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Abstract: Fluorescently labeled proteins absorb and emit light, appearing as Gaussian spots in
fluorescence imaging. When fluorescent tags are added to cytoskeletal polymers such as microtubules,
a line of fluorescence and even non-linear structures results. While much progress has been made in
techniques for imaging and microscopy, image analysis is less well developed. Current analysis of
fluorescent microtubules uses either manual tools, such as kymographs, or automated software. As a
result, our ability to quantify microtubule dynamics and organization from light microscopy remains
limited. Despite development of automated microtubule analysis tools for in vitro studies, analysis
of images from cells often depends heavily on manual analysis. One of the main reasons for this
disparity is the low signal-to-noise ratio in cells, where background fluorescence is typically higher
than in reconstituted systems. Here, we present the Toolkit for Automated Microtubule Tracking
(TAMIT), which automatically detects, optimizes and tracks fluorescent microtubules in living yeast
cells with sub-pixel accuracy. Using basic information about microtubule organization, TAMiT
detects linear and curved polymers using a geometrical scanning technique. Images are fit via an
optimization problem for the microtubule image parameters that is solved using non-linear least
squares in Matlab. We benchmark our software using simulated images and show that it reliably
detects microtubules, even at low signal-to-noise ratios. Then, we use TAMIT to measure monopolar
spindle microtubule bundle number, length, and lifetime in a large dataset that includes several
S. pombe mutants that affect microtubule dynamics and bundling. The results from the automated
analysis are consistent with previous work, and suggest a direct role for CLASP/Cls1 in bundling
spindle microtubules. We also illustrate automated tracking of single curved astral microtubules in
S. cerevisiae, with measurement of dynamic instability parameters. The results obtained with our
fully-automated software are similar to results using hand-tracked measurements. Therefore, TAMiT
can facilitate automated analysis of spindle and microtubule dynamics in yeast cells.

Keywords: microtubule tracking; fluorescent microscopy; curve optimization; image analysis

1. Introduction

Automated image analysis for fluorescently labeled proteins that appear as Gaussian
spots have been developed and widely used for detection and tracking [1-4]. Extended
protein assemblies, however, are more challenging to analyze. Given the importance of
higher-order protein assemblies, improved tools would lead to better quantification of
their structure and properties. For example, microtubules, which are linear polymers
made of tubulin dimer subunits, play essential roles in eukaryotic cells during mitosis [5,6],
intracellular transport [7], cell motility [8,9], morphogenesis [10] and axonal transport [11].
They are also a key drug target for cancer and malaria treatment [12,13]. Microtubules
with fluorescent labels on tubulin dimers appear in images as Gaussian lines rather than
spots, meaning that tools for their automated analysis must work differently. There has
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been considerable development in tools for microtubule tracking both for systems in vitro
[14-17], and in cells [18-21]. However, fully automated tools for microtubule tracking in
3-dimensional (3D) live cell data are lacking. In fact, many cell biologists continue to track
microtubules and proteins that bind to them manually and with kymographs. Automating
microtubule tracking in living cells has proven challenging, because the image signal-to-
noise ratio (SNR) of these polymers can be low. Despite this technical difficulty, tracking of
microtubules in cells is important to understand their biological function.

One class of methods to quantify cellular microtubule dynamics is based on fluo-
rescently tagged tip-tracking proteins. Tip tracking MAPs associate with microtubule
plus-ends [22-24] and appear as Gaussian spots. Therefore, they can be quantified with
automated particle tracking approaches [2,25], allowing quantification of microtubule dy-
namics [26-28]. However, tip-tracking proteins analyzed to date bind only to growing
plus-ends, not to paused or shrinking plus-ends. Therefore, this approach suffers the
disadvantage that fluorescent tracks show only microtubule growth events; catastrophe,
rescue, and depolymerization dynamics must be inferred. Alternatively, when tubulin is
fluorescently labeled, the fluorescence is associated directly with the microtubule lattice and
does not depend on binding of MAPs. In this case, entire microtubules can be visualized
throughout their polymerization cycle, making it easy to extract structural properties, like
curvature, and the kinetic parameters that describe microtubule dynamics.

Here we present a Toolkit for Automated Microtubule Tracking (TAMIT). This package
automatically detects and tracks entire microtubules or microtubule bundles in yeast cells
from 3D confocal fluorescence microscopy. The strength of our software lies in its detection
routine coupled with a robust optimization process, leading to sub-pixel accuracy in
measurement of microtubule length. TAMiT’s object-oriented framework, with a focus
on inheritance-based specialization, allows users to easily adapt the software for their
individual needs. As a result, TAMIT has machine-learning capabilities, since it can be
used to analyze other composite microtubule structures beyond those presented here. Here,
we present illustrative models that we created for use with a variety of cellular phenotypes
in yeasts, and we show how TAMIiT uses them to detect microtubules. We benchmark
our software using simulated data and show that the software performs robustly even at
low SNR. Specifically, TAMIT is used to detect monopolar, bipolar, and anaphase spindles
in S. pombe, along with the mitotic spindle in S. cerevisige. In addition, TAMIT can track
single astral microtubules in cells, which has proven difficult in the past. TAMIT is able
to accurately detect both straight and curved microtubules, as shown here. Finally, we
extract microtubule dynamic instability measurements in S. cerevisiae and compare them
with hand-tracked data.

