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Abstract

This paper is concerned with the long time behavior of bounded solutions to a two-species
time-periodic Lotka—Volterra reaction—diffusion system with strong competition. It is well
known that solutions of the Cauchy problem of this system with front-like initial values
converge to a bistable periodic traveling front. One may ask naturally how solutions of such
time-periodic systems with other types of initial data evolve as time increases. In this paper,
by transforming the system into a cooperative system on [0, 1], we first show that if the
bounded initial value ¢ (x) has compact support and equals 1 for a sufficiently large x-level,
then solutions converge to a pair of diverging periodic traveling fronts. As a by-product, we
obtain a sufficient condition for solutions to spread to 1. We also prove that if the two species
are initially absent from the right half-line x > 0 and the slower one dominates the faster one
on x < 0, then solutions approach a propagating terrace, which means that several invasion
speeds can be observed.
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1 Introduction

In this paper, we are interested in the long time behavior of bounded solutions for the following
time-periodic Lotka—Volterra reaction—diffusion system with strong competition:

{ u; = diuxy +ulri(t) —ay()u — by (H)v],

v = davgs + VI (1) — ax(Du — by()vl, (1.D

wheret > 0, x € R,dy, d» > 0are diffusion coefficients and the given functions a; (-), b; (+),
ri(-) (i =1, 2) satisfy the following basic assumptions:

Hy) ri(®), ai(t), bi(t) € C%(]R) (i = 1,2) are positive T-periodic functions for some
constants 7 > 0and 0 € (0, 1), and 7; := } fOT ri(H)dt >0, i =1,2;
tlz(t))

(1)
(HZ) ry < Il[})ln](b (t))r27 < ,H[})H}](al(z)
ax(t

)
H3) /1 +7r2 > n[lax] (a (,))rl, > II[lSIX] (b;(t))
The spatially homogeneous system of (1.1) takes the following form:
u'(t) = u@®)[ri(t) —ar(Out) — by (v,
V'(t) = v(@®)[r2(t) — ax(Du(t) — ba(t)v(1)].

Under assumptions (H;)—(H3), system (1.2) has a trivial solution (0, 0) and two stable semi-
trivial T -periodic solutions (p(¢), 0) and (0, g(¢)), where

(1.2)

[)()efot ri(s)ds ngT ri(s)yds _ 1
p(t) = pPo = - >0,
1+ po fy efo 1@4eq, (s)ds” i eori@deg (syds
qoefo ra(s)ds efOT ra(s)ds _ 1

> 0.

t) = ’ = s

9(0) 1+q0 fof elo r2@dep, (5)ds a foT el 2@dep, (5)ds
Moreover, according to Hess [25, Theorem 35.1 and Proposition 36.3], system (1.2)
admits a unique 7T -periodic coexistence state (u(¢), v(¢)), which is unstable and satisfies
0<u(t) < p()and0 < v(t) < q(t) fort € [0, T]. Biologically, assumption (H») indicates
that the interspecific competition between the two species is stronger than the intraspecific
competition within each of the two species. An example is that a variety of bird species house
in small islands off the coast of New Guinea, while similar species (i.e., similar in size, diet,
and habitat use) often fail to coexist with each other (c.f. [6]). We also mention that (H3) is a
technique assumption which ensures that the periodic eigenvalue problem associated to the
linearized system of (1.2) at (p(¢), 0) and (0, ¢(¢)), respectively, admits exactly a positive
eigenvalue and the corresponding periodic eigenfunction is positive, which will be used in
establishing the stability of a pair of diverging periodic traveling fronts.

One of the central questions in the study of parabolic equations is how bounded solutions of
their initial value problems with various initial data evolve as time increases. It is well known
that traveling fronts can describe the long time behavior of solutions of the Cauchy problem
of many reaction—diffusion systems with front-like initial values. In recent years, traveling
fronts of competition-diffusion systems in homogeneous habitat have been studied very
extensively, we refer to [8, 16, 17, 21-24, 26, 28, 31, 33]. There are also a few of significant
and interesting results on periodic traveling fronts of reaction—diffusion equations/systems in
periodic media (c.f. [1-5, 12-14, 19, 27, 32, 38, 40-46, 48-51]) and the long time behavior for
scalar reaction—diffusion equations (see e.g., [9, 15, 20, 52]). For example, Zhao and Ruan
[49] investigated the existence, uniqueness and stability of monostable periodic traveling

@ Springer



Long time behavior for a periodic Lotka-Volterra... Page30of30 99

Fig. 1 Profiles of the initial value ¢ (x) with compact support
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Fig.2 Profiles of the initial value (#(0, x), v(0, x)) without compact support

fronts for (1.1). Bao and Wang [1] studied the existence of bistable periodic traveling fronts
for (1.1) by applying the theory of monotone semiflows (c.f. [18]). They also showed that the
solution of the Cauchy problem of (1.1) with front-like initial value converges to a bistable
traveling front. One may ask naturally how solutions of time-periodic reaction—diffusion
systems, such as (1.1), with other types of initial data evolve as time increases.

The aim of this paper is to consider the long time behavior of solutions to (1.1) with
two types of initial values, one type has compact support (see (1.6) and Fig. 1) while the
other is not compactly supported (see (1.7) and Fig. 2). We shall show that solutions of (1.1)
with the first type of initial values evolve into a pair of diverging periodic traveling fronts. It
should be mentioned that Kanel [30] and Fife and McLeod [20] considered the stability of
a pair of traveling fronts for scalar reaction—diffusion equations; Roquejoffre [39] and Ma
and Wang [35] investigated the same issue for autonomous and periodic parabolic equations
in cylinders, respectively. In this paper, we adapt nontrivially the methods in [20] for (1.1)
by constructing an appropriate subsolution (see Lemma 2.2). To the best of our knowledge,
this may be the first time that the stability of a pair of diverging periodic traveling fronts
for time-periodic reaction—diffusion systems is considered. To state this result, by making a
change of variables

WX d o x) = 1D G0 (1.3)

p(t) q(t)

we transform the competitive system (1.1) into the following cooperative system

{ W)y =di(u)xx +urlar@p@) (1 —uy) — b1 (Hg@)(1 — u2)],
(w2); = da(u2)xx + (1 —ux)[ax(t) p(t)uy — ba(t)q(t)uz].

ui(t,x) =

(1.4)
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The four periodic steady states (0, 0), (0, ¢(¢)), (p(¢),0) and (u(¢), v(¢)) of (1.1) become
0,1), 0:=(0,0), 1:= (1, 1) andu*(?) := (uj(t), u3(t)) of (1.4), respectively. Moreover,
0 <uf(t)y <1, uf(t+T) =uj(),i = 1,2. Clearly, the stability of a pair of diverging
periodic traveling fronts of (1.1) is equivalent to that of (1.4). For simplicity, we denote

X =1{p = (¢1.¢2) € L°(R,R?)|p(x) € [0, 1] and ¢ has compact support}.

Recall that periodic traveling waves of (1.1) connecting (0, g (#)) and (p(t), 0) are bounded
solutions of the special form (u(t, x), v(t, x)) = (U(t,z), V(t,2)) =: W(t,2),z =x —ct
and W(t + T, z) = W(t, z), which satisfy

lim W(,z) =(0,q())and lim W(t, z) = (p(¢),0) uniformly in ¢ € [0, T1],
Z—>—00 Z—>+00
where ¢ and (U, V) are called the wave speed and wave profile, respectively. If U (¢, z) and
V (¢, z) are monotone with respect to z, then (U (¢, z), V (¢, z)) is called a periodic traveling
front. Obviously, the wave profile (U, V) satisfies the following periodic parabolic system:

(1.5)

U =dUg +cU; + Ul (@) —a1(OU — b1 (1) V],
Vi=daVo. +cV, 4+ V@) —a®)U —by(t)V].

Moreover, it is clear that the function

Ut,z) q) =V, z2)

, ) s
p() q()

is a periodic traveling front of (1.4) connecting 0 and 1. The existence and uniqueness of

bistable periodic traveling fronts of (1.4) come from Bao and Wang [1].

®(t,2) := (D)1, 2), Dy(t. 7)) = (

Lemma 1.1 (Bao and Wang [1]) Assume that (H;) — (H3) hold. Then there exists ¢ € R
such that (1.4) admits a periodic traveling front ®(t, x — ct) satisfying ®(t, —oo) = 0 and
(1, +00) = 1 uniformly int € [0, T] and ®,(-,-) > 0. Moreover, (®; c¢) is unique in the
following sense: the speed c is unique and the profile ®(t, -) is unique up to a translation.

We now state our main results on the long time behavior of (1.4) with initial value (1.6)
as follows.

Theorem 1.2 Assume that (H;)—(H3) hold and that ®(t, x — ct) is the periodic traveling
[front of system (1.4) connecting 0 and 1 obtained in Lemma 1.1 with speed ¢ < 0. Let u(t, x)
be the unique solution of system (1.4) with initial data ¢ (x) such that

@(x) € Xand ¢(x) =1for|x| < L, (1.6)

where L > 0 is a constant. Then there exists a large enough constant L > 0 such that for
any L > L and constants &1 and &,

lim [lu(t,x) — @@, x —ct + &) 1=
t—+400

loc

(00,01 = 0

a(, x) — @@, —x —ct +5)le

i 040 =0

Moreover, we obtain a sufficient condition for solutions to spread to 1.

Theorem 1.3 Assume that the conditions in Theorem 1.2 hold and u(r, x) is the unique
solution of (1.4) with initial data ¢ (x) satisfying (1.6). Then there exists L > 0 large enough
such that for any L > L, u(t,-) — 1in LSS (R, R?) ast — oo.

loc
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Remark 1.4 (i) If the sign of the wave speed in Theorem 1.2 is reversed and suitable changes
in (1.6) are made, then one can obtain similar convergence results.

(ii) In the bistable competition model, the sign of the wave speed of traveling waves decides
which species eventually wins the competition. Thus, it is an interesting and important issue
to determine the sign of the wave speed in the bistable dynamics. Recently, Ma et al. [34]
obtained some sufficient conditions on the sign of the wave speed ¢ of the bistable periodic
traveling waves for system (1.1) connecting (0, g(¢)) and (p(t), 0), see [34, Theorems 4.1
and 4.2] and [34, Theorems 4.3 and 4.4] for detailed results on ¢ > 0 and ¢ < 0, respectively.

