra F(I) = @,z I"/mlI".

Theorem 5.22 (Brodmann [10] Let I C R be an ideal which is homogeneous in the
graded case. Then the limit lim depth(R/I") exists. Moreover,

n—00

lim depth(R/I") = min{depth(R/I")} < dim(R) — ().

Theorem 5.22 generated a new line of research, where several authors have stud-
ied the conditions that imply the limit of depths of the ideals in a graded family
exists. We ask the following question. In Remark 5.24 we include details of what is
known about this question.

Question 5.23 Let ¥ = {/,},c7_ be any of the graded families in Example 5.2.
When does the limit :

lim depth(R/I,) (5.2)
exist?
Remark 5.24 We include some comments on Question 5.23.

1. Assume R is analytically unramified. Since the Rees algebra of the filtration of
integral closures {I_n}n€Z>0 is module-finite over Z(I) = ®,ez, " [64, Corollary
9.21], it follows that the limit lim,,_, depth(l_") exists [49, Theorem 1.1].

2. The existence of limit 5.2 for symbolic powers of squarefree monomial ideals
follows from methods due to Hoa and Trung [55]. A slightly more general version
was shown by Nguyen and Trung [82, Thoerem 3.3].
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3. Given a graded family . = {I, }nez>0, we note that if Z(I) is Noetherian, then the

sequence {depth(/,)},cz_, is eventually periodic [49, Theorem 1.1].
4. A recent remarkable result of Nguyen and Trung shows that for any sequence
{a,},s that is periodic for n > 0, there exists a homogeneous ideal / such that

depthR/I™ = a, for every n > 1[82]. In particular, limit (5.2) may not exist.
The following result is our main contribution to Question 5.23.

Theorem 5.25 [28] Assume R is F-finte and F-pure ring of characteristic p > 0 and
that the filtration %= {I,},¢z_ is F-pure, then

1. depth(l,) < depth(I[»\) for every n, e € Z,,
2. IfZ(9)is Noetherian, the limit lim depth(l,) exists and is equal to min{depth(Z,) }

Thus, as it was the case for regularities, we obtain the following corollary.

Corollary 5.26 [28] Assume R is as in Definition 5.12. If I is as in Example 5.14 (1)-
(5), the limit

lim depth(R/1,)
exists and is equal to min{depth(Z,)}.

Using the splitting introduced in Definition 5.18, we obtain the following
result in arbitrary characteristic.

Theorem 5.27 Let R = K[x, ... ,x,] be a polynomial ring over an arbitrary field k.
Let v = vy, -+, v, be normalized monomial valuations on R and for each n € Zy let
L,(v) be as in Lemma 5.19. Then,

1. depth(Z,(v)) < depth( [31(!)) forevery n,m € Z,

2. The limit lim depth(R/I,(v)) exists and is equal to min{depth(R/I,(v))}

In particular, this result holds for the ideals in Example5.20.

Proof We note that if .= {]n(!)}neZ>0’ then Z(.#) is Noetherian [64, Corollary
9.2.1], [51, Theorem 1.1, Corollary 1.2]. The proof now follows similar to the case
of F-pure filtrations [28, Proposition 4.9 and Theorem 4.10]. O

We obtain the following corollary.
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Corollary 5.28 With  the notation in  Theorem 527 we  have
depth(/,(v)) > depth(/,(v)) > depth(/3(v)).

6 Injectivity of maps between Ext and local cohomology modules

Throughout this section, k denotes a field, and S = k[x,,...,x;] is a polynomial
ring over k. Unless otherwise specified, we intend S to be standard graded, that is
deg(x;) = 1 for all i. Mustatd proved the following result about maps between Ext
and local cohomology modules for Frobenius-like powers of squarefree mono-
mial ideals:

Theorem 6.1 [79, Theorem 1.11 Let 1 CS be a squarefree monomial ideal.
Given a minimal monomial generating set my,...,m, of I, for any n € Z_, let
1" = (m?, ..., m") be its n-th Frobenius-like power. The natural map

Exti(S/1", S) - HI(S) = Jim Exti(S/19,$)
is injective for alln € Z yand alli € Z.