2. Materials and Methods

The design of TAMIT is based on key features of microtubule assemblies in yeast cells.
First, microtubules in cells are often present in dynamic higher-order structures [29]. For
example, in S. pombe and S. cerevisiae mitotic spindles, microtubule minus ends are anchored
near spindle-pole bodies (SPBs) via y-tubulin complexes [30]. In a bipolar spindle, two
SPBs are linked by a bundle of microtubules that appears as a diffraction-limited line, while
a monopolar spindle has unseparated SPBs with lines emanating outward (Fig.1). A single
SPB in yeasts can anchor dozens of microtubules. Because many of these microtubules are
short, they appear as point sources of tubulin fluorescence (spots). Our software learns an
underlying mathematical model for the fluorescence distribution. This model is optimized
by non-linear fitting such that the fitted intensity matches the original image. Below, we
start by describing the mathematical models for all the features, followed by a discussion
of detection, optimization and tracking. Finally, we present results of validation.
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Figure 1. Feature detection and 3D fitting to various microtubule structures: a bipolar and a monopo-
lar spindle from S. pombe and a spindle and astral microtubule from S. cerevisige. (A) Schematics of
three microtubule assemblies (bipolar spindle and monopolar spindle in fission yeast, and spindle
with astral microtubule in budding yeast) and their representation as composite objects. Straight
(green) and curved (red) microtubules are organized by spindle pole bodies (purple) (B) Maximum-
intensity projection (MIP) images created from image stacks of microtubule fluorescence. These
images were filtered and contrast-enhanced to make dim microtubule bundles or single microtubules
more visible. (C) Fitted intensity images created by TAMIT, displayed as an MIP. Each image is an
output of TAMiT’s optimized 3D microtubule model. (D) Features determined by TAMIT, displayed
as a 2D projections from the optimized 3D model. Features (lines, curves, spots) are colored according
to their position in Z, and are overlayed on the original experimental images from (B) for comparison.
(E) 3D visualization of features determined from the TAMiT model. Color represents the position in
Z, as shown in the color bar on the left. (Scale bars: 1um)

2.1. Mathematical model

To achieve subpixel accuracy in microtubule detection, each feature that comprises an
image must be represented by an appropriate mathematical model. The image can then
be represented by a combination of these features. TAMIT currently supports three basic
features (Fig. 2A, Fig. S1). A spot of chosen intensity and width represents a Gaussian
distribution (a point source object), which may be smaller than the resolving power of the
microscope, such as an assembly of short microtubules emanating from an SPB. We use a
spot to represent the SPB (the position of which coincides with the position of the spindle
microtubule minus-ends). A line represents a single microtubule or a bundle that is straight
and longer than a few image pixels (typically a microtubule must be at least a few hundred
nanometers long to be visible as a line). These appear as a line with intensity represented by
an integrated Gaussian distribution. We use the line to model microtubules in cells where
the polymers are not bent. A curve represents a single or a bundle of microtubules that is
curved. The fluorescence distribution of a curved microtubule has a curved centerline with
diffraction-limited fluorescence along that line. These basic features can be put together to
construct structures such as either a monopolar or a bipolar spindle (Fig. 2B).
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Figure 2. Schematic of image features, composite objects, and TAMiT workflow. (A) Schematic and
MIP of the simulated intensity distribution, shown for the basic 3D elements include a spot (repre-
senting an assembly of short microtubules, such as occur near a spindle pole), a line (representing
a straight microtubule or bundle), and a curve (representing a curved microtubule or bundle). (B)
Schematic and simulated MIP of composite images that can be constructed from spots, lines, and

Al 1Ir‘Yl‘(?)sriopolar spindle contains a spot with one or more straight lines that end at the spot. A

bipolar spindle contains two spots connected by a straight line. Lines or curves may extend

from the spots. (C) A tree representation of the organization of microtubule structures and
their connections in TAMiT. The monopolar or bipolar spindle resides inside the

highest-level composite structure, a biological cell. (D) Flow diagram of TAMiT. A movie

is analyzed frame by frame. Each frame undergoes a detection and an optimization step to
yield features for that frame individually. Once all the frames are processed, the

single-frame features are tracked to yield multi-time features. Tracking throws out any
single-time features that may be spurious.

2.1.1. Spot

For a collection of short microtubules at some position Xy = (xo, yo, 20), the intensity
appears as a point Gaussian with variable width. We model this as a spot with amplitude
A, centered at position Xy = (xo,Y0,20), and having Gaussian width & = (o, 0y, 0z).



