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Abstract
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1  Introduction

The interplay between combinatorics and commutative algebra has been a suc-
cessful and fruitful interlinkage for both areas [76, 92–94]. In this survey, we 
focus on the interaction between methods in prime characteristic and combinato-
rial commutative algebra.

We showcase several combinatorial results that were proven using methods of 
prime characteristic. For example, we discuss several properties of the ordinary 
and symbolic powers of determinantal ideals (see Sect.  5). We also present the 
characterization of Gorenstein binomial edge ideals obtained by González-Mar-
tínez [42] (see Theorem  3.7). We give a prime characteristic proof of a result 
by Sturmfels on the regularity of normal toric varieties. This proof relies on the 
Hochster-Roberts Theorem [62] regarding a-invariants of graded F-pure rings.

Stanley-Reisner rings are one of the main bridges between combinatorics and 
commutative algebra. They are also one of the main examples of F-pure rings. 
One idea that has inspired recent research, and that we showcase in this survey, 
is that “a property that holds for Stanley-Reisner rings is likely to hold for F-pure 
rings”. For instance, after it was shown that squarefree monomial ideals satisfy 
Harbourne’s Conjecture (Conjecture 4.6), Grifo and Huneke [44] proved that 
this is also satified for ideals defining F-pure rings (see Theorem 4.8). Yanagawa 
[107] gave a formula of the Lyubeznik numbers in terms of the dimension of the 
zero degree part of certain Ext modules (see Theorem 6.15). The same formula 
was later obtained by Grifo, the first and third authors for F-pure rings [27] (see 
Theorem 6.15). In the other direction, there are results that have been obtained 
for Stanley-Reisner rings in all characteristic using Frobenius-like morphisms. In 
particular, the limit of depths and normalized regularities are shown to exist for 
symbolic powers of these ideals. In Sect. 5 we discuss these methods and include 
generalizations of the known results. In this section we also survey the results in 
the literature regarding the limits mentioned above and highlight the open ques-
tions that remain on this topic.

There are results where the interactions of combinatorial commutative algebra 
and methods in prime characteristic have gone full circle. Mustaţǎ [79] showed that 
if I is a squarefree monomial ideal in a polynomial ring S = k[x1,… , xd] , then the 
natural map Exti

S
(S∕I, S) → Hi

I
(S) is injective for all i ∈ ℤ (see Corollary 6.10). This 

fact has useful consequences on the projective dimension of this type of ideal. Later 
Singh and Walther [91] showed that this property in fact holds for ideals defining 
F-pure rings. Ma and Quy coined the term F-full for a local ring (R,�,k) such that 
the image of the Frobenius map on Hi

�
(R) generates Hi

�
(R) as an R-module. It turns 

out that if S/I is F-full, then the natural map Exti
S
(S∕I, S) → Hi

I
(S) is injective for all 

i ∈ ℤ (see Proposition 6.6). In fact, Singh and Walther’s proof [91] gives that every 
F-pure ring is F-full (see Theorem 6.7, and also [72]). This inspired Dao, Ma and 
the first author [25] to develop the theory of cohomologically full rings (see Defini-
tion 6.4). This theory was employed by Conca and Varbaro [18] to show that the 
extremal Betti numbers of a squarefree Gröbner deformation coincide with those of 
the original ideal (see Theorem 6.2).
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We point out that this survey is not comprehensive. For instance, we did not 
include recent connections of combinatorial commutative algebra with code theory 
[75], where there are results that were obtained using F-pure rings [83].

2 � Background

Throughout this paper, R always denotes a Noetherian commutative ring with 
identity.

2.1 � Graded algebras

A ℤ⩾0-graded ring is a ring R which admits a direct sum decomposition 
R =

⨁
n⩾0 Rn of Abelian groups, with Ri ⋅ Rj ⊆ Ri+j for all i and j. Note that R0 is 

a Noetherian commutative ring with identity, and R is an R0-algebra. In this setup, 
let M =

⨁
n∈ℤ Mn and N =

⨁
n∈ℤ Nn be graded R-modules. An R-homomorphism 

� ∶ M → N is called homogeneous of degree c if 𝜑(Mn) ⊆ Nn+c for all n ∈ ℤ . The 
set of all graded homomorphisms M → N of all degrees form a graded submod-
ule of HomR(M,N) . In general, it can be a proper submodule, but it coincides with 
HomR(M,N) when M is finitely generated [13].

Given a ℤ⩾0-graded ring R, there exist f1,… , fr ∈ R homogeneous elements such 
that R = R0[f1,… , fr] , which is equivalent to ⊕n>0Rn = (f1,… , fr) [13, Proposition 
1.5.4]. If R0 is local, or ℤ⩾0-graded over a field, choosing the elements f1,… , fr min-
imally gives rise to a unique set of integers {d1,… , dr} , namely the degrees of such 
elements. We call these numbers the generating degrees of R as an R0 -algebra.

Let S = R0[y1,… , yr] be a polynomial ring over R0 with deg(yi) = di for 1 ⩽ i ⩽ r , 
and let � ∶ S → R be an R0-algebra homomorphism defined by �(yi) = fi for 
1 ⩽ i ⩽ r . Consider the ideal I = Ker(�) . We call any minimal set of homogeneous 
generators of I  the defining equations of R over R0.

2.2 � Stanley‑Reisner rings and monomial edge ideals

In this subsection, we recall the basic notions of Stanley-Reisner theory. For more 
details we refer to a survey [37] and a book [76] on this subject. We also refer to Vil-
larreal’s book on monomial algebras for this and related topics [104].

Definition 2.1  A simplicial complex on [d] is a collection Δ of subsets, called faces, 
of [d] such that for given � ∈ Δ , if 𝜃 ⊆ 𝜎 , then � ∈ Δ . A facet is a face that is maxi-
mal under inclusion. The dimension of a face � ∈ Δ is |�| − 1 , and the dimension of 
Δ is max{dim(�) | � ∈ Δ}.

Definition 2.2  The f-vector of a simplicial complex Δ of dimension r − 1 is defined 
by

f (Δ) = (f−1(Δ),… , fr−1(Δ)),
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where fi(Δ) denotes the number of faces in Δ of dimension i. The h-vector ofΔ is 
defined by

where hi(Δ) is given by the identity

Let S = k[x1,… , xd] denote the polynomial ring in d variables over a field k , 
and � =

(
x1,… , xd

)
 . Let [d] = {1,… , d} . There is a bijection between the square-

free monomial ideals in S and simplicial complexes on d vertices via the Stanley-
Reisner correspondence.

Definition 2.3  Given a simplicial complex Δ , the Stanley-Reisner ideal of Δ is 
defined by

The quotient k[Δ] = S∕IΔ is called the Stanley-Reisner ring associated to Δ . Given a 
squarefree monomial ideal I ⊆ S , the Stanley-Reisner complex of I is given by

Theorem 2.4  (Stanley-Reisner Correspondence) There is a bijective correspondence 
between the set of squarefree monomial ideals in S and simplicial complexes on [d] 
given by the maps Δ ↦ IΔ and I ↦ ΔI

Under the correspondence in Theorem  2.4 we have that 
dim(S∕IΔ) = dim(Δ) + 1 . In addition, the minimal primes of S∕IΔ correspond to 
the facets of Δ.

A special class of squarefree monomial ideals are given by monomial edge ideals. 
These were introduced by Villarreal [103] about thirty years ago, and they have been 
a source of intense research (see a recent survey on this topic [100].

Definition 2.5  [103] Let G = (V(G),E(G)) be a simple graph on the set [d] and 
S = k[x1,… , xd] . The monomial edge ideal, IG , of G is defined by

It turns out that every monomial edge ideal corresponds to a simplicial complex.

Definition 2.6  Let G be a simple graph on [d]. We say that a set W ⊆ [d] is inde-
pendent if no edge of G connects two vertices in W.

The collection of all independent sets of a graph G gives a simplicial complex, 
which we denote by Δ(G).

h(Δ) = (h0(Δ),… , hr(Δ)),

r∑
i=0

fi−1(t − 1)r−i =

r∑
i=0

hi(Δ)t
r−i.

IΔ =
(
xi1 ⋯ xis ∣

{
i1,… , is

}
∉ Δ

)
.

ΔI =
{{

i1,… , is
}
⊆ [d] | xi1 … xis ∉ I

}
.

IG =
(
xixj | for {i, j} ∈ E(G)

)
.
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Proposition 2.7  Let G be a simple graph on the set [d], S = k[x1,… , xd] and let 
Δ(G) be the simplicial complex of independent sets of G. Then the monomial edge 
ideal IG coincides with the Stanley-Reisner ideal IΔ(G).

An immediate consequence of the Proposition and the results previosuly dis-
cussed is the following.

Corollary 2.8  Let G be a simple graph on the set [d], S = k[x1,… , xd] and IG be the 
monomial edge ideal of G. Then,

2.3 � Gröbner deformations

In this subsection we recall the basic notions on monomial orders and initial ide-
als with respect to a given weight.

Definition 2.9  Let S = k[x1,… , xd] be a polynomial ring over a field. Let < be a 
total order on the set of monomials of S. We say that < is a (global) monomial order 
if

•	 ∀� ≠ 0 ,    1 < x𝛼;
•	 ∀�, �, �    x𝛼 < x𝜃 implies x𝛼x𝛾 < x𝜃x𝛾 .

Given a non-zero element f ∈ S we let in<(f ) = max{x𝛼 ∣ x𝛼 ∈ Supp(f )} , where 
Supp(f ) denotes the set of monomials which appear with non-zero coefficient 
in f. Given an ideal I ⊆ S , we define the initial ideal of I (with respect to <) as 
in<(I) = (in<(f ) ∣ f ∈ I).

Given a weight � = (�1,… ,�d) ∈ ℤd
⩾0

 and a monomial x� = x
�1
1
⋯ x

�d
d

 
in S, we let �(�) =

∑d

i=1
�i�i . Given a nonzero f ∈ S , we let 

�(f ) = max{�(�) ∣ x� ∈ Supp(f )} . If f =
∑

� ��x
� , we let in�(f ) =

∑
�(�)=�(f ) ��x

� 
be the initial form of f with respect to � . Given an ideal I ⊆ S , we let 
in�(I) = (in�(f ) ∣ f ∈ I) be its initial ideal with respect to the weight �.

The following result shows that, when considering the initial ideal of a given 
ideal with respect to a monomial order, one can always reduce to considering the 
initial ideal with respect to a weight.

Theorem  2.10  [95, Proposition 1.11], [102, Proposition 3.4] Let S = k[x1,… , xd] 
be a polynomial ring over a field, and < be a monomial order on S. There exists a 
weight 𝜔 ∈ (ℤ>0)

d such that in<(I) = in𝜔(I).

Let T = S[t] = k[x1,… , xd, t] . Given f =
∑

� ��x
� ∈ S and a weight � ∈ ℤd

⩾0
 

we define the �-homogenization of f as

dim(S∕IG) = max{|W| | W ⊆ [d] is independent }.
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Given an ideal I ⊆ S we let its �-homogenization be hom�(I) = (hom�(f ) ∣ f ∈ I) . 
Note that hom�(I) is homogeneous in T with respect to the grading deg(xi) = �i and 
deg(t) = 1 . In particular, by restriction of scalars, hom�(I) is a graded k[t]-module 
with respect to the standard grading on k[t].

Remark 2.11  Since k[t] is a PID, a module M is flat over k[t] if and only if it is tor-
sion-free. In particular, if M is graded, we have that t − a is a non-zero divisor on M 
for all a ∈ k ∖ {0} , and t is a non-zero divisor on M if and only if M is flat over k[t].

Lemma 2.12  [102, Proposition 3.5] Let I ⊆ S be an ideal, � ∈ ℤd
⩾0

 be a weight, 
and set J = hom𝜔(I) ⊆ T = S[t] . Then t − a is a non-zero divisor on R = T∕J for all 
a ∈ k . Moreover, R∕(t − a) ≅ S∕I for all a ∈ k ∖ {0} , while R∕(t) ≅ S∕in�(I).

Proof  Since J is graded with respect to the grading deg(xi) = �i and deg(t) = 1 
on T, it is also graded with respect to the standard grading on k[t] . Therefore, by 
Remark  2.11 we have that t − a is regular on T/J for all a ≠ 0 , since the latter is 
also a graded k[t]-module. To see that t is regular as well, assume that tf ∈ J for 
some f = f (x1,… , xd, t) ∈ T  , which we may assume being homogeneous with 
respect to the grading on T. We then have that tf =

∑
i gihom�(fi) , for some gi ∈ T  

and fi ∈ I . By setting t = 1 we immediately see that f = f (x1,… , xd, 1) ∈ I , since 
hom�(fi)|t=1 = fi ∈ I and gi(x1,… , xd, 1) ∈ S . As a consequence, we have that 
hom�(f ) ∈ J . Since f ∈ T  was chosen to be homogeneous, it follows from the defi-
nition of homogenization that f = trhom�(f ) for some r ⩾ 1 , and therefore f ∈ J.

