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Abstract: Fluorescently labeled proteins absorb and emit light, appearing as Gaussian spots in 1

fluorescence imaging. When fluorescent tags are added to cytoskeletal polymers such as microtubules, 2

a line of fluorescence and even non-linear structures results. While much progress has been made in 3

techniques for imaging and microscopy, image analysis is less well developed. Current analysis of 4

fluorescent microtubules uses either manual tools, such as kymographs, or automated software. As a 5

result, our ability to quantify microtubule dynamics and organization from light microscopy remains 6

limited. Despite development of automated microtubule analysis tools for in vitro studies, analysis 7

of images from cells often depends heavily on manual analysis. One of the main reasons for this 8

disparity is the low signal-to-noise ratio in cells, where background fluorescence is typically higher 9

than in reconstituted systems. Here, we present the Toolkit for Automated Microtubule Tracking 10

(TAMiT), which automatically detects, optimizes and tracks fluorescent microtubules in living yeast 11

cells with sub-pixel accuracy. Using basic information about microtubule organization, TAMiT 12

detects linear and curved polymers using a geometrical scanning technique. Images are fit via an 13

optimization problem for the microtubule image parameters that is solved using non-linear least 14

squares in Matlab. We benchmark our software using simulated images and show that it reliably 15

detects microtubules, even at low signal-to-noise ratios. Then, we use TAMiT to measure monopolar 16

spindle microtubule bundle number, length, and lifetime in a large dataset that includes several 17

S. pombe mutants that affect microtubule dynamics and bundling. The results from the automated 18

analysis are consistent with previous work, and suggest a direct role for CLASP/Cls1 in bundling 19

spindle microtubules. We also illustrate automated tracking of single curved astral microtubules in 20

S. cerevisiae, with measurement of dynamic instability parameters. The results obtained with our 21

fully-automated software are similar to results using hand-tracked measurements. Therefore, TAMiT 22

can facilitate automated analysis of spindle and microtubule dynamics in yeast cells. 23

Keywords: microtubule tracking; fluorescent microscopy; curve optimization; image analysis 24

1. Introduction 25

Automated image analysis for fluorescently labeled proteins that appear as Gaussian 26

spots have been developed and widely used for detection and tracking [1–4]. Extended 27

protein assemblies, however, are more challenging to analyze. Given the importance of 28

higher-order protein assemblies, improved tools would lead to better quantification of 29

their structure and properties. For example, microtubules, which are linear polymers 30

made of tubulin dimer subunits, play essential roles in eukaryotic cells during mitosis [5,6], 31

intracellular transport [7], cell motility [8,9], morphogenesis [10] and axonal transport [11]. 32

They are also a key drug target for cancer and malaria treatment [12,13]. Microtubules 33

with fluorescent labels on tubulin dimers appear in images as Gaussian lines rather than 34

spots, meaning that tools for their automated analysis must work differently. There has 35
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been considerable development in tools for microtubule tracking both for systems in vitro 36

[14–17], and in cells [18–21]. However, fully automated tools for microtubule tracking in 37

3-dimensional (3D) live cell data are lacking. In fact, many cell biologists continue to track 38

microtubules and proteins that bind to them manually and with kymographs. Automating 39

microtubule tracking in living cells has proven challenging, because the image signal-to- 40

noise ratio (SNR) of these polymers can be low. Despite this technical difficulty, tracking of 41

microtubules in cells is important to understand their biological function. 42

One class of methods to quantify cellular microtubule dynamics is based on fluo- 43

rescently tagged tip-tracking proteins. Tip tracking MAPs associate with microtubule 44

plus-ends [22–24] and appear as Gaussian spots. Therefore, they can be quantified with 45

automated particle tracking approaches [2,25], allowing quantification of microtubule dy- 46

namics [26–28]. However, tip-tracking proteins analyzed to date bind only to growing 47

plus-ends, not to paused or shrinking plus-ends. Therefore, this approach suffers the 48

disadvantage that fluorescent tracks show only microtubule growth events; catastrophe, 49

rescue, and depolymerization dynamics must be inferred. Alternatively, when tubulin is 50

fluorescently labeled, the fluorescence is associated directly with the microtubule lattice and 51

does not depend on binding of MAPs. In this case, entire microtubules can be visualized 52

throughout their polymerization cycle, making it easy to extract structural properties, like 53

curvature, and the kinetic parameters that describe microtubule dynamics. 54

Here we present a Toolkit for Automated Microtubule Tracking (TAMiT). This package 55

automatically detects and tracks entire microtubules or microtubule bundles in yeast cells 56

from 3D confocal fluorescence microscopy. The strength of our software lies in its detection 57

routine coupled with a robust optimization process, leading to sub-pixel accuracy in 58

measurement of microtubule length. TAMiT’s object-oriented framework, with a focus 59

on inheritance-based specialization, allows users to easily adapt the software for their 60

individual needs. As a result, TAMiT has machine-learning capabilities, since it can be 61

used to analyze other composite microtubule structures beyond those presented here. Here, 62

we present illustrative models that we created for use with a variety of cellular phenotypes 63

in yeasts, and we show how TAMiT uses them to detect microtubules. We benchmark 64

our software using simulated data and show that the software performs robustly even at 65

low SNR. Specifically, TAMiT is used to detect monopolar, bipolar, and anaphase spindles 66

in S. pombe, along with the mitotic spindle in S. cerevisiae. In addition, TAMiT can track 67

single astral microtubules in cells, which has proven difficult in the past. TAMiT is able 68

to accurately detect both straight and curved microtubules, as shown here. Finally, we 69

extract microtubule dynamic instability measurements in S. cerevisiae and compare them 70

with hand-tracked data. 71

2. Materials and Methods 72

The design of TAMiT is based on key features of microtubule assemblies in yeast cells. 73