Version February 7, 2023 submitted to Biomolecules 50f18

Therefore, seven parameters must be fit for every spot. These are § = {A,Xy,7}. The
Gaussian intensity of a spot at probe position X = (x,y, z) is calculated as:

x—xq )ze_(V;yyO )267(2720 )2

fo(x,y,2) = Ae” (& = (1)

2.1.2. Line

We model a straight microtubule or bundle as a Gaussian line of amplitude A,
start position ¥p = (xo,Yo,z0), end position ¥; = (x1,y1,21) and Gaussian width ¢ =
(0%, ay, o). We adopt a parametric representation for coordinates along the line, X;(t) =
(xi(t),yi(t), zi(t)) where

x;(t) = xo + (x1 — xo)t
yi(t) =vo+ (y1 — yo)t
zi(t) = zo + (z1 — z0)t

for t € [0,1] such that X;(t = 0) = (x0,y0,20) and X;(t = 1) = (x1,y1,21). We fit ten
parameters for every line: 6 = {A, Xy, ¥1,7}. The contribution of the Gaussian intensity
fo(x,y,z) at position ¥ = (x,y,z) is then given by an integral of point Gaussians along the
normalized arc length t:

t=1 x=x;()o _(¥¥iy2 2z
E&JJ*ZLﬂde(”>%(0y)f(n>z ?)

We can expand the exponentials in the integrand to obtain

t=1
ﬁ@y&):/})ﬂAwp&B—QKXQ—ﬂDOD
2 2 2
B=S+L 4+ %
oy 0y 0%
xx;(t i(t zz;(t
c(t) = é””ﬁ)+gy
X y z
2 2 2
_ X (1) yi(t) | zi(t)
z>(1f)_0%+0§+az2

While an integral in this form can be calculated numerically, we can also evaluate it using
error functions.

2.1.3. Curve

In certain situations, curved or bending microtubules may be present. To develop
a curve model, we assume that the microtubule/bundle centerline follows a parametric
polynomial in all three dimensions.

x(t) = ag + agt + ... + aut"
y(t) = bg + byt + ... + but"
z(t) = co + c1t + ... + cut”
While the choice of polynomial order is arbitrary for this model, here, we assume that n = 4

in the X and Y dimensions (where the pixel size is smallest) and #n = 1 in the Z dimension
(where the number of pixels is limited, so selecting a higher order can be impossible). With
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this assumption, curves seen in the XY plane are linear in the Z dimension. We calculate a
local curvature for the microtubule using:

Yy -y (D5 (0)
KO == o=y ey

where x/(t) and y/(t) are first-order time derivatives and x”(t) and y” (t) second-order. We
generate a model for this curvature using a Fourier function

N
K(t) = ko+ )_ picos(iwt) 4 q; sin(iwt) ©)]
i>0

where we fit 0, = {ko, w, p1, .--Pn, 41, ---,qn }. This forms the initial estimate for the micro-
tubule curvature. Given a start point ¥y = (xg, Yo, zo), an initial tangent vector T(t = 0),
the curvature coefficients 6y, and a microtubule length, we can then find all points along the
microtubule. We do this by iteratively computing the tangent (Eq. 4) and the coordinates
(Eq. 5) along the curve. Here R is a 3x3 matrix that produces a 71/2 rotation in the XY
direction, such that RT'() gives the direction of the normal vector for any t.

T(t+dt) = T(t) + (RT(t))K(t)dt )
X(t+dt) = X(t) +dtT(t) (5)

For the data in this paper, we found that using a Fourier series approximation with N = 2
was adequate. Using N = 1 gave a visibly poor fit, while for N > 1 the fit residual had a
similar value and the fit visibly looked similar. For application to other curved microtubules,
checking the fit residual as N is varied can be used to select the best value of N. With
that selection, there are 15 parameters for every curve, namely 6 = {4, ¥y, T(t =0),6,7}.
The Gaussian intensity fy(x,y,z) at ¥ = (x,y,z) is calculated by numerical integration via
Gauss quadrature [31].

2.2. Detection

The first step in analyzing an image is the detection process, which generates an initial
guess of features and their location to be used in fitting the full model. TAMiT starts by
applying a 3D Gaussian filter to enhance the tubulin intensity and smooth out variation
from noise. The next steps in detection are then specific to the particular tubulin structure
being modeled. For example, a S. pombe monopolar spindle (center row Fig. 1A-B) contains
a bright central point at the location of the single SPB or two adjacent SPBs. TAMiT models
this as a single 3D Gaussian spot. To find this spot, we use Otsu’s method for thresholding
[32] followed by an Extended-maxima H-tranform [33] on the MIP along the z-axis of the
image. The brightest pixel then corresponds to the position of the SPB/SPBs (Fig. S2). There
are also microtubules emanating from the SPB. To find these, TAMIiT transforms the MIP
image to a polar representation I(r, ¢) with the SPB at the origin, and radially integrates
the intensity to get an angular intensity function I(¢) (Fig. S3) The locations of peaks ¢; in
I(¢) correspond to the angular coordinates of possible lines. The length coordinate L; is
determined by fixing the angle and increasing the radius until the polar intensity function
I(r,¢ = ¢;) becomes comparable to the background intensity. TAMIT also implements a
minimum and maximum length cutoff for lines.