Next, we consider the long time behavior of solutions to (1.1) with another type of initial
values which do not have compact support. More specifically, we consider the spreading
properties of solutions to (1.1) with the following initial conditions (see Fig. 2):

u(0,x) =v(0,x) =0forx >0,
0 < u(0, x) < p(0) and u(0, x) has nontrivial compact support for x < 0, (1.7)
0 < vom < v(0,x) <wvom < ¢q(0) forx <O,

where vy, = infycr v(0, x) and voyr = sup, g v(0, x). This type of initial values means
that species # and v are initially absent from the right half-line x > 0, and the species v
dominates the species u on x < 0. It is interesting to consider how the two species invade the
right half-line. We shall show that solutions of (1.1) with such initial values will approach a
propagating terrace, which means that several invasion speeds can be observed.

Before stating the long time behavior of solutions to (1.1) with initial values (1.7), we
state some known results on periodic traveling fronts and spreading speed for monostable
time-periodic reaction—diffusion equations/systems (cf. [1, 32]). Let cpyy be the unique speed
of the bistable periodic traveling front of (1.1) connecting (0, g (¢)) and (p(¢),0) and cy > 0
be the minimal wave speed of the periodic traveling front Wy (¢, x — ct) connecting p(¢) and
0 of the Fisher-KPP equation:

wy = diwyx +wlr(t) — a1 (Hw]. (1.8)

Similarly, let cy > 0 be the minimal wave speed of the periodic traveling front W, (¢, x — ct)
connecting ¢ () and O of the Fisher-KPP equation:

wy = dywyy + wlr(t) — ba()wl. (1.9)

From Liang et al. [32, Theorems 4.1 and 4.2] (take time delay t = 0), cy = 24/d;71 and
cy = 24/dyr;. It is clear that ¢y and cy are the spreading speed of one species in the
absence of the other species, respectively. For simplicity, we denote fj; := max;c[o,7] f (¢)
and f,, := min;¢[o,7] f(¢) for a given T -periodic and continuous function f. The results on
the long time behavior of solutions to (1.1) with initial values (1.7) are stated as follows.

Theorem 1.5 Assume that (H)—(H3) and the following assumption hold
Hy) ri)=r1 >0,r] < min{%alnlpm, bimqm} and rapg < A pm-

Let u(t,x) = (u(t,x),v(t,x)) be the unique solution of system (1.1) with the initial
values (1.7). Then the following spreading results hold:
(i) For any ¢ > max{cy, cv}, lim;— yoo sSUp,- ., (Ju(t, x)| + [v(z, x)|) = 0;
(ii) Forany ¢ < cyv, iM¢— oo SUP, , (Ju(t, x)| + [v(#, x) — g @)]) = 0;
(iii) Suppose furthermore that cy < cy, then for any cyy < c1 < ¢z < ¢y,

lim  sup (Ju(t,x) — p®)| + |v@, x)|) = 0.

[=>+00 c1r<x<cot
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Obviously, Theorem 1.5 means that if the two species are initially absent from the right
half-line x > 0 and the slower one dominates the faster one on x < 0, then the solution of
(1.1) with such initial values approaches a propagating terrace, which connects the unstable
state (0, 0) to the stable state (p(), 0), and then connects the stable state (p(z), 0) to the
other stable state (0, ¢ (?)).

Remark 1.6 (i) It should be mentioned that the assumption (Hy) is technique, which is used
in the proofs of Lemmas 3.4 and 3.8. We feel that it is probably not necessary for the main
results to hold. We leave it for our future research.

(ii) We note that (H), (H3) and (H4) are compatible. Let us consider the simplest positive
constant coefficients r;, a;, bj (i = 1,2) as an example. In this case, (H), (H3) and (H4)
become

b
r < 1r2, r < a2rl, (1.10)
by aj
b
r1+r2>%, r1+r2>1—r2, (1.11)
a by
5 b
r < min{frl, 1"2]’ r < @, (1.12)
4 b al

respectively. Clearly, (1.10) implies (1.12). Then, (H;), (H3) and (H4) are equivalent to

r arri r biry
l1+—>—"—>land1+ = > —= > 1,
rp apr re - bary

which means that the competition between species # and v is not too stronger.

(iii) The results in Theorem 1.5 also hold when the conditions in (1.7) that u(0, x) has
nontrivial compact support in (—o0, 0) is replaced by 0 < u(0, x) < —Lxe”* for some L >
Oas x <« —1, where i is a constant with ft > /r1/d.

We remark that propagating terraces have been widely investigated for reaction—diffusion
equations and autonomous competition systems (c.f. [7, 10, 11, 20, 36, 37, 47]). For instance,
in the heterogeneous case, Ding and Matano [10], Ducrot et al. [11] and Polacik [36, 37]
proved the existence and convergence of the minimal propagating terrace by using the zero-
number argument; Carrére [7] and Zhang and Zhao [47] considered the propagating terrace for
autonomous competition systems with local and nonlocal dispersal, respectively. Although
the zero-number argument is a powerful tool, it cannot be applied for reaction—diffusion
systems. Here, we generalize nontrivially the techniques in [7, 47] for autonomous diffu-
sion systems to time-periodic Lotka—Volterra competition-diffusion systems. It should be
mentioned that the presence of time-periodicity makes the problem more difficult than the
autonomous case. For example, to construct appropriate super- and subsolutions, we need
to prove the continuity of the bistable wave speed with respect to parameter « (see Lemma
3.7). Such a property cannot be proved by the method in [29], and we prove it by using the
uniqueness and stability of bistable traveling fronts.

The rest of this paper is organized as follows. In Sect. 2, we show that solutions of
system (1.4) with initial values (1.7) develop into a pair of diverging periodic traveling
fronts. In Sect. 3, we prove that solutions of (1.1) with initial conditions (1.7) will approach
a propagating terrace.

@ Springer
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2 Stability of a pair of diverging periodic fronts

In this section, we consider the stability of a pair of diverging periodic fronts for the time-
periodic reaction—diffusion system (1.4) with initial values (1.6) under the assumptions (H1)-
(H3), i.e. Theorem 1.2. For a = (a1, a2) € R%2 and b = (b1, b) € R2, we denote a < b if
a; <bj,i=1,2;a<bifa<bbuta#b;anda < bifa; <b;, i =1,2.Let]| -| denote
the Euclidean norm in R2.

We first recall some known results on the asymptotic behavior of periodic traveling fronts
of (1.4) with ¢ = ¢, # 0 at =00, which will play an important role in the proof of our main
results.

Lemma 2.1 [12, Theorems 1.3 and 1.4] Assume (Hy)-(H3). Let (O(t, z), P2(t,z)) be a
periodic traveling wave of (1.4) connecting 0 and 1 with ¢ # 0. Then

1—®(, 1 — oy(t,
fim A= S10D o 19D iy int € R,
400 ke Vi (1) T F0 ke i (1)
and
D (t, . D, (1,
_1(7~Z) =1, lim ?(79 = 1 uniformly int € R,
=00 kpe'2i 4 (1) 2= ke 22 (1)

where k; > 0,v; > 0,i = 1,2 are some constants, (5,‘ (t) and 1},- (t),i = 1,2, are some
positive T -periodic functions in R.

Under the assumptions of Theorem 1.2, it is easy to see that the Cauchy problem (1.1)
with the initial values (1.6) has a unique solution u(z, x) satisfying 0 < u(z, x) < 1 for any
t > 0, x € R. In the remainder of this section, we always assume that the hypotheses of
Theorem 1.2 hold. For convenience, we set

g1t ur, u2) :=urlay@)p()(1 —uy) — b1 (t)q(@)(1 —uz)l,

2.1
gt ur, uz) = (1 —ux)[ax(®) p(t)uy — ba(t)q(t)uz]. @D

To construct an explicit subsolution, let us consider the following eigenvalue problem

d1(1) — a1 (@) p(t) — bi()q(D)]p1(t) = rop1 (1),
@5(1) — ax(t) p()P1(t) + ba()q ()2 (1) = Ao (1), (2.2)
o1t +T)=¢1(t), g2t +T) = (2).

By direct calculations and assumptions (H;) — (Hz), we know that the periodic eigenvalue
problem (2.2) admits an eigenvalue Ag = —% fOT [a1(t) p(t) — b1(t)q(t)]dt > 0. Moreover,
the eigenfunction (¢ (), ¢2(t)) associated with Aq satisfies (0, 0) < (¢1(2), p2(2)) < (1, 1)
(c.f. Bao and Wang [1]). Similarly, the periodic eigenvalue problem

Y1) + a1 (@O pOY (1) — bi)gOY2(t) = ki (1),
V() — [b2()g (1) — ax(H) p(O)]1Y2(t) = M2 (1),
Vit +T1) =y1(0), 2t + T) = Y2 (1)

admits an eigenvalue pair (A1, (Y1 (2), ¥2(¢)) with

1 T
hy = —?/0 [b2(1)q(t) — ax(r)p(H)]dt > 0 and (0,0) < (Y1 (1), ¥2(1)) < (1, 1).
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Denote j := min {@1m. $2m. Vim, Y2} > 0. Define a function ¢(z) € C*(R, RT) such
that

{(z) =0 for z<-2 and ¢(z) =1 for z>2;

0<¢@@ =<1 t"@I=<1 for zeR.
Take a positive vector function p(t, z) := (p1(t, 2), p2(t, z)), where

p1t,2) =¢@QY1() + (A = ¢@)d1(1) and  pa(t, 2) = £ (@) P2 (0) + (1 — §(2) ().
It is obvious that 0 < p(-,-) < 1.

Lemma 2.2 There exist positive constants By, o1 and 81 such that for any 6~ € (0, 1),

&7 € R, the function u(t, x) = (u;(t, x), u,(t, x)) := max{0, u™ (¢, x)} is a subsolution of

(1.4)ont >0, whereu™ (t,x) = (uy (¢, x), u, (¢, x)) is given by

Ut x) =@, x—ct+E —018 (1 —e Py + ®(t, —x —ct + £~ — 018 (1 — e Pity)
—1-8"pt,x—ct+E —018 (1—e Pry)e Pl t>0,x eR.