First, microtubules in cells are often present in dynamic higher-order structures [29]. For 74

example, in S. pombe and S. cerevisiae mitotic spindles, microtubule minus ends are anchored 75

near spindle-pole bodies (SPBs) via γ-tubulin complexes [30]. In a bipolar spindle, two 76

SPBs are linked by a bundle of microtubules that appears as a diffraction-limited line, while 77

a monopolar spindle has unseparated SPBs with lines emanating outward (Fig.1). A single 78

SPB in yeasts can anchor dozens of microtubules. Because many of these microtubules are 79

short, they appear as point sources of tubulin fluorescence (spots). Our software learns an 80

underlying mathematical model for the fluorescence distribution. This model is optimized 81

by non-linear fitting such that the fitted intensity matches the original image. Below, we 82

start by describing the mathematical models for all the features, followed by a discussion 83

of detection, optimization and tracking. Finally, we present results of validation. 84
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Figure 1. Feature detection and 3D fitting to various microtubule structures: a bipolar and a monopo-
lar spindle from S. pombe and a spindle and astral microtubule from S. cerevisiae. (A) Schematics of
three microtubule assemblies (bipolar spindle and monopolar spindle in fission yeast, and spindle
with astral microtubule in budding yeast) and their representation as composite objects. Straight
(green) and curved (red) microtubules are organized by spindle pole bodies (purple) (B) Maximum-
intensity projection (MIP) images created from image stacks of microtubule fluorescence. These
images were filtered and contrast-enhanced to make dim microtubule bundles or single microtubules
more visible. (C) Fitted intensity images created by TAMiT, displayed as an MIP. Each image is an
output of TAMiT’s optimized 3D microtubule model. (D) Features determined by TAMiT, displayed
as a 2D projections from the optimized 3D model. Features (lines, curves, spots) are colored according
to their position in Z, and are overlayed on the original experimental images from (B) for comparison.
(E) 3D visualization of features determined from the TAMiT model. Color represents the position in
Z, as shown in the color bar on the left. (Scale bars: 1µm)

2.1. Mathematical model 85

To achieve subpixel accuracy in microtubule detection, each feature that comprises an 86

image must be represented by an appropriate mathematical model. The image can then 87

be represented by a combination of these features. TAMiT currently supports three basic 88

features (Fig. 2A, Fig. S1). A spot of chosen intensity and width represents a Gaussian 89

distribution (a point source object), which may be smaller than the resolving power of the 90

microscope, such as an assembly of short microtubules emanating from an SPB. We use a 91

spot to represent the SPB (the position of which coincides with the position of the spindle 92

microtubule minus-ends). A line represents a single microtubule or a bundle that is straight 93

and longer than a few image pixels (typically a microtubule must be at least a few hundred 94

nanometers long to be visible as a line). These appear as a line with intensity represented by 95

an integrated Gaussian distribution. We use the line to model microtubules in cells where 96

the polymers are not bent. A curve represents a single or a bundle of microtubules that is 97

curved. The fluorescence distribution of a curved microtubule has a curved centerline with 98

diffraction-limited fluorescence along that line. These basic features can be put together to 99

construct structures such as either a monopolar or a bipolar spindle (Fig. 2B). 100
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Figure 2. Schematic of image features, composite objects, and TAMiT workflow. (A) Schematic and
MIP of the simulated intensity distribution, shown for the basic 3D elements include a spot (repre-
senting an assembly of short microtubules, such as occur near a spindle pole), a line (representing
a straight microtubule or bundle), and a curve (representing a curved microtubule or bundle). (B)
Schematic and simulated MIP of composite images that can be constructed from spots, lines, and
curves.A monopolar spindle contains a spot with one or more straight lines that end at the spot. A
bipolar spindle contains two spots connected by a straight line. Lines or curves may extend
from the spots. (C) A tree representation of the organization of microtubule structures and

their connections in TAMiT. The monopolar or bipolar spindle resides inside the
highest-level composite structure, a biological cell. (D) Flow diagram of TAMiT. A movie
is analyzed frame by frame. Each frame undergoes a detection and an optimization step to

yield features for that frame individually. Once all the frames are processed, the
single-frame features are tracked to yield multi-time features. Tracking throws out any

single-time features that may be spurious.