A bipolar spindle (top row Fig. 1A-B) contains a collection of microtubules between
two spindle pole bodies (SPBs). This collection of microtubules appears as a single bright
Gaussian line, and we model it as a single line. This line connects two SPBs, which are
modeled as spots. To find the spindle, TAMIiT uses Otsu’s thresholding followed by an
Extended-maxima H-tranform on the MIP image to find a bright spindle region (Fig. 54).
Connected component analysis can then be used to find an orientation vector for the bright
region. We find two maximally distant end-points with high intensity along the orientation
vector (Supplemental Material). These two end-points correspond to the two SPBs. To find



Version February 7, 2023 submitted to Biomolecules 7 of 18

lines emanating from each SPB, we use the same technique as that described for monopolar
spindles. To find curves emanating from a SPB, we start by finding an initial direction of
the curve. Next, steerable filtering is used to enhance pixels through which the curve passes
[34]. TAMIT iteratively steps along the brightest pixels, finding a new local orientation
at each step. The iteration stops once the intensity drops below a threshold set by the
background (Fig. S5)

Once all features and their models have been found, the full model is given by the
sum of the background fluorescence intensity By and all the individual feature models:

Fo(x,y,2) = Bo+ ) _ fo(x,,2) (6)

2.3. Optimization

To better represent the image and measure microtubule length with sub-pixel accuracy,
we fit the model parameters. The optimization in TAMIT is performed using non-linear
least squares fitting, in which we minimize the residual, the sum of squared differences
between the model and experimental images. For voxel coordinates x,y,z, and image
intensity Ip(x,y,z), the optimized parameters are

0 = argmin Y (Fo(x,y,2) — In(x,, z))?
0 XY,z

where Fy is the model function that simulates Gaussian intensity given feature parameters
6. TAMIT first optimizes the features locally, i.e only varying parameters specific to a single
feature while keeping the parameters of other features fixed. This is followed by global
optimization, where all parameters (including a background intensity level) are varied
within reasonable bounds in search of a global minimum.

Lastly, TAMIiT optimizes feature number, a hyperparameter. This is done by first
increasing the number of lines/curves in the model until the decrease in residual is in-
significant compared to the increase in the number of parameters. Next, the number of
lines/curves is decreased until the increase in residual becomes significant compared to the
decrease in the number of parameters. An f-test is employed for the significance criterion.

2.4. Tracking

After detection is performed for all time-frames in a movie, TAMIT tracks the features
using a modified version of U-track [2]. This ensures that spuriously detected microtubules
are ignored, and only features that existed for some minimum number of frames are kept.

2.5. Validation

To test the accuracy of TAMIT, we simulated and fitted monopolar spindles similar to
those found experimentally in S. pormbe. We generated 1000 3D images, based on random
points in the parameter space, at varying SNR (Fig. 3A4,B). The SNR was defined as the
mean intensity of a single microtubule divided by the background intensity (defined as the
median intensity of the image). For this test, the amplitude of the SPB and each microtubule
was held fixed while noise was varied. Next, we ran TAMIT on each simulated image to
extract the optimized parameters and compared them to the parameters originally used
for image creation. For each detected microtubule, we used a cost criterion to determine
if the microtubule found was present in the simulated image. Microtubules satisfying
the criterion were deemed correctly detected, while those failing were deemed spuriously
detected. For example, if the end position of a detected microtubule was more than 0.5 ym
away from the end position of all simulated microtubules, the detected microtubule was
deemed spurious. Microtubules in the simulated data that were not found by TAMiT were
labeled as missed detections. For correctly detected microtubules, we computed the error
in the X and Y dimension (pixel size 0.1 ym), and in the Z dimension (pixel size 0.5 ym.)
(Fig. 3C,D). Our multiple trials show that the mean 3D error (Fig. 3E) became sub-pixel for
all cases where SNR> 1.5. The percentage of correct detections was also above 90% for