We now pass to the second part of the lemma. For brevity, we only show the 
first isomorphism for a = 1 ; for the general case we refer the reader to [102, Prop-
osition 3.5]. Since for any f ∈ S we have that hom�(f )|t=1 = f  , it follows that 
hom�(f ) − �(f ) ∈ (t − 1) , where � ∶ S ↪ T  is the natural inclusion. From this it is 
clear that (J, t − 1) = (IT , t − 1) , and therefore R∕(t − 1) ≅ S∕I . On the other hand, 
again by definition of homogenization we have that hom�(f ) − �(in�(f )) ∈ (t) . From 
this, it is again clear that (J, t) = (in�(I)T , t) , and thus R∕(t) ≅ S∕in�(I) . 	�  ◻

Putting together the considerations made above, Theorem  2.10, and 
Lemma 2.12 we deduce the following.

Remark 2.13  Let I ⊆ S = k[x1,… , xd] be an ideal, < be a monomial order on S and 
let T = S[t] = k[x1,… , xd, t] . There exists a weight 𝜔 ∈ ℤd

>0
 such that, if we set 

J = hom𝜔(I) ⊆ T  and R = T∕J , then 

1.	 R is a flat k[t]-module.
2.	 R∕(t − a)R ≅ S∕I for every a ∈ k ⧵ {0}.
3.	 R∕tR ≅ S∕in<(I).

hom�(f ) =
∑
�

��x
�t�(f )−�(�) ∈ T .



393

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:387–429	

4.	 [33, Theorem 15.17] R⊗
k[t] k(t) ≅ S∕I ⊗

k
k(t).

It turns out that an ideal and its initial ideal share several properties. For instance, 
we have that I and in<(I) have the same Hilbert function. As a consequence, they 
have the same dimension and Hilbert-Samuel multiplicity. We also have the follow-
ing important well-known result, we include its proof for sake of completeness.

Theorem 2.14  Let I ⊆ S = k[x1,… , xd] be an homogeneous ideal, and < a mono-
mial order. Then,

Proof  We follow the notation from Remark 2.13. Let �  be a minimal graded free 
T-resolution of R. From Remark 2.13 (4) it follows that � ⊗

k[t] k(t) is a (not nec-
essarily minimal) graded free resolution of S∕I ⊗

k
k(t) . On the other hand, from 

Remark 2.13 (1) and (3) it follows that � ⊗
k[t] (k[t]∕(t)) is a minimal graded free 

resolution of S∕in<(I) . It follows that,

and the conclusion follows. 	�  ◻

Finally, we recall the next result, which points to the fact that the topology of the 
spectra of S/I and S∕in<(I) share similar features (see [2] and [101] for more results 
in this direction).

Theorem 2.15  [65, Theorem 1] Let � ⊆ S = k[x1,… , xd] be a prime ideal, and < a 
monomial order, then S∕in<(�) is an equidimensional ring.

2.4 � Binomial edge ideals

We now recall the definition of binomial edge ideals [50, 85]. These are related to 
conditional independence statements [50]. In addition, there are relations between 
homological properties of the binomial edge ideal and the connectivity of the under-
lying graph [4].

Definition 2.16  [50, 85] Let G = (V(G),E(G)) be a simple graph such that 
V(G) = [d] . Let k be a field and S = k[x1,… , xd, y1,… , yd] the ring of polynomials 
in 2d variables over k . The binomial edge ideal, JG , of G is defined by

We recall that binomial edge ideals have an square-free Groebner deformations.

𝛽i,j(S∕I) ⩽ 𝛽i,j(S∕in<(I)).

𝛽i,j(S∕I) = 𝛽i,j(S∕I ⊗k
k(t)) ⩽ 𝛽i,j(R) = 𝛽i,j(S∕in<(I)),

JG =
(
xiyj − xjyi | for {i, j} ∈ E(G)

)
.
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Theorem 2.17  [50, Theorem 2.1], [85, Theorem 3.2.] Let G be a simple graph on 
[d], S = k[x1,… , xd, y1,… , yd] , and JG be the binomial edge ideal of G. Then, there 
exists a monomial order < on S such that in<(JG) is a squarefree monomial ideal.

2.5 � Methods in prime characteristic

In this subsection we assume that R is reduced and that it has prime character-
istic p > 0 . For e ∈ ℤ⩾0 , let Fe ∶ R → R denote the e-th iteration of the Frobe-
nius endomorphism on R. If R1∕pe is the ring of pe-th roots of R, we can identify 
Fe with the natural inclusion � ∶ R ↪ R1∕pe . Throughout this survey, any R-linear 
map � ∶ R1∕pe

→ R such that �◦� = idR is called a splitting of Frobenius, or just a 
splitting.

For an ideal I generated by {f1,… , fu} we denote by I[pe] the ideal generated by 
{f

pe

1
,⋯ , f

pe

u } . We note that IR1∕pe = (I[p
e])1∕p

e

.

In the case in which R = ⊕n⩾0Rn is ℤ⩾0-graded, we can view R1∕pe as a 1

pe
ℤ⩾0

-graded module in the following way: we write f ∈ R as f = fd1 +…+ fdn , with 
fdj ∈ Rdj

 . Then, f 1∕pe = f
1∕pe

d1
+…+ f

1∕pe

dn
 where each f 1∕p

e

dj
 has degree dj∕pe . Simi-

larly, if M is a ℤ-graded R-module, we have that M1∕pe is a 1
pe
ℤ-graded R-module. 

Here M1∕pe denotes the R-module which has the same additive structure as M and 
scalar multiplication defined by f ⋅ m1∕pe ∶= (f p

e

m)1∕p
e , for all f ∈ R and 

m1∕pe ∈ M1∕pe . As a submodule of R1∕pe , R inherits a natural 1
pe
ℤ⩾0 grading, which 

is compatible with its original grading. In other words, if f ∈ R is homogeneous 
of degree d with respect to its original grading, then it has degree d = dpe∕pe with 
respect to the inherited 1

pe
ℤ⩾0 grading in R1∕pe.

Definition 2.18  Let R be a Noetherian ring of positive characteristic p. We say 
that R is F-finite if it is a finitely generated R-module via the action induced by the 
Frobenius endomorphism F ∶ R → R or, equivalently, if R1∕p is a finitely generated 
R-module. If (R,�,k) is a ℤ⩾0-graded k-algebra, then R is F-finite if and only if k 
is F-finite, if and only if [k ∶ k

p] < ∞ . R is called F-pure if F is a pure homomor-
phism, that is, if and only if the map R⊗R M → R1∕p ⊗R M induced by the inclu-
sion � is injective for all R-modules M. The ring R is called F-split if � is a split 
monomorphism. A local ring or ℤ⩾0-graded ring (R,�,k) is called F-injective if the 
map induced by Frobenius on Hi

�
(R) is injective for all i ∈ ℤ . Finally, an F-finite 

ring R is called strongly F-regular if for every c ∈ R not in any minimal prime, the 
map R → R1∕pe sending 1 ↦ c1∕p

e splits for some (equivalently, all) e ≫ 0.

Remark 2.19  We have that R is F-split if and only if R is a direct summand of R1∕pe 
for some e > 0 or, equivalently, for all e > 0 . If R is an F-finite ring, then R is F-pure 
if and only it is F-split [62, Corollary 5.3]. Since throughout this survey we assume 
that R is F-finite, we use the word F-pure to refer to both.



395

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:387–429	

Theorem  2.20  (Fedder’s Criterion [36, Theorem  1.12] Let (S,�,k) be a regu-
lar local ring, and I ⊆ � be an ideal. Then, R = S∕I is F -pure if and only if 
I[p

e] ∶ I ⊈ �[pe] for some e > 0 , if and only if I[pe] ∶ I ⊈ �[pe] for all e > 0.

Remark 2.21  Assume R is an F-finite regular local ring, or a polynomial ring over 
an F-finite field, then HomR(R

1∕pe ,R) is a free R1∕pe-module [36, Lemma 1.6]. If Φ 
is a generator (homogeneous in the graded case) of this module as an R1∕pe-mod-
ule, then for ideals I, J ⊂ R we have that the map � ∶= f 1∕p

e

⋅Φ = Φ(f 1∕p
e

−) , with 
f ∈ R , satisfies 𝜙

(
J1∕p

e)
⊆ I if and only if f 1∕pe ∈

(
IR1∕pe ∶R1∕pe J1∕p

e) or, equiva-
lently, f ∈

(
I[p

e] ∶R J
)
 [36, Lemma 1.6]. In particular, � is surjective if and only if 

f 1∕p
e

∉ �R1∕pe , that is f ∉ �[pe].
Now, assume that R = k[x1,… , xd] is a polynomial ring and that � ∶ k

1∕pe
→ k is 

a splitting. Let Φ ∶ R1∕pe
→ R be the R-linear map defined by

We have that Φ is a generator of HomR(R
1∕pe ,R) as an R1∕pe-module [9, Page 22]. 

The map Φ is often called the trace map of R. We point out that, if k is not perfect, 
Φ depends on � , but this is usually omitted from the notation.

Definition 2.22  [1] Let (R,�,k) be either a standard graded k-algebra or a local 
ring. Assume that R is F-finite and F-pure. We define

In addition, we define the splitting prime of R as P(R) ∶=
⋂

e Ie(R) and the splitting 
dimension of R to be sdim(R) ∶= dim(R∕P(R)).

We note that for a homogeneous element r, r ∉ Ie(R) if and only if there is a 
homogeneous map � ∈ HomR(R

1∕pe ,R) such that �(r1∕pe) = 1.
We are now able to define an important invariant to study singularities in prime 

characteristic (see [6] for a survey on this and related invariants). We note that 
the definition presented here is not the original one (see [29, Proposition 3.10] for 
details).

Definition 2.23  [98] Let (R,�,k) be either a standard graded k-algebra or a local 
ring. Assume that R is F-finite and F-pure, and let

The F-pure threshold of R is defined by

Φ
(
c1∕p

e

x
�1∕p

e

1
⋯ x

�d∕p
e

d

)

=

{
�(c1∕p

e

)x
(�1−p

e+1)∕pe

1
⋯ x

(�d−p
e+1)∕pe

d
if pe|(�i − pe + 1) ∀i,

0 otherwise.

Ie(R) ∶= {r ∈ R ∣ �(r1∕�
e

) ∈ � for every � ∈ HomR(R
1∕pe ,R)}.

b(pe) = max{s ∈ ℤ⩾0 ∣ �
s ⊈ Ie(R)}.
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2.6 � Local cohomology and Castelnuovo‑Mumford regularity

For an ideal I ⊆ R , we define the i -th local cohomology of M with support in I 
as Hi

I
(M) ∶= Hi(Č∙(f ;R)⊗R M) , where Č∙(f ;R) is the Čech complex on a set of 

generators f = f1,… , f� of I. We note that Hi
I
(M) does not depend on the choice 

of generators of I. Moreover, it only depends on the radical of I. The cohomo-
logical dimension of I is defined by

We note that, by the construction of the Čech complex, cd(I) ⩽ �(I), where �(I) 
denote the minimum number of generators of I. Furthermore,

where ara(I) denotes the arithmetic rank of I. We recall that the i-th local cohomol-
ogy functor Hi

I
(−) can also be defined as the i-th right derived functor of ΓI(−) , 

where ΓI(M) = {v ∈ M ∣ Inv = 0 for some n ∈ ℤ⩾0} . If I = � is a maximal ideal 
and M is finitely generated, then Hi

�
(M) is Artinian.

Given a finitely generated ℤ-graded R-module M, the Castelnuovo-Mumford 
regularity of M is defined as

Remark 2.24  If R = R0[x1,… , xr] is a polynomial ring over R0 , such that xi has 
degree di > 0 for every 1 ⩽ i ⩽ r , then reg(R) = r −

∑r

i=1
di.

Proposition 2.25  [23, Theorem  3.5] and [22, Theorem  2.2] Let R = ⊕n⩾0Rn 
be a ℤ⩾0-graded Noetherian ring. Let d1,… , dr be the generating degrees 
of R as R0-algebra. Let M be a finitely generated ℤ-graded S-module. Then, 
�S(M) ⩽ reg(M) +

∑r

i=1
(di − 1) , where �S(M) denotes the top degree of a minimal 

homogeneous generator of M.

If R is reduced with prime characteristic p > 0 and M =
⨁

n

pe
∈

1

pe
ℤ
M n

pe
 is a 

1

pe
ℤ⩾0-graded R-module, and we let R+ =

⨁
n>0 Rn , then Hi

R+
(M) is a 1

pe
ℤ-graded 

R-module. Moreover, [Hi
R+
(M)] n

pe
 is a finitely generated R0-module for every 

n ∈ ℤ , and Hi
R+
(M) n

pe
= 0 for n ≫ 0 [11, Theorem  16.1.5]. We define the ai

-invariant of M as

fpt(R) = lim
e→∞

b(pe)

pe
.

cd(I) = max{i ∈ ℤ⩾0 | Hi
I
(R) ≠ 0}.

cd(I) ⩽ ara(I) = min{�(J) �
√
J =

√
I},

reg(M) = max{ai(M) + i ∣ i ∈ ℤ⩾0}.
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if Hi
R+
(M) ≠ 0 , and ai(M) = −∞ otherwise.