2.1.1. Spot 101

For a collection of short microtubules at some position x⃗0 = (x0, y0, z0), the intensity
appears as a point Gaussian with variable width. We model this as a spot with amplitude
A, centered at position x⃗0 = (x0, y0, z0), and having Gaussian width σ⃗ = (σx, σy, σz).
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Therefore, seven parameters must be fit for every spot. These are θ = {A, x⃗0, σ⃗}. The
Gaussian intensity of a spot at probe position x⃗ = (x, y, z) is calculated as:

fθ(x, y, z) = Ae−(
x−x0

σx )2
e
−(

y−y0
σy )2

e−(
z−z0

σz )2
(1)

2.1.2. Line 102

We model a straight microtubule or bundle as a Gaussian line of amplitude A,
start position x⃗0 = (x0, y0, z0), end position x⃗1 = (x1, y1, z1) and Gaussian width σ⃗ =
(σx, σy, σz). We adopt a parametric representation for coordinates along the line, x⃗i(t) =
(xi(t), yi(t), zi(t)) where

xi(t) = x0 + (x1 − x0)t

yi(t) = y0 + (y1 − y0)t

zi(t) = z0 + (z1 − z0)t

for t ∈ [0, 1] such that x⃗i(t = 0) = (x0, y0, z0) and x⃗i(t = 1) = (x1, y1, z1). We fit ten
parameters for every line: θ = {A, x⃗0, x⃗1, σ⃗}. The contribution of the Gaussian intensity
fθ(x, y, z) at position x⃗ = (x, y, z) is then given by an integral of point Gaussians along the
normalized arc length t:

fθ(x, y, z) =
∫ t=1

t=0
dtAe−(

x−xi(t)
σx )2

e
−(

y−yi(t)
σy )2

e−(
z−zi(t)

σz )2
(2)

We can expand the exponentials in the integrand to obtain

fθ(x, y, z) =
∫ t=1

t=0
dtA exp

(
−B − 2tC(t)− t2D(t)

)
B =

x2

σ2
x
+

y2

σ2
y
+

z2

σ2
z

C(t) =
xxi(t)

σ2
x

+
yyi(t)

σ2
y

+
zzi(t)

σ2
z

D(t) =
x2

i (t)
σ2

x
+

y2
i (t)
σ2

y
+

z2
i (t)
σ2

z

While an integral in this form can be calculated numerically, we can also evaluate it using 103

error functions. 104

2.1.3. Curve 105

In certain situations, curved or bending microtubules may be present. To develop
a curve model, we assume that the microtubule/bundle centerline follows a parametric
polynomial in all three dimensions.

x(t) = a0 + a1t + ... + antn

y(t) = b0 + b1t + ... + bntn

z(t) = c0 + c1t + ... + cntn

While the choice of polynomial order is arbitrary for this model, here, we assume that n = 4
in the X and Y dimensions (where the pixel size is smallest) and n = 1 in the Z dimension
(where the number of pixels is limited, so selecting a higher order can be impossible). With
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this assumption, curves seen in the XY plane are linear in the Z dimension. We calculate a
local curvature for the microtubule using:

K⃗(t) =
x′(t)y′′(t)− y′(t)x′′(t)√

(x′(t)2 + y′(t)2)3

where x′(t) and y′(t) are first-order time derivatives and x′′(t) and y′′(t) second-order. We
generate a model for this curvature using a Fourier function

K̃(t) = k0 +
N

∑
i>0

pi cos(iwt) + qi sin(iwt) (3)

where we fit θk = {k0, w, p1, ...pn, q1, ..., qN}. This forms the initial estimate for the micro-
tubule curvature. Given a start point x⃗0 = (x0, y0, z0), an initial tangent vector T⃗(t = 0),
the curvature coefficients θk, and a microtubule length, we can then find all points along the
microtubule. We do this by iteratively computing the tangent (Eq. 4) and the coordinates
(Eq. 5) along the curve. Here R̄ is a 3x3 matrix that produces a π/2 rotation in the XY
direction, such that R̄T̂(t) gives the direction of the normal vector for any t.

T⃗(t + dt) = T⃗(t) + (R̄T̂(t))K̃(t)dt (4)

x⃗(t + dt) = x⃗(t) + dtT⃗(t) (5)

For the data in this paper, we found that using a Fourier series approximation with N = 2 106

was adequate. Using N = 1 gave a visibly poor fit, while for N > 1 the fit residual had a 107

similar value and the fit visibly looked similar. For application to other curved microtubules, 108

checking the fit residual as N is varied can be used to select the best value of N. With 109

that selection, there are 15 parameters for every curve, namely θ = {A, x⃗0, T⃗(t = 0), θk, σ⃗}. 110

The Gaussian intensity fθ(x, y, z) at x⃗ = (x, y, z) is calculated by numerical integration via 111

Gauss quadrature [31]. 112

2.2. Detection 113

The first step in analyzing an image is the detection process, which generates an initial 114

guess of features and their location to be used in fitting the full model. TAMiT starts by 115

applying a 3D Gaussian filter to enhance the tubulin intensity and smooth out variation 116

from noise. The next steps in detection are then specific to the particular tubulin structure 117

being modeled. For example, a S. pombe monopolar spindle (center row Fig. 1A-B) contains 118

a bright central point at the location of the single SPB or two adjacent SPBs. TAMiT models 119

this as a single 3D Gaussian spot. To find this spot, we use Otsu’s method for thresholding 120