144
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SNR> 1.25 (Fig. 3F). For very low SNR, the percentage of spuriously detected microtubules
was high, but it became negligible for SNR> 1.25 (Fig. 3G). Finally, we quantified the effect
of microtubule length on detection status (Fig. 3H). We found that with increasing SNR,
missed microtubules were more likely to be short. There was a transition at SNR= 1.25.
Based on these data, we conclude that TAMIT is accurate at detecting straight microtubules
at SNR> 1.25 and achieves sub-pixel accuracy at SNR> 1.5.
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Figure 3. Accuracy of microtubule detection in TAMIT as a function of signal-to-noise ratio (SNR).
We simulated 3D images of a monopolar mitotic spindle with varying SNR. (A) Simulated MIP
image of the same monopolar spindle at SNR= 0.75, 1.0, 1.5, 3.0, and 5.0. Scale bar, 1 ym). (B)
Features detected by TAMIT from the images shown in (A), displayed as 2D projections. (C-E) Error
in the spatial position of correctly detected microtubules as a function of SNR. As expected, the error
decreases with increasing SNR. (C) In-plane (xy) position error. (D) Out-of-plane (z) position error. (E)
Mean 3D error is sub-pixel for SNR> 1.5. (F) Percentage of microtubules that were correctly detected,
and those that were missed by TAMiT. Correct detection percentage was low (15% and 70%) at low
SNR (0.75 and 1.0). However, more than 90% of microtubules were correctly detected at SNR> 1.25.
(G) Percentage of spuriously detected microtubules versus SNR. These were microtubules that either
did not exist, or their fitting error was too large. (H) Fitted length of microtubules for correct and
missed detection versus SNR. Length of missed microtubules was smaller for higher SNR, suggesting
that longer microtubules were less likely to be missed. Length of correct microtubules was higher at
higher SNRs, suggesting that longer microtubules had a larger probability of detection.
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2.6. Experimental methods
2.6.1. S. pombe

S. pombe strains (Fig. S6) were cultured using standard techniques [35]. Strains
were constructed using genetic crosses and random spore analysis to isolate genotypes
of interest. All microscopy images and datasets were obtained using live cell preparation.
Cells were grown on YES plates and imaged in EMM liquid media to reduce background
fluorescence. Bipolar spindles were imaged at 25°C, and monopoles were imaged at
37°C. To obtain sufficient monopolar spindles, cut7-24 cells were placed at 37°C for 2-4
hours and then imaged at this restrictive temperature. Cells were transferred from a 37°C
incubator to the microscope in less than 30 seconds to prevent the temperature-driven
transition from monopolar to bipolar spindles. Temperature was maintained with £0.1°C
using a CherryTemp temperature controller (Cherry Biotech, Rennes, France). Spinning-
disk confocal microscopy was performed on a Nikon Eclipse Ti microscope described
previously [36-38]. The fluorescent label for microtubules was obtained by expressing
an mCherry-a-tubulin-chimera at a low level (~ 10% wild type a-tubulin), as described
previously [37-39]. The low-level tubulin labeling helps reduce tag-related perturbations
to microtubule dynamics. 3D time-lapse images were obtained using the EM Gain laser
settings on the Nikon illumination system and number of Z-planes indicated previously
[35]. The detailed strain information is provided in the supplemental material.

2.6.2. S. cerevisiae

Budding yeast were grown in standard media, and then manipulated and transformed
by standard methods [40]. GFP-Tubl fusions were integrated into the genome and ex-
pressed ectopically, in addition to the native a-tubulin genes TUB1 and TUB3 [41]. We
estimate that GFP-Tub1 comprises approximately 25% of the total a-tubulin expressed in
these cells [42]. Cells were grown asynchronously to early log phase in nonfluorescent
medium, and adhered to slide chambers coated with concanavalin A [43]. Images were
collected on a Nikon Ti-E microscope equipped with a 1.45 NA 100x CFI Plan Apo objective,
piezo electric stage (Physik Instrumente; Auburn, MA), spinning disk confocal scanner unit
(CSU10; Yokogawa), 488nm laser (Agilent Technologies; Santa Clara, CA), and an EMCCD
camera (iXon Ultra 897; Andor Technology; Belfast, UK) using NIS Elements software
(Nikon). During imaging, sample temperature was maintained at 37°C as indicated using
the CherryTemp system (CherryBiotech; Rennes, France). Z-stacks consisting of 12 images
separated by 0.45 ym were collected at 5 second intervals for 10 minutes. All analyses
were conducted in pre-anaphase cells, which typically exhibit one or two individual astral
microtubules extending from each SPB [44].

2.7. Manual analysis of microtubule dynamics in S. cerevisiae

Astral microtubule lengths were measured in each maximum intensity projection (2D
data), beginning at the cytoplasmic edge of the SPB to the tip of the astral microtubule;
therefore any displacement of the SPB does not impact microtubule length measurement.
Assembly and disassembly events were defined as at least three contiguous data points
that produced a length change > 0.5 ym with a coefficient of determination > 0.8. The
length of polymerization before a catastrophe event was calculated by determining the
total length of polymerization before a switch to depolymerization.