Motivated in part by this result and by the notion of F-full rings in prime charac-
teristic the first author, together with Dao and Ma, introduced the notion of cohomo-
logically full rings [25].

By making use of the desirable cohomological properties of cohomologically full
rings, Conca and Varbaro were able to settle an important conjecture due to Herzog
[17,53]:

Theorem 6.2 [18, Theorem 1.2] Let < be a monomial order on S, and I be a homo-
geneous ideal such that in_(1) is squarefree. Then

dimg(H! (S/D);) = dimg(H: (S/in(1));) foralli,j € Z.

In particular, the extremal Betti numbers of I and in_(I) coincide. As a consequence,
depth(S/I) = depth(S/in_()) and reg(S/I) = reg(S/in_(1)).

The last result that we want to consider in this section is a Theorem of Nadi
and Varbaro, who obtained relations between Lyubeznik numbers of an ideal and
its initial ideal, provided the latter is squarefree. We here recall only the statement
of this result; we refer to a later subsection for the definition and properties of the
Lyubeznik numbers 4;(—) (see Definition 6.14).

Theorem 6.3 [80, Lemma 2.1 and Corollary 2.5] Assume that k has characteristic

p >0, and let < be a monomial order on S. If I C S is a homogeneous ideal such
that in_(I) is squarefree, then
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Ai(S/D < 2;(S/in (1)) foralli,j€ Z.

The goals of this section are to revise the definition and some of the main proper-
ties of cohomologically full rings, following recent treatment of this subject [25].
With that, we present proofs of Theorems 6.1, 6.2 and 6.3 by exploiting the fact that
squarefree monomial ideal and their Frobenius powers define of cohomologically
full rings [25].

6.1 Cohomologically full rings

We start by giving the definition of cohomologically full rings in our setup. The
definition is more general, and we refer the interested reader to [25] for more details.

Definition 6.4 Let S = kl[x;. ..., x,] with the standard grading, m = (x,, ..., x,), and
I C S be a homogeneous ideal. Then S/ is i-cohomologically full if, for every homo-
geneous ideal J C I such that v/J = 1/1, the induced map H! (S/]) - H! (S/D) is
surjective. The ring S/I is cohomologically full if it is i-cohomologically full for
every i € Z,,.

We point out that the notion of cohomologically full ring is very much related
to that of ring with liftable local cohomology [69] and fiber full ring [15, 16, 102,
108].

Remark 6.5 Even if the definition of cohomologically full depends on the pres-
entation of the ring as a quotient S// of a polynomial ring S, it can be shown that
being cohomologically full is independent of the presentation. In other words,
if R =S/I is i-cohomologically full, and R can also be presented as S’/I’, where
S" = Xk[y,,...,yy]and I' is a homogeneous ideal of ', then S’ /I’ is also cohomologi-
cally full [25, Proposition 2.1].

The connection between the notion of cohomologically full ring and Mustatd’s
problem lies in the next proposition, which is a direct application of graded local
duality [13, Theorem 3.6.19].

Proposition 6.6 [25, Proposition 2.1] Let S = Kk[x,, ...,x,] with the standard grad-
ing, and I C S be a homogeneous ideal. The following conditions are equivalent:

1. S/l is i-cohomologically full.
2. For every homogeneous ideal J C 1 such that \/.7= \/; the natural map
Extd™(S/1,S) — Exti™(S/J,S) is injective.

