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Abstract
This paper is concerned with the long time behavior of bounded solutions to a two-species
time-periodic Lotka–Volterra reaction–diffusion system with strong competition. It is well
known that solutions of the Cauchy problem of this system with front-like initial values
converge to a bistable periodic traveling front. One may ask naturally how solutions of such
time-periodic systems with other types of initial data evolve as time increases. In this paper,
by transforming the system into a cooperative system on [0, 1], we first show that if the
bounded initial value ϕ(x) has compact support and equals 1 for a sufficiently large x-level,
then solutions converge to a pair of diverging periodic traveling fronts. As a by-product, we
obtain a sufficient condition for solutions to spread to 1. We also prove that if the two species
are initially absent from the right half-line x > 0 and the slower one dominates the faster one
on x < 0, then solutions approach a propagating terrace, which means that several invasion
speeds can be observed.
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1 Introduction

In this paper,we are interested in the long timebehavior of bounded solutions for the following
time-periodic Lotka–Volterra reaction–diffusion system with strong competition:{

ut = d1uxx + u[r1(t) − a1(t)u − b1(t)v],
vt = d2vxx + v[r2(t) − a2(t)u − b2(t)v], (1.1)

where t > 0, x ∈ R, d1, d2 > 0 are diffusion coefficients and the given functions ai (·), bi (·),
ri (·) (i = 1, 2) satisfy the following basic assumptions:

(H1) ri (t), ai (t), bi (t) ∈ C
θ
2 (R) (i = 1, 2) are positive T -periodic functions for some

constants T > 0 and θ ∈ (0, 1), and ri := 1
T

∫ T
0 ri (t)dt > 0, i = 1, 2;

(H2) r1 < min
t∈[0,T ]

( b1(t)
b2(t)

)
r2, r2 < min

t∈[0,T ]
( a2(t)

a1(t)

)
r1;

(H3) r1 + r2 > max
t∈[0,T ]

( a2(t)
a1(t)

)
r1, r1 + r2 > max

t∈[0,T ]
( b1(t)

b2(t)

)
r2.

The spatially homogeneous system of (1.1) takes the following form:{
u′(t) = u(t)[r1(t) − a1(t)u(t) − b1(t)v(t)],
v′(t) = v(t)[r2(t) − a2(t)u(t) − b2(t)v(t)]. (1.2)

Under assumptions (H1)–(H2), system (1.2) has a trivial solution (0, 0) and two stable semi-
trivial T -periodic solutions (p(t), 0) and (0, q(t)), where

p(t) = p0e
∫ t
0 r1(s)ds

1 + p0
∫ t
0 e

∫ s
0 r1(�)d�a1(s)ds

, p0 = e
∫ T
0 r1(s)ds − 1∫ T

0 e
∫ s
0 r1(�)d�a1(s)ds

> 0,

q(t) = q0e
∫ t
0 r2(s)ds

1 + q0
∫ t
0 e

∫ s
0 r2(�)d�b2(s)ds

, q0 = e
∫ T
0 r2(s)ds − 1∫ T

0 e
∫ s
0 r2(�)d�b2(s)ds

> 0.

Moreover, according to Hess [25, Theorem 35.1 and Proposition 36.3], system (1.2)
admits a unique T -periodic coexistence state (ū(t), v̄(t)), which is unstable and satisfies
0 < ū(t) < p(t) and 0 < v̄(t) < q(t) for t ∈ [0, T ]. Biologically, assumption (H2) indicates
that the interspecific competition between the two species is stronger than the intraspecific
competition within each of the two species. An example is that a variety of bird species house
in small islands off the coast of New Guinea, while similar species (i.e., similar in size, diet,
and habitat use) often fail to coexist with each other (c.f. [6]). We also mention that (H3) is a
technique assumption which ensures that the periodic eigenvalue problem associated to the
linearized system of (1.2) at (p(t), 0) and (0, q(t)), respectively, admits exactly a positive
eigenvalue and the corresponding periodic eigenfunction is positive, which will be used in
establishing the stability of a pair of diverging periodic traveling fronts.

One of the central questions in the study of parabolic equations is howbounded solutions of
their initial value problems with various initial data evolve as time increases. It is well known
that traveling fronts can describe the long time behavior of solutions of the Cauchy problem
of many reaction–diffusion systems with front-like initial values. In recent years, traveling
fronts of competition-diffusion systems in homogeneous habitat have been studied very
extensively, we refer to [8, 16, 17, 21–24, 26, 28, 31, 33]. There are also a few of significant
and interesting results on periodic traveling fronts of reaction–diffusion equations/systems in
periodicmedia (c.f. [1–5, 12–14, 19, 27, 32, 38, 40–46, 48–51]) and the long time behavior for
scalar reaction–diffusion equations (see e.g., [9, 15, 20, 52]). For example, Zhao and Ruan
[49] investigated the existence, uniqueness and stability of monostable periodic traveling

123



Long time behavior for a periodic Lotka–Volterra… Page 3 of 30 99

Fig. 1 Profiles of the initial value ϕ(x) with compact support

Fig. 2 Profiles of the initial value (u(0, x), v(0, x)) without compact support

fronts for (1.1). Bao and Wang [1] studied the existence of bistable periodic traveling fronts
for (1.1) by applying the theory of monotone semiflows (c.f. [18]). They also showed that the
solution of the Cauchy problem of (1.1) with front-like initial value converges to a bistable
traveling front. One may ask naturally how solutions of time-periodic reaction–diffusion
systems, such as (1.1), with other types of initial data evolve as time increases.

The aim of this paper is to consider the long time behavior of solutions to (1.1) with
two types of initial values, one type has compact support (see (1.6) and Fig. 1) while the
other is not compactly supported (see (1.7) and Fig. 2). We shall show that solutions of (1.1)
with the first type of initial values evolve into a pair of diverging periodic traveling fronts. It
should be mentioned that Kanel [30] and Fife and McLeod [20] considered the stability of
a pair of traveling fronts for scalar reaction–diffusion equations; Roquejoffre [39] and Ma
and Wang [35] investigated the same issue for autonomous and periodic parabolic equations
in cylinders, respectively. In this paper, we adapt nontrivially the methods in [20] for (1.1)
by constructing an appropriate subsolution (see Lemma 2.2). To the best of our knowledge,
this may be the first time that the stability of a pair of diverging periodic traveling fronts
for time-periodic reaction–diffusion systems is considered. To state this result, by making a
change of variables

u1(t, x) = u(t, x)

p(t)
and u2(t, x) = q(t) − v(t, x)

q(t)
, (1.3)

we transform the competitive system (1.1) into the following cooperative system
{

(u1)t = d1(u1)xx + u1[a1(t)p(t)(1 − u1) − b1(t)q(t)(1 − u2)],
(u2)t = d2(u2)xx + (1 − u2)[a2(t)p(t)u1 − b2(t)q(t)u2]. (1.4)
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The four periodic steady states (0, 0), (0, q(t)), (p(t), 0) and (ū(t), v̄(t)) of (1.1) become
(0, 1), 0 := (0, 0), 1 := (1, 1) and u∗(t) := (u∗

1(t), u∗
2(t)) of (1.4), respectively. Moreover,

0 < u∗
i (t) < 1, u∗

i (t + T ) = u∗
i (t), i = 1, 2. Clearly, the stability of a pair of diverging

periodic traveling fronts of (1.1) is equivalent to that of (1.4). For simplicity, we denote

X = {
ϕ = (ϕ1, ϕ2) ∈ L∞(R,R2)

∣∣ϕ(x) ∈ [0, 1] and ϕ has compact support
}
.

Recall that periodic travelingwaves of (1.1) connecting (0, q(t)) and (p(t), 0) are bounded
solutions of the special form (u(t, x), v(t, x)) = (U (t, z), V (t, z)) =: W (t, z), z = x − ct
and W (t + T , z) = W (t, z), which satisfy

lim
z→−∞ W (t, z) = (0, q(t)) and lim

z→+∞ W (t, z) = (p(t), 0) uniformly in t ∈ [0, T ],
where c and (U , V ) are called the wave speed and wave profile, respectively. If U (t, z) and
V (t, z) are monotone with respect to z, then (U (t, z), V (t, z)) is called a periodic traveling
front. Obviously, the wave profile (U , V ) satisfies the following periodic parabolic system:{

Ut = d1Uzz + cUz + U [r1(t) − a1(t)U − b1(t)V ],
Vt = d2Vzz + cVz + V [r2(t) − a2(t)U − b2(t)V ]. (1.5)

Moreover, it is clear that the function

�(t, z) := (�1(t, z),�2(t, z)) =
(U (t, z)

p(t)
,

q(t) − V (t, z)

q(t)

)
, z = x − ct

is a periodic traveling front of (1.4) connecting 0 and 1. The existence and uniqueness of
bistable periodic traveling fronts of (1.4) come from Bao and Wang [1].

Lemma 1.1 (Bao and Wang [1]) Assume that (H1) − (H3) hold. Then there exists c ∈ R

such that (1.4) admits a periodic traveling front �(t, x − ct) satisfying �(t,−∞) = 0 and
�(t,+∞) = 1 uniformly in t ∈ [0, T ] and �z(·, ·) > 0. Moreover, (�; c) is unique in the
following sense: the speed c is unique and the profile �(t, ·) is unique up to a translation.

We now state our main results on the long time behavior of (1.4) with initial value (1.6)
as follows.

Theorem 1.2 Assume that (H1)–(H3) hold and that �(t, x − ct) is the periodic traveling
front of system (1.4) connecting 0 and 1 obtained in Lemma 1.1 with speed c < 0. Let u(t, x)

be the unique solution of system (1.4) with initial data ϕ(x) such that

ϕ(x) ∈ X and ϕ(x) = 1 for |x | < L, (1.6)

where L > 0 is a constant. Then there exists a large enough constant L̃ > 0 such that for
any L ≥ L̃ and constants ξ1 and ξ2,

lim
t→+∞ ‖u(t, x) − �(t, x − ct + ξ1)‖L∞

loc((−∞,0]) = 0;
lim

t→+∞ ‖u(t, x) − �(t,−x − ct + ξ2)‖L∞
loc([0,+∞)) = 0.

Moreover, we obtain a sufficient condition for solutions to spread to 1.

Theorem 1.3 Assume that the conditions in Theorem 1.2 hold and u(t, x) is the unique
solution of (1.4) with initial data ϕ(x) satisfying (1.6). Then there exists L̃ > 0 large enough
such that for any L ≥ L̃, u(t, ·) → 1 in L∞

loc(R,R2) as t → ∞.
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Remark 1.4 (i) If the sign of the wave speed in Theorem 1.2 is reversed and suitable changes
in (1.6) are made, then one can obtain similar convergence results.

(ii) In the bistable competitionmodel, the sign of thewave speed of travelingwaves decides
which species eventually wins the competition. Thus, it is an interesting and important issue
to determine the sign of the wave speed in the bistable dynamics. Recently, Ma et al. [34]
obtained some sufficient conditions on the sign of the wave speed c of the bistable periodic
traveling waves for system (1.1) connecting (0, q(t)) and (p(t), 0), see [34, Theorems 4.1
and 4.2] and [34, Theorems 4.3 and 4.4] for detailed results on c > 0 and c < 0, respectively.

Next, we consider the long time behavior of solutions to (1.1) with another type of initial
values which do not have compact support. More specifically, we consider the spreading
properties of solutions to (1.1) with the following initial conditions (see Fig. 2):⎧⎨

⎩
u(0, x) = v(0, x) = 0 for x ≥ 0,
0 ≤ u(0, x) < p(0) and u(0, x) has nontrivial compact support for x < 0,
0 < v0m ≤ v(0, x) ≤ v0M < q(0) for x < 0,

(1.7)

where v0m = inf x∈R v(0, x) and v0M = supx∈R v(0, x). This type of initial values means
that species u and v are initially absent from the right half-line x > 0, and the species v

dominates the species u on x < 0. It is interesting to consider how the two species invade the
right half-line. We shall show that solutions of (1.1) with such initial values will approach a
propagating terrace, which means that several invasion speeds can be observed.