3. Results

Microtubule structures from different stages of the cell cycle pose different challenges
for the task of feature detection. TAMIT uses specialized models for the individual cases
shown in Fig. 4. The bipolar mitotic spindle in S. pombe is visible as a bright line of micro-
tubule fluorescence that may be accompanied by some much fainter polar microtubules
that project from the end(s) of the spindle. Fig. 4A shows the tracking of a bipolar spindle
over time. At the third frame shown, a single polar microtubule first appears is detected
and tracked by TAMiT as it changes length. Mutations of kinesin-5/Cut7 in S. pombe can
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lead to monopolar spindles when the SPBs don’t separate (Fig 4B). Here in the temperature-
sensitive cut7-24, dynamic microtubule bundles can be seen rotating about their attachment
points at the SPB. Anaphase spindle elongation in S. pombe leads to changes in spindle
length over time (Fig. 4C), which the software accurately captures. TAMIT can also find
and track microtubules in S. cerevisiae. Here, long curved astral microtubules can grow and
curve (Fig. 4D). These are primarily single microtubules, but can sometimes be a bundle of
two microtubules [43].

Bipolar spindle in S.pombe Pivoting microtubules in monopolar spindle in S.pombe

;

Curved astral microtubules in S.cerevisiae

6.6min 9.9min 13.2min 16.5min

Figure 4. Robust detection of mitotic microtubule assemblies in yeasts. (A) Bipolar spindle in S. pombe.
TAMIT detects both the spindle and a growing polar microtubule (last four frames) that grows away
the spindle at an angle. (B) Monopolar spindle in S. pombe. TAMIT detects rotating microtubule
bundles (the central microtubule rotates clockwise between frame 1 and 5). (C) Elongating spindle in
S. pombe anaphase B. TAMIT accurately detects the growing spindle. (D) Cruved astral microtubule
in S. cerevisiae during anaphase spindle positioning. The long microtubule grows and bends upon
interacting with the cell cortex. TAMIT detects these long dynamic microtubules with varying
curvature. Scale bars, 1 ym. In each panel, the top row is a maximume-intensity projection (MIP) of
the experimental microtubule fluorescence image stack. The second row is an MIP of the best-fit
intensity image from TAMiT’s optimized model. The third row shows a 2D projection of the 3D
features identified by TAMIT. The color along each feature shows position in Z.

3.1. Quantification of monopolar spindle microtubule number, length, and lifetime

Mutations in the S. pombe genome can perturb microtubule behavior and lead to abnor-
mal spindle structure that provide insights into the mechanisms of mitosis. For example,
mutations in the kinesin-5/Cut7 motor can prevent assembly of the bipolar spindle [45].
In these cells, SPBs do not separate and a monopolar spindle forms with microtubules
whose plus-ends point radially away from the central spindle pole. Because monopolar
spindles arrest cells in mitosis, they can be used to assess how other perturbations alter
mitotic microtubule number, length, and bundling [36]. Therefore, we used TAMIT to
study monopolar spindle microtubules in S. pombe cells carrying the temperature-sensitive
mutant cut7-24 [46].

In addition to the cut7-24 reference, we additionally considered 3 perturbations that
affect microtubule dynamics and bundling in mitosis. First, we added deletion of klp6,
a kinesin-8 motor. Because Klp6p destabilizes microtubules, in its absence microtubules
become more stable and longer [37,47-50]. We used this strain to assess whether TAMiT
could identify monopolar spindle microtubule bundles in klp6A that are longer and more
stable. Next, we additionally deleted alp14. Alpl4p is a TOG/XMAP215 homologue,
a microtubule plus-end tip tracking protein that promotes microtubule polymerization
[51,52]. Therefore alp14A cells contain shorter microtubules and shorter bundle length.

258
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Third, we additionally added the temperature sensitive mutant c/s1-36. Cls1p is a CLASP
homologue that helps stabilize microtubules by promoting rescue [53-55]. The precise
mechanism and interactions of Clslp in fission yeast have remained unclear, with some
work suggesting that it is recruited by the crosslinking protein Aselp [53], while other
work has found that Cls1p promotes microtubule bundling even in the absence of ase1[55].

We have used TAMIT to fit 3D images and detect microtubules from these strains
(Fig. 5A-B). Because of the automation enabled by TAMIiT, we analyzed a large number
of images. For example, we use 140 time points from approximately 100 cells for the
cut7-24 reference cells, a total of 10* images. To characterize differences between the strains,
we measured monopolar spindle microtubule /bundle number, length, and lifetime. We
explore the amount of bundling by measuring the number of microtubules/bundles in each
frame (Fig. 5C). We note that in TAMIiT a detected microtubule means a line of fluorescence
intensity, as shown by the colored lines in Fig. 5B. This often represents a bundle with
multiple microtubules.

In the cut7-24 reference, there were on average 3 microtubules/bundles per frame,
with a broad distribution from 0 to 7 (Fig. 5C). The mean lifetime was around 20 sec, and
the mean length about 1.2 ym (Fig. 5D-F). In kIp6A cells, we find no significant differences
in the average number of microtubule bundles compared to the cut7-24 reference. As
expected, the bundles were significantly longer, with a mean length around 2 ym. Their
lifetime was comparable to the reference (Fig. 5C-F). This confirms that TAMIiT can detect
the previously measured phenotype of longer microtubules in kIp6A cells.