@ Springer



418 Sao Paulo Journal of Mathematical Sciences (2023) 17:387-429

3. For every family of ideals {I,},e7_ of S such that I, =1, I, ., € I, for all n and
which is cofinal with the the family {I"} of ordinary powers of I, such that the
natural map Ext‘sl_i(S/I, S) - Ext‘;_i(S/In, S) is injective for every n € Z,,

4. The natural map Extg_i(S/l, S) - Hl”l‘i(S) is injective.

Proof Assume (1). Applying graded local duality [11, Sect. 13.4] we obtain that the
map Ext{"(S/1,5(~d)) » H7'(S/J,S(~d)) is injective, where wg = S(—d) is the
graded canonical module of S. Using that Extg_i(S /1,5(—d)) = Extg_i(S /1, 8)(—d),
and applying the exact functor — @ S(d) that shifts degrees by d, we obtain the
statement of (2).

We have that (2) implies (3).

Assuming (2), we have thatthe map Ext4 ™ (S/1, S) — lim Ext{'(S/1,,5) = H(S)
is injective, and (3) is proved. e

Finally, assume (4), and let J C I be any homogeneous ideal such that \/j = \/; .
Let k € Z,, be such that /¥ C J. Since H{™/(S) = nlg(r)lo Ext‘sl_i(S/I", S), and because

of our choice of k, the map Extg_i(S/l, S) —>H;"_i(S) can be factored as the
composition

EXG(S/1,8) > EXI(5/1,8) — Extd(S/1,$) > HIT(S).

As the composition is injective, the first map is injective. Now applying the exact
functor — ®¢ S(—d) that shifts degrees by —d, and graded local duality, we get that
the map H' (S/J) — H! (S/I) s surjective, and (1) is proved. O

6.2 Injectivity of maps from Frobenius-like powers of squarefree monomial
ideals

In light of Proposition 6.6, we can restate Mustatd’s result by saying that square-
free monomial ideals and their n-th Frobenius-like powers are cohomologically
full.

The strategy to prove Mustatd’s Theorem can now be divided into two steps:
first, to show that squarefree monomial ideals define F-split rings in prime char-
acteristic and Du Bois singularities in characteristic zero. Second, to show that
F-split rings and Du Bois singularities are cohomologically full. In this article,
we only focus on the prime characteristic setup.

The fact that squarefree monomial ideals define F-split rings is a direct con-
sequence of Fedder’s Criterion, Theorem 2.20, which states that S/I is F-split if
and only if /P! : (I is not contained in m”! = (7, ...,x”). In our assumptions,
let uy, ..., u, be a minimal monomial generating set of /. Since each u, is square-
free, observe that the monomial u = (x; ---xd)”‘1 satisfies uy; € (uf ). Therefore
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u e (I : i D~ ml! as desired. Now we show that F-split rings are cohomologi-
cally full.

Theorem 6.7 [72,91] Let k be a field of prime characteristic p > 0, S = Kk[x, ..., x,]
with the standard grading, and I C S be such that S/I is F-split. Then S/I is cohomo-
logically full.

Proof Let R = S/I is F-split. If we consider the Frobenius map F : R — R, then this
induces an additive map F; : H' (R) — H: (R) such that F(rn) = r’F(n) for all r € R
andn € Hﬁn (R), called a Frobenius action. From this point of view, the fact that R is
F-split means that there is an additive map y : R — R such that w(f?g) = fy(g) for
all f,g€R, called a Cartier map. In turn, this induces additive maps
w; : Hl (R) - H' (R) such that y,(f’n) = fy,(n) for all f € R and n € H' (R) and
w;oF; =idy: g A computation on the Cech complex shows that y,(fF;()) = w(f)n
forallr € Rand n € H' (R). _

Now fore € Z,ylet N, = R-span(Ff(r/) | j = e).Since Ny, 2 N, 2 ...is a descend-
ing chain of R-submodules of Hin (R), and the latter is Artinian, the chain stabilizes.
Let ¢ be the smallest integer such that F° fo (n) € N, 4- We claim that ¢, = 0. If not,
then we can then find elements f, ..., f; such that F;°(y) = Z;zl FF"" (). Applying
the map y; gives that

t t
eo—1 e, eo+j eo—1+j
F7l ) = wioF () = ) wifF o) = Y wHF?™ P () €N,
J=I1 j=1

contradicting the minimality of e,. It follows that H! (R) = R-span(F(H! (R))) = R
-span({F e(Hin(R))) for every eé€ Z,, Equivalently, the R-linear map
B.;: RV1®gH (R)— H (R)/9=H! (R'/), defined on basic tensors as
B.i(r'/4 @ n) = (rF(n))"/4 s surjective for every g = p and every i € Z,