Proof Let n™ = n*(t,x) :=+x —ct + &~ — 018~ (1 — e P1"). Then
u(t,x) =B, (6, x) + ®(t,n (1, x) — 18 pt,nT(t,x)e P, t >0,x eR.
Itis clear thatu™ (-, -) € [—2, 1], where —2 := (-2, —2). For simplicity, we denote

Lilul(t, x) := (ug)r — di(p)axx — 8r(t, uy, up), k=1,2,1>0,x € R,
gt yT10) =0, gi (1. @ity D) +0(1 — @i (1, y ")), @,y )+ 01— (1, ¥ ),
Dgi(t, yT:0) == 0u,gi(r, @ity +0(1 — @1,y D), @1,y )+ 01— @1, ¥ 1)),
NGyt yT10.8) =0, 8i(t. @ity )+ 0@t yT) = 1= 8pit, y e P11,
ity )+ 0@ty ") —1=8p(t.yHe 1),
NGty Ty T10.8) =0, (1, @ity ) +O(Di(t, yT) — 1= 8pit, y e 1Y),
ity )+ 0@ty ") —1=8pj(t.y e F11)
fori # j € {1, 2}, yi e€R,6 € (0,1)and § > 0. We further define

2
Got,y . y7:0.8) := Y [1(8)uy (1,0,0) — 1 (1, y . y~:6,3)]
i=1
+ 1(81)uy (1.0,0) — D gi (1, ¥+, ¥ 716, 8)].
2
Ho(t,y %, y7:60,8) := Y [l (t, 1, ) =1 gi(t, y*,y7:6,0)]
i=1
+ |(gi)u2(tv 15 ]) - 32§i(f7 J/+» yi’ 97 8)']
forany y* € R, 6 € (0, 1) and § > 0.
By the definition of ¢(-), we have {(z) = 1 and ¢(—z) = O for z > 2, and hence

pi(t,z2) = Y1(t), pa(t,z) = Y2(8), p1(t, —z) = ¢1(¢) and pa(t, —z) = ¢a(t) forz > 2.
Note that
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lim (®y(z,2), P2(t,2)) = (0,0), lim (Pi(z,2), P2(t,z)) = (1, 1) uniformly in ¢ € [0, T'].
z—>—00 z—~>+00

It then follows that there exist M > 2 large enough and 8} € (0, 1) small enough such that
forany 8~ € (0,8)) and 0 € (0, 1),

Ao Min{@1y, Pom}

sup |Go(t,y T,y 50,8 )| < ——————, (2.3)
1>0,y~<—M*y+>M+ 2(d1m + d2m)
A1 min R
sup  |Ho(t,y+,y: 0,57y < 2LV im Yon) 2.4)
120,y=>M+ 20y + Yam)
Take
2
Ko = sup (> |3lé;i(ts7/+s7/_§9s5_)|+|32é;i(ts7/+s)/_§9,5_)|]},
1>0,y*€R,67€(0,8]),0€(0,1) ~ ;]
0
K ::max[ sup )—pi(l,z)‘, sup ‘ pl(t z)H
1>0,zeR,i=1,2 92 1>0,zeR,i=1,2 1 922
d
K ::max{ max |— t, ’, max ‘ }
2 t>0,zeR 3tp1( 2) t>0,zeR | ¢
. . ad 0
K3 :=m1n{ min —®d (¢, 2), D (1, z)}
1€[0,T),ze[—M+,M+] 02 te[0,T1, ze[ M+ M) Bz

Ky := Z{|3i§1(t,y+,)/—;9,5_) — g1,y T 0)]
t>0, yie]Ré e(O 81).0€(0, i

N ,y—;e,a—)—a,-gza,y*;e)\}.
By Lemma 2.1, we may assume that there exist v, v > 0 and K > 0 such that
1—®(t,&) <Ke " 1fort>0and€ >0 (2.5)
and
®(r, &) < KeY®1forr > 0and & < 0. (2.6)

Fix B satisfying 0 < 1 < min{%, )ZTO, —vc} and take

lc|K1 + B1+ Ko +dK1 + Ko . (K3 o, 1
> , 01 ::mln{—, 1,—}
B1K3

where d = max{d;, d»}. Choose £~ > max{1, o1} such that

1 o1

. 1 e
o1 min{yrim, Yom, G, dam}(Br — 5 minfro, A}) + KaKe Ve <, 2.7)
81[Kilel — o1B1K3 + Bi + di Ky + Kz + Ko| + KaKe ™"~V <0. (2.8)

Given any 6~ € (0,4;). Let us take C; = {(z,x) € [0,00) x Rlu; (¢,x) > 0} and
D; = {(t,x) € [0, 00) x Rju; (¢, x) < 0} fori = 1, 2. Next, we consider the following four
cases.

Case 1. (t,x) € D; N D;. In this case u = 0 and hence L;[u](,x) =0fork =1, 2.
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Case IL (t,x) € C; N Cy. Then u (¢, x) = u; (¢, x) and u, (¢, x) = u, (¢, x). Note that
(@) =d1(P1);z +c(Pr); + g1(¢, Py, Do) and g1 (¢, 1, 1) = 0, direct computations show
that

Ly[u](r, x) = (uy)e — di(uy )xx — 101, uy 1)
2

d d _ _ 0 0
=—®it,n") —c—P1(t,n") — 018 Pre P —D1(t,nT) —di — (. nT)
Jat 0z 0z 022

2

a _ a _ o —pu 0 _ a _
+ =01t ) —e—Pi1t,n7) — 018 pre PV —di(t,nT) —di—Pi(t,n7)
ot 9z 0z 02z
2

_ d d _ _ d 9
—d7e ’8"[*171(1777+)—C*, prt. ) — o018 pre P —pi(t.nt) —di —pi e, ?7+)]
ot 0z 0z 0zz

+8 Bre Pipit, 0™ — g1t uy uy)

- 9 _ . gy 0
5= Pt e pi )+ o1 B S pin )+ B )

3 4 9? g 3 -
- —pi(t, dy— t,+]— s Bt(Z @, nt) + —di(,

aZPI( )+ 1azzpl( )| —o018" Bie (aZ 11, m )+az 16, n7))
+81(t, @1t ), @2t 01 — g1t L D+ g1, @it ), Pa(t, 7)) — git, uy, uy)

o ad a0
=8¢ ﬁ"[ca—zpl(t,n+)+018 Bie f’"%m(t, )+ Bipit. ™)

- EPl(l 17+)+d1£p1(t r}+)] —0137,3167'6”(3‘1)1(1 nt) + id>1(l‘ n7)
Jat ’ 02z ’ 9z ’ 0z ’

— [Buy g1 (£, @12, ™) + 61 = @12, ), @a(t, n) +0(1 — Dot, 7)) (1 — 12, 1))
+ Bup g1 (£, @11, ™) +0(1 = D11, 1)), D2t ™) +0(1 — Da(t,n1))) (1 — a(t, n )]
+ 0,81 (1, @1, 07) 0@ (0,0 T) — 1 =87 pr(t, n e P, a1, 17)
+0(@2(t, ) =1 =8 pat, e PO — @y (2,0 ) + 87 pr(e, nHe P
+ g1 (1, D1t 7)) +0(@1 (0, 0T — 1 =57 pr(t, n e Py, a1, 7))
+60(02(t, 1) — 1 =58 pa(e, nHe P 1 — @51, nT) + 87 pa(r, n e P11

- il _ . g 0 il
=5 Pt e pin®) 018 Bre P pra ) + B () — i)

9? _ S - S
i pi )+ G T 6.8 )P ) i (T 6.6 ) pate )

+[01g1t,nt n7360,87) —d1g1(t, 0TI — @1t nT))
+ g1t T n710,87) — g1t 0011 — ot 1))

_ _ 0 0 _
— 0187 Bre ﬁnr(£¢1(t,n+)+a—zd>1<t,n ). (2.9)

Next, we first show that L[u](¢, x) < 0 fort > 0 and x > 0. We distinguish among three

subcases.
Case II-1. n~(¢,x) > M. Since n7(¢t,x) > n=(t,x) > M* fort > 0 and x >
0, it follows that p1(t,n) = ¥ (t) and po(t, n*) = Y (¢). Moreover, B%pl(t, nt) =

2
0, 7 pi(t,n*) =0and

—ai () p@O) Y1 (1) + b1 ()q () Y2 (r) + A1y (7)
(8w, (1, 1, DY (1) + (80w, (1, 1, D2(1) + A1 (0).

d
5,1 ) =i
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From (2.5), we have for any r > 0 and x > 0 that

1-®(¢,nT)=1-®(,x—ct+£ —o018 (1 —e P11y

<1—®(, —ct +£ —1) < Ke V8 Dy, (2.10)

Hence, by (2.4), (2.7), (2.9)—(2.10) and the monotonicity of ®(z, z) in z, we deduce that for
t>0andx >0,
Lifu](t,x) <87 e P By (6) = [(8D)u, (¢, L DY1 () + (8D)uy (8. L, DY (t) + Ay (1)]

+ 01810 710, 87)Y1 (1) + g1t T 160,87 )Ya ()}

+ 181t 0t n7:0,87) — g1t T 0] — (2, nT))

+ 0281, nt n736,87) — dagi (6,03 0)1(1 — Do, ™))

<67 MBI () + 10181, 0T 073 6,87) = (81w (5 1, DIY (1)
+ (028107 07:60.87) — (8w, (8. 1, DIV (1) — M1 (1)}
4 K4ReVertE =D

_ . 1 (et
<6~ e P min{yrim. Yo} (B —§X1)+K4K€ vizerttT=1)

<e P'[87 min{yim. Yom} (B1 — %M) + KsKe & D] <.

Case II-2. |~ (t,x)| < M*. By (2.8)-(2.10) and the definitions of o1, §~ and K, we
have for ¢t > 0 and x > O that

Lilul(t,x) <8 e P (Kilc| + 0187 iK1 + B + di1 K1 + K2 + Ko — 20181 K3)
+K4I€e—v(—cf+$7—1)
<8 e PU(Kyle| — 0181K3 + 1 + di1 K1 + Ko + Ko) + K4Ke " +6 =D
< e PST[K || — 01B1K3 + i + di K1 + Ko + Kol + K4Ke™ " 7D} <0.

Case II-3.7~(r,x) < —M™*. Thatis, —x —ct + &~ — 018~ (1 —e A1) < —M™, then
—x+& — 0187 < —M™, which yields that x > M 4+ £~ — 016~ Hence, for any ¢ > 0,
nte,x)=x—ct+& —o8 (1—e Py > MY 426 — 2016~ > M™.

Then, p1(t,n") = ¢1(¢) and pa(t, n*) = ¢o(¢). Using (2.3), (2.7) and similar to Case II-1,
one can easily prove that £1[u](¢,x) <0 for¢ > 0and x > 0.