Before stating the long time behavior of solutions to (1.1) with initial values (1.7), we
state some known results on periodic traveling fronts and spreading speed for monostable
time-periodic reaction–diffusion equations/systems (cf. [1, 32]). Let cU V be the unique speed
of the bistable periodic traveling front of (1.1) connecting (0, q(t)) and (p(t), 0) and cU > 0
be the minimal wave speed of the periodic traveling front W1(t, x − ct) connecting p(t) and
0 of the Fisher-KPP equation:

wt = d1wxx + w[r1(t) − a1(t)w]. (1.8)

Similarly, let cV > 0 be the minimal wave speed of the periodic traveling front W2(t, x − ct)
connecting q(t) and 0 of the Fisher-KPP equation:

wt = d2wxx + w[r2(t) − b2(t)w]. (1.9)

From Liang et al. [32, Theorems 4.1 and 4.2] (take time delay τ = 0), cU = 2
√

d1r1 and
cV = 2

√
d2r2. It is clear that cU and cV are the spreading speed of one species in the

absence of the other species, respectively. For simplicity, we denote fM := maxt∈[0,T ] f (t)
and fm := mint∈[0,T ] f (t) for a given T -periodic and continuous function f . The results on
the long time behavior of solutions to (1.1) with initial values (1.7) are stated as follows.

Theorem 1.5 Assume that (H1)–(H3) and the following assumption hold

(H4) r1(t) ≡ r1 > 0, r1 < min{ 54a1m pm, b1mqm} and r2M < a2m pm.

Let u(t, x) = (u(t, x), v(t, x)) be the unique solution of system (1.1) with the initial
values (1.7). Then the following spreading results hold:

(i) For any c > max{cU , cV }, limt→+∞ supx>ct (|u(t, x)| + |v(t, x)|) = 0;
(ii) For any c < cU V , limt→+∞ supx<ct (|u(t, x)| + |v(t, x) − q(t)|) = 0;
(iii) Suppose furthermore that cV < cU , then for any cU V < c1 < c2 < cU ,

lim
t→+∞ sup

c1t<x<c2t
(|u(t, x) − p(t)| + |v(t, x)|) = 0.
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Obviously, Theorem 1.5 means that if the two species are initially absent from the right
half-line x > 0 and the slower one dominates the faster one on x < 0, then the solution of
(1.1) with such initial values approaches a propagating terrace, which connects the unstable
state (0, 0) to the stable state (p(t), 0), and then connects the stable state (p(t), 0) to the
other stable state (0, q(t)).

Remark 1.6 (i) It should be mentioned that the assumption (H4) is technique, which is used
in the proofs of Lemmas 3.4 and 3.8. We feel that it is probably not necessary for the main
results to hold. We leave it for our future research.

(ii) We note that (H2), (H3) and (H4) are compatible. Let us consider the simplest positive
constant coefficients ri , ai , bi (i = 1, 2) as an example. In this case, (H2), (H3) and (H4)

become

r1 <
b1r2
b2

, r2 <
a2r1
a1

, (1.10)

r1 + r2 >
a2r1
a1

, r1 + r2 >
b1r2
b2

, (1.11)

r1 < min
{5
4

r1,
b1r2
b2

}
, r2 <

a2r1
a1

, (1.12)

respectively. Clearly, (1.10) implies (1.12). Then, (H2), (H3) and (H4) are equivalent to

1 + r1
r2

>
a2r1
a1r2

> 1 and 1 + r2
r1

>
b1r2
b2r1

> 1,

which means that the competition between species u and v is not too stronger.
(iii) The results in Theorem 1.5 also hold when the conditions in (1.7) that u(0, x) has

nontrivial compact support in (−∞, 0) is replaced by 0 < u(0, x) ≤ −Lxeμ̄x for some L >

0 as x � −1, where μ̃ is a constant with μ̃ ≥ √
r1/d1.

We remark that propagating terraces have been widely investigated for reaction–diffusion
equations and autonomous competition systems (c.f. [7, 10, 11, 20, 36, 37, 47]). For instance,
in the heterogeneous case, Ding and Matano [10], Ducrot et al. [11] and Poláčik [36, 37]
proved the existence and convergence of the minimal propagating terrace by using the zero-
number argument;Carrère [7] andZhang andZhao [47] considered the propagating terrace for
autonomous competition systems with local and nonlocal dispersal, respectively. Although
the zero-number argument is a powerful tool, it cannot be applied for reaction–diffusion
systems. Here, we generalize nontrivially the techniques in [7, 47] for autonomous diffu-
sion systems to time-periodic Lotka–Volterra competition-diffusion systems. It should be
mentioned that the presence of time-periodicity makes the problem more difficult than the
autonomous case. For example, to construct appropriate super- and subsolutions, we need
to prove the continuity of the bistable wave speed with respect to parameter κ (see Lemma
3.7). Such a property cannot be proved by the method in [29], and we prove it by using the
uniqueness and stability of bistable traveling fronts.

The rest of this paper is organized as follows. In Sect. 2, we show that solutions of
system (1.4) with initial values (1.7) develop into a pair of diverging periodic traveling
fronts. In Sect. 3, we prove that solutions of (1.1) with initial conditions (1.7) will approach
a propagating terrace.
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2 Stability of a pair of diverging periodic fronts

In this section, we consider the stability of a pair of diverging periodic fronts for the time-
periodic reaction–diffusion system (1.4) with initial values (1.6) under the assumptions (H1)-
(H3), i.e. Theorem 1.2. For a = (a1, a2) ∈ R

2 and b = (b1, b2) ∈ R
2, we denote a ≤ b if

ai ≤ bi , i = 1, 2; a < b if a ≤ b but a 
= b; and a � b if ai < bi , i = 1, 2. Let ‖ · ‖ denote
the Euclidean norm in R

2.
We first recall some known results on the asymptotic behavior of periodic traveling fronts

of (1.4) with c = cuv 
= 0 at ±∞, which will play an important role in the proof of our main
results.

Lemma 2.1 [12, Theorems 1.3 and 1.4] Assume (H1)-(H3). Let (�1(t, z),�2(t, z)) be a
periodic traveling wave of (1.4) connecting 0 and 1 with c 
= 0. Then

lim
z→+∞

1 − �1(t, z)

k1e−ν̃1z φ̃1(t)
= 1, lim

z→+∞
1 − �2(t, z)

k1e−ν̃1z φ̃2(t)
= 1 uniformly in t ∈ R,

and

lim
z→−∞

�1(t, z)

k2eν̃2zψ̃1(t)
= 1, lim

z→−∞
�2(t, z)

k2eν̃2zψ̃2(t)
= 1 uniformly in t ∈ R,

where ki > 0, ν̃i > 0, i = 1, 2 are some constants, φ̃i (t) and ψ̃i (t), i = 1, 2, are some
positive T -periodic functions in R.

Under the assumptions of Theorem 1.2, it is easy to see that the Cauchy problem (1.1)
with the initial values (1.6) has a unique solution u(t, x) satisfying 0 ≤ u(t, x) ≤ 1 for any
t ≥ 0, x ∈ R. In the remainder of this section, we always assume that the hypotheses of
Theorem 1.2 hold. For convenience, we set

g1(t, u1, u2) := u1[a1(t)p(t)(1 − u1) − b1(t)q(t)(1 − u2)],
g2(t, u1, u2) := (1 − u2)[a2(t)p(t)u1 − b2(t)q(t)u2]. (2.1)

To construct an explicit subsolution, let us consider the following eigenvalue problem⎧⎨
⎩

φ′
1(t) − [a1(t)p(t) − b1(t)q(t)]φ1(t) = λ0φ1(t),

φ′
2(t) − a2(t)p(t)φ1(t) + b2(t)q(t)φ2(t) = λ0φ2(t),

φ1(t + T ) = φ1(t), φ2(t + T ) = φ2(t).
(2.2)

By direct calculations and assumptions (H1) − (H3), we know that the periodic eigenvalue
problem (2.2) admits an eigenvalue λ0 = − 1

T

∫ T
0 [a1(t)p(t) − b1(t)q(t)]dt > 0. Moreover,

the eigenfunction (φ1(t), φ2(t)) associated with λ0 satisfies (0, 0) < (φ1(t), φ2(t)) ≤ (1, 1)
(c.f. Bao and Wang [1]). Similarly, the periodic eigenvalue problem⎧⎨

⎩
ψ ′
1(t) + a1(t)p(t)ψ1(t) − b1(t)q(t)ψ2(t) = λ1ψ1(t),

ψ ′
2(t) − [b2(t)q(t) − a2(t)p(t)]ψ2(t) = λ1ψ2(t),

ψ1(t + T ) = ψ1(t), ψ2(t + T ) = ψ2(t)

admits an eigenvalue pair (λ1, (ψ1(t), ψ2(t)) with

λ1 = − 1

T

∫ T

0
[b2(t)q(t) − a2(t)p(t)]dt > 0 and (0, 0) < (ψ1(t), ψ2(t)) ≤ (1, 1).
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Denote p̄ := min
{
φ1m, φ2m, ψ1m, ψ2m

}
> 0. Define a function ζ(z) ∈ C2(R,R+) such

that

ζ(z) = 0 for z ≤ −2 and ζ(z) = 1 for z ≥ 2;

0 ≤ ζ ′(z) ≤ 1, |ζ ′′(z)| ≤ 1 for z ∈ R.

Take a positive vector function p(t, z) := (p1(t, z), p2(t, z)), where

p1(t, z) = ζ(z)ψ1(t) + (1 − ζ(z))φ1(t) and p2(t, z) = ζ(z)ψ2(t) + (1 − ζ(z))φ2(t).

It is obvious that 0 ≤ p(·, ·) ≤ 1.

Lemma 2.2 There exist positive constants β1, σ1 and δ1 such that for any δ− ∈ (0, δ1),
ξ− ∈ R, the function u(t, x) = (u1(t, x), u2(t, x)) := max{0,u−(t, x)} is a subsolution of
(1.4) on t ≥ 0, where u−(t, x) = (u−

1 (t, x), u−
2 (t, x)) is given by

u−(t, x) = �(t, x − ct + ξ− − σ1δ
−(1 − e−β1t )) + �(t,−x − ct + ξ− − σ1δ

−(1 − e−β1t ))

− 1 − δ−p(t, x − ct + ξ− − σ1δ
−(1 − e−β1t ))e−β1t , t ≥ 0, x ∈ R.

Proof Let η± = η±(t, x) := ±x − ct + ξ− − σ1δ
−(1 − e−β1t ). Then

u−(t, x) = �(t, η+(t, x)) + �(t, η−(t, x)) − 1 − δ−p(t, η+(t, x))e−β1t , t ≥ 0, x ∈ R.

It is clear that u−(·, ·) ∈ [−2, 1], where −2 := (−2,−2). For simplicity, we denote

Lk [u](t, x) := (uk)t − dk(uk)xx − gk(t, u1, u2), k = 1, 2, t ≥ 0, x ∈ R,

∂1gi (t, γ
+; θ) := ∂u1 gi

(
t,�i (t, γ

+) + θ(1 − �i (t, γ
+)),� j (t, γ

+) + θ(1 − � j (t, γ
+))

)
,

∂2gi (t, γ
+; θ) := ∂u2 gi

(
t,�i (t, γ

+) + θ(1 − �i (t, γ
+)),� j (t, γ

+) + θ(1 − � j (t, γ
+))

)
,

∂1 g̃i (t, γ
+, γ −; θ, δ) := ∂u1 gi

(
t,�i (t, γ

−) + θ(�i (t, γ
+) − 1 − δ pi (t, γ

+)e−β1t ),

� j (t, γ
−) + θ(� j (t, γ

+) − 1 − δ p j (t, γ
+)e−β1t )

)
,

∂2 g̃i (t, γ
+, γ −; θ, δ) := ∂u2 gi

(
t,�i (t, γ

−) + θ(�i (t, γ
+) − 1 − δ pi (t, γ

+)e−β1t ),

� j (t, γ
−) + θ(� j (t, γ

+) − 1 − δ p j (t, γ
+)e−β1t )

)
for i 
= j ∈ {1, 2}, γ ± ∈ R, θ ∈ (0, 1) and δ > 0. We further define

G0(t, γ
+, γ −; θ, δ) :=

2∑
i=1

[|(gi )u1(t, 0, 0) − ∂1g̃i (t, γ
+, γ −; θ, δ)|

+ |(gi )u2(t, 0, 0) − ∂2 g̃i (t, γ
+, γ −; θ, δ)|],

H0(t, γ
+, γ −; θ, δ) :=

2∑
i=1

[|(gi )u1(t, 1, 1) − ∂1g̃i (t, γ
+, γ −; θ, δ)|

+ |(gi )u2(t, 1, 1) − ∂2 g̃i (t, γ
+, γ −; θ, δ)|]

for any γ ± ∈ R, θ ∈ (0, 1) and δ > 0.
By the definition of ζ(·), we have ζ(z) = 1 and ζ(−z) = 0 for z ≥ 2, and hence

p1(t, z) = ψ1(t), p2(t, z) = ψ2(t), p1(t,−z) = φ1(t) and p2(t,−z) = φ2(t) for z ≥ 2.
Note that
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lim
z→−∞(�1(t, z),�2(t, z)) = (0, 0), lim

z→+∞(�1(t, z),�2(t, z)) = (1, 1) uniformly in t ∈ [0, T ].