Now observe that the natural map a,; : S'/7 Qg H' (R) - R4 @ H' (R)
is surjective by exactness of tensor products. It follows that the com-
position y,; = f,;oa,; is surjective. Finally, with an argument analo-
gous to the one above we have that y,; factors as the composition
SY1 Qg H! (S/I) — H! (SV4/1SY7) = H! (S/1'9)!/9 — Hi (S/1)'/4, where the last
map is the one induced by the natural projection S/I91 — S/I. As Y. 18 surjective,
50 is the natural map H' (/1) — H! (S/I) for all g = p*. Since {I'!} is a descend-
ing family of ideals cofinal with the ordinary powers, it follows from Proposition 6.6
that R = §/I is cohomologically full. O

Definition 6.8 Let k be a field, and S = k[x, ..., x,]. Given an integer n > 1, we let

@, : S — S be the k-algebra homomorphism such that ¢, (x;) = x?. We call ¢, the n-
th Frobenius-like homomorphism on S.
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We observe that @, is a flat map for all n > 1. Moreover, if k has characteris-
tic p > 0 and n = p° for some e, then @, coincides with the e-th iteration of the
Frobenius map on S. Observe that if / C § is a monomial ideal, then ¢,(I)S coin-
cides with the ideal /" defined above in the context of Mustati’s Theorem.

We now let S be S viewed as a module over itself through restriction of scalars

A
via ¢@,,. If M is a finitely generated graded S-module, and §"—S" - M - 0is a
graded free presentation of M with presentation matrix A = (alj) eM,,(S), we let

@(M) be the graded S-module whose presentation matrix is Al = (a}). Then

@g(—) defines a functor from the category of graded S-modules to itself. It can
easily be checked that ¢{(S) = S and that @(S/I) = S/@,(I)S for any homogene-
ous ideal I C §. Since ¢, is flat, the functor ¢f is exact.

Proposition 6.9 Let k be a field, and S = Kk[x, ... ,x,] with the standard grading,
and let @, be the n-th Frobenius-like homomorphism on S. Let I C S be a homogene-
ous ideal such that S/I is cohomologically full, and the family {¢,(I)S }neZ>0 is cofi-
nal with the family of ordinary powers {I”}nez>o. Then S/, (I)S is cohomologically
full for alln > 0.

Proof Letn > 0. Form > 0let ¢,,(I)S = J,,. By assumption, the natural map

Y © Exty(S/1,8) — Exty(S/J,,,S)
is injective for all m > 0. By exactness of ¢, it follows that

Pan) * PUEXG(S/L,9)) > G(EXE(S/S,,, )
is injective for all m > 0. By flatness of ¢,, we have that
PS(EX(S/1.5)) = Exty(@§(S/D), ¢§(S)) = Exty(S/J,. S,
and similarly,
PUEXL(S/T,. ) = Exty(@U(S/ ), 92(S)) = EXty(S/J,ppm:S).

It follows that the natural map Extg(S/Jn,S) - Extg(S/Jm,S) is injective for all
m > n, and therefore S/J, is i-cohomologically full by Proposition 6.6. Since i was
arbitrary, it follows that S/J, is cohomologically full. O

We can finally recover Mustatd’s result in characteristic p > 0.
Corollary 6.10 Let k be a field of prime characteristic p >0, S = Kk[x,,...,x,]

with the standard grading, and 1 C S a squarefree monomial ideal. Then the map
Ext((S/1",S) — Hi(S) is injective for alli € Z and all n € Z.,,,
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Proof By Theorem 6.7 we have that S/I is cohomologically full. Since the family of
ideals {1 = ®,(D} ez, is cofinal with the family of ordinary powers of /, we have

that /1" is cohomologically full for all n > 0. m|

Remark 6.11 If k has characteristic zero, we have already observed that if I is
squarefree then S/ is Du Bois [89, Theorem 6.1]. Since Du Bois singularities are
cohomologically full [74], by Proposition 6.9 we have that S/I" is cohomologically
full for all n > 0 also in this case.