By the above discussions, we obtain £[u](z, x) < 0 forz > 0 and x > 0. Similarly, one
can easily verify that £o[u](¢,x) < 0 forz > 0 and x > 0. Therefore, L[u](¢, x) < 0 for
t>0and x > 0.

A similar argument shows that L[u](¢, x) < 0 for# > 0 and x < 0. Therefore, we have
L[u](t,x) <0fort >0and x € R.

Case IIL (¢, x) € Cy N Dy. Then u; (¢, x) = uy (¢, x) > 0and u, (¢, x) = 0. Thus,

£2[E](t7x) = _82(t, u]_(t7x)a 0) = _az([)p(t)ul_(tvx) S 0

Moreover, since u, <0, we have g1(t, u} ,u;) < g1(¢, uy, 0). Thus
Lilul(t,x) = @])r — di @] )xx — g1t uy . 0)

_ ad o ki)
=d"e ﬁlt[cafzpl(t, nt) + 0187 Bre ﬂ"apl(l,n+)+ﬁ1p1(hn+)
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3 92
-5 n+)+d1f171(t n+)]—015 Bie~ ’3”( el n+)+ 37 o1 M)

+ g1, @1, "), @2, n ) — g1 (1, 1, D) + 12, @10, n7). @a(t,n 7)) — gi(t,uy,0)

- el _ . _g; 0
<sme P e pant) o8 e P pie ™) + prora)

92
= S pr ) 4 i) ] = 3 pre P o)+ )

+ g1t @1t nT). Da(t. ) — g1 2. 1, 1)+gl(t,<1>1(t,77 ),4>2(t,n ) — g1t uy,uy).

By using the same method in Case II, we obtain that £{[u](z, x) <Oforz > Oand x € R.
Therefore, L[u](¢, x) < 0forr > 0and x € R.

Case 1V. (t,x) € D; N C;. Inthis case, u; (¢, x) = Oand u, (¢, x) = u, (¢, x) > 0. Then,
Li[u](z, x) = —gi1(¢,0,u,) = 0. Moreover, we know that g>(¢,u; ,u,) < g2(¢,0,u,)

because of ] < 0 and (2.1), thus
Loful(t, x) = (uy )r —da(uy )xx — 82(t,0,u,)

_ 0 _ _ d
<8e ﬂ”[cafpz(t,n’LHUlS Bie ﬂ”afpz(t,n+)+ﬂ1pz(t,n+)

9 + 0 + —pit 9
— )+ gt 018 pre P (02 ) + 2 @20 n7)

+ g2t @1t nT), P2t ) — g2, 1, 1) + g2(t, ¢1(z, n7), ©2(t,07)) — ga(t,uy , uy).

By using an argument as in Case II, we have £;[u](f, x) < 0for¢ > 0 and x € R. Hence,
Llu](t,x) <0fort >0and x € R.

Combining Case I-Case IV, we infer that L[u](¢, x) < 0 for r > 0 and x € R; that is,
u(t, x) is a subsolution of system (1.4). The proof is completed. O

Lemma 2.3 There exists a large enough constant L > 0 so that forany L > L, there exist
constants &, & and & > 0 such that

D(t,x —ct+ &)+ @, —x —ct +&)—1— 8¢ P11 <u(, x)
<®(t,x—ct+E)+PF, —x—ct+&)—1+8¢ P71, Ve >0,x eR. (2.11)

Proof We first prove the left inequality of (2.11). Recall that lim,_, _c ®(¢,z) = 0 and
lim;, y o0 ®(¢, z) = 1 uniformly in ¢ € [0, T]. Thus, there exists L > 0 such that for any
L>L, u (0, x) < O0for|x| > L, and hence u(0, x) = 0 < ¢(x) for |x| > L. From Lemma
2.2, we infer that

u 0,x) =20, x+&)+®0,—x+&)-1-5p0O,x+£&7)<1-6 pl <1,

which yiel~ds that u(0, x) = max{0,u"(0,x)} < 1 = ¢(x) for |[x| < L. Therefore, for
any L > L, we have u(0, x) < ¢(x),Vx € R. Set & = &~ — 015~. By Lemma 2.2 and
comparison theorem, we have

u(t, x) > u(, x)
>®(t,x—ct+E —08 (1—e P+ @1, —x—ct+E —a18 (1 — e P11y)
—1-8pt,x—ct+& —018 (1 —e Priy)ePrt
>®(t,x—ct+E —8 )+ P, —x—ct+E —08)—1—8 ¢ P11

=®(t,x—ct+&E)+ P, —x —ct+&)—1—8"eP'1, Vi >0,x e R.
(2.12)
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Next, we prove the right inequality of (2.11). For any ¢(x) € X, we can choose égr >0
large enough such that ¢(x) < ®(0, x + 55“) + 83’p(0, X+ é&“) for x € R. Moreover, by
Bao and Wang [1, Lemma 3.4], there exist GJ > 0, 80+ > 0 such that the function

(1, x) = @@t x — ct + £ + 0,85 (1 — e F11))
+ 80Pt x —ct + £ + oy 8f (1 — e FPiiy)e Fr!
is a supersolution of (1.4). Thus, we have
u(t,x) < ®(t,x —ct + & + oy 55 (1—e 1))
+ 80Pt x —ct + £ + oy 8F (1 — e Piiy)e P!
<@, x—ct+E +ofsfd—e P +55e P, 120, xeR.  (2.13)
Similarly, we can conclude that
u(t,x) < ®(t, —x —ct + £ + 0,787 (1 — e F11y)
+ 8Pt x —ct + £ + 0,787 (1 — e Fiy)e P
<@, —x —ct+& +of 81 —e P+ 8P, >0, xeR (2.14)

for any & € R and some constants o;" > 0,8 > 0. Take £* = max{&], £}, 67 =
max{8;, 8, }, and o™ = max{o,, 0;"}. By the monotonicity of ®(r, z) with respect to z
(see Lemma 1.1), we obtain

u(t,x) <min{®(r, x —ct + £ + 0T8T (1 — P11y,
O, —x—ct+ET+oT8T(L—e Py +8TePri1. (2.15)
(i) For x > 0, by the monotonicity of ®(z, z) in z, one has
O, x—ct+E+oT85T (1 —e Py > 0@, —x —ct +ET + 0T8T (1 —eP11y).
By (2.5), there holds

1-®(,x —ct+ET+oT8 (1 —e Py <1—®(t, —ct +£7) < Ke ¢ DY,
(2.16)

Hence, combining (2.15) with (2.16), we have
u(t,x) <@, —x —ct+&T +otstA —e Py 45T il
<@, —x—ct+Et+otsTA—e P+ @@, x—ct+ET +oTsT (1 —e Pl
—1+5Te P14 KoV E e
<O, —x—ct+E +oTS)+ 00 x—ct+ET +0F8) + 5 P1-1 (217)

by choosing §; > 81 and & > 0 large enough.
(ii) For x < 0, since

O, x—ct+E +otsT(1—e P <@, —x —ct +EF + o5 — 7P,
using (2.5) again, we obtain

1—®(t, —x—ct+&E  +0oT8 (1 —eP))y <1—&(t, —ct +&1) < Ke "E 1,
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It then follows from (2.15) that
u(t,x) < ®(t, x —ct + T +otsT 1 —ePriy)y 4 5t Pl
<O, x—ct+ET+oT5T1 - e_ﬁlt)) +®(, —x—ct+ET+oTsT(1 - e Pity)
—1+8Te P14 Re V6T ey
<@t x—ct+E T +018) + 00, —x —ct+ET +018) +5ePI1 -1 (2.18)
by choosing 8, > 8" and &+ > 0 large enough.
Take 67 = max{8;, §} and let &, = £+ + o8, by (2.17) and (2.18), we have
u(t,x) <@, x —ct+ &)+ @, —x —ct + &) —1+5Te P71, >0,x e R.
(2.19)
Choosing § = max{§~, S'*‘}, by (2.12) and (2.19), we complete the proof. ]

We are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2 We only prove the first assertion since the second one can be discussed
similarly. From Lemma 2.3, we have

lu(z, x) — @@, x —ct + &1)|
< |®(1, —x —ct + &) — 1+ se P11
+ 1@t x —ct+ &)+, —x —ct+ &) —1—8e P'1—®(t,x —ct + &)
< |®(1, —x —ct + &) — 1+ e P11
+ D1, x —ct+ &) — ®(t,x —ct +&)| + |®(1, —x —ct + &) — 1 — e P111].
Note that

lim |®(t,x —ct + &) — ®(t,x — ct + &1)| = 0 locally uniformly in x.

—+00

Thus, combining this with 81 > 0 and ¢ < 0, we have

lim |u(t, x) — ®(t, x —ct + &) o0
t——+0o0

loc

(—o0,0p) = 0.

This completes the proof of Theorem 1.2. O

3 Spreading properties

In this section, we consider the long time behavior of solutions to (1.1) with initial values
(1.7). We always assume that the hypotheses of Theorem 1.5 hold. Obviously, in the following
discussion cy = 24/djr1. To establish the spreading properties of solutions to system (1.1)
with initial values (1.7), we introduce the following two crucial comparison principles for
competitive system (1.1). We denote (11, v1) < (up, v2) if u; > us and vy < vs.

Definition 3.1 The bounded functions (u1, vy), (u2, v2) are called a pair of super- and sub-
solutions of system (1.1) on Rt x R if (u1, v1) and (uz, v2) are Clint and C? in x, and
satisfy

{ (1) — di(uy)yx —urlry —ay(tuy — b (t)v1] > 0,
1)y — da()xx — Vi) —ax(®uy — ba()v] <0
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and

{ (W2); — di(u2)xx — uzl[ry —ay(tyuz — b1 (Hv2] <0,
(v2)r — d2(v2)xx — V2[r2(t) — ax(t)uz — b2 (t)v2] > 0,

respectively, for (¢, x) € (0, c0) x R.

The proofs of the following two lemmas are similar to those of [1, Theorem 3.2] and [47,
Lemma 4.7] and are omitted.

Lemma 3.2 Let (u1,v1), (uz,v2) be a pair of super- and subsolutions of system (1.1) on
RT x R. Assume that (uy,v1)(0,x) < (u2,v2)(0,x), Vx € R. Then, (u1,v1)(t,x) <
(uz, v2)(t,x), ¥t >0, x € R,

Lemma 3.3 Let (u1,v1), (uz,v2) be a pair of super- and subsolutions of system (1.1) on
{(#,x)|t = 0,x > X(1)}, where X(-) : [0, +00) — R is a continuous function. Assume that
(ui, v1)(#, x) 2 (U2, v2)(t, %), Vi > 0, x < X(1) and (u1, v1)(0, x) < (uz, v2)(0, x) for
any x > X(0). Then, (uy, v1)(t, x) <X (uz, v2)(t,x), Vt >0, x > X(1).