Remark 2.26  If M is ℤ-graded and finitely generated, we have that 
ai(M

1∕pe ) = ai(M)∕pe for all i ∈ ℤ⩾0 . In fact, Hi
R+
(M1∕pe) ≅ Hi

R+
(M)1∕p

e since the 
functor (−)1∕pe is exact.

3 � Castelnuovo‑Mumford regularity and depth

3.1 � Bounds on Castelnuovo‑Mumford regularity

To the best of our knowledge, the first result regarding the Castelnuovo-Mumford 
regularity via Frobenious is the bound obtained by Hochster and Roberts [62].

Theorem  3.1  [62, Proposition 2.4] Let S = k[x1,… , xd] be a polynomial ring 
with positive grading on the variables, and I ⊆ S be a homogeneous ideal such 
that R = S∕I is an F-finite and F-pure ring. Then, ai(R) ⩽ 0 . In particular, 
reg(R) ⩽ dim(R).

Proof  Since R is F-pure, for all i ∈ ℤ we have that the map induced by Frobenius 
on Hi

�
(R) is injective, and so is any of its iterations Fe ∶ Hi

�
(R) → Hi

�
(R) . If there 

exists v ∈ Hi
�
(R) of positive degree � , then Fe(v) ≠ 0 and it has degree pe� for every 

e ⩾ 0 . This contradicts the fact that [Hi
�
(R)]t = 0 for t ≫ 0 , since Hi

�
(R) is an Arti-

nian R-module. It follows that ai(R) ⩽ 0 . Since reg(R) = max{ai(R) + i ∣ i ∈ ℤ⩾0}, 
we have that reg(R) ⩽ dim(R) by Grothendieck Vanishing Theorem. 	�  ◻

We point out that the conclusion of Theorem 3.1 also holds for F-injective rings, 
as the key element in its proof is the injectivity of Frobenius on local cohomology 
modules. In particular, this applies to Stanley-Reisner rings over any field, because 
the proof of this result can be reduced to the case of a polynomial ring over a per-
fect field of prime characteristic [60]. As a consequence, we recover a bound for the 
regularity of quotient rings by a monomial edge ideal.

Corollary 3.2  Let G be a simple graph on [d], S = k[x1,… , xd] be a polynomial ring, 
and IG be the monomial edge ideal of G. Then,

Proof  If k is a perfect field of prime characteristic, the claim follows immediately 
from Theorems 2.8 and 3.1. The result for any field of prime characteristic follows 
by extending to the algebraic closure, as regularity and dimension are not affected 

ai(M) = max

{
n

pe

|||| [H
i
R+
(M)] n

pe
≠ 0

}

reg(S∕IG) ⩽ max{|W| | W ⊆ [d] is independent }.



398	 São Paulo Journal of Mathematical Sciences (2023) 17:387–429

1 3

by this extension. The claim for fields of characteristic zero follows from reduction 
to characteristic p [60]. 	�  ◻

Corollary  3.2 was improved by bounding reg(S∕IG) with the matching num-
ber of G [47, Theorem  1.5]. For a graph, this numbers is bounded above by 
max{|W| | W ⊆ [d] is independent }.

Theorem 3.1 result was recently improved by adding a relation with the F-pure 
threshold.

Theorem 3.3  [29, Theorem B] Let S = k[x1,… , xd] be a polynomial ring, and I ⊆ S 
be a homogeneous ideal such that R = S∕I is an F-finite and F-pure ring. Then, 
ai(R) ⩽ −fpt(R) . In particular,

Proof  Let � denote the maximal homogeneous ideal of R. We set 
be = max{� ∈ ℤ⩾0 | �� ⊈ Ie} . Then, there exists fe ∈ �be , of degree be , such that 
f �e ∶ R(−

be

pe
) → R1∕pe splits, where �e ∶ R → R1∕pe denotes the natural inclusion. 

Then, the induced map

splits, and so, it is injective. Then,

By taking limits as e goes to infinity, we obtain that ai(R) + fpt(R) ⩽ 0 , which 
implies that ai(R) ⩽ −fpt(R) and thus reg(R) ⩽ dim(R) − fpt(R). 	�  ◻

Let d ∈ ℤ>0 and A = {𝛼1,… , 𝛼r} ⊆ ℤd be a subset. We denote by ℤ⩾0A  the 
semigroup generated by A  , i.e.,

Let k be an arbitrary field. For each � ∈ ℤ⩾0A  we consider the monomial 
t� ∈ k[t±

1
,… , t±

d
] . We note that the set {t� ∣ � ∈ ℤ⩾0A} spans the algebra 

k[A] ∶= k[t𝛼1 ,… , t𝛼r ] ⊆ k[t±
1
,… , t±

d
] as a k-vector space. Let x1,… , xr be indeter-

minates and consider the k-algebra map

that sends xi to t�i for 1 ⩽ i ⩽ r . Clearly the image of � is the algebra k[A] . The ker-
nel of � , denoted by IA  , is the toric ideal of A  . The ideal IA  is prime and binomial, 
i.e., generated by binomials. The variety XA ∶= V(IA) ⊆ k

r is the affine toric variety 
associated to A .

reg(R) ⩽ dim(R) − fpt(R).

Hi
�
(R(−

be

pe
)) → Hi

�
(R)1∕p

e

.

ai(R) +
be

pe
⩽ ai(R

1∕pe) =
ai(R)

pe
.

ℤ⩾0A = {n1�1 +⋯ + nr�r ∣ n1,… , nr ∈ ℤ⩾0}.

� ∶ k[x1,… , xr] ⟶ k[t±
1
,… , t±

d
]
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Let cone (A) = ℝ⩾0A ⊆ ℝd be the cone spanned by A  . The semigroup ℤ⩾0A  is 
normal if ℤ⩾0A = ℤA ∩ cone (A) . This condition is equivalent to the affine toric 
variety XA  being normal and to k[A] being integrally closed in its field of fractions 
[95, Proposition 13.5].

As an immediate consequence of the previous result, we obtain the following 
bound for the regularity of toric ideals.

Theorem  3.4  [95, Theorem  13.14] Let d ∈ ℤ>0 and A ⊆ ℤd a finite set such that 
ℤ⩾0A  is a normal semigroup and such that IA ⊆ S = k[x1,… , xr] is homogeneous. 
Then,

In particular, IA  is generated in degree at most d.

Proof  Let R = S∕IA = k[A] . We first assume that k has prime characteristic. We 
note that dim(R) = d . Since R is a direct summand of a polynomial ring [56, Lemma 
1], it is an strongly F-regular ring [58, Theorem 3.1]. Since R is an strongly F-regu-
lar ring of positive dimension, fpt(R) > 0 . Then, by Theorem 3.3, we have that

Hence, regS(S∕IA) ⩽ d − 1. As a consequence,

and so, IA  is generated in degree at most d. The result in characteristic zero follows 
from reduction to prime characteristic [60]. 	�  ◻

Methods in prime characteristic have also played a role in classifying graphs 
whose binomial edge ideals are Gorenstein. We first need a result that guaran-
tees that the singularities defined by an ideal with a squarefree Gröbner defor-
mation are at least F-injective.

Theorem 3.5  [42, Theorem 5.2] and [68, Corollary 4.11] Let S = k[x1,… , xd] be a 
standard graded polynomial ring over a field, k , of prime characteristic. Let I be a 
homogeneous ideal and < a monomial order such that in<(I) is squarefree. Then, S/I 
is F-injective.

Corollary 3.6  Let G be a simple graph on [d], S = k[x1,… , xd, y1,… , yd] , and JG be 
the binomial edge ideal of G. Then, S∕JG is F-injective.

We are ready to characterize the graphs that give Gorenstein ideals.

Theorem  3.7  [42, Theorem A] Let G be a connected graph on [d], 
S = k[x1,… , xd, y1,… , yd] , and JG be the binomial edge ideal associated to G. If 
S∕JG is Gorenstein, then G is a path.

regS(S∕IA) ⩽ d − 1.

regS(S∕IA) ⩽ d − fpt(R).

regS(IA) = regS(S∕IA) + 1 ⩽ d,
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Proof  It suffices to show that reg(S∕JG) ⩾ d − 1 [66, Theorem 3.4]. We first assume 
that k has prime characteristic. We have that S∕JG is F-injective by Theorem 3.5. 
Since S∕JG is a Gorenstein ring, we have that S∕JG is also F-pure [36, Lemma 3.3]. 
We have that JKd

 is a minimal prime over JG , because G is connected [50, Corol-
lary 3.9]. Note that JKd

 is the ideal of minors of a 2 × d generic matrix. In particu-
lar, since S∕JG is equidimensional, we have that dim(S∕JG) = dim(S∕JKd

) = d + 1 . 
Then,

because fpt(S∕JG) ⩽ fpt(S∕JKn
) = 2 [29, Theorem 4.7]. The same inequality in char-

acteristic zero follows from reduction to prime characteristic [60]. 	�  ◻

3.2 � Bounds on depth

The Peskine-Szpiro Vanishing Theorem is an important result in local cohomol-
ogy that only works in prime characteristic.

Theorem  3.8  [87, Proposition 4.1 and remark afterwards] Let S be a reg-
ular local ring in prime characteristic, and I ⊆ S be an ideal. Then, 
cd(I) ⩽ dim(S) − depth(S∕I).

The proof of Theorem 3.8 follows from the flatness of Frobenious for regular 
rings in prime characteristic. The same result can be obtained for monomial ide-
als in S = k[x1,… , xd] , without any assumptions on k . The proof is similar to 
the one of Theorem 3.8 using in the Frobenous-like map of k-algebras � ∶ S → S 
defined by xi ↦ xm for some m ⩾ 1.

Corollary 3.9  Let S = k[x1,… , xd] be a polynomial ring over any field k , and I ⊆ S 
be a monomial ideal. Then, cd(I) ⩽ dim(S) − depth(S∕I).

From Theorem 3.8, Banerjee and the third author showed a relation between 
the projective dimension of a binomial edge ideal and the vertex connectivity, 
�(G) of the underlying graph.

Theorem 3.10  [4, Theorem B] Let G be a simple connected graph on [d], and let S 
be k[x1,… , xd, y1,… , yd] . If G is not the complete graph, then

Proof sketch  From the primary decomposition of JG [50, Theorem 3.2] and Brod-
mann and Sharp’s [11, Theorem 19.2.7] extension of Grothendieck’s Connectedness 
Theorem [46, Exposé XIII, Théorème 2.1], we have that

Then, the result follows from Theorem 3.8. 	�  ◻

reg(S∕JG) = dim(S∕JG) − fpt(S∕JG) ⩾ (d + 1) − 2 = d − 1,

depth(S∕JG) ⩽ d + �(G) − 2

cd(S∕JG) ⩾ d + �(G) − 2.
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3.3 � Serre’s conditions and h‑vectors

In this subsection we discuss a relation between Serre’s condition (Sk) and h-vec-
tors for F-pure rings. We start with some preliminary definitions.

Definition 3.11  Let k ∈ ℤ⩾0. A ring R satisfies Serre’s condition (Sk) if

We note that a ring is Cohen-Macaulay if and only if it satisfies (Sk) for 
k = dim(R) (or equivalently, for every k ∈ ℤ⩾0 ). We recall that the condition 
(S2) is related to equidimensinality [48, Remark 2.4.1], normality [45, Theo-
rem 5.8.6], and connectedness [59].

Definition 3.12  Let S = k[x1,… , xd] be a standard graded polynomial ring, I ⊆ S be 
a homogeneous ideal, and R = S∕I . Suppose that r = dim(R) . The h-vector of R is 
defined as the vector h(R) = (h0(R),… , hs(R)) ∈ ℤs

⩾0
 that satisfies

We note that if R[Δ] is a Stanley-Reisner ring then h(Δ) = h(R[Δ]) (see Defi-
nition 2.2). If R is a Cohen-Macaulay ring, then the h-vector of R is formed by 
non-negative integers. This can be shown by going module a regular sequence of 
generic linear forms, after reducing to the case in which k is infinite.

The following result relates Serre’s conditions and h-vectors.

Theorem 3.13  [78, Theorem 1.1] Let Δ be a simplical complex on [d], and R[Δ] its 
corresponding Stanley-Reisner rings. If R[Δ] satisfies Serre’s condition (Sm) , then 
h1(Δ),… , hm(Δ) ⩾ 0.

Murai and Terai proved the following technical result, which plays a impor-
tant role in the proof of Theorem 3.13.

Theorem 3.14  [78, Theorem 1.4] Let S = k[x1,… , xd] be a standard graded poly-
nomial ring, I ⊆ S be a homogeneous ideal, and R = S∕I . Let ΩS denote the graded 
canonical module of S. If reg(Extr−i

S
(R,ΩS)) ⩽ i − m for every i = 0,… , d − 1 , then 

h1(R),… , hm(R) ⩾ 0.

The bound on the regularity of Extr−i
S

(R,ΩS) , as in Theorem 3.14, was proven 
using squarefree modules [106], and Hochster’s Formula [57]. Since Stanley-
Reisner rings are good representative of the class of F-pure rings, it is natural to 
ask whether Theorem 3.13 holds for the class. This was recently showed by Dao, 
Ma, and Varbaro.

depth(R�) ⩾ min{dim(R�), k}.