6.3 Squarefree initial ideals: the result of Conca and Varbaro

We provide a proof of this result, which summarizes the approaches of the origi-
nal article [18], and the one given by Varbaro [102] through the notion of fibre-full
modules.

The following is a key result in order to achieve our goal.

Proposition 6.12 Let T = S[t] = klx,,...,x,t] with deg(x;,) >0 for all i and
deg(t) = 1. Let J C T be a homogeneous ideal such that t is a non-zero divisor on
TIJ. If TI(J, t) is cohomologically full, then ExtiT(T/J, T) is flat over Kk[t] for all
I € Zyy

Proof Let R=T/J. Since R/(t) is cohomologically full the natural map
ExtiT(R/ 0, T) & Hé JJ)(T ) is injective for all i € Z,,. This map factors through the
natural map «; : ExtiT(R/ ", T) - ExtiT(R/ (#), T), therefore a; is injective for all
J 2 1. As a consequence of the injectivity of @; and the long exact sequence on Ext
modules induced by the short exact sequence 0 = R/(#~!) = R/(#) = R/(t) = 0,
we have that the map f;,_, : Ext,.(R/(¥),T) — Ext;.(R/(#~"),T) is surjective for all
J = 2. Observe that f;; = B, 0f;,0...0p;,_, so that f;, is also surjective. Let
m = (x, ..., X,, ). Applying graded local duality [11, Sect. 13.4] we obtain that the
map H' (R/(1)) — H! (R/(¥))is injective for all i € Z and all j > 2, and therefore
the map H! (R/(r)) — lim;_  H! (R/(¥)) is injective as well. A spectral sequence

argument shows that lim,_,  H! (R/(¥)) = H' (H, (lt)(R)) =~ H*(R), and the resulting

map an(R/(t)) - Hf;' I(R) is the connecting homomorphism on the long exact
sequence of local cohomology induced by the short exact sequence

00— R;R — R/(t) - 0 [63, Lemma 2.2] and [73, Proposition 3.3]. The injectivity
of such a map for all i € Z,, gives that Hin (R);Z>Hin (R) is surjective for all i € Z,.
Finally, using again graded local duality, we conclude that ExtiT(R, T)1>ExtiT(R, T)is

injective for all i € Z,, that is, ¢ is a non-zero divisor for ExtiT(R, T)foralli € Z,.
As already observed, since ExtiT(R, T) is a graded k[¢]-module, this is equivalent to
Ext,(R, T) being flat. |
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Now assume that I C S is a homogeneous ideal, and for a given weight o € Z‘>’0
let J =hom, (/). In this way, R = T'/J becomes a bi-graded T-module by giving
each x; degree (1,w;), and by giving 7 degree (0, 1). As a consequence, every
module Ext’T(R? T) is bi-graded. We can write Ext (R, T) = @jez Ext7:(R, T) ;.
where each Ext;(R, T) ,, is a finitely generated graded k[7]-module. As such,

Ext7(R.T);., = k[1]® @ < D (k[t]/(tm))@"w’"),

meZ,

where a; , b; ; ,, are non-negative integers. Let b;; = Yz o bijme
: S0 i,

Remark 6.13 Let ICS be an ideal, wé€ Zio be a weight, and
J =hom, (/) € T = S[t]. Sincet — land tareregularon Tand 7 /(1) = T/(t — 1) = S,
for all i,jeZ we have that Ext;'(R/(t—1),T);, =ExtyS/LS), and
Ext;™ (R/(1),T),, = Exty(S/in, (), S); [7, Lemma 3.1.16].

We are finally ready to prove Theorem 6.2.