3.1 Proof of Theorem 1.5

Under the assumptions of Theorem 1.5, it is easy to see that the Cauchy problem (1.1)
with the initial values (1.7) has a unique solution u(t, x) = (u(t, x), v(t, x)) satisfying
(0,0) <u(t,x) < (p(),q(t)) forany t > 0, x € R. To simplify notations, we take
Nilu, vI(t, x) = ue(t, x) — diux (8, x) — u(t, x)[r1 — ar(Du(t, x) — bi(H)v(t, x)],
Nofu, v](t, x) = v (1, x) — davxx (1, x) — v(t, X)[r2(1) — a2 (Du(t, x) — br(H)v(z, x)].

3.1.1 Proof of Theorem 1.5 (i)

(1) Recall that W> is a decreasing periodic traveling front of (1.9). By the definition of v(0, x)
and the fact that W5 (0, —oco) = ¢g(0), we can choose x¢ € R such that v(0, x) < W»(0, x —
x0), Vx € R. Let (u(z, x), v(t, x)) = (0, Wa(t, x — cyt — xp)). Then Ny[u, v](z, x) = 0,
and
Nolu, v](t, x) = (Wa),(t, x — cyt — x0) — cv (W2) (¢, x — ¢yt — X0)
— do(W2) (1, x — ¢yt — xp)
= Wa(t, x — eyt — xo)[r2(t) — ba()Wa(t, x — cyt — x0)] = 0.

Since (1, v)(0, x) < (u,v)(0, x), Vx € R, by Lemma 3.2, we get (#, v) < (u, v). Therefore,
for every t+ > 0 and x > ct, we have

v(t,x) <v(t,x) = Wa(t,x —cyt — x9) < Wa(t, (c —cy)t — xg). (3.1

Using lim;_, 4 oo W2(¢, z) = O uniformly in # € [0, T'], we get lim;—, o0 SUP,. ., V(f, X) =
0, Ve > cy.
(2) Similarly, we let (u(z, x), v(z, x)) = (W (t,x — cyt — X), 0), where X € R such that
(u, v)(0, x) < (u,v)(0, x), Vx € R. Note that N>[u, v](¢, x) = 0 and
Nilw, v, x) = (W) (t, x — cyt — %) — cu (W) (¢, x — cyt — X)
= di(Wh) (1, x — cyt — X)
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—Wit,x —cyt —X)[r1 —a1(&)Wi(t,x —cyt — x)]=0.

Combining lim;_, ;o Wi (¢, z) = 0 uniformly in # € [0, T] with Lemma 3.2, we obtain
lim;, 4 oo SUp,. ., u(t,x) = 0, Yc > cy. This completes the proof of the statement (i) of
Theorem 1.5.

3.1.2 Proof of Theorem 1.5 (ii)

We first give the following lemma which will play an important role in proving Theorem 1.5

(i1).

Lemma 3.4 Assume that cy < cy. Then for any c satisfying cy < ¢ < cy, we have

, HT [u(t, x + ct) — p(t)] = O uniformly on every compact subset of R. (3.2)
— 400
Proof Let v(t,x) := Wh(t,x — cyt — x), where X is selected such that v < v. Since

lim;_, o0 Wa(t, z) = 0 uniformly in ¢ € [0, T'], for any ¢ > 0, there exists some x, € R
such that

v(t, x) < e forany (¢, x) such that x — cyt — X > x,.
The rest of the proof is divided into three steps.
Step 1. Fix any ¢’ € (c, cyy). We prove

1
Ja>0, #>0and x; € Rs.t. liminf inf u(c—/x e +x1) > 7. (3.3)
C

t—>+00 xe(—a,a)

For any given a > 0, consider the following eigenvalue problem:

d1 Y, (x) = haa¥2q(x), in (—2a,2a),
Y2a(x) = 0, in R\(=2a, 2a), ¥24(x) > 0, in (=2a, 2a), (3.4)

V2alloo = 1.

The above eigenvalue problem has a principal eigenvalue A,, with a principal eigenfunction
Y2q. Moreover, Ay, < 0 forany a > 0 and Ay, — 0 asa — oo.
Take & > 0 such that

¢ < 2/d\(r1 —biye) < cp.
Choose a > 0 large enough and 1 > 0 small enough such that

? s +5)

— —Ag —r1+aiyne M +biye <0. (3.5)
4d,

Denote x; = 2a + x + x4 and define

u(t,x) = ne TNy, (v — 't — xp).
Next, we show that (u, v) < (u, v). It is clear that

Naolu, 0](t, x) =0, — daUxy — 0(t, X)[r2(t) — ax()u(t, x) — ba(t)v(t, x)]
=ax(u(t, x)Wa(t,x —cyt —x) > 0.

On the other hand, for —2a < x — ¢/t — x; < 2a and t > 0, we have u(¢, x) > 0 and

v(t,x) =Walt,x —cyt —Xx) < Walt,x —c't — %) < Wa(t, x; —2a — X)
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= Wz(tv-x*) E 87
by which and (3.5), we get for —2a < x — 't — x; < 2a and ¢ > 0 that

Nilu, 0]t x) = u; — diuy, —u(t, x)[r1 —ar@Oult, x) — b1 ()v(t, x)]

2 I i A
< ”Ee_ﬁ(x e =t —xp) — e TN YL (- xy)
2 (x—c't) p d —C—/(x—c/t)
—dln[@e 2”1 wa(x—ct—xl)—ae 24 Yo, (x — 't — x1)
2d1 (x—=c't) , y /
te Wza(x —ct—x)) | —ult, )l —arOut, x) — by ()e]
= e B0 ””[ Yt - dt—x1) = dipg, (=t = x1)]

—u(t,x)[ry —a; (l)ﬂ(l, x) —by(t)e]
2 ()

< z(t,X)[:jl — g — 71 +ajyne +b1M£] <0.

Since u(t, x) = 0 for |x — 't — x1| > 2a, we infer that N1[u, v](¢,x) < Ofort > 0, x € R.

Recalling that u is positive for any positive time and 5, (-) has compact support, we can
deduce that u(1, x) > u(1, x) for all x € R. Hence, by Lemma 3.2, we have (u, v) < (4, ).
Therefore, we get u(t, x) > u(t, x) fort > 1 and x € R, which implies that

/

ct ct e c
u(5.x) = u(=x) =ne Ty, (x — et —xp) fort = =, x €R.
c c c
Thus,
ct
u(— X +ct +x1) > ne 2"1( e l)w (x) > ne 2"1( “H - hin Yoa(x) =: > 0.
lod xe(—a,a)

Hence, (3.3) holds.
Step 2. We show that there exist @ > 0, 72 > 0 and x, € R such that

lim inf inf u(t’', x +ct +x3) > 2. (3.6)

=400 re[Grlxe(-5.9)

Take a > 0 and € > O such that r; > byye — )~\a, where g):a, 1qu) satisfies (3.4) with 2a
replaced by a. Then choose " € (0, 7)) such that n’ajyy < Ay +r1 — biye. Fix r > 0 and
define

~ ct
w(', x) == n'"Yux —ct —xy) fort’ € [, 1], x €R.
c

Obviously, No[w, v](t, x) = ax(tw(’, x)Wa(t', x — cyt’ — x9) > 0. Moreover, for
—a<x—ct—x; <aandt >0,
V(t,x) =Walt,x —cyt —x) < Wa(t,x —ct —x) < Wa(t,x; —a —x) < Wal(t,x4) < e,
and hence
Nilw, 01, x) =w, (', x) — diw, (', x) — w(t', V)[r1 — a1 Hw(', x) — b0, x)]
< —din' ¥ (x —ct —x1) —w(', X)[r —ayw(’, x) — by (t)e]
== 0'haa(x — et —x) = w(t', 0l — a1 (Hw(', x) = bi(t)e]
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< —w(',0)[Ag + 11 —n'ary — biyel < 0.

Thus, Ni[w, v](t/, x) < Oforx e Rand ' € [4,1].

From (3.3), fort > 1l and x € (—a, a), onehasu( ,,x+ct+x1) >0 > n’t/}a(x).Since
1//a(x) = 0 for |x| > a, it then follows that u(if,x +ct + xl) > 1/}a(x) fort > 1 and
x € R. Noting that '/, (x) = w(” x + ct + x1), we have u(” x) > w( ,x)fore > 1
and x € R. Hence, by Lemma 3.2, we get (4, v) < (w, v) forany ¢’ € t] x € R. Taking
m=n 1nfx€(_%_%) 1//a (x), then (3.6) holds.

Step 3. We prove (3.2). Let {t,}nez = {nT},ez. Define

up(t, x) = u(t +ty, x +cty), vu(t,x) = v(t + 1y, x +cty) (3.7)

for any (¢, x) € [—t,, +00) x R. By the periodicity of @;(¢), bi(t), i = 1,2 and r(t), it is
easy to see that (u, (¢, x), v, (¢, x)) satisfies

(Wun)r = dy(up)xx +up(t, x)[r1 — a1 (Ouy(t, x) — b1 (H)v, (2, x)],
(Un)r = da (V) xx + (8, X)[r2(t) — ax(Bu,(t, x) — ba(t)vy (2, x)],
uno(—tn, x) = u(0, x + ct), Vao(—tn, x) = v(0, x + ct,)

for any (¢, x) € [—1,, +00) x R.

By standard parabolic estimates and Ascoli-Arzela theorem, there exists a subsequence
of {#,}, still denoted by {#,}, such that (u, (¢, x), v, (¢, x)) converges to (Uco(t, X), Voo (t, X))
locally uniformly in (¢, x) € R2 asn — o0, and uso(t, x) satisfies

(ttoo)r — di(Uoo)xx — Uoco(t, X)[r1 — a1 (Duco(t, X)
—bi(1)e] = 0

for (¢, x) € R%. By (3.6), we get

lim inf inf ut', x +cty, +x2) > . (3.8)
"I v ]ae(-5.9)

Note thatz+1, € [Cct" t,] fort < 0 with |#| small enough. Since u,, (t, x +x2) = u(t+1t,, x +
cty + x2), from (3.8), we get for any ¢+ < 0 with |¢| small enough that 1nfx€(_g 9) Uoo(t, x +
Xx3) > 1. Let u, be the solution of

{ (ug)r = di(ug)xx + ue(t, x)[r1 — a1 (Ou(t, x) — by (t)el,
ug (0, x) = g(x),

where g(x) € C(R, [0, n2]) is defined by

nondecreasmg, X € ( % +x2,—% —|—x2),
Sy ), e(- 5{+xz, + x2),
8x) = non 4
increasing, x € (4 + x2, +xz),
0, x e R\( %+x2,%+x2).