[32] followed by an Extended-maxima H-tranform [33] on the MIP along the z-axis of the 121

image. The brightest pixel then corresponds to the position of the SPB/SPBs (Fig. S2). There 122

are also microtubules emanating from the SPB. To find these, TAMiT transforms the MIP 123

image to a polar representation I(r, ϕ) with the SPB at the origin, and radially integrates 124

the intensity to get an angular intensity function I(ϕ) (Fig. S3) The locations of peaks ϕi in 125

I(ϕ) correspond to the angular coordinates of possible lines. The length coordinate Li is 126

determined by fixing the angle and increasing the radius until the polar intensity function 127

I(r, ϕ = ϕi) becomes comparable to the background intensity. TAMiT also implements a 128

minimum and maximum length cutoff for lines. 129

A bipolar spindle (top row Fig. 1A-B) contains a collection of microtubules between 130

two spindle pole bodies (SPBs). This collection of microtubules appears as a single bright 131

Gaussian line, and we model it as a single line. This line connects two SPBs, which are 132

modeled as spots. To find the spindle, TAMiT uses Otsu’s thresholding followed by an 133

Extended-maxima H-tranform on the MIP image to find a bright spindle region (Fig. S4). 134

Connected component analysis can then be used to find an orientation vector for the bright 135

region. We find two maximally distant end-points with high intensity along the orientation 136

vector (Supplemental Material). These two end-points correspond to the two SPBs. To find 137
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lines emanating from each SPB, we use the same technique as that described for monopolar 138

spindles. To find curves emanating from a SPB, we start by finding an initial direction of 139

the curve. Next, steerable filtering is used to enhance pixels through which the curve passes 140

[34]. TAMiT iteratively steps along the brightest pixels, finding a new local orientation 141

at each step. The iteration stops once the intensity drops below a threshold set by the 142

background (Fig. S5) 143

Once all features and their models have been found, the full model is given by the
sum of the background fluorescence intensity B0 and all the individual feature models:

Fθ(x, y, z) = B0 + ∑ fθ(x, y, z) (6)

2.3. Optimization 144

To better represent the image and measure microtubule length with sub-pixel accuracy,
we fit the model parameters. The optimization in TAMiT is performed using non-linear
least squares fitting, in which we minimize the residual, the sum of squared differences
between the model and experimental images. For voxel coordinates x, y, z, and image
intensity I0(x, y, z), the optimized parameters are

θ̂ = argmin
θ

∑
x,y,z

(Fθ(x, y, z)− I0(x, y, z))2

where Fθ is the model function that simulates Gaussian intensity given feature parameters 145

θ. TAMiT first optimizes the features locally, i.e only varying parameters specific to a single 146

feature while keeping the parameters of other features fixed. This is followed by global 147

optimization, where all parameters (including a background intensity level) are varied 148

within reasonable bounds in search of a global minimum. 149

Lastly, TAMiT optimizes feature number, a hyperparameter. This is done by first 150

increasing the number of lines/curves in the model until the decrease in residual is in- 151

significant compared to the increase in the number of parameters. Next, the number of 152

lines/curves is decreased until the increase in residual becomes significant compared to the 153

decrease in the number of parameters. An f-test is employed for the significance criterion. 154

2.4. Tracking 155

After detection is performed for all time-frames in a movie, TAMiT tracks the features 156

using a modified version of U-track [2]. This ensures that spuriously detected microtubules 157

are ignored, and only features that existed for some minimum number of frames are kept. 158

2.5. Validation 159

To test the accuracy of TAMiT, we simulated and fitted monopolar spindles similar to 160

those found experimentally in S. pombe. We generated 1000 3D images, based on random 161

points in the parameter space, at varying SNR (Fig. 3A,B). The SNR was defined as the 162

mean intensity of a single microtubule divided by the background intensity (defined as the 163

median intensity of the image). For this test, the amplitude of the SPB and each microtubule 164

was held fixed while noise was varied. Next, we ran TAMiT on each simulated image to 165

extract the optimized parameters and compared them to the parameters originally used 166

for image creation. For each detected microtubule, we used a cost criterion to determine 167

if the microtubule found was present in the simulated image. Microtubules satisfying 168

the criterion were deemed correctly detected, while those failing were deemed spuriously 169

detected. For example, if the end position of a detected microtubule was more than 0.5 µm 170

away from the end position of all simulated microtubules, the detected microtubule was 171

deemed spurious. Microtubules in the simulated data that were not found by TAMiT were 172

labeled as missed detections. For correctly detected microtubules, we computed the error 173

in the X and Y dimension (pixel size 0.1 µm), and in the Z dimension (pixel size 0.5 µm.) 174

(Fig. 3C,D). Our multiple trials show that the mean 3D error (Fig. 3E) became sub-pixel for 175

all cases where SNR> 1.5. The percentage of correct detections was also above 90% for 176
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SNR> 1.25 (Fig. 3F). For very low SNR, the percentage of spuriously detected microtubules 177

was high, but it became negligible for SNR> 1.25 (Fig. 3G). Finally, we quantified the effect 178

of microtubule length on detection status (Fig. 3H). We found that with increasing SNR, 179

missed microtubules were more likely to be short. There was a transition at SNR= 1.25. 180