∑
n∈ℤ⩾0

dim(Rn)t
n =

h0(R) + h1(R)t +…+ hs(R)t
s

(1 − t)r
.
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Theorem 3.15  [26, Theorem 1.2] Let S = k[x1,… , xd] be a standard graded poly-
nomial ring, and I ⊆ S be a homogeneous ideal such that R = S∕I is F-finite and 
F-pure. If R satisfies Serre’s condition (Sm) , then h1(Δ),… , hm(Δ) ⩾ 0.

The proof of Theorem 3.15 uses Frobenius actions on Extr−i
S

(R,ΩS) with ideas 
in the spirit of Theorems 3.1, and 3.14.

4 � Symbolic powers

Symbolic powers have been the subject of intense research. We refer the inter-
ested reader to a recent survey on this subject [24].

Definition 4.1  Let R be a Noetherian domain. Given a radical ideal I ⊆ R , its n-th 
symbolic power is defined by

For many purposes, one can focus on symbolic powers of prime ide-
als. In fact, if I = �1 ∩… ∩ �k is the primary decomposition of I, we have that 
I(n) = �

(n)

1
∩… ∩ �

(n)

k
 . We note that if � is a prime ideal, then �(n) is the �-primary 

component of �n.
We now recall the characterization of of symbolic powers with differential 

operators.

Theorem 4.2  (Zariski-Nagata Theorem [109] and [81] If R is a polynomial ring over 
a perfect field, and I ⊆ R is radical ideal. Then,

One can interpret the n-th symbolic powers as the function whose vanishing 
order along � (I) is n, as the following theorem makes precise.

Theorem 4.3  [34, Theorem] Let I ⊆ S = k[x1,… , xd] be a radical ideal. Then,

From the definition it follows that In ⊆ I(n) for every n. In fact, they are equal 
for radical ideals generated by a regular sequence. This is true in particular for 
ideals generated by variables in polynomial rings. In general, symbolic powers 
do not coincide with the ordinary powers. For instance, if I = (xy, xz, yz) , then 
xyz ∈ I(2) ⧵ I2 . However, it is possible to find a uniform constant, c, such that 
I(cn) ⊆ In for smooth varieties over ℂ , as the following theorem makes explicit.

I(n) =
⋂

�∈minR(R∕I)

(InR� ∩ R).

I(n) =

{
f ∈ R

||||

(
1

�1!⋯ �d!

�

�x
�1
1

⋯
�

�x
�d
d

)
(f ) ∈ I ∀ �1 +… �d ⩽ n − 1

}

I(n) =
⋂

�∈MaxSpecR, I⊆�

�n
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Theorem 4.4  [31, Theorem A] Let � be a prime ideal of codimension h in the coordi-
nate ring of a smooth algebraic variety over ℂ . Then, �(hn) ⊆ �n for all n ⩾ 1 , where 
h = height(�).

Hochster and Huneke extended the previous result to regular rings containing 
a field using tight closure arguments. Another slightly different proof was done in 
a recent survey [24, Theorem 2.20]. We recall that the bigheight of a radical ideal 
is the largest height of its minimal primes.

Theorem 4.5  [61, Theorem 1.1] Let R be a regular ring of prime characteristic p. If 
I is a radical ideal of bigheight h, then I(hn) ⊆ In for all n ⩾ 1.

A key element in the proof of the previous result is that for all e ∈ ℤ⩾0

where the first containment follows from the Pigeonhole Principle. This is 
because Equation  4.1 can be verified locally at every minimal prime of I, and if 
�1 +… �h ⩾ hpe then there exists i such that �i ⩾ pe . Then, in prime characteristic p, 
the uniform containment for the particular case that n = pe follows from this princi-
ple. In fact, Equation 4.1 can be refined further to obtain that

for every e ∈ ℤ⩾0 . This motivated the following conjecture.

Conjecture 4.6  (Harbourne) Let R = k[x1,… , xd] and I ⊆ R be a radical homogene-
ous ideal of bigheight h. Then

We point out that this is related to a question raised by Huneke regarding whether 
�(3) ⊆ �2 , where � is a prime ideal of codimension 2 in a regular local ring.

Conjecture 4.6 was recently proven to be false in general [30]. However, the con-
jecture is true for special classes of ideals.

Proposition 4.7  [5, 8.4.5] Let R = k[x1,… , xd] and I ⊆ R be a squarefree monomial 
ideal of bigheight h. Then,

for every n ∈ ℤ⩾0.

Proof  We fix n ∈ ℤ⩾0 . We consider the Frobenius-like map � ∶ R → R of k-algebras 
defined by xi ↦ xn

i
 . We note that � is a faithfully flat morphism. We note that for an 

ideal generated by variables J = (xi1 ,… , xik ) , we have that Jnk ⊆ 𝜙(J)R =∶ J[n] by 
the Pigeonhole Principle. Let �1,… , �j be the minimal primes of I. Then,

(4.1)I(hp
e) ⊆ I[p

e] ⊆ Ip
e

,

(4.2)I(h(p
e−1)+1) ⊆ I[p

e] ⊆ Ip
e

I(h(n−1)+1) ⊆ In.

I(h(n−1)+1) ⊆ In
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	�  ◻

Following the idea that Stanley-Reisner rings are a good representative of 
F-pure rings, one may wonder if Proposition 4.7 also holds for ideals defining 
F-pure rings. This was showed by Grifo and Huneke.

Theorem  4.8  [44, Theorem  1.2] Let R be a regular ring and I be an ideal of 
bigheight h such that R/I is F-pure. Then,

for every n ∈ ℤ⩾0.

Proof  We can assume that R is a regular F-finite local ring, with maximal ideal �.
We fix n ∈ ℤ⩾0 . Let f ∈ I[p

e] ∶ I , and note that fI(h(n−1)+1) ⊆ I[p
e] . Then we have 

that

We now note that, for e ≫ 0,

Thus,

Since f was any element inside I[pe] ∶ I , we conclude that

I(h(n−1)+1) = (�1 ∩… ∩ �j)
(h(n−1)+1)

= �
(h(n−1)+1)

1
∩… ∩ �

(h(n−1)+1)

j

= �
[n]

1
∩… ∩ �

[n]

j

= (�1 ∩… ∩ �j)
[n]

= I[n] ⊆ In.

I(h(n−1)+1) ⊆ In

f
(
I(h(n−1)+1)

)[pe]
⊆ f

(
I(h(n−1)+1)

)pe

⊆
(
fI(h(n−1)+1)

)(
I(h(n−1)+1)

)pe−1

⊆ I[p
e]
(
I(h(n−1)+1)

)pe−1
.

(
I(h(n−1)+1)

)pe−1
⊆ I((h(n−1)+1)(p

e−1))

⊆ I((hp
e−1)(n−1)+h(n−1))

⊆
(
I(hp

e)
)n−1

[61, Theorem2.6]

⊆
(
I[p

e]
)n−1

by Theorem 4.5.

f
(
I(h(n−1)+1)

)[pe]
⊆
(
I[p

e]
)n

= (In)[p
e].

I[p
e] ∶ I ⊆ (In)[p

e] ∶
(
I(h(n−1)+1)

)[pe]
=
(
In ∶ I(h(n−1)+1)

)[pe]
.
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By way of contradiction we assume that I(h(n−1)+1) ⊈ In . Then, In ∶ I(h(n−1)+1) ⊆ � . 
It follows that I[pe] ∶ I ⊆

(
In ∶ I(h(n−1)+1)

)[pe]
⊆ �pe for some e ≫ 0 , and this contra-

dicts Fedder’s Criterion (Theorem 2.20). 	 � ◻

It is not easy to find conditions under which symbolic and ordinary powers coin-
cide. Even for monomial ideals this has been a difficult task. There is a important 
conjecture in optimization theory due to Conforti and Cornuéjols [19], which was 
translated into the context of symbolic and ordinary powers by Gitler, Villarreal and 
others [40, 41]. This conjecture is known as the Packing Problem (for more details 
see a recent survey on this subject [24, Sect. 4.2]). We now state one of the most sig-
nificant results in this direction.

Theorem 4.9  [90, Theorem 5.9] Let G be a simple graph on [r], S = k[x1,… , xr] , 
and IG be the monomial edge ideal of G. Then, I(n)

G
= In

G
 for every n ∈ ℤ⩾0 if and 

only if G is bipartite.

Aiming to study the Packing Problem the second and third authors provide a finite 
condition to test if ordinary and symbolic powers coincide for monomial ideals.

Theorem 4.10  [77, Theorem 4.8] Let I ⊆ S = k[x1,… , xr] be an squarefree mono-
mial ideal generated by � elements. Then, I(n) = In for every n ∈ ℤ⩾0 if and only if 
I(n) = In for every n ⩽

�

2
.

Theorem 4.10 was proven using Frobenius-like morphisms. From this criterion, 
we obtain one for certain homogeneous ideals. For this, we first need to recall a 
result by Sullivant.

Proposition 4.11  [96, Proposition 5.1] Let k be a perfect field, S = k[x1,… , xd] be a 
polynomial ring, and I ⊆ S be a radical ideal. Suppose that there exists a monomial 
order < such that in<(I) is a squarefree monomial ideal. Then,

for every n ∈ ℤ⩾0.

We note that Sullivant stated the previous result for algebraiclly closed fields, but 
the same proof works for perfect fields.

Theorem 4.12  Let k be a perfect field, S = k[x1,… , xd] be a polynomial ring,  I ⊆ S 
be a radical ideal, and n ∈ ℤ⩾0 . Suppose that there exists a monomial order < such 
that in<(I) is a squarefree monomial ideal. If 

(
in<(I)

)(n)
=
(
in<(I)

)n , then I(n) = In.

Proof  We have that

in<(I
(n)) =

(
in<(I)

)(n)
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where the containment in the middle follows from Proposition 4.11. Since the two 
ideals in the extremes in Equation  4.3 are equal, we have that in<(In) = in<(I

(n)) . 
Since In ⊆ I(n) , we conclude that In = I(n) . 	�  ◻

Theorem 4.12 gives a different proof that the symbolic and ordinary powers coin-
cide for binomial edge ideals of closed graph [50], which was first shown by Ene 
and Herzog [35].

Definition 4.13  A graph G is closed if one can label its vertices with {1,… , n} such 
that if G has edges {i, j} and {k, l} with i < j and k < l , then {j, l} is also an edge if 
i = k , and {i, k} is also an edge if j = l.

Corollary 4.14  [35, Theorem  3.3 and Corollary 3.5] Let G be a simple graph 
on [r], S = k[x1,… , xr, y1,… , yr] be a polynomial ring, JG be the binomial 
edge ideal associated to R, and < be the lexicographical monomial order. If (
in<(JG)

)(n)
=
(
in<(JG)

)n for every n ∈ ℤ⩾0 , then J(n)
G

= Jn
G

 for every n ∈ ℤ⩾0 . In 
particular, if G is a closed graph, then J(n)

G
= Jn

G
 for every n ∈ ℤ⩾0.

Proof  This follows from Theorem 4.12, because in<(JG) is a radical ideal [50, Theo-
rem 2.1]. The claim about closed ideals follows from two facts. First, there exists 
a lexicographical order such that in<(JG) is a monomial edge ideal associated to a 
bipartite graph [50, Theorem 1.1.]. Second, the ordinary and symbolic powers coin-
cide for monomial edge ideals of bipartite graphs by Theorem 4.9. 	�  ◻

Theorem 4.15  Let k be a perfect field, S = k[x1,… , xd] be a polynomial ring, I ⊆ S 
be a radical ideal and < be a monomial order. Suppose that in<(I) is a squarefree 
monomial ideal generated by � elements. If 

(
in<(I)

)(n)
=
(
in<(I)

)n for every n ⩽
�

2
 , 

then I(n) = In for every n ∈ ℤ⩾0.

Proof  This follows from Theorems 4.10 and 4.12. 	�  ◻

5 � Asymptotic growth of regularity and depth of graded families 
of ideals

Throughout this section we assume R is a Noetherian ring and I ⊆ R is an ideal, 
which is homogeneous in the graded case. We begin with the following definition.

Definition 5.1  A sequence of ideals I = {In}n∈ℤ⩾0
 in R is a graded family if I0 = R , 

and ImIn ⊆ In+m for every m, n ∈ ℤ⩾0 . A graded family is a filtration if In+1 ⊆ In for 
every n ∈ ℤ⩾0.

(4.3)
(
in<(I)

)n
⊆ in<(I

n) ⊆ in<(I
(n)) =

(
in<(I)

)(n)
,
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We include below some examples of graded families of ideals. For more informa-
tion see [32] and [64].

Example 5.2  The following are examples of graded families of ideals. 