By the classical comparison principle, we have ux(f, x) > u.(t, x) for any (¢, x) € R2,
Moreover, by the result in Liang et al. [32], we know that lim;_, 4o [us (¢, x) — p(£)] = 0
locally uniformly in x € R, where p,(¢) be the unique positive T-periodic solution of

u'(t) = u(t)(r1 — a1 (Hu(r) — bi(t)e).
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Sincelim,_, o+ pe(t) = p(t), we may assume that p, (1) > p(t)—e. Thus, lim;_ 4 oo [too (£, X)—
Pe(t)] > 0 locally uniformly in x € R. By the definition of u,, we then obtain that

liminf[u(t, x + ct) — p(t)] > liminf[u(t, x + ct) — p.(t) — ] > —¢
t—>+00 t—>+00

locally uniformly in x. By the arbitrariness of ¢, lim;, yoo[u(f, x 4 ct) — p(t)] = 0 locally
uniformly on every compact subset of R. The proof is completed. O

Now, combining the statement (i) of Theorem 1.5 with Lemma 3.4, we directly obtain the
following result.

Lemma 3.5 Assume cy < cy. Let ¢1 and cy be two speeds such that cy < c1 < ¢3 < cy.
Then

lim  sup (lu(z, x) — p()| + v, x)]) = 0. (3.9
I=>~+00 1 r<x<cot
Proof From the proof of Theorem 1.5 (i), we know thatlim;_, 4 o sSup,.., [v(t, x)| = 0, V¢ >
cy, and hence,

lim sup |v(t,x)| =0, Yey <c1 <2 <cy.
=+ ¢1r<x<cot

Therefore, to prove (3.9), we only need to prove

lim sup |u(t,x) — p(t)| =0, Yey <c1 <2 < cy. (3.10)
1=>+00 ¢1r<x<cot
Assume by contradiction that there exist two sequences {t,} and {x,} satisfying cit, <
Xp < oty and t, — 400 as n — oo, such that limsup,,_, . [u(#,, x,) — p(t,)] < 0. Let
cp = %”, then ¢, € (c1,¢2) C (cv, cy). Thus, there exists a subsequence {n;} of {n} such
that lim ; , oo Cn; =CE€ [c1, 2] C (cv, cy). By Lemma 3.4, it then follows that

“(tn_,-vxn/) - p(tn_,-) = I/t([nj, Cn_/tn,') - p(zn_,-) g Oasj — 09,

which contradicts lim sup,,_, oo [u(,, x,) — p(t,)] < 0. This completes the proof. O

Remark 3.6 By using an argument similar to the proof of Lemma 3.5, we have

lim sup (lu(z, x)[ + [v(t, x) —g(@)]) =0, Ve < —cy.
t—>+00 y ¢t
To show Theorem 1.5 (ii) for ¢ < cyy, we consider the following auxiliary time-periodic
competition-diffusion system with a parameter « > 0:

{uz = dyuxx +u(t, X)[r1 —ar(Ou(t, x) — b1 (v(r, x)],

v = daxx + v(t, X)[Vz(t) — Kk —ay(t)u(t, x) — bz(t)v(t, 0] (311)

Choose kg > 0 such that, for k € (0, ko), (H;)-(H3) hold with r{ (¢) and r,(¢) replaced by r|
and r(t) — k, respectively. According to Lemma 1.1, we know that (3.11) admits a periodic
traveling front (U, (¢, 2), Vi (¢, 7)), which satisfies

Ut —ccUe); =di(Ui)zz + Uelr1 — a1 (0)Ue — b1 () Vie],

Ve —ac (Vi) = dZ(VK)zz + Vil () —k —ax(®)Ue — ba(t) Vi1,
lim;—, _ oo (Ui (2, 2), Vi (2, 2)) = (0, g, (¢)) uniformly in 7 € [0, T], (3.12)
lim;_ 400 (U (2, 2), Vi (t,2)) = (p(t), 0) uniformly in t € [0, T'],

(Ut +T,2), Vit + T.2)) = (Uc (1, 2), Vie(t, 2)), (t.2) € R?,
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where ¢, is wave speed, z = x — ¢,t, and g, (¢) is the unique positive T -periodic solution of
the ODE:

V(1) = () (ra (1) — K — ba(Dv(1)).
It is clear that
(70 (O)e‘fol (r2()=w)ds eﬁ)T(Vz(s)—K)ds -1

S E) qK (0) = 3 > 0.
1+ g, (0) [ elo 2@ =)dep, () ds S el @=)dep, (5)ds

qi(t) =

Hence, lim,_, o+ g, (t) = ¢(¢) uniformly in ¢ € [0, T'].

Lemma 3.7 Let ¢, be the unique speed of a bistable periodic traveling front (U, Vi) of
(3.11) connecting (0, g, (t)) and (p(t), 0). Then lim,_, g+ ¢, = cyv-

Proof The proof is divided into two steps.

Step 1. We show that ¢, is nondecreasing in k € (0,00). Given 0 < k| < ko. Let
(U, (t, 2), Vi, (t, 2)) be the periodic traveling front of (3.11) with « being replaced by «;,
i = 1, 2. For convenience, we make a change of variables it = u and v = —v in (3.11).
Clearly, (u, v) satisfies

{ ity = dyiiy + i(t, X)[r1 — ar (0)i(t, x) + by (H)d(t, x)],

B = daias + 31, O[O — ik — (it x) + byt 0l O

Note that (3.13) is a cooperative system on [0, c0) x (—o0, 0]. Clearly, V~V,([ = (U,(l., VK[) =
(Uk;, —Vi;) is the periodic traveling front of (3.13) connecting (0, —g,; (¢)) and (p(), 0),

i = 1, 2. Without loss of generality, we normalize 17,(1 0,0) = %0).

_ Let Qe (H)[ug](x) be the solution of (3.13) with ¥ = «, and the initial value ug(-) =
Wi, (0,:) = (U (0, ), Vi, (0, -)). By the comparison principle (see Bao and Wang [1,
Theorem 3.2]), we get

W, (6, x — e 1) = Q2 ()[W,, (0, )](x) fort >0, x € R.

In addition, by Bao and Wang [1, Theorem 4.4], we can see that for any € > 0, there exist
Te > 0 and 59 € R such that

0“2 (1)[W,, (0, )](x) = Wy, (t, X — ot 4 50) — €l fort > T, x € R.
Thus, we obtain
W, (t, x — ¢ 1) = W, (£, X — ¢yt +50) —€lfort > T, x € R. (3.14)

Taking 1 = kT and x = ¢, kT in (3.14), then for any positive integer k with kT > T, by
the periodicity of W, (¢, -) in ¢, i = 1, 2, we have

W, (0,0) = W, (kT,0) >W,, (kT (¢, — e )kT + s50) — €1
=W,, (0, (c¢, — cey)kT + s50) — €l. (3.15)
If ¢, > c,, taking € — 0% and k — 400 in (3.15), we deduce that
U, (0,0) = Uy, (0, +00) = p(0),

which contradicts U,q 0,0) = %0). Hence, ¢, < c\,; thatis, ¢, is nondecreasing.
Step 2. We prove that lim, _, g+ ¢, = cyy. Note that for any small enough « > 0,
¢ < cyy. Therefore, lim,_, o+ ¢, exists. Set ¢ := lim,_, o+ ¢,. Clearly, ¢ < cyy. Taking
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a sequence {«,} such that x, — 0 as n — oo. By standard parabolic~estir~nates, there is
a subsequence of {k,}, sti_ll (Ienoted by {«,} for simplicity, such that (Uy,, V,,) converges
uniformly to a function (U, V), which satisfies

U,—cU _dlUZZ—I—U[rl—al(t)U—i-bl(t)V] (3.16)
VI—CV —szZZ+V[r2(l)—a2(t)U+b2(t)V] ’
where 7 = x — ct. Noting that (Ux,, (t,2), \7,(" (t,z)) is monotone increasing in z,

(U(t,z), V(z, 7)) is also monotone increasing in z and
0<U(t z) < p(t), —q(t) < V(t,2) <0.

Hence, (U, V)(t, £00) exists and belongs to {(0, 0), (0, —q(2)), (p(¢),0), (u(t), —v(t))}.
Recall that 0 < u(r) < p(t) and 0 < v(t) < q(r) for ¢+ € [0, T]. Without loss of

generality, we normalize Uy, (0, 0) = 2«0 (0)+”(0) . Thus U(0, 0) = 28F#0) (0)+u(0) > i1(0). By the

monotonicity of U(t, z) in z, one has U(z, —oo) < U(O, 0) < U(t, —|—oo). Thus

U(t, +00) = p(1) uniformly in 7 € [0, T].

From the first equation of (3.16), we obtain

t
U(t,2) = Ti0OIU (0, )1(2) +/0 Ti(t = $)[U (s, )1 — ar()U (s, ) + bi(s)V (s, N](2)ds,

where

I(O[$l(z) =

PY)
M}(ﬁ(y)dy.

+00
VAmdit dit f 4dyt

Taking the limits as z — +00 in the above equation, we have
t
p(1) =pO) + / Ti(t = s)[p(s)(r1 — ar(s)p(s) + bi(s)V (s, +00))lds
0

t
=p(0) +/0 p)(ri — ai(s)p(s) + bi(s)V (s, +00))ds,
which yields that
P(0) = p)(ri — a1 (1) p(t) + b1()V (1, +00)).

Since b1 (-) > 0, we infer that V (¢, +00) = 0 uniformly in ¢ € [0, T]. Thus, we conclude
that (U (1, +00), V (¢, +00)) = (p(t),0) uniformly in ¢ € [0, T'].

Noticing that U(t,2), V(t,2) is increasing in z and U(0,0) =
deduce that

p(O)-2HZ(0) < p(0), we

(U, V)(t, —00) = (0, —q (1)) or (U, V)(t,—00) = (i(t), —v(¢)) uniformly in r € [0, T].