Based on these data, we conclude that TAMiT is accurate at detecting straight microtubules 181

at SNR> 1.25 and achieves sub-pixel accuracy at SNR> 1.5. 182

Figure 3. Accuracy of microtubule detection in TAMiT as a function of signal-to-noise ratio (SNR).
We simulated 3D images of a monopolar mitotic spindle with varying SNR. (A) Simulated MIP
image of the same monopolar spindle at SNR= 0.75, 1.0, 1.5, 3.0, and 5.0. Scale bar, 1 µm). (B)
Features detected by TAMiT from the images shown in (A), displayed as 2D projections. (C-E) Error
in the spatial position of correctly detected microtubules as a function of SNR. As expected, the error
decreases with increasing SNR. (C) In-plane (xy) position error. (D) Out-of-plane (z) position error. (E)
Mean 3D error is sub-pixel for SNR> 1.5. (F) Percentage of microtubules that were correctly detected,
and those that were missed by TAMiT. Correct detection percentage was low (15% and 70%) at low
SNR (0.75 and 1.0). However, more than 90% of microtubules were correctly detected at SNR≥ 1.25.
(G) Percentage of spuriously detected microtubules versus SNR. These were microtubules that either
did not exist, or their fitting error was too large. (H) Fitted length of microtubules for correct and
missed detection versus SNR. Length of missed microtubules was smaller for higher SNR, suggesting
that longer microtubules were less likely to be missed. Length of correct microtubules was higher at
higher SNRs, suggesting that longer microtubules had a larger probability of detection.
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2.6. Experimental methods 183

2.6.1. S. pombe 184

S. pombe strains (Fig. S6) were cultured using standard techniques [35]. Strains 185

were constructed using genetic crosses and random spore analysis to isolate genotypes 186

of interest. All microscopy images and datasets were obtained using live cell preparation. 187

Cells were grown on YES plates and imaged in EMM liquid media to reduce background 188

fluorescence. Bipolar spindles were imaged at 25◦C, and monopoles were imaged at 189

37◦C. To obtain sufficient monopolar spindles, cut7-24 cells were placed at 37◦C for 2-4 190

hours and then imaged at this restrictive temperature. Cells were transferred from a 37◦C 191

incubator to the microscope in less than 30 seconds to prevent the temperature-driven 192

transition from monopolar to bipolar spindles. Temperature was maintained with ±0.1◦C 193

using a CherryTemp temperature controller (Cherry Biotech, Rennes, France). Spinning- 194

disk confocal microscopy was performed on a Nikon Eclipse Ti microscope described 195

previously [36–38]. The fluorescent label for microtubules was obtained by expressing 196

an mCherry-α-tubulin-chimera at a low level (∼ 10% wild type α-tubulin), as described 197

previously [37–39]. The low-level tubulin labeling helps reduce tag-related perturbations 198

to microtubule dynamics. 3D time-lapse images were obtained using the EM Gain laser 199

settings on the Nikon illumination system and number of Z-planes indicated previously 200

[35]. The detailed strain information is provided in the supplemental material. 201

2.6.2. S. cerevisiae 202

Budding yeast were grown in standard media, and then manipulated and transformed 203

by standard methods [40]. GFP-Tub1 fusions were integrated into the genome and ex- 204

pressed ectopically, in addition to the native α-tubulin genes TUB1 and TUB3 [41]. We 205

estimate that GFP-Tub1 comprises approximately 25% of the total α-tubulin expressed in 206

these cells [42]. Cells were grown asynchronously to early log phase in nonfluorescent 207

medium, and adhered to slide chambers coated with concanavalin A [43]. Images were 208

collected on a Nikon Ti-E microscope equipped with a 1.45 NA 100x CFI Plan Apo objective, 209

piezo electric stage (Physik Instrumente; Auburn, MA), spinning disk confocal scanner unit 210

(CSU10; Yokogawa), 488nm laser (Agilent Technologies; Santa Clara, CA), and an EMCCD 211

camera (iXon Ultra 897; Andor Technology; Belfast, UK) using NIS Elements software 212

(Nikon). During imaging, sample temperature was maintained at 37◦C as indicated using 213

the CherryTemp system (CherryBiotech; Rennes, France). Z-stacks consisting of 12 images 214

separated by 0.45 µm were collected at 5 second intervals for 10 minutes. All analyses 215

were conducted in pre-anaphase cells, which typically exhibit one or two individual astral 216

microtubules extending from each SPB [44]. 217

2.7. Manual analysis of microtubule dynamics in S. cerevisiae 218

Astral microtubule lengths were measured in each maximum intensity projection (2D 219

data), beginning at the cytoplasmic edge of the SPB to the tip of the astral microtubule; 220

therefore any displacement of the SPB does not impact microtubule length measurement. 221