1.	 Regular powers. The powers of the ideal I, i.e., {In}n∈ℤ⩾0
.

2.	 Integral closures: An element y ∈ R is integral over I if there exists an integral 
relation yn + a1y

n−1 +⋯ + an = 0 for some aj ∈ Ij . The integral closure of I, 
denoted by I , is the ideal generated by all the integral elements over I. The integral 
closures of the regular powers of I, i.e., {In}n∈ℤ⩾0

 form a graded family.
3.	 Colon ideals: Given another ideal J in R, the colon ideals {(In ∶R J∞)}n∈ℤ⩾0

 
form a graded family. In particular, if (R,�, k) is local, the saturations 
Ĩn = {(In ∶R �∞)}n∈ℤ⩾0

 form a graded family of ideals.
4.	 Symbolic powers: The symbolic powers of I, I(n) =

⋂
�∈min(I)

(InR� ∩ R), form a 

graded family {I(n)}n∈ℤ⩾0
 (cf. Sect. 4).

5.	 Initial ideals: If R is a polynomial ring over a field, and I is a homogeneous ideal, 
the initial ideals {in<(In)}n∈ℤ⩾0

 with respect to any monomial order (cf. Sect. 2.3) 
form a graded family.

6.	 Ideals arising from valuations: If R is an integral domain (rank one) valu-
ation on R is a function � ∶ R ⧵ {0} → ℝ⩾0 such that �(xy) = �(x) + �(y) and 
�(x + y) ⩾ min{�(x), �(y)} for every x, y. For each n ∈ ℤ⩾0 we define the ideal 
In(�) = {x ∈ R ∣ �(x) ⩾ n} . The ideals {In(�)}n∈ℤ⩾0

 form a graded family.

Given a graded family I  , we can define the following graded ring whose 
components are the members of I .

Definition 5.3  Let I = {In}n∈ℤ⩾0
 be a graded family of ideals. The Rees algebra of 

I  is the graded ring R(I) = ⊕n∈ℤ⩾0
Int

n ⊆ R[t].

It is an active research topic in commutative algebra to study the asymptotic 
behavior of homological invariants of graded families. In the following problem 
we include some of these invariants.

Problem 5.4  Assume (R,�,k) is Noetherian local, or ℤ⩾0-graded over a local ring 
(R0,�0) with � = �0 ⊕n>0 Rn . Given a graded family of ideals I = {In}n∈ℤ⩾0

 , 
study the asymptotic behavior of the following sequences. 

1.	 In the graded case, the regularities {reg(In)}n∈ℤ⩾0
.

2.	 The depths {depth(R∕In)}n∈ℤ⩾0
 ; equivalently, the projective dimensions 

{pd(R∕In)}n∈ℤ⩾0
 if R = k[x1,… , xd] is a polynomial ring.

In the following subsections we discuss each of the parts of this problem in more 
detail, including its history, the contributions made using positive characteristic 
methods, and some open questions.



408	 São Paulo Journal of Mathematical Sciences (2023) 17:387–429

1 3

5.1 � Regularities

In this subsection R is a Noetherian ℤ⩾0-graded ring over a local ring (R0,�0) 
with � = �0 ⊕n>0 Rn . The study of regularities of graded families of ideals began 
with the work of Chandler [14] and of Geramita-Gimigliano-Pitteloud [39] where 
it was shown that over a polynomial ring R and homogeneous ideal I, once has 
reg(In) ⩽ nreg(I) for every n ∈ ℤ⩾0 provided dim(R∕I) ⩽ 1 . This fact was conjec-
tured to be true for arbitrary I [14, Conjecture 1]. This conjecture was partially 
solved by Swanson who showed the sequence {reg(In)}n∈ℤ⩾0

 is bounded by a linear 
function [97, Theorem 1]. Although Chandler’s conjecture in its original form seems 
to be open, the sequence of regularities was shown to coincide with a linear function 
for n sufficiently large. We include below a more general version of this result.

We recall that for an R-module M, an ideal J ⊆ I is a M-reduction of I if 
In+1M = JInM for n ≫ 0 . If d(N) denotes the maximal degree of a generator in a 
minimal homogeneous generating set of the R-module, M, we define

Theorem  5.5  [20, 67, 99] Let R = R0[R1] be a standard graded Noetherian ring, 
I ⊆ R a homogeneous ideal, and M a finitely generated graded R-module. Then there 
exists an integer e such that

for n ≫ 0.

Remark 5.6  The version of Theorem 5.5 with R a polynomial ring over a field and 
M = R was shown idependently by Kodiyalam [67] and Cutkosky, Herzog, and 
Trung [20]. The version presented here was shown by Trung and Wang [99].

The following statement follows directly from Theorem  5.5. We recall that 
a (numerical) quasi-polynomial on ℤ⩾0 is a function f ∶ ℤ⩾0 → ℚ such that 
there exists a ∈ ℤ>0 and polynomials pi(x) ∈ ℚ[x] for i = 0,… , a − 1 such that 
f (n) = pi(n) if n ≡ i (mod a).

Corollary 5.7  Let R and M be as in Theorem 5.5, and let I = {In}n∈ℤ⩾0
 be a graded 

family of ideals. Assume the Rees algebra R(I) is Noetherian, then reg(InM) agrees 
with a linear quasi-polynomial for n ≫ 0.

Proof  Since R(I) is Noetherian, threre exists c such that Icn = In
c
 for every n ∈ ℤ⩾0 , 

i.e., the subalgebra A = ⊕n∈ℤ⩾0
Icn ⊆ R(I) is standard graded (see e.g., [43, Lemma 

13.10] or [51, Theorem 2.1]. Moreover, each Mj = ⊕n∈ℤIcn+jM for j = 0,… , c − 1 
is a finitely generated A-module. The result now follows by applying Theorem 5.5 
with I = Ic and M = Mj for j = 0,… , c − 1 . 	� ◻

�M(I) ∶= {d(J) ∣ J is an M-reduction of I}.

reg(InM) = �M(I)n + e



409

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:387–429	

We are not aware of a counterexample in the literature to the following question.

Question 5.8  Let I = {In}n∈ℤ⩾0
 be any of the graded families in Example 5.2. Does 

the limit

exist?

Remark 5.9  The following facts provide some evidence that supports this question. 

1.	 Question 5.8 was asked for symbolic powers and initial ideals of powers of homo-
geneous ideals in a polynomial ring R by Herzog, Hoa, and Trung [52]. In this 
same paper, the authors answered affirmatively this question for initial ideals of 
powers of I provided dim(R∕I) ⩽ 1 . Previously, Chandler had shown the limit 
exists for symbolic powers of ideals I such that dim(R∕I) ⩽ 2 [14].

2.	 Limit (5.1) was shown to hold for symbolic powers of squarefree monomial ide-
als by Hoa and Trung [55, Theorem 4.9]. Since the Rees algebra of the symbolic 
powers of arbitrary monomial ideals is Noetherian [51, Theorem 3.2], it follows 
from Corollary 5.7 that for I monomial the sequence {reg(I(n))}n∈ℤ⩾0

 eventually 
agrees with a linear quasipolynomial for n ≫ 0 . However, the sequence is not 
always polynomial if one considers non-squarefree monomial ideals [54, Example 
3.10].

3.	 In characteristic zero, using representation theory techniques, Raicu showed that 
for symbolic powers of generic determinantal ideals, the sequence {reg(I(n))}n∈ℤ⩾0

 
is eventually linear and then limit (5.1) exists. Also in characteristic zero, the 
same result was shown for ideals of Pfaffians by Perlman [86]. We recall Raicu’s 
result below and explain the ideas behind the proof of the analogue result in posi-
tive characteristic [28].

4.	 For integral closures of homogeneous ideals in a polynomial ring, Cutkosky, 
Herzog, and Trung showed that {reg(In)}n∈ℤ⩾0

 is eventually linear [20, Corollary 
3.5]. More generally, if R is an analytically unramified domain, the same result 
holds [99, Corollary 3.4].

5.	 Limit (5.1) holds for {reg(Ĩn)}n∈ℤ⩾0
 , saturations of powers of homogeneous ideals 

in a polynomial ring [21, Theorem 3.2].

In fact, the following weaker question also seems to be open.

Question 5.10  Let I = {In}n∈ℤ⩾0
 be any of the graded families in Example 5.2. Is 

the sequence {reg(In)}n∈ℤ⩾0
 bounded by a linear function?

We now describe some important features of the new notions of F-pure filtra-
tion and symbolic F-purity [28]. The development of these notions is motivated 

(5.1)lim
n→∞

reg(In)

n
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by the wish to prove the positive characteristic analogue of following result by 
Raicu.

Theorem  5.11  (Raicu [88]) Let X = (xi,j) be an m × r matrix of variables with 
m ⩾ r and let It ⊆ ℂ[X] be the ideal generated by the t-minors of X for some integer 
0 < t ⩽ r . Then for n ⩾ r − 1 we have reg

(
I
(n)
t

)
= tn. In particular,

We would like to point out that this theorem has recently been extended to poly-
nomial rings over fields of any characteristic also in an upcoming book of Bruns, 
Conca, Raicu and Varbaro [12].

We now include the definition of the aforementioned new notions.

Definition 5.12  Assume R is a F-finte and F-pure ring of characteristic p > 0 . We 
say that a filtration I = {In}n∈ℤ⩾0

 is F-pure if there exists a splitting � ∶ R1∕p
→ R 

such that 𝜙
(
(Inp+1)

1∕p
)
⊆ In+1 for every n ∈ ℤ⩾0 . An ideal I is symbolic F-pure if the 

symbolic powers {I(n)}n∈ℤ⩾0
 form an F-pure filtration.

Remark 5.13  We note that if the filtration I = {In}n∈ℤ⩾0
 is F-pure, the ideal I1 must 

be F-pure.

In the following example we include a complete list of the classes of ideals from 
combinatorial commutative algebra that are known to be symbolic F-pure.

Example 5.14  Let k be an F-finite field of characteristic p > 0 . The following classes 
ideals are symbolic F-pure; for details and proofs we refer the reader to a recent pre-
print [28]. 

1.	 Squarefree monomial ideals I ⊆ k[x1,… , xd] a squarefree monomial ideal.
2.	 Generic determinantal For X = (xi,j) an m × r generic matrix of variables, the 

ideal It(X) ⊆ k[X] generated by the t-minors of X.
3.	 Symmetric determinantal For Y = (yi,j) an m × m generic symmetric matrix, i.e., 

yi,j = yj,i for every 1 ⩽ i, j ⩽ m , the ideal It(Y) ⊆ k[Y] generated by the t-minors 
of Y.

4.	 Pfaffians For Z = (zi,j) an m × m generic skew symmetric matrix, i.e., zi,j = −zj,i 
for every 1 ⩽ i < j ⩽ m , and zi,i = 0 for every 1 ⩽ i ⩽ m , the ideal P2t(Z) ⊆ k[Z] 
generated by the 2t-Pfaffians of Z.

5.	 Hankel determinantal Let w1,… ,wd be variables. For an integer j such that 
1 ⩽ j ⩽ d , we denote by Wj the j × (d + 1 − j) Hankel matrix, which has the fol-
lowing entries 

lim
n→∞

reg
(
I
(n)
t

)
n

= t.
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 For 1 ⩽ t ⩽ min{j, d + 1 − j} , the ideal It(Wj) ⊆ k[w1,… ,wd] generated by the 
t-minors of Wj . The ideal It(Wj) only depends on d and t, that is, It(Wj) = It(Wt) 
for every t ⩽ j ⩽ d + 1 − t.

6.	 Binomial  edge  ideal  Let  G  be  a  closed  connected  g raph 
w i t h  ve r t ex  s e t  [r] = {1,… , r} ,  t h e  b i n o m i a l  e d ge  i d e a l 
IG = (xiyj − xjyi ∣ {i, j} is an edge of G) ⊆ k[x1,… , xr, y1,… , yr] provided it is 
equidimensional.

7.	 Nearly commuting matrices Let A and B be r × r generic matrices in disjoint sets 
of variables. For r = 2 or 3, let I be the ideal generated by the entries of AB − BA 
and J the ideal generated by the off-diagonal entries of this matrix. The ideals I 
and J are symbolic F-pure.

The following are families of F-pure filtrations of monomial ideals. We refer the 
reader to a recent preprint for more details [28].

Example 5.15 

1.	 Ideals arising form monomial valuations A valuation on a polynomial ring 
R = k[x1,… , xd] is (normalized) monomial if there exists a vector � ∈ ℤd

⩾0
 such 

that �(x�) = � ⋅ � for any monomial x� , and for any polynomial f =
∑

cix
�i , with 

ci ∈ k nonzero, one has �(f ) = min{�(x�i )} . If �1,… , �r are monomial valuations 
and In = In(�1) ∩⋯ ∩ In(�r) for every n, the sequence {In}n∈ℤ⩾0

 is an F-pure filtra-
tion of monomial ideals. Examples of filtrations arising this way include, rational 
powers of monomial ideal and symbolic powers of squarefee monomial ideals 
[28, Example 7.3].

2.	 Initial ideals of symbolic powers of determinantals Following the notation 
from Example 5.14 (2)–(5), we have {in<(It(X)(n))}n∈ℤ⩾0

 with p > min{t, r − t} , 
{in<(P2t(Z)

(n))}n∈ℤ⩾0
 with p > min{2t, r − 2t} , and {in<(It(Wj)

(n))}n∈ℤ⩾0
 with 

p > min{t, r − t} are all F-pure filtrations.