Proof of Theorem 6.2 The claim about depth and regularity follow from the equal-
ity between dimensions, as both these invariants are measured by graded local
cohomology modules supported at m. Furthermore, by graded local duality
[11, Sect. 13.4] and because squarefree monomial ideals define cohomologi-

cally full rings, it suffices to show that if S/in_(I) is cohomologically full then
dimy (Exty(S/1,5);) = dimy (Ext(S/in_(i), S),) for all i, j € Z.

Let w € Z‘io be a weight such that in_(/) = in,([), let J = hom, (/) C T = S[t]
and let R = T/J. Let x be either ¢ — 1 or . Applying the functor Hom,(—, T) to the

short exact sequence 0 — RSR— R /(x) — 0 induces a long exact sequence of Ext
-modules. For every j € Z, we then have a long exact sequence of finitely generated
k[¢]-modules as follows:

Qiy1,j

% j i+1 i+1 i+1
oo Bxty (R T) () — Bxty  (R/(x),T)(j) — Extz (R, T)(js) — -+,

Ji*
which  gives short exact sequences 0 — coker(q;;) — Ext’;r 1(R/ ), 1))
i+1,) = 0.If x =1 — 1, then coker(a; ;) = k“/, while ker(a;,, ;) = 0. Thus, by
Remark 6.13, we have that dimy (Ext; (R/(1 — 1), T);,,,) = dimy (Exti(S/1,5)) = a;

— ker(a

Now assume that x=7¢. Since S/I=T/(J,t) is cohomologically full,
by Proposition 6.12 we have that ExtiT(R, T) is a flat graded k[s]-mod-
ule for every i€ Z. It follows that b; = 0 for all i,j € Z, and therefore
coker(a;;) = k% and ker(e;,;) =0. Again by Remark 6.13, we conclude that
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dimy (Ext;' (R/ (1), T),;..,) = dimy (Exty(S/in, (), S);) = a;;, and the theorem fol-

lows. O

6.4 Lyubeznik numbers of ideals with squarefree initial ideal

Throughout this subsection k is assumed to have characteristic p > 0. We first recall
the definition of Lyubeznik numbers.

Definition 6.14 Let 7 C S = k[x,, ..., x,] be an ideal. For i,j € Z, we define the
(7, j)-Lyubeznik number of S/I as

A5(S/D) = dimy (Exti(k, HY(S)).

Lyubeznik [71] proved that such invariants only depend on the quotient S//, and
not on its presentation. Lyubeznik numbers detect several important information
about a ring R as above. For instance, they are related to connectivity of the punc-
tured spectrum or of the projective variety associated to R [27, 105], and more gen-
erally to high connectivity [110]. They are also related to singular cohomology [38]
and étale cohomology [8]. From a more combinatorial point of view, the Lyubeznik
numbers of a Stanley-Reisner ring are topological invariants of the geometric reali-
zation of the associated simplicial complex [3]. The interested reader can find more
details in a survey by Witt, Zhang and the third author on this topic [84].

In the case of rings defined by squarefree monomial ideals, a result of Yanagawa
[107, Theorem 1.1] relates Lyubeznik numbers with vector-space dimensions of cer-
tain Ext modules. This is related to previous work of Zhang [111, Theorem 1.2],
which in prime characteristic directly implies that

A3(S/D) < dimy (Bxtd " (Ext{ 7 (S/1,5), $))). (6.1)

Yanagawa’s result was later extended by the first and the last authors, together with
Grifo, from rings defined by squarefree monomial ideals to F-pure rings.

Theorem 6.15 [27, Theorem C] Let I C S = k[x,, ..., x;] be a homogeneous ideal. If
S/l is F-pure, then

A3(S/D) = dimy (Bxt? ™ (ExtS7(S/1, ), $))y).