Assembly and disassembly events were defined as at least three contiguous data points 222

that produced a length change ≥ 0.5 µm with a coefficient of determination ≥ 0.8. The 223

length of polymerization before a catastrophe event was calculated by determining the 224

total length of polymerization before a switch to depolymerization. 225

3. Results 226

Microtubule structures from different stages of the cell cycle pose different challenges 227

for the task of feature detection. TAMiT uses specialized models for the individual cases 228

shown in Fig. 4. The bipolar mitotic spindle in S. pombe is visible as a bright line of micro- 229

tubule fluorescence that may be accompanied by some much fainter polar microtubules 230

that project from the end(s) of the spindle. Fig. 4A shows the tracking of a bipolar spindle 231

over time. At the third frame shown, a single polar microtubule first appears is detected 232

and tracked by TAMiT as it changes length. Mutations of kinesin-5/Cut7 in S. pombe can 233
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lead to monopolar spindles when the SPBs don’t separate (Fig 4B). Here in the temperature- 234

sensitive cut7-24, dynamic microtubule bundles can be seen rotating about their attachment 235

points at the SPB. Anaphase spindle elongation in S. pombe leads to changes in spindle 236

length over time (Fig. 4C), which the software accurately captures. TAMiT can also find 237

and track microtubules in S. cerevisiae. Here, long curved astral microtubules can grow and 238

curve (Fig. 4D). These are primarily single microtubules, but can sometimes be a bundle of 239

two microtubules [43]. 240

Figure 4. Robust detection of mitotic microtubule assemblies in yeasts. (A) Bipolar spindle in S. pombe.
TAMiT detects both the spindle and a growing polar microtubule (last four frames) that grows away
the spindle at an angle. (B) Monopolar spindle in S. pombe. TAMiT detects rotating microtubule
bundles (the central microtubule rotates clockwise between frame 1 and 5). (C) Elongating spindle in
S. pombe anaphase B. TAMiT accurately detects the growing spindle. (D) Cruved astral microtubule
in S. cerevisiae during anaphase spindle positioning. The long microtubule grows and bends upon
interacting with the cell cortex. TAMiT detects these long dynamic microtubules with varying
curvature. Scale bars, 1 µm. In each panel, the top row is a maximum-intensity projection (MIP) of
the experimental microtubule fluorescence image stack. The second row is an MIP of the best-fit
intensity image from TAMiT’s optimized model. The third row shows a 2D projection of the 3D
features identified by TAMiT. The color along each feature shows position in Z.

3.1. Quantification of monopolar spindle microtubule number, length, and lifetime 241

Mutations in the S. pombe genome can perturb microtubule behavior and lead to abnor- 242

mal spindle structure that provide insights into the mechanisms of mitosis. For example, 243

mutations in the kinesin-5/Cut7 motor can prevent assembly of the bipolar spindle [45]. 244

In these cells, SPBs do not separate and a monopolar spindle forms with microtubules 245

whose plus-ends point radially away from the central spindle pole. Because monopolar 246

spindles arrest cells in mitosis, they can be used to assess how other perturbations alter 247

mitotic microtubule number, length, and bundling [36]. Therefore, we used TAMiT to 248

study monopolar spindle microtubules in S. pombe cells carrying the temperature-sensitive 249

mutant cut7-24 [46]. 250

In addition to the cut7-24 reference, we additionally considered 3 perturbations that 251

affect microtubule dynamics and bundling in mitosis. First, we added deletion of klp6, 252

a kinesin-8 motor. Because Klp6p destabilizes microtubules, in its absence microtubules 253

become more stable and longer [37,47–50]. We used this strain to assess whether TAMiT 254

could identify monopolar spindle microtubule bundles in klp6∆ that are longer and more 255

stable. Next, we additionally deleted alp14. Alp14p is a TOG/XMAP215 homologue, 256

a microtubule plus-end tip tracking protein that promotes microtubule polymerization 257

[51,52]. Therefore alp14∆ cells contain shorter microtubules and shorter bundle length. 258
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Third, we additionally added the temperature sensitive mutant cls1-36. Cls1p is a CLASP 259

homologue that helps stabilize microtubules by promoting rescue [53–55]. The precise 260

mechanism and interactions of Cls1p in fission yeast have remained unclear, with some 261

work suggesting that it is recruited by the crosslinking protein Ase1p [53], while other 262

work has found that Cls1p promotes microtubule bundling even in the absence of ase1[55]. 263

We have used TAMiT to fit 3D images and detect microtubules from these strains 264

(Fig. 5A-B). Because of the automation enabled by TAMiT, we analyzed a large number 265

of images. For example, we use 140 time points from approximately 100 cells for the 266

cut7-24 reference cells, a total of 104 images. To characterize differences between the strains, 267

we measured monopolar spindle microtubule/bundle number, length, and lifetime. We 268

explore the amount of bundling by measuring the number of microtubules/bundles in each 269

frame (Fig. 5C). We note that in TAMiT a detected microtubule means a line of fluorescence 270

intensity, as shown by the colored lines in Fig. 5B. This often represents a bundle with 271

multiple microtubules. 272

In the cut7-24 reference, there were on average 3 microtubules/bundles per frame, 273

with a broad distribution from 0 to 7 (Fig. 5C). The mean lifetime was around 20 sec, and 274

the mean length about 1.2 µm (Fig. 5D-F). In klp6∆ cells, we find no significant differences 275

in the average number of microtubule bundles compared to the cut7-24 reference. As 276

expected, the bundles were significantly longer, with a mean length around 2 µm. Their 277

lifetime was comparable to the reference (Fig. 5C-F). This confirms that TAMiT can detect 278

the previously measured phenotype of longer microtubules in klp6∆ cells. 279

In alp14∆ cells, based on previous work we expect shorter microtubules due to de- 280

fects in MT growth. Consistent with this, we found noticeably fewer detectable micro- 281

tubules/bundles, with a mean below 2 and a maximum below 4 (Fig. 5C). The smaller 282

number of detected microtubule bundles is consistent with the idea that many microtubules 283

are too short to be directly detected by TAMiT, and instead are captured by the central 284