In alp14A cells, based on previous work we expect shorter microtubules due to de-
fects in MT growth. Consistent with this, we found noticeably fewer detectable micro-
tubules/bundles, with a mean below 2 and a maximum below 4 (Fig. 5C). The smaller
number of detected microtubule bundles is consistent with the idea that many microtubules
are too short to be directly detected by TAMIT, and instead are captured by the central
Gaussian at the SPB. Microtubules in these cells are also shorter, with a mean length around
1 ym, and with a slightly decreased lifetime compared to the reference (Fig. 5D-F). As for
the kIp6A cells, TAMIT analysis confirms the phenotype of alp14A.

In cls1-36 cells, Clslp is inactive at restrictive temperature. We find that this perturba-
tion affects not only microtubule bundle number but also length and lifetime (Fig. 5C-F).
The mean microtubule bundle number is below 2: smaller than in the reference, and indeed
is similar to alp14A cells. The upper range of the distribution is a bit larger than for alp14A,
extending up to 5 bundles per frame. Of all the strains we analyzed, cls1-36 monopolar spin-
dles showed the lowest lifetime with a mean of around 12 sec (Fig. 5D). Despite this short
lifetime, the mean length of microtubules/bundles was higher than in the reference and
remarkably approached that measured in kip6A. We were surprised to find microtubules
that were relatively long in cls1-36 cells, since CLASP is thought to help stabilize bundled
microtubules. A possible explanation comes from our observation that microtubules de-
tected by TAMIT in cls1-36 cells were much lower in intensity, suggesting that these might
be single microtubules. This suggests that in the absence of functional Cls1p, monopolar
spindle microtubule bundling is greatly reduced, consistent with previous work [55]. The
length distribution plots show the significant difference between microtubule/bundle
length between cls1-36 and alp14A cells. About 50% of all microtubules in cls1-36 cells
have length < 1.75 ¢ m compared to 1.0 ym for alp14A cells (Fig. 5E). The distribution of
microtubule lifetimes contains differences that are subtle (Fig. 5F). For example, we observe
that the curve increases steeply at short lifetime for c/s1-36 cells. This shows that in addition
to a shorter mean lifetime, cls1-36 cells have a larger number of short-lived microtubules
than in the other strains.
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Figure 5. Quantification of monopolar spindle microtubules for S. pombe mutants that alter mi-
crotubule dynamics and bundling. (A) Maximum-intensity projection (MIP) of the experimental
microtubule fluorescence image stack for cut7-24 cells, with the additional perturbations kIp6A, alp14A
and cls1-36 as labeled. Scale bars, 1 ym. (B) Optimized features detected by TAMIT, displayed as a
2D projection overlaid on the experimental MIP image. (C) Box plot of the TAMIT detected number
of microtubules/bundles in each image frame. (D) Plot of the mean microtubule lifetime as a function
of the mean microtubule length, as measured by TAMiT in each genetic background. Error bars
represent the standard error. (E) Cumulative probability density of microtubule/bundle length. (F)
Cumulative probability density of microtubule/bundle lifetime.

3.2. Dynamic instability of astral microtubules in S. cerevisiae

In S. cerevisiae mitosis, long, curved astral microtubules can grow from the cytoplasmic
face of the SPB (Fig. 6A). Previous work suggested that astral microtubules are either single
or small bundles of 2 microtubules [43]. This makes them a good probe of microtubule
dynamic instability and how it is affected by genetic background. However, quantifying
astral microtubule dynamics is challenging because of their curvature, so they are typically
laboriously hand tracked [43]. We tested the ability of TAMIT to fit and track astral
microtubules in 5 cells (Fig. 6B). By using a low-order Fourier series to represent the



Version February 7, 2023 submitted to Biomolecules 13 0f 18

microtubule path, we can enables fit and measure the microtubule curvature (Fig. 6C).

We measured microtubule length by hand in Image] (Fig. 6D, red), and also used TAMiT
for automated measurement (Fig. 6D, green). TAMIT captures the polymerization and
depolymerization characteristic of dynamic instability. Because TAMIT fits the entire shape
of the microtubule, it can also capture local and mean curvature (Fig. 6E).

Microtubule length measurements can then be used to extract polymerization and
depolymerization speed (Fig. 6F). When we compared the hand measurements against the

automated results from TAMIT, we found no significant difference in measured speed.

This suggests that TAMIT can automate measurement of the dynamics of curved astral
microtubules in S. cerevisiae.
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Figure 6. Measurement of astral microtubule length, dynamics, and curvature in S. cerevisiae.
(A) Maximum-intensity projection (MIP) of the experimental microtubule fluorescence image stack of
a S. cerevisige mitotic spindle with long, curved astral microtubules. Scale bar, 1 ym. (B) Optimized

features detected by TAMIT, displayed as a 2D projection overlaid on the experimental MIP image.