Suppose that 0, V@, —oo) = (u(t), —v(t)) uniformly in ¢ € [0, T] Then it is easy to
see that for any ¢ > 0, U(t,2) > a@t) — e/2 for all z € R. Since U,(n(t 2) = U@, 2)
as n — o090, there exists N > 1 such that forn > N, U,(n (1,2) > U(t,z) — ¢/2. Hence,
UK,, (t,z) > u(t) —eforn > N and z € R, which contradicts U,(n (t, —o00) = 0 uniformly in

€ [0, T]. Therefore, (U, V)(t, —00) = (0, —q (1)) uniformly in ¢ € [0, T'], which implies
that (U(t,x — 1), V(t, x — &) is a solution of (3.16) connecting (0, —g(¢)) and (p(¢), 0)
with speed ¢. From Lemma 1.1 on the uniqueness of bistable periodic traveling fronts, we
conclude lim, _, g+ ¢, = ¢ = cyvy. The proof is completed. O
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By Lemma 3.7, there holds ¢ < ¢, < cyy for k € (0, ko). For convenience, in the rest of
this subsection, we set ) := U, and Z := V, with ¢ := ¢, for k € (0, kp). By (H4), we can
take € > 0 small enough such that )7 < az, (pm — €) and

(7 5
r| < min [Zalm(]?m —6), 7 4mPm> bim(gm — 6)]-

Recall that lim,_, g+ g, (t) = ¢(¢) uniformly in ¢t € [0, T]. We can deduce «p > 0 such
that r1 < b1y (qem — €) for any «k € (0, ko). Since Y(t, ¢) is strictly increasing in ¢ and
Z(t, ¢) is strictly decreasing in ¢, there exists p > 0 such that, for any ¢ satisfying either
€ < Y, 0) < p(t) —eore < Z(,¢) < qc(t) — €, there hold YV (¢,{) > p and
Z:(t,¢) < —p uniformly in ¢ € R.

Lemma 3.8 Tuake n(t) = ny + noe M, %1(t) = Spe M and y,(t) = yope ™, where By, yo,
no, 1 € RT and n; € R satisfy

90 < g o< e b < (3.17)
bimyo + 11+ < bim(gem — €), (3.18)
Y0+ rapt + b2 0) < 5 (em — ©). (3.19)
bamyo +rom + o < axm(pm — €), (3.20)
n+ry <min{%a1m(pm —€), %almpm}, 3.21)
U+ raym < aumPm, (3.22)
puno > max {You + Bo(r1 + bimyo). yYou + vo(ram + bamyo) }- (3.23)

Then, the following functions

u(t, x) =min{p(t), Y(t,x — ct —n(®)) + F1(H},
v(t, x) = max{0, Z(z, x — ¢t —n(1)) — y1 (1)}

satisfy N1[it, v](t, x) > 0 and N[i, v](t, x) < O for any (t,x) € (RT, R).

Proof For any (¢, x) € R2, let £ = x — &t — (). From (3.17), we see that
ar(NV1(t) = bi(®)y1 (1) = [a1(t)¥o — bi)yole ™ > [aimo — bimyole >0 (3.24)
and
a()91(t) —ba()y1(t) — k < aamPo —k < 0. (3.25)

The rest of the proof is divided into four cases.
Casel. u(t,x) = Y, ¢) + v1(t) and v(¢t, x) = Z(t,¢) — y1(¢). In this case, we have
V(t, &)+ 01(t) < p(t) and Z(¢, ¢) > y1(t). Direct computations show that
Nl[’/_[v B](t»x) =I’_£I(ta .X) - dlﬁxx(t»x) - I’_t(t! -x)[rl - al(t)l’_t([! -x) - bl(t)y(tvx)]
=V, 0) = Ve (1, 0) =/ OV (1, 8) + 01 (1) —di1 Ve (1, 0) — (V(2, 0)
+ @)l — a1V, ¢) —ar @)1 (1) —bi()Z2(t, ¢) + bi(®)y1(1)]
= =0 OV, 8) +91() + V(. Olar ()1 (1) — bi()y1 ()] + D1 ()[—r1
+a1(OY(, &) +ar()01() + bi() 2, $)—bi1(D)yi(1)] (3.26)
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and

Nolu, v](t, x) =v,(t, x) — dav, (£, x) — v(t, X)[r2(t) — ax(H)u(t, x) — ba(t)v(t, x)]
=Z1(t,0) —CZ;(t.0) — ' (D2 (1, 8) =y (1) —dr 2 (1.0) — (2(2,0)
—y1)r2(t) —ax @)V, ¢) —ax()P1(t) — ba () Z(2, &) + b () y1(1)]
= =020 —y[(O)+ Z@, Dlar@)91(1) — ba()y1 (1) — k] + y1(DOLr2 (1)
—axy(DY(t,8) —ax ()1 (1) — ba (1) Z(1, §) + ba () y1 (D] (3.27)

We distinguish among three subcases.
Case I — 1. Let (7, x) € R? be such that Y(z, ¢) <eand Z(t,¢) > g, (t) — €. Then from
(3.18), (3.24) and (3.26), we have

Nili, v](r, x) = 91(t) + 01(D)[—r1 + b1(1) Z(1,0) — b1 (D) y1(1)]
> 91 (1) + 01(0)[—r1 + b1 (1) (g (1) — €) = b1 (1) y1 ()]
= (O[—r1 +D1@)(ge(t) —€) = — bi()1(1)]
>N (O[=r1 + bim(qem — €) — 1 —bimy] = 0,
and from (3.17), (3.19) and (3.27), we get
Naolit, v](1, x) < — y{(t) + yi(O)[r2(t) = ba() Z(t, 0) + b2 y1 (D] + Z(t, §)[aam Vo — «]

<O+ ramt — bam (@ (1) — €) + bayrvol + (@Mﬁ —1)(qe (1) — €)

_ K
<ye M+ ram + bauwo] — E(qu —€) <0.

Casel — 2. Let (¢, x) € R? be such that Y(r, £) > p(t) — € and Z(¢t, ¢) < €. Then from
(3.17), (3.21), (3.26) and Z(¢, ¢) > y1(¢), we obtain

Niliz, v](, x) = 91(0) + (p(t) — )lar () — by () yole ™™ + 91 (D)[—r1 + a1V, )]
/ almﬁO —ut
>901(t) + (p(t) — e)[arm o — ble]e +01O[=r1 +ar()(p@) —€)]

3aim

4

>91(1) + (p() = )01 (1) + 11 (D[=r1 + apu(p@) — €)]

7
>0 —pn+ 20m(Pm —©) —ri]=0.

Further, by (3.20), (3.25) and (3.27), we have

Nolua, v](t, x) < — y{(0) + yi(O[r2(t) — a2 ()V(t, £) + ba(t) y1(D)]
< =20+ @O0 —ax@)(p(t) — €) + b))y (1)]
<vi®Olram — azm(pm — €) +bayyo + ] < 0.

Casel — 3. Let (¢, x) € R? be such that either € < Y(¢,¢) < p(t) —e€ore < Z(t,7) <
qi (t) — €. Thus, by (3.23), (3.24), (3.26) and the fact that Y, (¢, {) > p, we obtain

Nilit, v](t, x) > =0’ OV (1, &) + 01 (1) + D1(D[=r1 — bi1(D)y1(1)]
> pnope M — dope ™M — Doe M (r1 + biuyo)
=e M pnop — Vop — Vo(r1 + bimyo)] = 0.
Furthermore, from (3.23), (3.25), (3.27) and the fact that Z; (¢, ) < —p, we get
Nolit, v](t, x) = =1/ (D21, 8) — y{(1) + 1 (O[r2(1) + b2 () y1(1)]
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< —noppe "+ yope " + yoe M (rap + bam o)
=e M [=nopp + you + yo(ram + bamyo)] < 0.
CaseIl. u(t,x) = Y(t,¢) + 01 (¢) and v(t, x) = 0. Then, Y(¢,¢) + 91 (¢) < p(¢) and
Z(t,¢) < y1(). It is obvious that N[u, v](f, x) = 0. Since limg_ 400 V(t, &) = p(t)

uniformly in ¢ € [0, T], we assume that Y(¢,¢) > %p(t) for any + € R. By (3.17) and
(3.21), we have

Nilit, v)(t, x) =V (1, 8) = Ve (1,8) =0 OV (t, 0) + 91(1) — d1 Ve (1, %)
=YV, Ol —arOV(E, §) —bi(MZ(, O+ Y, Ol — a1 ()Y, )
—bi(OZE, ] =, ) + @) —ar(OV(t, §) — a1 () (1)]
= — 0OV . 5) + 91 + V(. Dar(O)D1(1) = bV, D) Z(t, )
+HO[=r1 + a1V, §) + a1 ()1 ()]
>91(t) — b1 y1(OV(, &) +2V(1, $)ay ()P (1) — r191 (1)

3
> 01(t) — bi@y1 (D) (p@) — 91(1) + 5a1(t)z91(t)p(t) —r11(0)

Yodim _ 3
>9](1) — biy 41,1;@ M p(t) + S@mpOPLO) = 11D (1)

5
=0 O] = p+ Jampn —n] = 0.

Case IIL. i(t, x) = p(¢t) and v(t, x) = Z(t, {)—y1(¢). Inthiscase Y(¢t, )+ (¢) > p()
and Z(t, ¢) > y1(t). Then, we have

Nilu, v](t,x) = p'(t) — p(D[p(t) — a1 (t) p(t) — bi(t)v(t, x)]
>p'(t) — p()[p) —ar(t)p(1)] =0,

and it follows from (3.22) and (3.25) that

Nolit, v](t, %) = Z:(1,0) = CZ¢(1,0) =0 (D Z (1, 0) =y (1) — d2 2y (1, 0)
= Z(, () —k —ax @Y1, §) — ba (1) 2(2, )]
+ 2@, Ol (1) —k —ax)V(1,§) — b2 (1) Z(2, )]
— (2, 0) = yi@O)[r2(@) —ax(@®)p(t) — b2 () Z(t, ¢) + b2 (1) y1(1)]

—n 2, 0) — () + 2, D=k — ar ()Y, §) + ax(t) p(t) — ba (1) y1(1)]
+y1D[r2(t) — a2 () p(t) — b2 () 2(t, §) + b2 (D) y1 (1)]

—n 2, 0) — (1) + Z(t, D=« — ax () (p(t) — 91(1)) + a2 () p(1)
— b1+ i(Dlr2(t) — a2 () p(t) — b2 () 2(t, §) + b2 () y1(1)]
' (OZ (1, 0) —y{(1) + Z(, Dlaz ()91 (1) — & — ba () y1(1)]
+y1Or2(t) —ax () p(t) — b2 (1) Z(t, ¢) + b2 (D) y1(1)]

< =90+ i) —ax()p@)]

yi(O[r2(t) —ax (@) p(t) + ]

<yi®Olram — a2mpm +ul < 0.