Gaussian at the SPB. Microtubules in these cells are also shorter, with a mean length around 285

1 µm, and with a slightly decreased lifetime compared to the reference (Fig. 5D-F). As for 286

the klp6∆ cells, TAMiT analysis confirms the phenotype of alp14∆. 287

In cls1-36 cells, Cls1p is inactive at restrictive temperature. We find that this perturba- 288

tion affects not only microtubule bundle number but also length and lifetime (Fig. 5C-F). 289

The mean microtubule bundle number is below 2: smaller than in the reference, and indeed 290

is similar to alp14∆ cells. The upper range of the distribution is a bit larger than for alp14∆, 291

extending up to 5 bundles per frame. Of all the strains we analyzed, cls1-36 monopolar spin- 292

dles showed the lowest lifetime with a mean of around 12 sec (Fig. 5D). Despite this short 293

lifetime, the mean length of microtubules/bundles was higher than in the reference and 294

remarkably approached that measured in klp6∆. We were surprised to find microtubules 295

that were relatively long in cls1-36 cells, since CLASP is thought to help stabilize bundled 296

microtubules. A possible explanation comes from our observation that microtubules de- 297

tected by TAMiT in cls1-36 cells were much lower in intensity, suggesting that these might 298

be single microtubules. This suggests that in the absence of functional Cls1p, monopolar 299

spindle microtubule bundling is greatly reduced, consistent with previous work [55]. The 300

length distribution plots show the significant difference between microtubule/bundle 301

length between cls1-36 and alp14∆ cells. About 50% of all microtubules in cls1-36 cells 302

have length ≤ 1.75 µ m compared to 1.0 µm for alp14∆ cells (Fig. 5E). The distribution of 303

microtubule lifetimes contains differences that are subtle (Fig. 5F). For example, we observe 304

that the curve increases steeply at short lifetime for cls1-36 cells. This shows that in addition 305

to a shorter mean lifetime, cls1-36 cells have a larger number of short-lived microtubules 306

than in the other strains. 307
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Figure 5. Quantification of monopolar spindle microtubules for S. pombe mutants that alter mi-
crotubule dynamics and bundling. (A) Maximum-intensity projection (MIP) of the experimental
microtubule fluorescence image stack for cut7-24 cells, with the additional perturbations klp6∆, alp14∆
and cls1-36 as labeled. Scale bars, 1 µm. (B) Optimized features detected by TAMiT, displayed as a
2D projection overlaid on the experimental MIP image. (C) Box plot of the TAMiT detected number
of microtubules/bundles in each image frame. (D) Plot of the mean microtubule lifetime as a function
of the mean microtubule length, as measured by TAMiT in each genetic background. Error bars
represent the standard error. (E) Cumulative probability density of microtubule/bundle length. (F)
Cumulative probability density of microtubule/bundle lifetime.

3.2. Dynamic instability of astral microtubules in S. cerevisiae 308

In S. cerevisiae mitosis, long, curved astral microtubules can grow from the cytoplasmic 309

face of the SPB (Fig. 6A). Previous work suggested that astral microtubules are either single 310

or small bundles of 2 microtubules [43]. This makes them a good probe of microtubule 311

dynamic instability and how it is affected by genetic background. However, quantifying 312

astral microtubule dynamics is challenging because of their curvature, so they are typically 313

laboriously hand tracked [43]. We tested the ability of TAMiT to fit and track astral 314

microtubules in 5 cells (Fig. 6B). By using a low-order Fourier series to represent the 315
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microtubule path, we can enables fit and measure the microtubule curvature (Fig. 6C). 316

We measured microtubule length by hand in ImageJ (Fig. 6D, red), and also used TAMiT 317

for automated measurement (Fig. 6D, green). TAMiT captures the polymerization and 318

depolymerization characteristic of dynamic instability. Because TAMiT fits the entire shape 319

of the microtubule, it can also capture local and mean curvature (Fig. 6E). 320

Microtubule length measurements can then be used to extract polymerization and 321

depolymerization speed (Fig. 6F). When we compared the hand measurements against the 322

automated results from TAMiT, we found no significant difference in measured speed. 323