It then follows that there exist M+ > 2 large enough and δ′
1 ∈ (0, 1) small enough such that

for any δ− ∈ (0, δ′
1) and θ ∈ (0, 1),

sup
t≥0,γ −≤−M+,γ +≥M+

|G0(t, γ
+, γ −; θ, δ−)| ≤ λ0 min{φ1m, φ2m}

2(φ1M + φ2M )
, (2.3)

sup
t≥0,γ ±≥M+

|H0(t, γ
+, γ −; θ, δ−)| ≤ λ1 min{ψ1m, ψ2m}

2(ψ1M + ψ2M )
. (2.4)

Take

K0 := sup
t≥0,γ ±∈R,δ−∈(0,δ′

1),θ∈(0,1)

{ 2∑
i=1

[|∂1 g̃i (t, γ
+, γ −; θ, δ−)| + |∂2 g̃i (t, γ

+, γ −; θ, δ−)|]},

K1 :=max
{

sup
t≥0,z∈R,i=1,2

∣∣∣ ∂

∂z
pi (t, z)

∣∣∣, sup
t≥0,z∈R,i=1,2

∣∣∣ ∂2

∂zz
pi (t, z)

∣∣∣},

K2 :=max
{

max
t≥0,z∈R

∣∣∣ ∂

∂t
p1(t, z)

∣∣∣, max
t≥0,z∈R

∣∣∣ ∂

∂t
p2(t, z)

∣∣∣},

K3 :=min
{

min
t∈[0,T ],z∈[−M+,M+]

∂

∂z
�1(t, z), min

t∈[0,T ],z∈[−M+,M+]
∂

∂z
�2(t, z)

}
,

K4 := max
t≥0,γ ±∈R,δ−∈(0,δ′

1),θ∈(0,1)

2∑
i=1

{∣∣∂i g̃1(t, γ
+, γ −; θ, δ−) − ∂i g1(t, γ

+; θ)
∣∣

+ ∣∣∂i g̃2(t, γ
+, γ −; θ, δ−) − ∂i g2(t, γ

+; θ)
∣∣}.

By Lemma 2.1, we may assume that there exist ν, υ > 0 and K̄ > 0 such that

1 − �(t, ξ) ≤ K̄ e−νξ1 for t ≥ 0 and ξ ≥ 0 (2.5)

and

�(t, ξ) ≤ K̄ eυξ1 for t ≥ 0 and ξ ≤ 0. (2.6)

Fix β1 satisfying 0 < β1 < min{ λ1
4 , λ0

4 ,−νc} and take

σ1 >
|c|K1 + β1 + K2 + d K1 + K0

β1K3
, δ1 := min

{ K3

K1
, δ′

1,
1

σ1

}
,

where d = max{d1, d2}. Choose ξ− > max{1, σ1} such that

δ1 min{ψ1m, ψ2m, φ1m, φ2m}(β1 − 1

2
min{λ0, λ1}

) + K4 K̄ e−ν(ξ−−1) ≤ 0, (2.7)

δ1
[
K1|c| − σ1β1K3 + β1 + d1K1 + K2 + K0

] + K4 K̄ e−ν(ξ−−1) ≤ 0. (2.8)

Given any δ− ∈ (0, δ1). Let us take Ci = {(t, x) ∈ [0,∞) × R|u−
i (t, x) > 0} and

Di = {(t, x) ∈ [0,∞) ×R|u−
i (t, x) ≤ 0} for i = 1, 2. Next, we consider the following four

cases.
Case I. (t, x) ∈ D1 ∩ D2. In this case u ≡ 0 and hence Lk[u](t, x) = 0 for k = 1, 2.

123



99 Page 10 of 30 L. Pang et al.

Case II. (t, x) ∈ C1 ∩ C2. Then u1(t, x) = u−
1 (t, x) and u2(t, x) = u−

2 (t, x). Note that
(�1)t = d1(�1)zz + c(�1)z + g1(t,�1,�2) and g1(t, 1, 1) = 0, direct computations show
that

L1[u](t, x) = (u−
1 )t − d1(u

−
1 )xx − g1(t, u−

1 , u−
2 )

= ∂

∂t
�1(t, η

+) − c
∂

∂z
�1(t, η

+) − σ1δ
−β1e−β1t ∂

∂z
�1(t, η

+) − d1
∂2

∂zz
�1(t, η

+)

+ ∂

∂t
�1(t, η

−) − c
∂

∂z
�1(t, η

−) − σ1δ
−β1e−β1t ∂

∂z
�1(t, η

−) − d1
∂2

∂zz
�1(t, η

−)

− δ−e−β1t
[ ∂

∂t
p1(t, η

+) − c
∂

∂z
p1(t, η

+) − σ1δ
−β1e−β1t ∂

∂z
p1(t, η

+) − d1
∂2

∂zz
p1(t, η

+)
]

+ δ−β1e−β1t p1(t, η
+) − g1(t, u−

1 , u−
2 )

= δ−e−β1t
[
c

∂

∂z
p1(t, η

+) + σ1δ
−β1e−β1t ∂

∂z
p1(t, η

+) + β1 p1(t, η
+)

− ∂

∂t
p1(t, η

+) + d1
∂2

∂zz
p1(t, η

+)
]

− σ1δ
−β1e−β1t ( ∂

∂z
�1(t, η

+) + ∂

∂z
�1(t, η

−)
)

+ g1(t,�1(t, η
+),�2(t, η

+)) − g1(t, 1, 1) + g1(t,�1(t, η
−),�2(t, η

−)) − g1(t, u−
1 , u−

2 )

= δ−e−β1t
[
c

∂

∂z
p1(t, η

+) + σ1δ
−β1e−β1t ∂

∂z
p1(t, η

+) + β1 p1(t, η
+)

− ∂

∂t
p1(t, η

+) + d1
∂2

∂zz
p1(t, η

+)
]

− σ1δ
−β1e−β1t ( ∂

∂z
�1(t, η

+) + ∂

∂z
�1(t, η

−)
)

− [
∂u1 g1

(
t,�1(t, η

+) + θ(1 − �1(t, η
+)),�2(t, η

+) + θ(1 − �2(t, η
+))

)
(1 − �1(t, η

+))

+ ∂u2g1
(
t, �1(t, η

+) + θ(1 − �1(t, η
+)),�2(t, η

+) + θ(1 − �2(t, η
+))

)
(1 − �2(t, η

+))
]

+ ∂u1g1
(
t,�1(t, η

−) + θ(�1(t, η
+) − 1 − δ− p1(t, η

+)e−β1t ), �2(t, η
−)

+ θ(�2(t, η
+) − 1 − δ− p2(t, η

+)e−β1t )
)[1 − �1(t, η

+) + δ− p1(t, η
+)e−β1t ]

+ ∂u2g1
(
t, �1(t, η

−) + θ(�1(t, η
+) − 1 − δ− p1(t, η

+)e−β1t ), �2(t, η
−)

+ θ
(
�2(t, η

+) − 1 − δ− p2(t, η
+)e−β1t )

)[1 − �2(t, η
+) + δ− p2(t, η

+)e−β1t ]
= δ−e−β1t

[
c

∂

∂z
p1(t, η

+) + σ1δ
−β1e−β1t ∂

∂z
p1(t, η

+) + β1 p1(t, η
+) − ∂

∂t
p1(t, η

+)

+ d1
∂2

∂zz
p1(t, η

+) + ∂1 g̃1(t, η
+, η−; θ, δ−)p1(t, η

+) + ∂2 g̃1(t, η
+, η−; θ, δ−)p2(t, η

+)
]

+ [∂1 g̃1(t, η
+, η−; θ, δ−) − ∂1g1(t, η

+; θ)](1 − �1(t, η
+))

+ [∂2 g̃1(t, η
+, η−; θ, δ−) − ∂2g1(t, η

+; θ)](1 − �2(t, η
+))

− σ1δ
−β1e−β1t ( ∂

∂z
�1(t, η

+) + ∂

∂z
�1(t, η

−)
)
. (2.9)

Next, we first show that L[u](t, x) ≤ 0 for t ≥ 0 and x ≥ 0. We distinguish among three
subcases.

Case II-1. η−(t, x) ≥ M+. Since η+(t, x) ≥ η−(t, x) ≥ M+ for t ≥ 0 and x ≥
0, it follows that p1(t, η+) = ψ1(t) and p2(t, η+) = ψ2(t). Moreover, ∂

∂z p1(t, η+) =
0, ∂2

∂z2
p1(t, η+) = 0 and

∂

∂t
p1(t, η

+) = ψ ′
1(t) = −a1(t)p(t)ψ1(t) + b1(t)q(t)ψ2(t) + λ1ψ1(t)

= (g1)u1(t, 1, 1)ψ1(t) + (g1)u2(t, 1, 1)ψ2(t) + λ1ψ1(t).
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From (2.5), we have for any t ≥ 0 and x ≥ 0 that

1 − �(t, η+) =1 − �(t, x − ct + ξ− − σ1δ
−(1 − e−β1t ))

≤1 − �(t,−ct + ξ− − 1) ≤ K̄ e−ν(−ct+ξ−−1)1. (2.10)

Hence, by (2.4), (2.7), (2.9)–(2.10) and the monotonicity of �(t, z) in z, we deduce that for
t ≥ 0 and x ≥ 0,

L1[u](t, x) ≤δ−e−β1t{β1ψ1(t) − [(g1)u1(t, 1, 1)ψ1(t) + (g1)u2(t, 1, 1)ψ2(t) + λ1ψ1(t)]
+ ∂1g̃1(t, η

+, η−; θ, δ−)ψ1(t) + ∂2 g̃1(t, η
+, η−; θ, δ−)ψ2(t)

}
+ [∂1g̃1(t, η

+, η−; θ, δ−) − ∂1g1(t, η
+; θ)](1 − �1(t, η

+))

+ [∂2 g̃1(t, η
+, η−; θ, δ−) − ∂2g1(t, η

+; θ)](1 − �2(t, η
+))

≤δ−e−β1t{β1ψ1(t) + [∂1g̃1(t, η
+, η−; θ, δ−) − (g1)u1(t, 1, 1)]ψ1(t)

+ [∂2 g̃1(t, η
+, η−; θ, δ−) − (g1)u2(t, 1, 1)]ψ2(t) − λ1ψ1(t)

}
+ K4 K̄ e−ν(−ct+ξ−−1)

≤δ−e−β1t min{ψ1m, ψ2m}(β1 − 1

2
λ1

) + K4 K̄ e−ν(−ct+ξ−−1)

≤e−β1t [δ− min{ψ1m, ψ2m}(β1 − 1

2
λ1

) + K4 K̄ e−ν(ξ−−1)] ≤ 0.

Case II-2. |η−(t, x)| ≤ M+. By (2.8)–(2.10) and the definitions of σ1, δ− and K1, we
have for t ≥ 0 and x ≥ 0 that

L1[u](t, x) ≤ δ−e−β1t(K1|c| + σ1δ
−β1K1 + β1 + d1K1 + K2 + K0 − 2σ1β1K3

)
+ K4 K̄ e−ν(−ct+ξ−−1)

≤ δ−e−β1t (K1|c| − σ1β1K3 + β1 + d1K1 + K2 + K0) + K4 K̄ e−ν(−ct+ξ−−1)

≤ e−β1t {δ−[K1|c| − σ1β1K3 + β1 + d1K1 + K2 + K0] + K4 K̄ e−ν(ξ−−1)} ≤ 0.

Case II-3. η−(t, x) ≤ −M+. That is, −x − ct + ξ− − σ1δ
−(1 − e−β1t ) ≤ −M+, then

−x + ξ− − σ1δ
− ≤ −M+, which yields that x ≥ M+ + ξ− − σ1δ

−. Hence, for any t ≥ 0,

η+(t, x) = x − ct + ξ− − σ1δ
−(1 − e−β1t ) ≥ M+ + 2ξ− − 2σ1δ

− ≥ M+.

Then, p1(t, η+) = φ1(t) and p2(t, η+) = φ2(t). Using (2.3), (2.7) and similar toCase II-1,
one can easily prove that L1[u](t, x) ≤ 0 for t ≥ 0 and x ≥ 0.

By the above discussions, we obtain L1[u](t, x) ≤ 0 for t ≥ 0 and x ≥ 0. Similarly, one
can easily verify that L2[u](t, x) ≤ 0 for t ≥ 0 and x ≥ 0. Therefore, L[u](t, x) ≤ 0 for
t ≥ 0 and x ≥ 0.