The importance of these new definitions to the study of regularities can be sum-
marized as follows. We refer to Sect. 2.6 for the definition of a-invariants.

Theorem  5.16  [28] Assume R is as in Definition  5.12 and that the filtration 
I = {In}n∈ℤ⩾0

 is F -pure, then

1.	� ai(In) ⩾ peai(I⌈ n

pe
⌉) for every n, e ∈ ℤ⩾0 and 0 ⩽ i ⩽ dim(R∕I1).

Wj =

⎛
⎜⎜⎜⎜⎜⎝

w1 w2 ⋯ wd+1−j

w2 w3 ⋯ ⋯

w3 ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮

wj ⋯ ⋯ wd

⎞
⎟⎟⎟⎟⎟⎠

.
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2.	� If R(I) is Noetherian, the limit lim
n→∞

reg(In)

n
 exists.

We obtain the following corollary.

Corollary 5.17  [28] Assume R is as in Definition 5.12. If I is as in Example 5.14 (1)–
(5), the limit

exists.

The F-purity of a filtration I = {In}n∈ℤ⩾0
 implies that the Rees algebra R(I) 

and associated graded algebra gr(I) = ⊕n∈ℤ⩾0
In∕In+1 have nice singularities. 

Indeed, if I = {In}n∈ℤ⩾0
 is F-pure then R(I) and gr(I) are F-pure [28, Theo-

rem 4.7]. For the determinantal ideals in Example 5.14 (2)-(5) better results are 
available: in some cases these algebras are strongly F-regular and the Rees alge-
bra R(I) = ⊕n∈ℤ⩾0

Intn is F-pure [28, Sect. 6].
For filtrations of monomial ideals in arbitrary characteristic, we can use Frobe-

nius-like maps to obtain similar conclusions for the regularity of these filtrations 
[70, 77]. We now include a slightly more general version of the known results and 
show some applications to the study of regularities. In the following results we 
do not assume k is necessarily of positive characteristic and we use the following 
notation.

Let R = k[x1,… , xd] be a polynomial ring over an arbitrary field k . We recall 
a valuation � on R is monomial if �(

∑
� ��x

�) = min{�(x�) ∣ �� ≠ 0} . In this case, 
there exists w ∈ ℚd

⩾0
 such that �(x�) = w ⋅ � . We say that the monomial valuation 

� is normalized if w ∈ ℤd
⩾0

 . We note that if � is a monomial valuation, the ideals 
In(�) for n ∈ ℤ are all monomial.

Let m ∈ ℤ>0 and set R1∕m = k[x
1∕m

1
,… , x

1∕m

d
] . We note that R ⊆ R1∕m . We 

denote by I1∕m the ideal of R1∕m generated by {f 1∕m ∣ f ∈ I monomial}.

Definition 5.18  For m ∈ ℤ>0 , we define the R-homomorphism ΦR
m
∶ R1∕m

→ R 
induced by

We note that ΦR
m

 is a splitting and thus R is a direct summand of R1∕m.

Lemma 5.19  Let � = �1,⋯ , �r be normalized monomial valuations on R. For each 
n ∈ ℤ⩾0 we define the monomial ideal

lim
n→∞

reg
(
I(n)

)
n

ΦR
m
(x�) =

{
x�∕m � ≡ 0 (mod m);

0 otherwise.
.

In(�) = In(�1) ∩⋯ ∩ In(�r) = {f ∈ R ∣ �i(f ) ⩾ n, for 1 ⩽ i ⩽ r}.
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Then

for every n ∈ ℤ⩾0 , m ∈ ℤ>0 , and 1 ⩽ j ⩽ m.

Proof  Fix m ∈ ℤ0 . For each 1 ⩽ i ⩽ r and n ∈ ℤ⩾0 we have In(𝜈i) ⊆ (Inm(𝜈i))
1∕m and 

thus

It follows that In+1 ⊆ ΦR
m

(
(Inm+j)

1∕m
)
 for every 1 ⩽ j ⩽ m.

Fix 1 ⩽ i ⩽ r and 1 ⩽ j ⩽ m . We note that (Inm+j(�i))1∕m is spanned as a k-vec-
tor space by {(x�)1∕m ∣ �i(x

�) ⩾ nm + j}. Let (x�)1∕m ∈ (Inm+j(�i))
1∕m such that 

ΦR
m
((x�)1∕m) ≠ 0 , then �∕m ∈ ℤd

⩾0
 and �i(x�) ⩾ nm + j . Since �i(x�∕m) ⩾ n +

j

m
 and �i 

is normalized, we must have �i(x�∕m) ⩾ n + 1 and then ΦR
m
((x�)1∕m) ∈ In+1(�i) as we 

wanted to show. Finally, we have

	�  ◻

Example 5.20  We note that well-studied filtrations of monomial ideals appear as 
{In(�)}n∈ℤ⩾0

 as in Lemma 5.19. Examples of these are: 

1.	 Symbolic powers of squarefree monomial ideals. In this case, the valu-
ations �i correspond to the minimal primes of the squarefree monomial 
ideal I. That is, if I = Q1 ∩⋯ ∩ Qr is the prime decomposition of I, then 
�i(f ) = max{n ∈ ℤ⩾0 ∣ f ∈ Qn

i
} for 1 ⩽ i ⩽ r.

2.	 Rational powers of monomial ideals. In this case, the valuations �i are suitable 
multiples of the Rees valuations of the given monomial ideals [70, Proposition 
4.4].

We are now ready to present the result on the regularities of the filtrations 
{In(�)}n∈ℤ⩾0

.

Theorem 5.21  Let R = k[x1,… , xd] be a polynomial ring over an arbitrary field k . 
Let � = �1,⋯ , �r be normalized monomial valuations on R and for each n ∈ ℤ⩾0 let 
In(�) be as in Lemma 5.19. Then,

1.	� ai(In(�)) ⩾ mai(I⌈ n

m
⌉(�)) for every n,m ∈ ℤ>0 and 0 ⩽ i ⩽ dim(R∕I1(�)).

ΦR
m

(
(Inm+j(�))

1∕m
)
= In+1(�)

In+1(𝜈) =In+1(𝜈1) ∩⋯ ∩ In+1(𝜈r) ⊆ (I(n+1)m(𝜈1) ∩⋯ ∩ I(n+1)m(𝜈r))
1∕m

=(I(n+1)m(𝜈))
1∕m.

ΦR
m

(
(Inm+j(𝜈))

1∕m
)
⊆ ΦR

m

(
(Inm+j(𝜈1))

1∕m
)
∩⋯ ∩ ΦR

m

(
(Inm+j(𝜈r))

1∕m
)

⊆ In+1(𝜈1) ∩⋯ ∩ In+1(𝜈r) = In+1(𝜈).
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2.	� The limit lim
n→∞

reg(In(�))

n

 exists.

 In particular, this result holds for the ideals in Example5.20.
Proof  The proof of (1) follows as the one for symbolic powers of squarefree mono-
mial ideals [77, Theorem 3.4]. For part (2), we note that if I = {In(�)}n∈ℤ⩾0

 , then 
R(I) is Noetherian [64, Corollary 9.2.1], [51, Theorem  1.1, Corollary 1.2] and 
then, again, the proof follows as the one for symbolic powers of squarefree mono-
mial ideals [77, Theorem 3.5]. 	�  ◻

5.2 � Depths

In this subsection (R,�,k) is a Noetherian that is either local, or an ℤ⩾0-graded ring 
over a local ring (R0,�0) with � = �0 ⊕n>0 Rn.

We now turn our attention to the sequence of depths {depth(R∕In)}n∈ℤ⩾0
 of a 

graded family of ideals. The first result in this topic is the celebrated result by Brod-
mann [10], who showed that the sequence of depths stabilizes for the regular powers 
of an ideal I. We include below the statement of this theorem. We recall that the 
analytic spread of I, denoted by �(I) , is the Krull dimension of its fiber cone, i.e., 
the graded algebra F(I) = ⊕n∈ℤ⩾0

In∕�In.

Theorem 5.22  (Brodmann [10] Let I ⊆ R be an ideal which is homogeneous in the 
graded case. Then the limit limn→∞ depth(R∕In) exists. Moreover,

Theorem 5.22 generated a new line of research, where several authors have stud-
ied the conditions that imply the limit of depths of the ideals in a graded family 
exists. We ask the following question. In Remark 5.24 we include details of what is 
known about this question.

Question 5.23  Let I = {In}n∈ℤ⩾0
 be any of the graded families in Example 5.2. 

When does the limit

exist?

Remark 5.24  We include some comments on Question 5.23. 

1.	 Assume R is analytically unramified. Since the Rees algebra of the filtration of 
integral closures {In}n∈ℤ⩾0

 is module-finite over R(I) = ⊕n∈ℤ⩾0
Intn [64, Corollary 

9.21], it follows that the limit limn→∞ depth(In) exists [49, Theorem 1.1].
2.	 The existence of limit 5.2 for symbolic powers of squarefree monomial ideals 

follows from methods due to Hoa and Trung [55]. A slightly more general version 
was shown by Nguyen and Trung [82, Thoerem 3.3].

lim
n→∞

depth(R∕In) = min{depth(R∕In)} ⩽ dim(R) − �(I).

(5.2)lim
n→∞

depth(R∕In)
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3.	 Given a graded family I = {In}n∈ℤ⩾0
 , we note that if R(I) is Noetherian, then the 

sequence {depth(In)}n∈ℤ⩾0
 is eventually periodic [49, Theorem 1.1].

4.	 A recent remarkable result of Nguyen and Trung shows that for any sequence 
{an}n⩾1 that is periodic for n ≫ 0 , there exists a homogeneous ideal I such that 
depthR∕I(n) = an for every n ⩾ 1 [82]. In particular, limit (5.2) may not exist.

The following result is our main contribution to Question 5.23.

Theorem 5.25  [28] Assume R is F-finte and F-pure ring of characteristic p > 0 and 
that the filtration  I = {In}n∈ℤ⩾0

 is F-pure, then

1.	 depth(In) ⩽ depth(I⌈ n

pe
⌉) for every n, e ∈ ℤ⩾0.

2.	 If R(I) is Noetherian, the limit lim
n→∞

depth(In) exists and is equal to min{depth(In)}

.

Thus, as it was the case for regularities, we obtain the following corollary.

Corollary 5.26  [28] Assume R is as in Definition 5.12. If I is as in Example 5.14 (1)-
(5), the limit

exists and is equal to min{depth(In)}.

Using the splitting introduced in Definition  5.18, we obtain the following 
result in arbitrary characteristic.

Theorem 5.27  Let R = k[x1,… , xd] be a polynomial ring over an arbitrary field k . 
Let � = �1,⋯ , �r be normalized monomial valuations on R and for each n ∈ ℤ⩾0 let 
In(�) be as in Lemma 5.19. Then,

1.	� depth(In(�)) ⩽ depth(I⌈ n

m
⌉(�)) for every n,m ∈ ℤ>0.

2.	� The limit lim
n→∞

depth(R∕In(�)) exists and is equal to min{depth(R∕In(�))}

 In particular, this result holds for the ideals in Example5.20.
Proof  We note that if I = {In(�)}n∈ℤ⩾0

 , then R(I) is Noetherian [64, Corollary 
9.2.1], [51, Theorem 1.1, Corollary 1.2]. The proof now follows similar to the case 
of F-pure filtrations [28, Proposition 4.9 and Theorem 4.10]. 	�  ◻

We obtain the following corollary.

lim
n→∞

depth(R∕In)
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Corollary 5.28  With the notation in Theorem  5.27 we have 
depth(I1(�)) ⩾ depth(I2(�)) ⩾ depth(I3(�)).

6 � Injectivity of maps between Ext and local cohomology modules

Throughout this section, k denotes a field, and S = k[x1,… , xd] is a polynomial 
ring over k . Unless otherwise specified, we intend S to be standard graded, that is 
deg(xi) = 1 for all i. Mustaţǎ proved the following result about maps between Ext 
and local cohomology modules for Frobenius-like powers of squarefree mono-
mial ideals:

Theorem  6.1  [79, Theorem  1.1] Let I ⊆ S be a squarefree monomial ideal. 
Given a minimal monomial generating set m1,… ,mt of I, for any n ∈ ℤ>0 let 
I[n] = (mn

1
,… ,mn

t
) be its n-th Frobenius-like power. The natural map

is injective for all n ∈ ℤ>0 and all i ∈ ℤ.

Motivated in part by this result and by the notion of F-full rings in prime charac-
teristic the first author, together with Dao and Ma, introduced the notion of cohomo-
logically full rings [25].

By making use of the desirable cohomological properties of cohomologically full 
rings, Conca and Varbaro were able to settle an important conjecture due to Herzog 
[17, 53]:

Theorem 6.2  [18, Theorem 1.2] Let < be a monomial order on S, and I be a homo-
geneous ideal such that in<(I) is squarefree. Then

In particular, the extremal Betti numbers of I and in<(I) coincide. As a consequence, 
depth(S∕I) = depth(S∕in<(I)) and reg(S∕I) = reg(S∕in<(I)).