This suggests that TAMiT can automate measurement of the dynamics of curved astral 324

microtubules in S. cerevisiae. 325
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Figure 6. Measurement of astral microtubule length, dynamics, and curvature in S. cerevisiae.
(A) Maximum-intensity projection (MIP) of the experimental microtubule fluorescence image stack of
a S. cerevisiae mitotic spindle with long, curved astral microtubules. Scale bar, 1 µm. (B) Optimized
features detected by TAMiT, displayed as a 2D projection overlaid on the experimental MIP image.
The spindle is colored blue, the astral microtubules pink and green. (C) Tracked microtubules colored
according to their local curvature (as shown in the color bar). Red indicates higher curvature, blue
lower curvature. (D) Microtubule length as a function of time measured for an astral microtubule.
The automated fit by TAMiT (green) is similar to the hand-measured values (red). The dashed
lines indicate the time points shown in (A-C). (E) Mean curvature of the microtubule with length
measurements shown in (D). (F) Dynamic instability parameters quantified for 5 astral microtubules.
Data points represent polymerization and depolymerization events. Using hand-measurement, we
observed 28 polymerization and 27 depolymerization events. In comparison, TAMiT recorded 23
polymerization and 22 depolymerization events. Using a t-test, we failed to reject the null hypothesis
of equal means (p = 0.27 for polymerization and p = 0.43 for depolymerization events).

4. Discussion 326

Advances in fluorescence microscopy have led to an explosion in the volume of image 327

data [56,57]. Because manual analysis can be time-intensive both for training and analysis 328
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of images, there is an increasing need for automated image analysis tools. Therefore, we 329

developed TAMiT, to detect and track microtubules in S. pombe and S. cerevisiae. Related 330

work has used similar techniques to ours, surface spline methods, or spot tracking of 331

tip-associated proteins [2,4,14,17,58] However, previous methods were limited in that they 332

were semi-automated, lacking optimization, inapplicable to live-cell data, or restricted to 333

two dimensions. Further, tracking microtubule tip-associating proteins typically cannot 334

give full microtubule dynamics without inferences about non-imaged shrinking events. 335

Building on previous work, TAMiT can overcome some of these restrictions. It is designed 336

to work with fluorescently tagged microtubules, so can detect shrinking events. It runs 337

unsupervised, optimizes parameters, tracks microtubules in 3D, and is designed for live-cell 338

data from yeasts. 339

Biological structures are three-dimensional. Despite the ease with which fluorescence 340

microscopy produces 3D image stacks, analysis difficulties mean that the Z dimension is 341

commonly thrown out in favor of studying maximum-intensity projections. While this is 342

justified in vitro where microtubules are often surface-bound, microtubule structures in 343

cells are three-dimensional. As a result, ignoring the third dimension may introduce errors 344

in the inferred microtubule dynamics. TAMiT overcomes this by treating microtubules 345

as fully three-dimensional. TAMiT combines microtubule detection with optimization 346

to yield fit parameters with uncertainties. This can improve the measurement accuracy 347

compared to using only the estimated position. 348

A significant challenge in automated microtubule detection in cells is the typically low 349

signal-to-noise ratio (SNR) used to avoid photodamage to the cell. By simulating images of 350

microtubules at varying SNR, we find that TAMiT detects > 95% of simulated microtubules 351

at SNR ≥ 1.25, and achieves sub-pixel accuracy at SNR ≥ 1.5. This is possible because 352

detecting a linear polymer allows information from multiple pixels to be used. When we 353

tested TAMiT on experimental images, we quantified and confirmed previous results from 354

perturbation to S. pombe microtubule dynamics, length and number. In S. cerevisiae, TAMiT 355

tracked single curved microtubules accurately, and measured dynamics parameters similar 356

to those found by hand tracking. 357

For future work, the structure of TAMiT is designed to facilitate other types of analysis. 358

An inheritance-based format for the code allows one to easily add new Gaussian features 359

to TAMiT without needing to overhaul the entire framework. Similarly, the modular 360

representation of features as combinations of spots, lines, and curves allows creation of 361

different composite. However, TAMiT currently does not have an implemented graphical 362

user interface, which means that use of TAMiT requires basic MATLAB expertise to run 363

the code. As we have shown, TAMiT can track microtubules in multiple phases of the cell 364

cycle, and in both S. pombe and S. cerevisiae. Flexibility in the framework means that TAMiT 365

is not specific to a single cell phenotype, and can be used to analyze other types of cells not 366

considered here. However, the presence of multiple rounds of optimization and a large 367

number of parameters per microtubule means that convergence to a solution in the non- 368

linear optimization space can be slow. For example, for 3 − 5 features, analysis of a single 369

frame in S. pombe takes 1 − 2 minutes, while a frame in S. cerevisiae takes 4 − 6 minutes. 370

Therefore, tracking of 100 − 1000 microtubules in a mammalian spindle is unrealistic for 371

TAMiT in its current form. However, since TAMiT can handle curvature in microtubules, 372

this leaves open the possibility of a future, accelerated implementation for mammalian 373

cells. 374

Here, we have shown that TAMiT can accurately and automatically track micro- 375

tubules in 3D in both S. pombe and S. cerevisiae. In future work several extensions could 376

further improve the utility of TAMiT. Calibrating the Gaussian intensity to the number of 377

microtubules in a bundle as in previous work [59] would enable better understanding of 378

microtubule dynamics that vary due to bundling. Creating a GUI would improve access 379

to TAMiT for researchers without programming background. Finally, the larger goal is to 380

eventually track all the microtubules in a mammalian spindle. To this end, speeding up the 381
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computation time for feature optimization would allow the tracking of more microtubules 382

and pave the way for tracking a mammalian spindle. 383
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