A similar argument shows that L[u](t, x) ≤ 0 for t ≥ 0 and x ≤ 0. Therefore, we have
L[u](t, x) ≤ 0 for t ≥ 0 and x ∈ R.

Case III. (t, x) ∈ C1 ∩ D2. Then u1(t, x) = u−
1 (t, x) > 0 and u2(t, x) = 0. Thus,

L2[u](t, x) = −g2(t, u−
1 (t, x), 0) = −a2(t)p(t)u−

1 (t, x) ≤ 0.

Moreover, since u−
2 ≤ 0, we have g1(t, u−

1 , u−
2 ) ≤ g1(t, u−

1 , 0). Thus

L1[u](t, x) = (u−
1 )t − d1(u

−
1 )xx − g1(t, u−

1 , 0)

= δ−e−β1t
[
c

∂

∂z
p1(t, η

+) + σ1δ
−β1e−β1t ∂

∂z
p1(t, η

+) + β1 p1(t, η
+)
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− ∂

∂t
p1(t, η

+) + d1
∂2

∂zz
p1(t, η

+)
]

− σ1δ
−β1e−β1t ( ∂

∂z
�1(t, η

+) + ∂

∂z
�1(t, η

−)
)

+ g1(t,�1(t, η
+),�2(t, η

+)) − g1(t, 1, 1) + g1(t,�1(t, η
−), �2(t, η

−)) − g1(t, u−
1 , 0)

≤ δ−e−β1t
[
c

∂

∂z
p1(t, η

+) + σ1δ
−β1e−β1t ∂

∂z
p1(t, η

+) + β1 p1(t, η
+)

− ∂

∂t
p1(t, η

+) + d1
∂2

∂zz
p1(t, η

+)
]

− σ1δ
−β1e−β1t ( ∂

∂z
�1(t, η

+) + ∂

∂z
�1(t, η

−)
)

+ g1(t,�1(t, η
+),�2(t, η

+)) − g1(t, 1, 1) + g1(t,�1(t, η
−), �2(t, η

−)) − g1(t, u−
1 , u−

2 ).

By using the same method in Case II, we obtain that L1[u](t, x) ≤ 0 for t ≥ 0 and x ∈ R.

Therefore, L[u](t, x) ≤ 0 for t ≥ 0 and x ∈ R.
Case IV. (t, x) ∈ D1 ∩C2. In this case, u1(t, x) = 0 and u2(t, x) = u−

2 (t, x) > 0. Then,
L1[u](t, x) = −g1(t, 0, u−

2 ) = 0. Moreover, we know that g2(t, u−
1 , u−

2 ) ≤ g2(t, 0, u−
2 )

because of u−
1 ≤ 0 and (2.1), thus

L2[u](t, x) = (u−
2 )t − d2(u

−
2 )xx − g2(t, 0, u−

2 )

≤ δ−e−β1t
[
c

∂

∂z
p2(t, η

+) + σ1δ
−β1e−β1t ∂

∂z
p2(t, η

+) + β1 p2(t, η
+)

− ∂

∂t
p2(t, η

+) + d2
∂2

∂zz
p2(t, η

+)
]

− σ1δ
−β1e−β1t ( ∂

∂z
�2(t, η

+) + ∂

∂z
�2(t, η

−)
)

+ g2(t,�1(t, η
+),�2(t, η

+)) − g2(t, 1, 1) + g2(t,�1(t, η
−),�2(t, η

−)) − g2(t, u−
1 , u−

2 ).

By using an argument as in Case II, we have L2[u](t, x) ≤ 0 for t ≥ 0 and x ∈ R. Hence,
L[u](t, x) ≤ 0 for t ≥ 0 and x ∈ R.

Combining Case I-Case IV, we infer that L[u](t, x) ≤ 0 for t ≥ 0 and x ∈ R; that is,
u(t, x) is a subsolution of system (1.4). The proof is completed. ��
Lemma 2.3 There exists a large enough constant L̃ > 0 so that for any L ≥ L̃, there exist
constants ξ1, ξ2 and δ > 0 such that

�(t, x − ct + ξ2) + �(t,−x − ct + ξ2) − 1 − δe−β1t1 ≤ u(t, x)

≤ �(t, x − ct + ξ1) + �(t,−x − ct + ξ1) − 1 + δe−β1t1, ∀t ≥ 0, x ∈ R. (2.11)

Proof We first prove the left inequality of (2.11). Recall that limz→−∞ �(t, z) = 0 and
limz→+∞ �(t, z) = 1 uniformly in t ∈ [0, T ]. Thus, there exists L̃ > 0 such that for any
L ≥ L̃ , u−(0, x) ≤ 0 for |x | ≥ L , and hence u(0, x) = 0 ≤ ϕ(x) for |x | ≥ L . From Lemma
2.2, we infer that

u−(0, x) = �(0, x + ξ−) + �(0,−x + ξ−) − 1 − δ−p(0, x + ξ−) ≤ 1 − δ− p̄1 < 1,

which yields that u(0, x) = max{0,u−(0, x)} < 1 = ϕ(x) for |x | < L. Therefore, for
any L ≥ L̃ , we have u(0, x) ≤ ϕ(x),∀x ∈ R. Set ξ2 = ξ− − σ1δ

−. By Lemma 2.2 and
comparison theorem, we have

u(t, x) ≥ u(t, x)

≥ �(t, x − ct + ξ− − σ1δ
−(1 − e−β1t )) + �(t,−x − ct + ξ− − σ1δ

−(1 − e−β1t ))

− 1 − δ−p(t, x − ct + ξ− − σ1δ
−(1 − e−β1t ))e−β1t

≥ �(t, x − ct + ξ− − σ1δ
−) + �(t,−x − ct + ξ− − σ1δ

−) − 1 − δ−e−β1t1

= �(t, x − ct + ξ2) + �(t,−x − ct + ξ2) − 1 − δ−e−β1t1, ∀t ≥ 0, x ∈ R.

(2.12)
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Next, we prove the right inequality of (2.11). For any ϕ(x) ∈ X , we can choose ξ+
0 > 0

large enough such that ϕ(x) ≤ �(0, x + ξ+
0 ) + δ+

0 p(0, x + ξ+
0 ) for x ∈ R. Moreover, by

Bao and Wang [1, Lemma 3.4], there exist σ+
0 > 0, δ+

0 > 0 such that the function

û+(t, x) = �(t, x − ct + ξ+
0 + σ+

0 δ+
0 (1 − e−β1t ))

+ δ+
0 p(t, x − ct + ξ+

0 + σ+
0 δ+

0 (1 − e−β1t ))e−β1t

is a supersolution of (1.4). Thus, we have

u(t, x) ≤ �(t, x − ct + ξ+
0 + σ+

0 δ+
0 (1 − e−β1t ))

+ δ+
0 p(t, x − ct + ξ+

0 + σ+
0 δ+

0 (1 − e−β1t ))e−β1t

≤ �(t, x − ct + ξ+
0 + σ+

0 δ+
0 (1 − e−β1t )) + δ+

0 e−β1t1, t ≥ 0, x ∈ R. (2.13)

Similarly, we can conclude that

u(t, x) ≤ �(t,−x − ct + ξ+
1 + σ+

1 δ+
1 (1 − e−β1t ))

+ δ+
1 p(t, x − ct + ξ+

1 + σ+
1 δ+

1 (1 − e−β1t ))e−β1t

≤ �(t,−x − ct + ξ+
1 + σ+

1 δ+
1 (1 − e−β1t )) + δ+

1 e−β1t1, t ≥ 0, x ∈ R (2.14)

for any ξ+
1 ∈ R and some constants σ+

1 > 0, δ+
1 > 0. Take ξ+ = max{ξ+

0 , ξ+
1 }, δ+ =

max{δ+
0 , δ+

1 }, and σ+ = max{σ+
0 , σ+

1 }. By the monotonicity of �(t, z) with respect to z
(see Lemma 1.1), we obtain

u(t, x) ≤ min{�(t, x − ct + ξ+ + σ+δ+(1 − e−β1t )),

�(t,−x − ct + ξ+ + σ+δ+(1 − e−β1t ))} + δ+e−β1t1. (2.15)

(i) For x ≥ 0, by the monotonicity of �(t, z) in z, one has

�(t, x − ct + ξ+ + σ+δ+(1 − e−β1t )) ≥ �(t,−x − ct + ξ+ + σ+δ+(1 − e−β1t )).

By (2.5), there holds

1 − �(t, x − ct + ξ+ + σ+δ+(1 − e−β1t )) ≤ 1 − �(t,−ct + ξ+) ≤ K̄ e−ν(ξ+−ct)1.
(2.16)

Hence, combining (2.15) with (2.16), we have

u(t, x) ≤ �(t,−x − ct + ξ+ + σ+δ+(1 − e−β1t )) + δ+e−β1t1

≤ �(t,−x − ct + ξ+ + σ+δ+(1 − e−β1t )) + �(t, x − ct + ξ+ + σ+δ+(1 − e−β1t ))

− 1 + δ+e−β1t1 + K̄ e−ν(ξ+−ct)1

≤ �(t,−x − ct + ξ+ + σ+δ̃1) + �(t, x − ct + ξ+ + σ+δ̃1) + δ̃1e−β1t1 − 1 (2.17)

by choosing δ̃1 > δ+ and ξ+ > 0 large enough.
(ii) For x < 0, since

�(t, x − ct + ξ+ + σ+δ+(1 − e−β1t )) ≤ �(t,−x − ct + ξ+ + σ+δ+(1 − e−β1t )),

using (2.5) again, we obtain

1 − �(t,−x − ct + ξ+ + σ+δ+(1 − e−β1t )) ≤ 1 − �(t,−ct + ξ+) ≤ K̄ e−ν(ξ+−ct)1.
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It then follows from (2.15) that

u(t, x) ≤ �(t, x − ct + ξ+ + σ+δ+(1 − e−β1t )) + δ+e−β1t1

≤ �(t, x − ct + ξ+ + σ+δ+(1 − e−β1t )) + �(t,−x − ct + ξ+ + σ+δ+(1 − e−β1t ))

− 1 + δ+e−β1t1 + K̄ e−ν(ξ+−ct)1

≤ �(t, x − ct + ξ+ + σ+δ̃2) + �(t,−x − ct + ξ+ + σ+δ̃2) + δ̃2e−β1t1 − 1 (2.18)

by choosing δ̃2 > δ+ and ξ+ > 0 large enough.
Take δ̂+ = max{δ̃1, δ̃2} and let ξ1 = ξ+ + σ+δ̂+, by (2.17) and (2.18), we have

u(t, x) ≤ �(t, x − ct + ξ1) + �(t,−x − ct + ξ1) − 1 + δ̂+e−β1t1,∀t ≥ 0, x ∈ R.

(2.19)

Choosing δ = max{δ−, δ̂+}, by (2.12) and (2.19), we complete the proof. ��
We are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2 We only prove the first assertion since the second one can be discussed
similarly. From Lemma 2.3, we have

|u(t, x) − �(t, x − ct + ξ1)|
≤ |�(t,−x − ct + ξ1) − 1 + δe−β1t1|

+ |�(t, x − ct + ξ2) + �(t,−x − ct + ξ2) − 1 − δe−β1t1 − �(t, x − ct + ξ1)|
≤ |�(t,−x − ct + ξ1) − 1 + δe−β1t1|

+ |�(t, x − ct + ξ2) − �(t, x − ct + ξ1)| + |�(t,−x − ct + ξ2) − 1 − δe−β1t1|.
Note that

lim
t→+∞ |�(t, x − ct + ξ2) − �(t, x − ct + ξ1)| = 0 locally uniformly in x .

Thus, combining this with β1 > 0 and c < 0, we have

lim
t→+∞ ‖u(t, x) − �(t, x − ct + ξ1)‖L∞

loc((−∞,0]) = 0.

This completes the proof of Theorem 1.2. ��

3 Spreading properties

In this section, we consider the long time behavior of solutions to (1.1) with initial values
(1.7).We always assume that the hypotheses of Theorem1.5 hold. Obviously, in the following
discussion cU = 2

√
d1r1. To establish the spreading properties of solutions to system (1.1)

with initial values (1.7), we introduce the following two crucial comparison principles for
competitive system (1.1). We denote (u1, v1) � (u2, v2) if u1 ≥ u2 and v1 ≤ v2.