The last result that we want to consider in this section is a Theorem of Nadi 
and Varbaro, who obtained relations between Lyubeznik numbers of an ideal and 
its initial ideal, provided the latter is squarefree. We here recall only the statement 
of this result; we refer to a later subsection for the definition and properties of the 
Lyubeznik numbers �ij(−) (see Definition 6.14).

Theorem 6.3  [80, Lemma 2.1 and Corollary 2.5] Assume that k has characteristic 
p > 0 , and let < be a monomial order on S. If I ⊆ S is a homogeneous ideal such 
that in<(I) is squarefree, then

Exti
S
(S∕I[n], S) → Hi

I
(S) = lim

j→∞
Exti

S
(S∕I[j], S)

dimK(H
i
�
(S∕I)j) = dimK(H

i
�
(S∕in<(I))j) for all i, j ∈ ℤ.
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The goals of this section are to revise the definition and some of the main proper-
ties of cohomologically full rings, following recent treatment of this subject [25]. 
With that, we present proofs of Theorems 6.1, 6.2 and 6.3 by exploiting the fact that 
squarefree monomial ideal and their Frobenius powers define of cohomologically 
full rings [25].

6.1 � Cohomologically full rings

We start by giving the definition of cohomologically full rings in our setup. The 
definition is more general, and we refer the interested reader to [25] for more details.

Definition 6.4  Let S = k[x1.… , xd] with the standard grading, � = (x1,… , xd) , and 
I ⊆ S be a homogeneous ideal. Then S/I is i-cohomologically full if, for every homo-
geneous ideal J ⊆ I such that 

√
J =

√
I , the induced map Hi

�
(S∕J) → Hi

�
(S∕I) is 

surjective. The ring S/I is cohomologically full if it is i-cohomologically full for 
every i ∈ ℤ⩾0.

We point out that the notion of cohomologically full ring is very much related 
to that of ring with liftable local cohomology [69] and fiber full ring [15, 16, 102, 
108].

Remark 6.5  Even if the definition of cohomologically full depends on the pres-
entation of the ring as a quotient S/I of a polynomial ring S, it can be shown that 
being cohomologically full is independent of the presentation. In other words, 
if R = S∕I is i-cohomologically full, and R can also be presented as S�∕I� , where 
S� = k[y1,… , yd� ] and I′ is a homogeneous ideal of S′ , then S�∕I� is also cohomologi-
cally full [25, Proposition 2.1].

The connection between the notion of cohomologically full ring and Mustaţǎ’s 
problem lies in the next proposition, which is a direct application of graded local 
duality [13, Theorem 3.6.19].

Proposition 6.6  [25, Proposition 2.1] Let S = k[x1,… , xd] with the standard grad-
ing, and I ⊆ S be a homogeneous ideal. The following conditions are equivalent:

1.	 S/I is i-cohomologically full.
2.	 For every homogeneous ideal J ⊆ I  such that 

√
J =

√
I  the natural map 

Extd−i
S

(S∕I, S) → Extd−i
S

(S∕J, S) is injective.

𝜆ij(S∕I) ⩽ 𝜆ij(S∕in<(I)) for all i, j ∈ ℤ.
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3.	 For every family of ideals {In}n∈ℤ⩾0
 of S such that I0 = I , In+1 ⊆ In for all n and 

which is cofinal with the the family {In} of ordinary powers of I, such that the 
natural map Extd−i

S
(S∕I, S) → Extd−i

S
(S∕In, S) is injective for every n ∈ ℤ⩾0.

4.	 The natural map Extd−i
S

(S∕I, S) → Hd−i
I

(S) is injective.

Proof  Assume (1). Applying graded local duality [11, Sect. 13.4] we obtain that the 
map Extd−i

S
(S∕I, S(−d)) → Hd−i

I
(S∕J, S(−d)) is injective, where �S ≅ S(−d) is the 

graded canonical module of S. Using that Extd−i
S

(S∕I, S(−d)) ≅ Extd−i
S

(S∕I, S)(−d) , 
and applying the exact functor −⊗S S(d) that shifts degrees by d, we obtain the 
statement of (2).

We have that (2) implies (3).
Assuming (2), we have that the map Extd−i

S
(S∕I, S) → lim

n→∞
Extd−i

S
(S∕In, S) ≅ Hd−i

I
(S) 

is injective, and (3) is proved.
Finally, assume (4), and let J ⊆ I be any homogeneous ideal such that 

√
J =

√
I . 

Let k ∈ ℤ⩾0 be such that Ik ⊆ J . Since Hd−i
I

(S) ≅ lim
n→∞

Extd−i
S

(S∕In, S) , and because 
of our choice of k, the map Extd−i

S
(S∕I, S) → Hd−i

I
(S) can be factored as the 

composition

As the composition is injective, the first map is injective. Now applying the exact 
functor −⊗S S(−d) that shifts degrees by −d , and graded local duality, we get that 
the map Hi

�
(S∕J) → Hi

�
(S∕I) is surjective, and (1) is proved. 	�  ◻

6.2 � Injectivity of maps from Frobenius‑like powers of squarefree monomial 
ideals

In light of Proposition 6.6, we can restate Mustaţǎ’s result by saying that square-
free monomial ideals and their n-th Frobenius-like powers are cohomologically 
full.

The strategy to prove Mustaţǎ’s Theorem can now be divided into two steps: 
first, to show that squarefree monomial ideals define F-split rings in prime char-
acteristic and Du Bois singularities in characteristic zero. Second, to show that 
F-split rings and Du Bois singularities are cohomologically full. In this article, 
we only focus on the prime characteristic setup.

The fact that squarefree monomial ideals define F-split rings is a direct con-
sequence of Fedder’s Criterion, Theorem 2.20, which states that S/I is F-split if 
and only if I[p] ∶S I is not contained in �[p] = (x

p

1
,… , x

p

d
) . In our assumptions, 

let u1,… , ut be a minimal monomial generating set of I. Since each ui is square-
free, observe that the monomial u = (x1 ⋯ xd)

p−1 satisfies uui ∈ (u
p

i
) . Therefore 

Extd−i
S

(S∕I, S) → Extd−i
S

(S∕J, S) → Extd−i
S

(S∕Ik, S) → Hd−i
I

(S).
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u ∈ (I[p] ∶S I) ∖�
[p] , as desired. Now we show that F-split rings are cohomologi-

cally full.

Theorem 6.7  [72, 91] Let k be a field of prime characteristic p > 0 , S = k[x1,… , xd] 
with the standard grading, and I ⊆ S be such that S/I is F-split. Then S/I is cohomo-
logically full.

Proof  Let R = S∕I is F-split. If we consider the Frobenius map F ∶ R → R , then this 
induces an additive map Fi ∶ Hi

�
(R) → Hi

�
(R) such that F(r�) = rpF(�) for all r ∈ R 

and � ∈ Hi
�
(R) , called a Frobenius action. From this point of view, the fact that R is 

F-split means that there is an additive map � ∶ R → R such that �(f pg) = f�(g) for 
all f , g ∈ R , called a Cartier map. In turn, this induces additive maps 
�i ∶ Hi

�
(R) → Hi

�
(R) such that �i(f

p�) = f�i(�) for all f ∈ R and � ∈ Hi
�
(R) and 

�i◦Fi = idHi
�
(R) . A computation on the Čech complex shows that �i(fFi(�)) = �(f )� 

for all r ∈ R and � ∈ Hi
�
(R).

Now for e ∈ ℤ⩾0 let Ne = R-span⟨Fj

i
(�) ∣ j ⩾ e⟩ . Since N0 ⊇ N1 ⊇ … is a descend-

ing chain of R-submodules of Hi
�
(R) , and the latter is Artinian, the chain stabilizes. 

Let e0 be the smallest integer such that Fe0
i
(�) ∈ Ne0+1

 . We claim that e0 = 0 . If not, 
then we can then find elements f1,… , ft such that Fe0

i
(�) =

∑t

j=1
fjF

e0+j

i
(�) . Applying 

the map �i gives that

contradicting the minimality of e0 . It follows that Hi
�
(R) = R-span⟨F(Hi

�
(R))⟩ = R

-span⟨Fe(Hi
�
(R))⟩ for every e ∈ ℤ⩾0 . Equivalently, the R-linear map 

𝛽e,i ∶ R1∕q ⊗R H
i
�
(R) → Hi

�
(R)1∕q ≅ Hi

�
(R1∕q) , defined on basic tensors as 

𝛽e,i(r
1∕q ⊗ 𝜂) = (rFe

i
(𝜂))1∕q is surjective for every q = pe and every i ∈ ℤ⩾0.

Now observe that the natural map 𝛼e,i ∶ S1∕q ⊗S H
i
�
(R) → R1∕q ⊗R H

i
�
(R) 

is surjective by exactness of tensor products. It follows that the com-
position �e,i = �e,i◦�e,i is surjective. Finally, with an argument analo-
gous to the one above we have that �e,i factors as the composition 
S1∕q ⊗S H

i
�
(S∕I) → Hi

�
(S1∕q∕IS1∕q) ≅ Hi

�
(S∕I[q])1∕q → Hi

�
(S∕I)1∕q , where the last 

map is the one induced by the natural projection S∕I[q] → S∕I . As �e,i is surjective, 
so is the natural map Hi

�
(S∕I[q]) → Hi

�
(S∕I) for all q = pe . Since {I[q]} is a descend-

ing family of ideals cofinal with the ordinary powers, it follows from Proposition 6.6 
that R = S∕I is cohomologically full. 	�  ◻

Definition 6.8  Let k be a field, and S = k[x1,… , xn] . Given an integer n ⩾ 1 , we let 
�n ∶ S → S be the k-algebra homomorphism such that �n(xi) = xn

i
 . We call �n the n-

th Frobenius-like homomorphism on S.

F
e0−1

i
(�) = �i◦F

e0
i
(�) =

t∑
j=1

�i(fjF
e0+j

i
(�)) =

t∑
j=1

�(fj)F
e0−1+j

i
(�) ∈ Ne0

,
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We observe that �n is a flat map for all n ⩾ 1 . Moreover, if k has characteris-
tic p > 0 and n = pe for some e, then �pe coincides with the e-th iteration of the 
Frobenius map on S. Observe that if I ⊆ S is a monomial ideal, then �n(I)S coin-
cides with the ideal I[n] defined above in the context of Mustaţǎ’s Theorem.

We now let nS be S viewed as a module over itself through restriction of scalars 
via �n . If M is a finitely generated graded S-module, and Sm

A
−→Sn → M → 0 is a 

graded free presentation of M with presentation matrix A = (aij) ∈ Mnm(S) , we let 
�n
S
(M) be the graded S-module whose presentation matrix is A[n] = (an

ij
) . Then 

�n
S
(−) defines a functor from the category of graded S-modules to itself. It can 

easily be checked that �n
S
(S) = S and that �n

S
(S∕I) = S∕�n(I)S for any homogene-

ous ideal I ⊆ S . Since �n is flat, the functor �n
S
 is exact.

Proposition 6.9  Let k be a field, and S = k[x1,… , xd] with the standard grading, 
and let �n be the n-th Frobenius-like homomorphism on S. Let I ⊆ S be a homogene-
ous ideal such that S/I is cohomologically full, and the family {𝜑n(I)S}n∈ℤ>0

 is cofi-
nal with the family of ordinary powers {In}n∈ℤ>0

 . Then S∕�n(I)S is cohomologically 
full for all n > 0.

Proof  Let n > 0 . For m > 0 let �m(I)S = Jm . By assumption, the natural map

is injective for all m > 0 . By exactness of �n
S
 , it follows that

is injective for all m > 0 . By flatness of �n , we have that

and similarly,

It follows that the natural map Exti
S
(S∕Jn, S) → Exti

S
(S∕Jm, S) is injective for all 

m > n , and therefore S∕Jn is i-cohomologically full by Proposition 6.6. Since i was 
arbitrary, it follows that S∕Jn is cohomologically full. 	� ◻

We can finally recover Mustaţǎ’s result in characteristic p > 0.

Corollary 6.10  Let k be a field of prime characteristic p > 0 , S = k[x1,… , xd] 
with the standard grading, and I ⊆ S a squarefree monomial ideal. Then the map 
Exti

S
(S∕I[n], S) → Hi

I
(S) is injective for all i ∈ ℤ and all n ∈ ℤ>0.

�m ∶ Exti
S
(S∕I, S) → Exti

S
(S∕Jm, S)

�n
S
(�m) ∶ �n

S
(Exti

S
(S∕I, S)) → �n

S
(Exti

S
(S∕Jm, S)

�n
S
(Exti

S
(S∕I, S)) ≅ Exti

S
(�n

S
(S∕I),�n

S
(S)) = Exti

S
(S∕Jn, S),

�n
S
(Exti

S
(S∕Jm, S)) ≅ Exti

S
(�n

S
(S∕Jm),�

n
S
(S)) = Exti

S
(S∕Jn+m, S).
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Proof  By Theorem 6.7 we have that S/I is cohomologically full. Since the family of 
ideals {I[n] = 𝜑n(I)}n∈ℤ>0

 is cofinal with the family of ordinary powers of I, we have 
that S∕I[n] is cohomologically full for all n > 0 . 	�  ◻

Remark 6.11  If k has characteristic zero, we have already observed that if I is 
squarefree then S/I is Du Bois [89, Theorem 6.1]. Since Du Bois singularities are 
cohomologically full [74], by Proposition 6.9 we have that S∕I[n] is cohomologically 
full for all n > 0 also in this case.