The spindle is colored blue, the astral microtubules pink and green. (C) Tracked microtubules colored
according to their local curvature (as shown in the color bar). Red indicates higher curvature, blue

lower curvature. (D) Microtubule length as a function of time measured for an astral microtubule.

The automated fit by TAMIT (green) is similar to the hand-measured values (red). The dashed
lines indicate the time points shown in (A-C). (E) Mean curvature of the microtubule with length

measurements shown in (D). (F) Dynamic instability parameters quantified for 5 astral microtubules.

Data points represent polymerization and depolymerization events. Using hand-measurement, we
observed 28 polymerization and 27 depolymerization events. In comparison, TAMiT recorded 23
polymerization and 22 depolymerization events. Using a t-test, we failed to reject the null hypothesis
of equal means (p = 0.27 for polymerization and p = 0.43 for depolymerization events).

4. Discussion

Advances in fluorescence microscopy have led to an explosion in the volume of image
data [56,57]. Because manual analysis can be time-intensive both for training and analysis
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of images, there is an increasing need for automated image analysis tools. Therefore, we
developed TAMIT, to detect and track microtubules in 5. pombe and S. cerevisiae. Related
work has used similar techniques to ours, surface spline methods, or spot tracking of
tip-associated proteins [2,4,14,17,58] However, previous methods were limited in that they
were semi-automated, lacking optimization, inapplicable to live-cell data, or restricted to
two dimensions. Further, tracking microtubule tip-associating proteins typically cannot
give full microtubule dynamics without inferences about non-imaged shrinking events.
Building on previous work, TAMIiT can overcome some of these restrictions. It is designed
to work with fluorescently tagged microtubules, so can detect shrinking events. It runs
unsupervised, optimizes parameters, tracks microtubules in 3D, and is designed for live-cell
data from yeasts.

Biological structures are three-dimensional. Despite the ease with which fluorescence
microscopy produces 3D image stacks, analysis difficulties mean that the Z dimension is
commonly thrown out in favor of studying maximum-intensity projections. While this is
justified in vitro where microtubules are often surface-bound, microtubule structures in
cells are three-dimensional. As a result, ignoring the third dimension may introduce errors
in the inferred microtubule dynamics. TAMIT overcomes this by treating microtubules
as fully three-dimensional. TAMIiT combines microtubule detection with optimization
to yield fit parameters with uncertainties. This can improve the measurement accuracy
compared to using only the estimated position.

A significant challenge in automated microtubule detection in cells is the typically low
signal-to-noise ratio (SNR) used to avoid photodamage to the cell. By simulating images of
microtubules at varying SNR, we find that TAMIT detects > 95% of simulated microtubules
at SNR > 1.25, and achieves sub-pixel accuracy at SNR > 1.5. This is possible because
detecting a linear polymer allows information from multiple pixels to be used. When we
tested TAMIT on experimental images, we quantified and confirmed previous results from
perturbation to S. pombe microtubule dynamics, length and number. In S. cerevisize, TAMiT
tracked single curved microtubules accurately, and measured dynamics parameters similar
to those found by hand tracking.

For future work, the structure of TAMIT is designed to facilitate other types of analysis.
An inheritance-based format for the code allows one to easily add new Gaussian features
to TAMIT without needing to overhaul the entire framework. Similarly, the modular
representation of features as combinations of spots, lines, and curves allows creation of
different composite. However, TAMIT currently does not have an implemented graphical
user interface, which means that use of TAMIT requires basic MATLAB expertise to run
the code. As we have shown, TAMIT can track microtubules in multiple phases of the cell
cycle, and in both S. pombe and S. cerevisiae. Flexibility in the framework means that TAMIT
is not specific to a single cell phenotype, and can be used to analyze other types of cells not
considered here. However, the presence of multiple rounds of optimization and a large
number of parameters per microtubule means that convergence to a solution in the non-
linear optimization space can be slow. For example, for 3 — 5 features, analysis of a single
frame in S. pombe takes 1 — 2 minutes, while a frame in S. cerevisiae takes 4 — 6 minutes.
Therefore, tracking of 100 — 1000 microtubules in a mammalian spindle is unrealistic for
TAMIT in its current form. However, since TAMIT can handle curvature in microtubules,
this leaves open the possibility of a future, accelerated implementation for mammalian
cells.

Here, we have shown that TAMIT can accurately and automatically track micro-
tubules in 3D in both S. pombe and S. cerevisiae. In future work several extensions could
further improve the utility of TAMIT. Calibrating the Gaussian intensity to the number of
microtubules in a bundle as in previous work [59] would enable better understanding of
microtubule dynamics that vary due to bundling. Creating a GUI would improve access
to TAMIT for researchers without programming background. Finally, the larger goal is to
eventually track all the microtubules in a mammalian spindle. To this end, speeding up the
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computation time for feature optimization would allow the tracking of more microtubules
and pave the way for tracking a mammalian spindle.
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