Definition 3.1 The bounded functions (u1, v1), (u2, v2) are called a pair of super- and sub-
solutions of system (1.1) on R

+ × R if (u1, v1) and (u2, v2) are C1 in t and C2 in x , and
satisfy {

(u1)t − d1(u1)xx − u1[r1 − a1(t)u1 − b1(t)v1] ≥ 0,
(v1)t − d2(v1)xx − v1[r2(t) − a2(t)u1 − b2(t)v1] ≤ 0
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and {
(u2)t − d1(u2)xx − u2[r1 − a1(t)u2 − b1(t)v2] ≤ 0,
(v2)t − d2(v2)xx − v2[r2(t) − a2(t)u2 − b2(t)v2] ≥ 0,

respectively, for (t, x) ∈ (0,∞) × R.

The proofs of the following two lemmas are similar to those of [1, Theorem 3.2] and [47,
Lemma 4.7] and are omitted.

Lemma 3.2 Let (u1, v1), (u2, v2) be a pair of super- and subsolutions of system (1.1) on
R

+ × R. Assume that (u1, v1)(0, x) � (u2, v2)(0, x), ∀x ∈ R. Then, (u1, v1)(t, x) �
(u2, v2)(t, x), ∀t ≥ 0, x ∈ R.

Lemma 3.3 Let (u1, v1), (u2, v2) be a pair of super- and subsolutions of system (1.1) on
{(t, x)|t ≥ 0, x ≥ X(t)}, where X(·) : [0,+∞) → R is a continuous function. Assume that
(u1, v1)(t, x) � (u2, v2)(t, x), ∀t > 0, x ≤ X(t) and (u1, v1)(0, x) � (u2, v2)(0, x) for
any x ≥ X(0). Then, (u1, v1)(t, x) � (u2, v2)(t, x), ∀t ≥ 0, x ≥ X(t).

3.1 Proof of Theorem 1.5

Under the assumptions of Theorem 1.5, it is easy to see that the Cauchy problem (1.1)
with the initial values (1.7) has a unique solution u(t, x) = (u(t, x), v(t, x)) satisfying
(0, 0) ≤ u(t, x) ≤ (p(t), q(t)) for any t ≥ 0, x ∈ R. To simplify notations, we take

N1[u, v](t, x) = ut (t, x) − d1uxx (t, x) − u(t, x)[r1 − a1(t)u(t, x) − b1(t)v(t, x)],
N2[u, v](t, x) = vt (t, x) − d2vxx (t, x) − v(t, x)[r2(t) − a2(t)u(t, x) − b2(t)v(t, x)].

3.1.1 Proof of Theorem 1.5 (i)

(1) Recall that W2 is a decreasing periodic traveling front of (1.9). By the definition of v(0, x)

and the fact that W2(0,−∞) = q(0), we can choose x0 ∈ R such that v(0, x) ≤ W2(0, x −
x0), ∀x ∈ R. Let (u(t, x), v(t, x)) = (0, W2(t, x − cV t − x0)). Then N1[u, v](t, x) = 0,
and

N2[u, v](t, x) = (W2)t (t, x − cV t − x0) − cV (W2)z(t, x − cV t − x0)

− d2(W2)zz(t, x − cV t − x0)

− W2(t, x − cV t − x0)[r2(t) − b2(t)W2(t, x − cV t − x0)] = 0.

Since (u, v)(0, x) � (u, v)(0, x), ∀x ∈ R, by Lemma 3.2, we get (u, v) � (u, v). Therefore,
for every t ≥ 0 and x > ct , we have

v(t, x) ≤ v(t, x) = W2(t, x − cV t − x0) ≤ W2(t, (c − cV )t − x0). (3.1)

Using limz→+∞ W2(t, z) = 0 uniformly in t ∈ [0, T ], we get limt→+∞ supx>ct v(t, x) =
0, ∀c > cV .

(2) Similarly, we let (u(t, x), v(t, x)) = (W1(t, x − cU t − x̃), 0), where x̃ ∈ R such that
(u, v)(0, x) � (u, v)(0, x), ∀x ∈ R. Note that N2[u, v](t, x) = 0 and

N1[u, v](t, x) = (W1)t (t, x − cU t − x̃) − cU (W1)z(t, x − cU t − x̃)

− d1(W1)zz(t, x − cU t − x̃)
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− W1(t, x − cU t − x̃)[r1 − a1(t)W1(t, x − cU t − x̃)]= 0.

Combining limz→+∞ W1(t, z) = 0 uniformly in t ∈ [0, T ] with Lemma 3.2, we obtain
limt→+∞ supx>ct u(t, x) = 0, ∀c > cU . This completes the proof of the statement (i) of
Theorem 1.5.

3.1.2 Proof of Theorem 1.5 (ii)

We first give the following lemma which will play an important role in proving Theorem 1.5
(ii).

Lemma 3.4 Assume that cV < cU . Then for any c satisfying cV < c < cU , we have

lim
t→+∞[u(t, x + ct) − p(t)] = 0 uniformly on every compact subset of R. (3.2)

Proof Let v(t, x) := W2(t, x − cV t − x̄), where x̄ is selected such that v ≤ v. Since
limz→+∞ W2(t, z) = 0 uniformly in t ∈ [0, T ], for any ε > 0, there exists some x∗ ∈ R

such that

v(t, x) ≤ ε for any (t, x) such that x − cV t − x̄ ≥ x∗.

The rest of the proof is divided into three steps.
Step 1. Fix any c′ ∈ (c, cU ). We prove

∃ a > 0, η̂ > 0 and x1 ∈ R s.t. lim inf
t→+∞ inf

x∈(−a,a)
u
(ct

c′ , x + ct + x1
)

≥ η̂. (3.3)

For any given a > 0, consider the following eigenvalue problem:⎧⎨
⎩

d1ψ ′′
2a(x) = λ2aψ2a(x), in (−2a, 2a),

ψ2a(x) = 0, in R\(−2a, 2a), ψ2a(x) > 0, in (−2a, 2a),

‖ψ2a‖∞ = 1.
(3.4)

The above eigenvalue problem has a principal eigenvalue λ2a with a principal eigenfunction
ψ2a . Moreover, λ2a < 0 for any a > 0 and λ2a → 0 as a → ∞.

Take ε > 0 such that

c′ < 2
√

d1(r1 − b1Mε) < cU .

Choose a > 0 large enough and η > 0 small enough such that

c′2

4d1
− λ2a − r1 + a1Mηe

c′(x∗+x̄)
2d1 + b1Mε ≤ 0. (3.5)

Denote x1 = 2a + x̄ + x∗ and define

u(t, x) := ηe
− c′

2d1
(x−c′t)

ψ2a(x − c′t − x1).

Next, we show that (u, v) � (u, v). It is clear that

N2[u, v](t, x) =vt − d2vxx − v(t, x)[r2(t) − a2(t)u(t, x) − b2(t)v(t, x)]
=a2(t)u(t, x)W2(t, x − cV t − x̄) ≥ 0.

On the other hand, for −2a < x − c′t − x1 < 2a and t > 0, we have u(t, x) > 0 and

v(t, x) = W2(t, x − cV t − x̄) ≤ W2(t, x − c′t − x̄) ≤ W2(t, x1 − 2a − x̄)
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= W2(t, x∗) ≤ ε,

by which and (3.5), we get for −2a < x − c′t − x1 < 2a and t > 0 that

N1[u, v](t, x) = ut − d1uxx − u(t, x)[r1 − a1(t)u(t, x) − b1(t)v(t, x)]

≤ η
c′2
2d1

e
− c′

2d1
(x−c′t)

ψ2a(x − c′t − x1) − c′ηe
− c′

2d1
(x−c′t)

ψ ′
2a(x − c′t − x1)

− d1η
[ c′2
4d21

e
− c′

2d1
(x−c′t)

ψ2a(x − c′t − x1) − c′
d1

e
− c′

2d1
(x−c′t)

ψ ′
2a(x − c′t − x1)

+ e
− c′

2d1
(x−c′t)

ψ ′′
2a(x − c′t − x1)

]
− u(t, x)[r1 − a1(t)u(t, x) − b1(t)ε]

= ηe
− c′

2d1
(x−c′t)[ c′2

4d1
ψ2a(x − c′t − x1) − d1ψ

′′
2a(x − c′t − x1)

]

− u(t, x)[r1 − a1(t)u(t, x) − b1(t)ε]

≤ u(t, x)
[ c′2
4d1

− λ2a − r1 + a1Mηe
c′(x∗+x̄)

2d1 + b1Mε
]

≤ 0.

Since u(t, x) = 0 for |x − c′t − x1| ≥ 2a, we infer that N1[u, v](t, x) ≤ 0 for t > 0, x ∈ R.

Recalling that u is positive for any positive time and ψ2a(·) has compact support, we can
deduce that u(1, x) ≥ u(1, x) for all x ∈ R. Hence, by Lemma 3.2, we have (u, v) � (u, v).
Therefore, we get u(t, x) ≥ u(t, x) for t ≥ 1 and x ∈ R, which implies that

u
(ct

c′ , x
) ≥ u

(ct

c′ , x
) = ηe

− c′
2d1

(x−ct)
ψ2a(x − ct − x1) for t ≥ c′

c
, x ∈ R.

Thus,

u
(ct

c′ , x + ct + x1
) ≥ ηe

− c′
2d1

(x+x1)ψ2a(x) ≥ ηe
− c′

2d1
(a+x1) min

x∈(−a,a)
ψ2a(x) =: η̂> 0.

Hence, (3.3) holds.
Step 2. We show that there exist a > 0, η2 > 0 and x2 ∈ R such that

lim inf
t→+∞ inf

t ′∈[ ct
c′ ,t],x∈(− a

2 , a
2 )

u(t ′, x + ct + x2) ≥ η2. (3.6)

Take a > 0 and ε > 0 such that r1 > b1Mε − λ̃a , where (λ̃a, ψ̃a) satisfies (3.4) with 2a
replaced by a. Then choose η′ ∈ (0, η̂) such that η′a1M < λ̃a + r1 − b1Mε. Fix t > 0 and
define

w(t ′, x) := η′ψ̃a(x − ct − x1) for t ′ ∈ [ct

c′ , t
]
, x ∈ R.

Obviously, N2[w, v](t ′, x) = a2(t ′)w(t ′, x)W2(t ′, x − cV t ′ − x0) ≥ 0. Moreover, for
−a < x − ct − x1 < a and t > 0,

v(t, x) = W2(t, x − cV t − x̄) ≤ W2(t, x − ct − x̄) ≤ W2(t, x1 − a − x̄) ≤ W2(t, x∗) ≤ ε,

and hence

N1[w, v](t ′, x) =wt ′(t
′, x) − d1wxx (t

′, x) − w(t ′, x)[r1 − a1(t
′)w(t ′, x) − b1(t

′)v(t ′, x)]
≤ − d1η

′ψ̃ ′′
a (x − ct − x1) − w(t ′, x)[r1 − a1(t

′)w(t ′, x) − b1(t
′)ε]

= − η′λ̃aψ̃a(x − ct − x1) − w(t ′, x)[r1 − a1(t
′)w(t ′, x) − b1(t

′)ε]
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≤ − w(t ′, x)[λ̃a + r1 − η′a1M − b1Mε] ≤ 0.

Thus, N1[w, v](t ′, x) ≤ 0 for x ∈ R and t ′ ∈ [ ct
c′ , t

]
.