IA

CaselV. u(t,x) = p(t) and v(t, x) = 0. It is easy to see that Ny[u, v](z,x) = 0 and
Nolu, v](t, x) = 0.
Combining the above four cases, the assertion of this lemma follows. O
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Next, we compare (i, v) constructed in Lemma 3.8 with the solution (u, v) with initial
conditions (1.7). First we have the following lemma.

Lemma 3.9 There exists T* > 0 and ¢, < ¢ < cyy such that for everyt > T* and x < c4t,
u(t,x) <u(t,x), v, x) >, x), (3.28)
and for every x > ¢, T*,

u(T*, x) <a(T* x), v(T* x) > v(T* x). (3.29)

Proof Let ¢, < ¢ be such that ¢, < —cy. By Remark 3.6, we get lim;_, oo (Ju(t, x)| +
lv(t, x) — g(t)]) = 0 uniformly for x < c,t. Thus, there exists 7> > 0 such that for each
t > T and x < cut, u(t,x) < p(t) and for any given €1 > 0, v(t,x) > q(t) — &1 > q,(t)
for sufficiently small ¥ > 0. Moreover, v(z, x) < g, (¢) for any (¢, x) € R>. Thus,

v(t, x) > v(t, x), VI > To, x < cyl. (3.30)

Note that ¢y > 0 is the minimal wave speed of the monotonically decreasing periodic
traveling wave Wy (¢, x — ct) of (1.8). Set W (¢, z) := Wi (t, x — cyt) := Wi(t, —x + cyt)
for (¢, x) € R%. Then, we have

(W) = d1~(W1)zz +cu(W): + W1~(r1 —a (HWy),
lim; _oo Wi(t,2) =0, lim;—, 4o Wi(¢, 2) = p(¢) uniformly in ¢ € [0, T].

Notice that
Wi (t, x) ~ —xeVTAE g5 s oo
Thus, there exists a constant C’ > 0 such that
Wit x) < C'|x|e¥ /4% vy < 0. (3.31)

Since 0 < u(0,x) < p(0) for x < 0 and u(0, x) has compact support in (—o0, 0], there
exists X9 € R such that u(0, x) < Wi(0, x — Xp), Vx € R. In view of

u; < dyuxx +u(ry —ay(t)u),

by the classical comparison principle for (1.8), we get u(t, x) < Wi(t, x — cyt — Xo) for
x € Rand ¢t > 0. It then follows from (3.31) that

u(t, x) < Wi(t, (cx — cp)t — %0) < C'|(cx — cp)t — RoleV /A (e—cv)=F) (3 39)

for any t > 0, x < ct. By reducing u such that u < /r1/di(cy — cx), we see that there
exists 73 > 0 such that for all t > T3,

C'|(cx — cy)t — XoleV /D (e—c)t=k0) < o=l — 9, (¢). (3.33)

Since 91 (t) < p(¢t) for t € [0, T], from the definition of u(z, x), we get u(z, x) > 9(t).
Taking T* = max{7T,, T3}, from (3.32) and (3.33), we obtain

u(t,x) <u(t,x), Vt > T*, x < cqt. (3.34)

Combining (3.30) and (3.34), we have (3.28) holds.
Note that Y is increasing and Z is decreasing. Then we choose 17 < 0 with |n]| large
enough such that

a(T*, x) =min{p(T*), Y(T*, x —¢T* — n(T*)) + 91(T™)}
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=min{p(T*), V(T*, e T* = &T* —n1 —noe *17) + 91(T*)} = p(T™*) = u(T*,x)
and
u(T*, x) =max{0, Z(T",x —cT* —n(T*)) — (T}
<max{0, Z(T*, c,T* —éT* — 1 —noe ™) = y1(T*)} =0 < v(T*, x)
for x > ¢, T*. Therefore, (3.29) holds. The proof is completed. O

We now give the proof of Theorem 1.5 (ii).

Proof of Theorem 1.5 (ii) From Lemmas 3.3, 3.8 and 3.9, we have
(u, v)(t, x) < (u,v)(t,x) fort > T* and x > cyt. (3.35)

Since ¢ > ¢4, (3.35) holds for ¢t < x < ct. By the proof of Lemma 3.9, we obtain
that (3.35) holds for any ¢, < —cyp. Letting ¢, — —o0, we get that (3.35) holds for any
t >T*and — oo < x < ct. Hence, fort > T* and x < ct, we get

{u(t,x) <a(t,x) < YV(t,x =& —n(0) + 01(t) < V(t, (¢ = O — (1) + 91(1),
v(t, x) = u(t,x) = Z(t,x —ct — @) —yi1(t) = Z(t, (c — Ot —n(1)) — y1(7).
(3.36)
Recall that ¢ < ¢. Combining (3.36) with lim,_, _o, V(f,z) = 0 and lim,—,_o, Z(t,z) =
qi (t) uniformly in ¢ € [0, T'], we have lim;_, oo infy<¢; u(f, x) < 0 and
lim inf [v(t,x) — q(©)] >0 3.37)
t—+oo x=ct
for any « € (0, xp). Given any sufficiently small ¢ > 0. Since lim,_, o+ g, (t) = ¢q(t)
uniformly in¢ € [0, T'], we can deduce k¢ > O such that g, (t) > g (t) — € forany « € (0, ko)
and hence
lim ir<1£t[v(t, x) —q@®)] > —e. (3.38)

t—>—+00x

By the arbitrariness of € > 0 and the fact that v(¢, x) < g (¢) for any (¢, x) € RZ, we get

,ETOO sup (lu(t, x)| + [v(t, x) — q(®)]) = 0.

x<ct

This completes the proof of Theorem 1.5 (ii). ]

3.1.3 Proof of Theorem 1.5 (iii)

From Lemma 3.5, we obtain that if cy < cy, then for any ¢y, ¢; satisfying cy < ¢ <2 <
cu,

lim sup  (Ju(t,x) — p®)| + |v(t, x)]) = 0. (3.39)

I=>+00 11 <x<cot

To prove Theorem 1.5 (iii), we will use a similar idea as in the proof of Theorem 1.5 (ii)
to show that (3.39) is true for all cyy < ¢; < ¢» < cy. Choose 7y > 0 such that, for
7 € (0, 79), (Hy)-(H3) hold with r; replaced by r; — 7. From Lemma 1.1, we know that the
following auxiliary system

up =diugy +ut, x)(ry — T —ay(Du(r, x) — b1 (Hv(t, x)),
vy = davyx + (1, x)(r2(t) — ax(W)u(t, x) — ba(t)v(t, x))
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has a periodic traveling front (U; (¢, z), V; (¢, z), which satisfies

Up)t — c;Uz), = d1(Up)zz + Uz (r1 — T — a1 (DU — b1 (1) V3),

Ve — c; Vi) = da(Vp) o + Vi (r2(t) — aa (DU — ba(1) V),

lim,, oo Uz (t, 2), V; (2, 2)) = (0, ¢(¢)) uniformly in z € [0, T, (3.40)
lim; s oo Uz (2, 2), V3 (2, 2)) = (p;(t), 0) uniformly in ¢ € [0, T],

Ut +T,2), Vst +T,2) = U (t,2), V3 (1, 2)), (t,2) € R?,

where c; is the wave speed, z = x — ¢3¢ and p; (¢) is the unique positive T -periodic solution
of

u'(t) = u@)(r1 — T — ar(Du()).

Similarly, by Lemma 3.7, we have cyy < ¢ := lim;_, ¢+ ¢;. In the following, we set Y= U;
and Z := V; with ¢; = ¢ for T € (0, 7p) and suppose that cyy < ¢ < c.

Lemma 3.10 Define

{z(t, x) = max{0, Y(t, x — &t — n(1)) — 91 (1)},
o(t, x) = min{q(t), Z(t, x — &t — (1)) + y1 (1))}

Then for any (t, x) € RT x R, there hold N1[u, v](t, x) < 0and N>[u,v](t,x) > 0.
Proof The proof of this lemma is similar to that of Lemma 3.8. So we emit it. O

In order to compare (u, v) with the solution (u, v) of (1.1) and initial values (1.7), we
introduce the following Lemma 3.11. Since its proof is similar to that of Lemma 3.9, we omit
it here.

Lemma 3.1 There exist T > 0 and ¢ > ¢y such that for every t > T and x > Ct,
u(t, x) = u(t, x), v(r, x) <v(r, x),

and for every x < T, u(f, x) > g(f’, x), v(f,x) < i(f, X).

Lemma 3.12 Assume that cy < cy, then forall cyy < c1 < ¢ < cy,

lim  sup (Ju(t,x) — p()| + v, x)|) = 0.

1=>+00 ¢ 1<x<cot
Proof From Lemmas 3.3, 3.10 and 3.11, we have
(u,v)(t, x) < (u,v)(t, x) fort > 7 and cit <x < cat. (3.41)
Hence, fort > T and cit < x < cot, it then follows that

{u(r,x) > u(t,x) 2 V(t.x = & = () = 01(1) 2 V(. (e1 = Ot = (1) = D1(0),
v(t,x) <V, x) < Z(t,x =t —n(0) + i) < Z(t, (c1 — Ot — () + yi (D).

(3.42)
Note that ¢; > ¢, then from (3.42) and
lim Y(r,z) = p;(r), lim Z(t,z) =0 uniformlyinz € [0, T],
z—>+00 z—>+00
we get limy— 400 SUP, j<x <,y V(t, X) < 0 and
lim sup  [u(t,x) — p:()] =0 (3.43)

1—=>+00 ¢ 1<x<cot
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for any T € (0, 7p). Given any small enough € > 0. Since lim;_, ¢+ p; () = p(¢) uniformly
int € [0, T], we can deduce Ty > 0 such that p;(r) > p(t) — € for any T € (0, 7p), and
hence

lim sup [u(t,x) — p(t)] = —e.

1=>400 ¢t <x<cot

By the arbitrariness of € > 0 and the fact that u(¢, x) < p(¢) for any (¢, x) € R2, we have

lim  sup (Ju(, x) — p@®|+ v, x)]) =0.

I=>+400 ¢ r<x<cot

This completes the proof of Theorem 1.5 (iii). O
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