6.3 � Squarefree initial ideals: the result of Conca and Varbaro

We provide a proof of this result, which summarizes the approaches of the origi-
nal article [18], and the one given by Varbaro [102] through the notion of fibre-full 
modules.

The following is a key result in order to achieve our goal.

Proposition 6.12  Let T = S[t] = k[x1,… , xd, t] with deg(xi) > 0 for all i and 
deg(t) = 1 . Let J ⊆ T  be a homogeneous ideal such that t is a non-zero divisor on 
T/J. If T/(J,  t) is cohomologically full, then Exti

T
(T∕J, T) is flat over k[t] for all 

i ∈ ℤ⩾0.

Proof  Let R = T∕J . Since R/(t) is cohomologically full the natural map 
Exti

T
(R∕(t), T) ↪ Hi

(J,t)
(T) is injective for all i ∈ ℤ⩾0 . This map factors through the 

natural map �j ∶ Exti
T
(R∕(t), T) → Exti

T
(R∕(tj), T) , therefore �j is injective for all 

j ⩾ 1 . As a consequence of the injectivity of �j and the long exact sequence on Ext 
modules induced by the short exact sequence 0 → R∕(tj−1) → R∕(tj) → R∕(t) → 0 , 
we have that the map �j,j−1 ∶ Exti

T
(R∕(tj), T) → Exti

T
(R∕(tj−1), T) is surjective for all 

j ⩾ 2 . Observe that �j,1 = �2,1◦�3,2◦… ◦�j,j−1 , so that �j,1 is also surjective. Let 
� = (x1,… , xn, t) . Applying graded local duality [11, Sect. 13.4] we obtain that the 
map Hi

�
(R∕(t)) → Hi

�
(R∕(tj)) is injective for all i ∈ ℤ⩾0 and all j ⩾ 2 , and therefore 

the map Hi
�
(R∕(t)) → limj→∞ Hi

�
(R∕(tj)) is injective as well. A spectral sequence 

argument shows that limj→∞ Hi
�
(R∕(tj)) ≅ Hi

�
(H1

(t)
(R)) ≅ Hi+1

�
(R) , and the resulting 

map Hi
�
(R∕(t)) → Hi+1

�
(R) is the connecting homomorphism on the long exact 

sequence of local cohomology induced by the short exact sequence 
0 → R

⋅t
−→R → R∕(t) → 0 [63, Lemma 2.2] and [73, Proposition 3.3]. The injectivity 

of such a map for all i ∈ ℤ⩾0 gives that Hi
�
(R)

⋅t
−→Hi

�
(R) is surjective for all i ∈ ℤ⩾0 . 

Finally, using again graded local duality, we conclude that Exti
T
(R,T)

⋅t
−→Exti

T
(R,T) is 

injective for all i ∈ ℤ⩾0 , that is, t is a non-zero divisor for Exti
T
(R,T) for all i ∈ ℤ⩾0 . 

As already observed, since Exti
T
(R,T) is a graded k[t]-module, this is equivalent to 

Exti
T
(R,T) being flat. 	�  ◻
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Now assume that I ⊆ S is a homogeneous ideal, and for a given weight 𝜔 ∈ ℤd
>0

 
let J = hom�(I) . In this way, R = T∕J becomes a bi-graded T-module by giving 
each xi degree (1,�i) , and by giving t degree (0,  1). As a consequence, every 
module Exti

T
(R,T) is bi-graded. We can write Exti

T
(R,T) ≅

⨁
j∈ℤ Exti

T
(R,T)(j,∗) , 

where each Exti
T
(R,T)(j,∗) is a finitely generated graded k[t]-module. As such,

where ai,j, bi,j,m are non-negative integers. Let bi,j =
∑

m∈ℤ>0
bi,j,m.

Remark 6.13  Let I ⊆ S be an ideal, � ∈ ℤd
⩾0

 be a weight, and 
J = hom𝜔(I) ⊆ T = S[t] . Since t − 1 and t are regular on T and T∕(t) ≅ T∕(t − 1) ≅ S , 
for all i, j ∈ ℤ we have that Exti+1

T
(R∕(t − 1), T)(j,∗) ≅ Exti

S
(S∕I, S)j and 

Exti+1
T

(R∕(t), T)(j,∗) ≅ Exti
S
(S∕in�(I), S)j [7, Lemma 3.1.16].

We are finally ready to prove Theorem 6.2.

Proof of Theorem 6.2  The claim about depth and regularity follow from the equal-
ity between dimensions, as both these invariants are measured by graded local 
cohomology modules supported at � . Furthermore, by graded local duality 
[11, Sect.  13.4] and because squarefree monomial ideals define cohomologi-
cally full rings, it suffices to show that if S∕in<(I) is cohomologically full then 
dim

k
(Exti

S
(S∕I, S)j) = dim

k
(Exti

S
(S∕in<(i), S)j) for all i, j ∈ ℤ.

Let 𝜔 ∈ ℤd
>0

 be a weight such that in<(I) = in𝜔(I) , let J = hom𝜔(I) ⊆ T = S[t] 
and let R = T∕J . Let x be either t − 1 or t. Applying the functor HomT (−,T) to the 
short exact sequence 0 → R

⋅x
−→R → R∕(x) → 0 induces a long exact sequence of Ext

-modules. For every j ∈ ℤ , we then have a long exact sequence of finitely generated 
k[t]-modules as follows:

which gives short exact sequences 0 → coker(�i,j) → Ext
i+1
T

(R∕(x), T)(j,∗)

→ ker(�i+1,j) → 0 . If x = t − 1 , then coker(�i,j) ≅ k
ai,j , while ker(�i+1,j) = 0 . Thus, by 

Remark 6.13, we have that dim
k
(Exti+1

T
(R∕(t − 1), T)(j,∗)) = dim

k
(Exti

S
(S∕I, S)j) = ai,j

.
Now assume that x = t . Since S∕I ≅ T∕(J, t) is cohomologically full, 

by Proposition  6.12 we have that Exti
T
(R,T) is a flat graded k[t]-mod-

ule for every i ∈ ℤ . It follows that bi,j = 0 for all i, j ∈ ℤ , and therefore 
coker(�i,j) ≅ k

ai,j and ker(�i+1,j) = 0 . Again by Remark  6.13, we conclude that 

Exti
T
(R,T)(j,∗) ≅ k[t]⊕ai,j ⊕

( ⨁
m∈ℤ>0

(k[t]∕(tm))⊕bi,j,m

)
,
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dim
k
(Exti+1

T
(R∕(t), T)(j,∗)) = dim

k
(Exti

S
(S∕in�(I), S)j) = ai,j , and the theorem fol-

lows. 	�  ◻

6.4 � Lyubeznik numbers of ideals with squarefree initial ideal

Throughout this subsection k is assumed to have characteristic p > 0 . We first recall 
the definition of Lyubeznik numbers.

Definition 6.14  Let I ⊆ S = k[x1,… , xd] be an ideal. For i, j ∈ ℤ⩾0 we define the 
(i, j)-Lyubeznik number of S/I as

Lyubeznik [71] proved that such invariants only depend on the quotient S/I, and 
not on its presentation. Lyubeznik numbers detect several important information 
about a ring R as above. For instance, they are related to connectivity of the punc-
tured spectrum or of the projective variety associated to R [27, 105], and more gen-
erally to high connectivity [110]. They are also related to singular cohomology [38] 
and étale cohomology [8]. From a more combinatorial point of view, the Lyubeznik 
numbers of a Stanley-Reisner ring are topological invariants of the geometric reali-
zation of the associated simplicial complex [3]. The interested reader can find more 
details in a survey by Witt, Zhang and the third author on this topic [84].

In the case of rings defined by squarefree monomial ideals, a result of Yanagawa 
[107, Theorem 1.1] relates Lyubeznik numbers with vector-space dimensions of cer-
tain Ext modules. This is related to previous work of Zhang [111, Theorem  1.2], 
which in prime characteristic directly implies that

Yanagawa’s result was later extended by the first and the last authors, together with 
Grifo, from rings defined by squarefree monomial ideals to F-pure rings.

Theorem 6.15  [27, Theorem C] Let I ⊆ S = k[x1,… , xd] be a homogeneous ideal. If 
S/I is F-pure, then

Proof  Extending the base field affects neither side of the equality, therefore 
we may assume that k is a perfect field and that R = S∕I is F-split. Let F be the 
Frobenius action on Extd−i

S
(Ext

d−j

S
(R, S), S) induced by applying the functor 

Extd−i
S

(Ext
d−j

S
(−, S), S) to the natural Frobenius map on R. Zhang [111, Theorem 1.2] 

proved that

�ij(S∕I) = dim
k
(Exti

S
(k,H

d−j

I
(S))).

(6.1)�ij(S∕I) ⩽ dim
k
(Extd−i

S
(Ext

d−j

S
(S∕I, S), S))0).

�ij(S∕I) = dim
k
(Extd−i

S
(Ext

d−j

S
(S∕I, S), S))0).
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that is, the (i,  j)-th Lyubeznik number of R equals the vector space dimension of 
the stable part of Extd−i

S
(Ext

d−j

S
(R, S), S)0 under the action of Frobenius. Because k 

is perfect, the stable part is a k-vector subspace of Extd−i
S

(Ext
d−j

S
(R, S), S)0 , and this 

shows the claimed inequality.

Now assume that R is F-split, that is, the natural inclusion R ↪ R1∕p splits. The 

induced map Extd−i
S

(Ext
d−j

S
(R, S), S) → Extd−i

S
(Ext

d−j

S
(R1∕p, S), S) is then injective for 

all i, j ∈ ℤ⩾0 . As Extd−i
S

(Ext
d−j

S
(R1∕p, S), S) ≅

(
Extd−i

S
(Ext

d−j

S
(R, S), S)

)1∕p

 [111, 

Lemma 6.1], we conclude that the natural Frobenius action F on 
Extd−i

S
(Ext

d−j

S
(R, S), S) is injective. As this action is graded, in particular we have that 

F is injective on the degree zero part Extd−i
S

(Ext
d−j

S
(R, S), S)0 . Since F is an injective 

endomorphism of the finitely generated k-vector space Extd−i
S

(Ext
d−j

S
(R, S), S)0 , it 

must also be surjective, and an isomorphism. It follows that the whole vector space 
Extd−i

S
(Ext

d−j

S
(R, S), S)0 is stable under the action of Frobenius, and the proposition 

follows. 	� ◻

We are now ready to prove the Theorem of Nadi and Varbaro. We follow 
closely the strategy of the original proof [80, Lemma 2.1 and Corollary 2.5].

Proof of Theorem  6.3  Let 𝜔 ∈ ℤ>0 be a weight such that in𝜔(I) = in<(I) . Let 
T = S[t] , J = hom�(I) , and let R = T∕J . For i, j ∈ ℤ and a T-module M we let 
Ei,j(M) = Extd−i

T
(Ext

d−j

T
(R,T),M) . We have that Ei,j(T) is bi-graded, and Ei,j(T)(r,∗) 

is a finitely generated graded k[t]-module for any r ∈ ℤ . As such, we can write it as

for some non-negative integers ai,j,r, bi,j,r,m.
For x = t − 1 or x = t we have a short exact sequence 0 → T

⋅x
−→T → T∕(x) → 0 , 

and applying the functor Extd−i
T

(Ext
d−j

T
(R,T),−)(r,∗) this induces a long exact 

sequence of finitely generated k[t] modules as follows:

where �i,j,r is the multiplication by x on Ei,j(T)(r,∗) . We then have short exact 
sequences

�ij(S∕I) = dim
k

( ⋂
e∈ℤ⩾0

Fe
(
Extd−i

S
(Ext

d−j

S
(R, S), S)0

))
,

Ei,j(T)(r,∗) ≅ k[t]ai,j,r ⊕

(⨁
m>0

(k[t]∕(tm))bi,j,r,m

)
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If x = t − 1 , then coker(�i,j,r) ≅ k
ai,j,r , while ker(�i−1,j,r) = 0 , there-

fore dim
k
(Ei,j(T∕(x))(r,∗)) = ai,j,r . On the other hand, if x = t , then 

coker(𝛼i,j,r) ≅ k
ai,j,r ⊕

�⨁
m>0 k

bi,j,r,m
�
 , and thus we have dim

k
(Ei,j(T∕(x)(r,∗))) ⩾ ai,j,r . 

Since in<(I) is squarefree, by Proposition  6.12 we have that Extd−j
T

(R,T) is a flat 
graded k[t]-module, and thus x is a non-zero divisor for it. It follows from [102, 
Lemma 3.4] and the fact that x is regular on Extd−j

T
(R,T) that

Therefore, for r = 0 and using the inequalities obtained above we conclude that

Finally, since S∕in<(I) is F-split, we conclude by Equation (6.1) that 
𝜆i,j(S∕I) ⩽ 𝜆i,j(S∕in<(I)) . 	�  ◻
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