From (3.3), for t � 1 and x ∈ (−a, a), one has u
( ct

c′ , x + ct + x1
) ≥ η̂ ≥ η′ψ̃a(x). Since

ψ̃a(x) = 0 for |x | ≥ a, it then follows that u
( ct

c′ , x + ct + x1
) ≥ η′ψ̃a(x) for t � 1 and

x ∈ R. Noting that η′ψ̃a(x) = w( ct
c′ , x + ct + x1), we have u( ct

c′ , x) ≥ w( ct
c′ , x) for t � 1

and x ∈ R. Hence, by Lemma 3.2, we get (u, v) � (w, v) for any t ′ ∈ [ ct
c′ , t], x ∈ R. Taking

η2 = η′ infx∈(− a
2 , a

2 ) ψ̃a(x), then (3.6) holds.
Step 3. We prove (3.2). Let {tn}n∈Z = {nT }n∈Z. Define

un(t, x) = u(t + tn, x + ctn), vn(t, x) = v(t + tn, x + ctn) (3.7)

for any (t, x) ∈ [−tn,+∞) × R. By the periodicity of ai (t), bi (t), i = 1, 2 and r2(t), it is
easy to see that (un(t, x), vn(t, x)) satisfies

⎧⎨
⎩

(un)t = d1(un)xx + un(t, x)[r1 − a1(t)un(t, x) − b1(t)vn(t, x)],
(vn)t = d2(vn)xx + vn(t, x)[r2(t) − a2(t)un(t, x) − b2(t)vn(t, x)],
un0(−tn, x) = u(0, x + ctn), vn0(−tn, x) = v(0, x + ctn)

for any (t, x) ∈ [−tn,+∞) × R.
By standard parabolic estimates and Ascoli-Arzela theorem, there exists a subsequence

of {tn}, still denoted by {tn}, such that (un(t, x), vn(t, x)) converges to (u∞(t, x), v∞(t, x))

locally uniformly in (t, x) ∈ R
2 as n → ∞, and u∞(t, x) satisfies

(u∞)t − d1(u∞)xx − u∞(t, x)[r1 − a1(t)u∞(t, x)

−b1(t)ε] ≥ 0

for (t, x) ∈ R
2. By (3.6), we get

lim inf
tn→+∞ inf

t ′∈
[

ctn
c′ ,tn

]
,x∈(− a

2 , a
2 )

u(t ′, x + ctn + x2) ≥ η2. (3.8)

Note that t +tn ∈ [ ctn
c′ , tn] for t ≤ 0 with |t | small enough. Since un(t, x +x2) = u(t +tn, x +

ctn + x2), from (3.8), we get for any t ≤ 0 with |t | small enough that inf x∈(− a
2 , a

2 ) u∞(t, x +
x2) ≥ η2. Let uε be the solution of

{
(uε)t = d1(uε)xx + uε(t, x)[r1 − a1(t)uε(t, x) − b1(t)ε],
uε(0, x) = g̃(x),

where g̃(x) ∈ C(R, [0, η2]) is defined by

g̃(x) =

⎧⎪⎪⎨
⎪⎪⎩

nondecreasing, x ∈ ( − a
2 + x2,− a

4 + x2
)
,

η2, x ∈ ( − a
4 + x2,

a
4 + x2

)
,

nonincreasing, x ∈ ( a
4 + x2,

a
2 + x2

)
,

0, x ∈ R\( − a
2 + x2,

a
2 + x2

)
.

By the classical comparison principle, we have u∞(t, x) ≥ uε(t, x) for any (t, x) ∈ R
2.

Moreover, by the result in Liang et al. [32], we know that limt→+∞[uε(t, x) − p̃ε(t)] = 0
locally uniformly in x ∈ R, where p̃ε(t) be the unique positive T -periodic solution of

u′(t) = u(t)(r1 − a1(t)u(t) − b1(t)ε).
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Since limε→0+ p̃ε(t)= p(t),wemayassume that p̃ε(t)> p(t)−ε. Thus, limt→+∞[u∞(t, x)−
p̃ε(t)] ≥ 0 locally uniformly in x ∈ R. By the definition of u∞, we then obtain that

lim inf
t→+∞[u(t, x + ct) − p(t)] ≥ lim inf

t→+∞[u(t, x + ct) − p̃ε(t) − ε] > −ε

locally uniformly in x . By the arbitrariness of ε, limt→+∞[u(t, x + ct) − p(t)] = 0 locally
uniformly on every compact subset of R. The proof is completed. ��

Now, combining the statement (i) of Theorem 1.5 with Lemma 3.4, we directly obtain the
following result.

Lemma 3.5 Assume cV < cU . Let c1 and c2 be two speeds such that cV < c1 < c2 < cU .
Then

lim
t→+∞ sup

c1t<x<c2t
(|u(t, x) − p(t)| + |v(t, x)|) = 0. (3.9)

Proof From the proof ofTheorem1.5 (i),weknow that limt→+∞ supx>ct |v(t, x)| = 0, ∀c >

cV , and hence,

lim
t→+∞ sup

c1t<x<c2t
|v(t, x)| = 0, ∀cV < c1 < c2 < cU .

Therefore, to prove (3.9), we only need to prove

lim
t→+∞ sup

c1t<x<c2t
|u(t, x) − p(t)| = 0, ∀cV < c1 < c2 < cU . (3.10)

Assume by contradiction that there exist two sequences {tn} and {xn} satisfying c1tn <

xn < c2tn and tn → +∞ as n → ∞, such that lim supn→∞[u(tn, xn) − p(tn)] < 0. Let
cn = xn

tn
, then cn ∈ (c1, c2) ⊂ (cV , cU ). Thus, there exists a subsequence {n j } of {n} such

that lim j→∞ cn j = c ∈ [c1, c2] ⊂ (cV , cU ). By Lemma 3.4, it then follows that

u(tn j , xn j ) − p(tn j ) = u(tn j , cn j tn j ) − p(tn j ) → 0 as j → ∞,

which contradicts lim supn→∞[u(tn, xn) − p(tn)] < 0. This completes the proof. ��
Remark 3.6 By using an argument similar to the proof of Lemma 3.5, we have

lim
t→+∞ sup

x<ct
(|u(t, x)| + |v(t, x) − q(t)|) = 0, ∀c < −cU .

To show Theorem 1.5 (ii) for c < cU V , we consider the following auxiliary time-periodic
competition-diffusion system with a parameter κ > 0:{

ut = d1uxx + u(t, x)[r1 − a1(t)u(t, x) − b1(t)v(t, x)],
vt = d2vxx + v(t, x)[r2(t) − κ − a2(t)u(t, x) − b2(t)v(t, x)]. (3.11)

Choose κ0 > 0 such that, for κ ∈ (0, κ0), (H1)-(H3) hold with r1(t) and r2(t) replaced by r1
and r2(t) − κ , respectively. According to Lemma 1.1, we know that (3.11) admits a periodic
traveling front (Uκ (t, z), Vκ (t, z)), which satisfies⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Uκ )t − cκ (Uκ )z = d1(Uκ )zz + Uκ [r1 − a1(t)Uκ − b1(t)Vκ ],
(Vκ )t − cκ (Vκ )z = d2(Vκ )zz + Vκ [r2(t) − κ − a2(t)Uκ − b2(t)Vκ ],
limz→−∞(Uκ (t, z), Vκ (t, z)) = (0, qκ (t)) uniformly in t ∈ [0, T ],
limz→+∞(Uκ (t, z), Vκ (t, z)) = (p(t), 0) uniformly in t ∈ [0, T ],
(Uκ (t + T , z), Vκ (t + T , z)) = (Uκ (t, z), Vκ (t, z)), (t, z) ∈ R

2,

(3.12)
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where cκ is wave speed, z = x − cκ t , and qκ (t) is the unique positive T -periodic solution of
the ODE:

v′(t) = v(t)(r2(t) − κ − b2(t)v(t)).

It is clear that

qκ (t) = qκ (0)e
∫ t
0 (r2(s)−κ)ds

1 + qκ (0)
∫ t
0 e

∫ s
0 (r2(�)−κ)d�b2(s)ds

, qκ (0) = e
∫ T
0 (r2(s)−κ)ds − 1∫ T

0 e
∫ s
0 (r2(�)−κ)d�b2(s)ds

> 0.

Hence, limκ→0+ qκ (t) = q(t) uniformly in t ∈ [0, T ].
Lemma 3.7 Let cκ be the unique speed of a bistable periodic traveling front (Uκ , Vκ ) of
(3.11) connecting (0, qκ (t)) and (p(t), 0). Then limκ→0+ cκ = cU V .

Proof The proof is divided into two steps.
Step 1. We show that cκ is nondecreasing in κ ∈ (0,∞). Given 0 < κ1 < κ2. Let

(Uκi (t, z), Vκi (t, z)) be the periodic traveling front of (3.11) with κ being replaced by κi ,
i = 1, 2. For convenience, we make a change of variables ũ = u and ṽ = −v in (3.11).
Clearly, (ũ, ṽ) satisfies{

ũt = d1ũxx + ũ(t, x)[r1 − a1(t)ũ(t, x) + b1(t)ṽ(t, x)],
ṽt = d2ṽxx + ṽ(t, x)[r2(t) − κ − a2(t)ũ(t, x) + b2(t)ṽ(t, x)]. (3.13)

Note that (3.13) is a cooperative system on [0,∞)× (−∞, 0]. Clearly, W̃κi := (Ũκi , Ṽκi ) =
(Uκi ,−Vκi ) is the periodic traveling front of (3.13) connecting (0,−qκi (t)) and (p(t), 0),
i = 1, 2. Without loss of generality, we normalize Ũκ1(0, 0) = p(0)

2 .
Let Qκ2(t)[u0](x) be the solution of (3.13) with κ = κ2 and the initial value u0(·) =

W̃κ1(0, ·) := (Ũκ1(0, ·), Ṽκ1(0, ·)). By the comparison principle (see Bao and Wang [1,
Theorem 3.2]), we get

W̃κ1(t, x − cκ1 t) ≥ Qκ2(t)[W̃κ1(0, ·)](x) for t ≥ 0, x ∈ R.

In addition, by Bao and Wang [1, Theorem 4.4], we can see that for any ε > 0, there exist
Tε > 0 and s0 ∈ R such that

Qκ2(t)[W̃κ1(0, ·)](x) ≥ W̃κ2(t, x − cκ2 t + s0) − ε1 for t ≥ Tε, x ∈ R.

Thus, we obtain

W̃κ1(t, x − cκ1 t) ≥ W̃κ2(t, x − cκ2 t + s0) − ε1 for t ≥ Tε, x ∈ R. (3.14)

Taking t = kT and x = cκ1kT in (3.14), then for any positive integer k with kT ≥ Tε , by
the periodicity of W̃κi (t, ·) in t , i = 1, 2, we have

W̃κ1(0, 0) = W̃κ1(kT , 0) ≥W̃κ2(kT , (cκ1 − cκ2)kT + s0) − ε1

=W̃κ2(0, (cκ1 − cκ2)kT + s0) − ε1. (3.15)

If cκ1 > cκ2 , taking ε → 0+ and k → +∞ in (3.15), we deduce that

Ũκ1(0, 0) ≥ Ũκ2(0,+∞) = p(0),

which contradicts Ũκ1(0, 0) = p(0)
2 . Hence, cκ1 ≤ cκ2 ; that is, cκ is nondecreasing.

Step 2. We prove that limκ→0+ cκ = cU V . Note that for any small enough κ > 0,
cκ ≤ cU V . Therefore, limκ→0+ cκ exists. Set c̄ := limκ→0+ cκ . Clearly, c̄ ≤ cU V . Taking
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a sequence {κn} such that κn → 0 as n → ∞. By standard parabolic estimates, there is
a subsequence of {κn}, still denoted by {κn} for simplicity, such that (Ũκn , Ṽκn ) converges
uniformly to a function (Ū , V̄ ), which satisfies{

Ūt − c̄Ūz = d1Ūzz + Ū [r1 − a1(t)Ū + b1(t)V̄ ],
V̄t − c̄V̄z = d2V̄zz + V̄ [r2(t) − a2(t)Ū + b2(t)V̄ ], (3.16)

where z = x − c̄t . Noting that (Ũκn (t, z), Ṽκn (t, z)) is monotone increasing in z,
(Ū (t, z), V̄ (t, z)) is also monotone increasing in z and

0 ≤ Ū (t, z) ≤ p(t), −q(t) ≤ V̄ (t, z) ≤ 0.

Hence, (Ū , V̄ )(t,±∞) exists and belongs to {(0, 0), (0,−q(t)), (p(t), 0), (ū(t), −v̄(t))}.
Recall that 0 < ū(t) < p(t) and 0 < v̄(t) < q(t) for t ∈ [0, T ]. Without loss of

generality, we normalize Ũκn (0, 0) = p(0)+ū(0)
2 . Thus Ū (0, 0) = p(0)+ū(0)

2 > ū(0). By the
monotonicity of Ū (t, z) in z, one has Ū (t,−∞) ≤ Ū (0, 0) ≤ Ū (t,+∞). Thus

Ū (t,+∞) = p(t) uniformly in t ∈ [0, T ].
From the first equation of (3.16), we obtain

Ū (t, z) = T1(t)[Ū (0, ·)](z) +
∫ t

0
T1(t − s)[Ū (s, ·)(r1 − a1(s)Ū (s, ·) + b1(s)V̄ (s, ·))](z)ds,

where

T1(t)[φ](z) := 1√
4πd1t

∫ +∞

−∞
exp

{ − (z + c̄t − y)2

4d1t

}
φ(y)dy.

Taking the limits as z → +∞ in the above equation, we have

p(t) = p(0) +
∫ t

0
T1(t − s)[p(s)(r1 − a1(s)p(s) + b1(s)V̄ (s,+∞))]ds

= p(0) +
∫ t

0
p(s)(r1 − a1(s)p(s) + b1(s)V̄ (s,+∞))ds,

which yields that

p′(t) = p(t)(r1 − a1(t)p(t) + b1(t)V̄ (t,+∞)).

Since b1(·) > 0, we infer that V̄ (t,+∞) = 0 uniformly in t ∈ [0, T ]. Thus, we conclude
that (Ū (t,+∞), V̄ (t,+∞)) = (p(t), 0) uniformly in t ∈ [0, T ].