Proof Extending the base field affects neither side of the equality, therefore
we may assume that k is a perfect field and that R = S/I is F-split. Let F be the
Frobenius action on Ext‘sl_i(Extz_J (R,S),S) induced by applying the functor
Extg’_i(Eth_j (=, 5), S) to the natural Frobenius map on R. Zhang [111, Theorem 1.2]
proved that
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Ay(S/D) = dimy, ( N Ff(Extg—"(Extj‘f(R, S), S)0)>,
eeZw

that is, the (i, j)-th Lyubeznik number of R equals the vector space dimension of

the stable part of Extg_i(Extz_’ (R,S),S), under the action of Frobenius. Because k

is perfect, the stable part is a k-vector subspace of Extg_i (Extg_j (R,S),S)y, and this
shows the claimed inequality.

Now assume that R is F-split, that is, the natural inclusion R & R/P splits. The
induced map Ext{'(Ext} '(R,S),S) — Ext{/(Ext; '(R'/7,S), ) is then injective for

. . . . 1/p
al i,j€Zy As Ext(EBxtTRIP,S),S) = (Extg’—'(Extg"J(R,S),S)) (111,

Lemma 6.1], we conclude that the natural Frobenius action F on
Extg_i(Extz_j (R, S), S) is injective. As this action is graded, in particular we have that
F is injective on the degree zero part Extg’_"(Extg_’ (R,S),S),. Since F is an injective

endomorphism of the finitely generated k-vector space Ext‘;_i(Extz_j (R,S),8), it
must also be surjective, and an isomorphism. It follows that the whole vector space

Extg"i(Extz_j (R,S),S), is stable under the action of Frobenius, and the proposition
follows. o

We are now ready to prove the Theorem of Nadi and Varbaro. We follow
closely the strategy of the original proof [80, Lemma 2.1 and Corollary 2.5].

Proof of Theorem 6.3 Let w € Z_, be a weight such that in,(I) =in_(I). Let
T = S[t], J =hom,(), and let R=T/J. For i,j € Z and a T-module M we let

E%(M) = Ext3(Ext! (R, T), M). We have that E'(T) is bi-graded, and E¥(T),,.,,
is a finitely generated graded k[¢]-module for any r € Z. As such, we can write it as

m>0

EY(T).) = k1] & <@(Jk[t]/ (r"f))bfwm)

b

For x =1 —1or x =t we have a short exact sequence 0 — 75T > T/(x) -0,

for some non-negative integers @ ., b; ; .-

and applying the functor Ext‘;_i(Ext‘;_'i(R, T), =) this induces a long exact
sequence of finitely generated k[#] modules as follows:

 — EN(T) () — E"(T /(x)) (5) — E7 (T ) (19 Ty,

where «;;,

sequences

is the multiplication by x on E%(T),,,. We then have short exact
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0 —— coker (@, j,-) — E™(T /(x)) () — ker(04_1,) 0.

If x=r-1, then coker(a;;,)= k%, while ker(e;_;,)=0, there-

fore dimy (EY(T/(X))..) =a;j,- On the other hand, if x=tz, then
coker(a;;,) = k% @ (€D,,50 k"), and thus we have dimy (EY(T/(x),,.,) > a

i ij.re

Since in_(I) is squarefree, by Proposition 6.12 we have that Ext';_j (R, T) is a flat
graded k[¢]-module, and thus x is a non-zero divisor for it. It follows from [102,

Lemma 3.4] and the fact that x is regular on Ext(;_j (R, T) that

EY(T /(). = Ext4 (BXG7 (R, T) @7 T/(0, T/ (X))

= Ext]{, (Bxty | (R/(0), /(). T/)).

_ J ExtEx(T(S/L.S).8),  ifx=1-1
~ | Ext?(ExtY(S/in (1), S),9), ifx=1t

Therefore, for r = 0 and using the inequalities obtained above we conclude that
dimy, (Extg—"(Extg"f(S/l, s, S)O) = a0 < dimy, (Extg—"(Extg"f(S/in<(1), s), S)0>.

Finally, since S/in_(I) is F-split, we conclude by Equation (6.1) that
A (S/D) < 2,(S/in (D). O
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