Noticing that (Ū (t, z), V̄ (t, z)) is increasing in z and Ū (0, 0) = p(0)+ū(0)
2 < p(0), we

deduce that

(Ū , V̄ )(t,−∞) = (0,−q(t)) or (Ū , V̄ )(t,−∞) = (ū(t),−v̄(t)) uniformly in t ∈ [0, T ].
Suppose that (Ū , V̄ )(t,−∞) = (ū(t),−v̄(t)) uniformly in t ∈ [0, T ]. Then it is easy to
see that for any ε > 0, Ū (t, z) > ū(t) − ε/2 for all z ∈ R. Since Ũκn (t, z) → Ū (t, z)
as n → ∞, there exists N � 1 such that for n > N , Ũκn (t, z) ≥ Ū (t, z) − ε/2. Hence,
Ũκn (t, z) ≥ ū(t) − ε for n > N and z ∈ R, which contradicts Ũκn (t,−∞) = 0 uniformly in
t ∈ [0, T ]. Therefore, (Ū , V̄ )(t,−∞) = (0,−q(t)) uniformly in t ∈ [0, T ], which implies
that (Ū (t, x − c̄t), V̄ (t, x − c̄t)) is a solution of (3.16) connecting (0,−q(t)) and (p(t), 0)
with speed c̄. From Lemma 1.1 on the uniqueness of bistable periodic traveling fronts, we
conclude limκ→0+ cκ = c̄ = cU V . The proof is completed. ��
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By Lemma 3.7, there holds c < cκ ≤ cU V for κ ∈ (0, κ0). For convenience, in the rest of
this subsection, we set Y := Uκ and Z := Vκ with c̃ := cκ for κ ∈ (0, κ0). By (H4), we can
take ε > 0 small enough such that r2M < a2m(pm − ε) and

r1 < min
{7
4

a1m(pm − ε),
5

4
a1m pm, b1m(qm − ε)

}
.

Recall that limκ→0+ qκ (t) = q(t) uniformly in t ∈ [0, T ]. We can deduce κ0 > 0 such
that r1 < b1m(qκm − ε) for any κ ∈ (0, κ0). Since Y(t, ζ ) is strictly increasing in ζ and
Z(t, ζ ) is strictly decreasing in ζ , there exists ρ > 0 such that, for any ζ satisfying either
ε < Y(t, ζ ) < p(t) − ε or ε < Z(t, ζ ) < qκ (t) − ε, there hold Yζ (t, ζ ) > ρ and
Zζ (t, ζ ) < −ρ uniformly in t ∈ R.

Lemma 3.8 Take η(t) = η1 + η0e−μt , ϑ1(t) = ϑ0e−μt and γ1(t) = γ0e−μt , where ϑ0, γ0,

η0, μ ∈ R
+ and η1 ∈ R satisfy

ϑ0 <
κ

2a2M
, γ0 <

ϑ0a1m

4b1M
, ϑ0 ≤ pm, (3.17)

b1Mγ0 + r1 + μ < b1m(qκm − ε), (3.18)

γ0(μ + r2M + b2Mγ0) <
κ

2
(qκm − ε), (3.19)

b2Mγ0 + r2M + μ < a2m(pm − ε), (3.20)

μ + r1 < min
{7
4

a1m(pm − ε),
5

4
a1m pm

}
, (3.21)

μ + r2M < a2m pm, (3.22)

ρμη0 > max
{
ϑ0μ + ϑ0(r1 + b1Mγ0), γ0μ + γ0(r2M + b2Mγ0)

}
. (3.23)

Then, the following functions{
ū(t, x) = min{p(t),Y(t, x − c̃t − η(t)) + ϑ1(t)},
v(t, x) = max{0,Z(t, x − c̃t − η(t)) − γ1(t)}

satisfy N1[ū, v](t, x) ≥ 0 and N2[ū, v](t, x) ≤ 0 for any (t, x) ∈ (R+,R).

Proof For any (t, x) ∈ R
2, let ζ = x − c̃t − η(t). From (3.17), we see that

a1(t)ϑ1(t) − b1(t)γ1(t) = [a1(t)ϑ0 − b1(t)γ0]e−μt ≥ [a1mϑ0 − b1Mγ0]e−μt≥ 0 (3.24)

and

a2(t)ϑ1(t) − b2(t)γ1(t) − κ ≤ a2Mϑ0 − κ < 0. (3.25)

The rest of the proof is divided into four cases.
Case I. ū(t, x) = Y(t, ζ ) + ϑ1(t) and v(t, x) = Z(t, ζ ) − γ1(t). In this case, we have

Y(t, ζ ) + ϑ1(t) ≤ p(t) and Z(t, ζ ) ≥ γ1(t). Direct computations show that

N1[ū, v](t, x) = ūt (t, x) − d1ūxx (t, x) − ū(t, x)[r1 − a1(t)ū(t, x) − b1(t)v(t, x)]
=Yt (t, ζ ) − c̃Yζ (t, ζ ) − η′(t)Yζ (t, ζ ) + ϑ ′

1(t) − d1Yζ ζ (t, ζ ) − (Y(t, ζ )

+ ϑ1(t))[r1 − a1(t)Y(t, ζ ) − a1(t)ϑ1(t) − b1(t)Z(t, ζ ) + b1(t)γ1(t)]
= − η′(t)Yζ (t, ζ ) + ϑ ′

1(t) + Y(t, ζ )[a1(t)ϑ1(t) − b1(t)γ1(t)] + ϑ1(t)[−r1

+ a1(t)Y(t, ζ ) + a1(t)ϑ1(t) + b1(t)Z(t, ζ )−b1(t)γ1(t)] (3.26)
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and

N2[ū, v](t, x) = vt (t, x) − d2vxx (t, x) − v(t, x)[r2(t) − a2(t)ū(t, x) − b2(t)v(t, x)]
=Zt (t, ζ ) − c̃Zζ (t, ζ ) − η′(t)Zζ (t, ζ ) − γ ′

1(t) − d2Zζ ζ (t, ζ ) − (Z(t, ζ )

− γ1(t))[r2(t) − a2(t)Y(t, ζ ) − a2(t)ϑ1(t) − b2(t)Z(t, ζ ) + b2(t)γ1(t)]
= − η′(t)Zζ (t, ζ ) − γ ′

1(t) + Z(t, ζ )[a2(t)ϑ1(t) − b2(t)γ1(t) − κ] + γ1(t)[r2(t)
− a2(t)Y(t, ζ ) − a2(t)ϑ1(t) − b2(t)Z(t, ζ ) + b2(t)γ1(t)]. (3.27)

We distinguish among three subcases.
Case I − 1. Let (t, x) ∈ R

2 be such that Y(t, ζ ) ≤ ε and Z(t, ζ ) ≥ qκ (t)− ε. Then from
(3.18), (3.24) and (3.26), we have

N1[ū, v](t, x) ≥ϑ ′
1(t) + ϑ1(t)[−r1 + b1(t)Z(t, ζ ) − b1(t)γ1(t)]

≥ϑ ′
1(t) + ϑ1(t)[−r1 + b1(t)(qκ (t) − ε) − b1(t)γ1(t)]

=ϑ1(t)[−r1 + b1(t)(qκ (t) − ε) − μ − b1(t)γ1(t)]
≥ϑ1(t)[−r1 + b1m(qκm − ε) − μ − b1Mγ0] ≥ 0,

and from (3.17), (3.19) and (3.27), we get

N2[ū, v](t, x) ≤ − γ ′
1(t) + γ1(t)[r2(t) − b2(t)Z(t, ζ ) + b2(t)γ1(t)] + Z(t, ζ )[a2Mϑ0 − κ]

≤ γ1(t)[μ + r2M − b2m(qκ (t) − ε) + b2Mγ0] + (a2M
κ

2a2M
− κ)(qκ (t) − ε)

≤ γ0e−μt [μ + r2M + b2Mγ0
] − κ

2
(qκm − ε) ≤ 0.

Case I − 2. Let (t, x) ∈ R
2 be such that Y(t, ζ ) ≥ p(t) − ε and Z(t, ζ ) ≤ ε. Then from

(3.17), (3.21), (3.26) and Z(t, ζ ) ≥ γ1(t), we obtain

N1[ū, v](t, x) ≥ϑ ′
1(t) + (p(t) − ε)[a1(t)ϑ0 − b1(t)γ0]e−μt + ϑ1(t)[−r1 + a1(t)Y(t, ζ )]

≥ϑ ′
1(t) + (p(t) − ε)

[
a1mϑ0 − b1M

a1mϑ0

4b1M

]
e−μt + ϑ1(t)[−r1 + a1(t)(p(t) − ε)]

≥ϑ ′
1(t) + 3a1m

4
(p(t) − ε)ϑ1(t) + ϑ1(t)[−r1 + a1m(p(t) − ε)]

≥ϑ1(t)
[ − μ + 7

4
a1m(pm − ε) − r1

] ≥ 0.

Further, by (3.20), (3.25) and (3.27), we have

N2[ū, v](t, x) ≤ − γ ′
1(t) + γ1(t)[r2(t) − a2(t)Y(t, ζ ) + b2(t)γ1(t)]

≤ − γ ′
1(t) + γ1(t)[r2(t) − a2(t)(p(t) − ε) + b2(t)γ1(t)]

≤ γ1(t)[r2M − a2m(pm − ε) + b2Mγ0 + μ] ≤ 0.

Case I − 3. Let (t, x) ∈ R
2 be such that either ε < Y(t, ζ ) < p(t) − ε or ε < Z(t, ζ ) <

qκ (t) − ε. Thus, by (3.23), (3.24), (3.26) and the fact that Yζ (t, ζ ) > ρ, we obtain

N1[ū, v](t, x) ≥ − η′(t)Yζ (t, ζ ) + ϑ ′
1(t) + ϑ1(t)[−r1 − b1(t)γ1(t)]

≥ ρη0μe−μt − ϑ0μe−μt − ϑ0e−μt (r1 + b1Mγ0)

= e−μt [ρη0μ − ϑ0μ − ϑ0(r1 + b1Mγ0)] ≥ 0.

Furthermore, from (3.23), (3.25), (3.27) and the fact that Zζ (t, ζ ) < −ρ, we get

N2[ū, v](t, x) ≤ − η′(t)Zζ (t, ζ ) − γ ′
1(t) + γ1(t)[r2(t) + b2(t)γ1(t)]

123



99 Page 24 of 30 L. Pang et al.

≤ − η0μρe−μt + γ0μe−μt + γ0e−μt (r2M + b2Mγ0)

= e−μt [−η0μρ + γ0μ + γ0(r2M + b2Mγ0)] ≤ 0.

Case II. ū(t, x) = Y(t, ζ ) + ϑ1(t) and v(t, x) = 0. Then, Y(t, ζ ) + ϑ1(t) ≤ p(t) and
Z(t, ζ ) ≤ γ1(t). It is obvious that N2[ū, v](t, x) = 0. Since limξ→+∞ Y(t, ξ) = p(t)
uniformly in t ∈ [0, T ], we assume that Y(t, ζ ) ≥ 3

4 p(t) for any t ∈ R. By (3.17) and
(3.21), we have

N1[ū, v](t, x) =Yt (t, ζ ) − c̃Yζ (t, ζ ) − η′(t)Yζ (t, ζ ) + ϑ ′
1(t) − d1Yζ ζ (t, ζ )

− Y(t, ζ )[r1 − a1(t)Y(t, ζ ) − b1(t)Z(t, ζ )] + Y(t, ζ )[r1 − a1(t)Y(t, ζ )

− b1(t)Z(t, ζ )] − (Y(t, ζ ) + ϑ1(t))[r1 − a1(t)Y(t, ζ ) − a1(t)ϑ1(t)]
= − η′(t)Yζ (t, ζ ) + ϑ ′

1(t) + Y(t, ζ )a1(t)ϑ1(t) − b1(t)Y(t, ζ )Z(t, ζ )

+ ϑ1(t)[−r1 + a1(t)Y(t, ζ ) + a1(t)ϑ1(t)]
≥ ϑ ′

1(t) − b1(t)γ1(t)Y(t, ζ ) + 2Y(t, ζ )a1(t)ϑ1(t) − r1ϑ1(t)

≥ ϑ ′
1(t) − b1(t)γ1(t)(p(t) − ϑ1(t)) + 3

2
a1(t)ϑ1(t)p(t) − r1ϑ1(t)

≥ ϑ ′
1(t) − b1M

ϑ0a1m

4b1M
e−μt p(t) + 3

2
a1m p(t)ϑ1(t) − r1ϑ1(t)

≥ ϑ1(t)
[ − μ + 5

4
a1m pm − r1

] ≥ 0.

Case III. ū(t, x) = p(t) and v(t, x) = Z(t, ζ )−γ1(t). In this caseY(t, ζ )+ϑ1(t) ≥ p(t)
and Z(t, ζ ) ≥ γ1(t). Then, we have

N1[ū, v](t, x) = p′(t) − p(t)[p(t) − a1(t)p(t) − b1(t)v(t, x)]
≥ p′(t) − p(t)[p(t) − a1(t)p(t)] = 0,

and it follows from (3.22) and (3.25) that

N2[ū, v](t, x) =Zt (t, ζ ) − c̃Zζ (t, ζ ) − η′(t)Zζ (t, ζ ) − γ ′
1(t) − d2Zζ ζ (t, ζ )

− Z(t, ζ )[r2(t) − κ − a2(t)Y(t, ζ ) − b2(t)Z(t, ζ )]
+ Z(t, ζ )[r2(t) − κ − a2(t)Y(t, ζ ) − b2(t)Z(t, ζ )]
− (Z(t, ζ ) − γ1(t))[r2(t) − a2(t)p(t) − b2(t)Z(t, ζ ) + b2(t)γ1(t)]

= − η′(t)Zζ (t, ζ ) − γ ′
1(t) + Z(t, ζ )[−κ − a2(t)Y(t, ζ ) + a2(t)p(t) − b2(t)γ1(t)]

+ γ1(t)[r2(t) − a2(t)p(t) − b2(t)Z(t, ζ ) + b2(t)γ1(t)]
≤ − η′(t)Zζ (t, ζ ) − γ ′

1(t) + Z(t, ζ )[−κ − a2(t)(p(t) − ϑ1(t)) + a2(t)p(t)

− b2(t)γ1(t)] + γ1(t)[r2(t) − a2(t)p(t) − b2(t)Z(t, ζ ) + b2(t)γ1(t)]
= − η′(t)Zζ (t, ζ ) − γ ′

1(t) + Z(t, ζ )[a2(t)ϑ1(t) − κ − b2(t)γ1(t)]
+ γ1(t)[r2(t) − a2(t)p(t) − b2(t)Z(t, ζ ) + b2(t)γ1(t)]

≤ − γ ′
1(t) + γ1(t)[r2(t) − a2(t)p(t)]

= γ1(t)[r2(t) − a2(t)p(t) + μ]
≤γ1(t)[r2M − a2m pm + μ] ≤ 0.

Case IV. ū(t, x) = p(t) and v(t, x) = 0. It is easy to see that N1[ū, v](t, x) = 0 and
N2[ū, v](t, x) = 0.

Combining the above four cases, the assertion of this lemma follows. ��
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Next, we compare (ū, v) constructed in Lemma 3.8 with the solution (u, v) with initial
conditions (1.7). First we have the following lemma.

Lemma 3.9 There exists T ∗ > 0 and c∗ < c < cU V such that for every t > T ∗ and x ≤ c∗t ,

u(t, x) ≤ ū(t, x), v(t, x) ≥ v(t, x), (3.28)

and for every x ≥ c∗T ∗,

u(T ∗, x) ≤ ū(T ∗, x), v(T ∗, x) ≥ v(T ∗, x). (3.29)

Proof Let c∗ < c be such that c∗ < −cU . By Remark 3.6, we get limt→+∞(|u(t, x)| +
|v(t, x) − q(t)|) = 0 uniformly for x ≤ c∗t . Thus, there exists T2 > 0 such that for each
t ≥ T2 and x ≤ c∗t , u(t, x) < p(t) and for any given ε1 > 0, v(t, x) > q(t) − ε1 > qκ (t)
for sufficiently small κ > 0. Moreover, v(t, x) ≤ qκ (t) for any (t, x) ∈ R

2. Thus,

v(t, x) ≥ v(t, x), ∀t ≥ T2, x ≤ c∗t . (3.30)

Note that cU > 0 is the minimal wave speed of the monotonically decreasing periodic
traveling wave W1(t, x − ct) of (1.8). Set W̃1(t, z) := W̃1(t, x − cU t) := W1(t,−x + cU t)
for (t, x) ∈ R

2. Then, we have{
(W̃1)t = d1(W̃1)zz + cU (W̃1)z + W̃1(r1 − a1(t)W̃1),

limz→−∞ W̃1(t, z) = 0, limz→+∞ W̃1(t, z) = p(t) uniformly in t ∈ [0, T ].
Notice that

W̃1(t, x) ∼ −xe
√

r1/d1x as x → −∞.

Thus, there exists a constant C ′ > 0 such that

W̃1(t, x) ≤ C ′|x |e
√

r1/d1x , ∀x ≤ 0. (3.31)

Since 0 ≤ u(0, x) < p(0) for x < 0 and u(0, x) has compact support in (−∞, 0], there
exists x̂0 ∈ R such that u(0, x) ≤ W̃1(0, x − x̂0),∀x ∈ R. In view of

ut ≤ d1uxx + u(r1 − a1(t)u),

by the classical comparison principle for (1.8), we get u(t, x) ≤ W̃1(t, x − cU t − x̂0) for
x ∈ R and t ≥ 0. It then follows from (3.31) that

u(t, x) ≤ W̃1(t, (c∗ − cU )t − x̂0) ≤ C ′|(c∗ − cU )t − x̂0|e
√

r1/d1((c∗−cU )t−x̂0) (3.32)

for any t > 0, x ≤ c∗t . By reducing μ such that μ <
√

r1/d1(cU − c∗), we see that there
exists T3 > 0 such that for all t > T3,

C ′|(c∗ − cU )t − x̂0|e
√

r1/d1((c∗−cU )t−x̂0) ≤ ϑ0e−μt = ϑ1(t). (3.33)

Since ϑ1(t) ≤ p(t) for t ∈ [0, T ], from the definition of u(t, x), we get u(t, x) ≥ ϑ1(t).
Taking T ∗ = max{T2, T3}, from (3.32) and (3.33), we obtain

u(t, x) ≤ u(t, x), ∀t > T ∗, x ≤ c∗t . (3.34)

Combining (3.30) and (3.34), we have (3.28) holds.
Note that Y is increasing and Z is decreasing. Then we choose η1 < 0 with |η1| large

enough such that

ū(T ∗, x) =min{p(T ∗), Y(T ∗, x − c̃T ∗ − η(T ∗)) + ϑ1(T ∗)}
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≥min{p(T ∗), Y(T ∗, c∗T ∗ − c̃T ∗ − η1 − η0e−μT ∗
) + ϑ1(T ∗)} = p(T ∗) ≥ u(T ∗, x)

and

v(T ∗, x) =max{0, Z(T ∗, x − c̃T ∗ − η(T ∗)) − γ1(T
∗)}

≤max{0, Z(T ∗, c∗T ∗ − c̃T ∗ − η1 − η0e−μT ∗
) − γ1(T

∗)} = 0 ≤ v(T ∗, x)

for x ≥ c∗T ∗. Therefore, (3.29) holds. The proof is completed. ��
We now give the proof of Theorem 1.5 (ii).

Proof of Theorem 1.5 (ii) From Lemmas 3.3, 3.8 and 3.9, we have

(ū, v)(t, x) � (u, v)(t, x) for t ≥ T ∗ and x ≥ c∗t . (3.35)

Since c > c∗, (3.35) holds for c∗t ≤ x ≤ ct . By the proof of Lemma 3.9, we obtain
that (3.35) holds for any c∗ < −cU . Letting c∗ → −∞, we get that (3.35) holds for any
t ≥ T ∗ and − ∞ < x ≤ ct . Hence, for t ≥ T ∗ and x ≤ ct , we get{

u(t, x) ≤ ū(t, x) ≤ Y(t, x − c̃t − η(t)) + ϑ1(t) ≤ Y(t, (c − c̃)t − η(t)) + ϑ1(t),
v(t, x) ≥ v(t, x) ≥ Z(t, x − c̃t − η(t)) − γ1(t) ≥ Z(t, (c − c̃)t − η(t)) − γ1(t).

(3.36)
Recall that c < c̃. Combining (3.36) with limz→−∞ Y(t, z) = 0 and limz→−∞ Z(t, z) =
qκ (t) uniformly in t ∈ [0, T ], we have limt→+∞ infx≤ct u(t, x) ≤ 0 and

lim
t→+∞ inf

x≤ct
[v(t, x) − qκ (t)] ≥ 0 (3.37)

for any κ ∈ (0, κ0). Given any sufficiently small ε > 0. Since limκ→0+ qκ (t) = q(t)
uniformly in t ∈ [0, T ], we can deduce κ0 > 0 such that qκ (t) ≥ q(t)−ε for any κ ∈ (0, κ0)
and hence

lim
t→+∞ inf

x≤ct
[v(t, x) − q(t)] ≥ −ε. (3.38)

By the arbitrariness of ε > 0 and the fact that v(t, x) ≤ q(t) for any (t, x) ∈ R
2, we get

lim
t→+∞ sup

x≤ct
(|u(t, x)| + |v(t, x) − q(t)|) = 0.

This completes the proof of Theorem 1.5 (ii). ��

3.1.3 Proof of Theorem 1.5 (iii)

From Lemma 3.5, we obtain that if cV < cU , then for any c1, c2 satisfying cV < c1 < c2 <

cU ,
lim

t→+∞ sup
c1t<x<c2t

(|u(t, x) − p(t)| + |v(t, x)|) = 0. (3.39)

To prove Theorem 1.5 (iii), we will use a similar idea as in the proof of Theorem 1.5 (ii)
to show that (3.39) is true for all cU V < c1 < c2 < cU . Choose τ̂0 > 0 such that, for
τ̂ ∈ (0, τ̂0), (H1)-(H3) hold with r1 replaced by r1 − τ̂ . From Lemma 1.1, we know that the
following auxiliary system{

ut = d1uxx + u(t, x)(r1 − τ̂ − a1(t)u(t, x) − b1(t)v(t, x)),

vt = d2vxx + v(t, x)(r2(t) − a2(t)u(t, x) − b2(t)v(t, x))
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has a periodic traveling front (Uτ̂ (t, z),Vτ̂ (t, z), which satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Uτ̂ )t − cτ̂ (Uτ̂ )z = d1(Uτ̂ )zz + Uτ̂ (r1 − τ̂ − a1(t)Uτ̂ − b1(t)Vτ̂ ),

(Vτ̂ )t − cτ̂ (Vτ̂ )z = d2(Vτ̂ )zz + Vτ̂ (r2(t) − a2(t)Uτ̂ − b2(t)Vτ̂ ),

limz→−∞(Uτ̂ (t, z),Vτ̂ (t, z)) = (0, q(t)) uniformly in t ∈ [0, T ],
limz→+∞(Uτ̂ (t, z),Vτ̂ (t, z)) = (pτ̂ (t), 0) uniformly in t ∈ [0, T ],
(Uτ̂ (t + T , z),Vτ̂ (t + T , z)) = (Uτ̂ (t, z),Vτ̂ (t, z)), (t, z) ∈ R

2,

(3.40)

where cτ̂ is the wave speed, z = x − cτ̂ t and pτ̂ (t) is the unique positive T -periodic solution
of

u′(t) = u(t)(r1 − τ̂ − a1(t)u(t)).

Similarly, by Lemma 3.7, we have cU V ≤ c̄ := limτ̂→0+ cτ̂ . In the following, we set Ŷ := Uτ̂

and Ẑ := Vτ̂ with cτ̂ = č for τ̂ ∈ (0, τ̂0) and suppose that cU V ≤ č < c1.

Lemma 3.10 Define{
u(t, x) = max{0, Ŷ(t, x − čt − η(t)) − ϑ1(t)},
v(t, x) = min{q(t), Ẑ(t, x − čt − η(t)) + γ1(t)}.

Then for any (t, x) ∈ R
+ × R, there hold N1[u, v](t, x) ≤ 0 and N2[u, v](t, x) ≥ 0.

Proof The proof of this lemma is similar to that of Lemma 3.8. So we emit it. ��
In order to compare (u, v) with the solution (u, v) of (1.1) and initial values (1.7), we

introduce the following Lemma 3.11. Since its proof is similar to that of Lemma 3.9, we omit
it here.

Lemma 3.11 There exist T̂ > 0 and ĉ > c2 such that for every t > T̂ and x ≥ ĉt ,

u(t, x) ≥ u(t, x), v(t, x) ≤ v(t, x),

and for every x ≤ ĉT̂ , u(T̂ , x) ≥ u(T̂ , x), v(T̂ , x) ≤ v(T̂ , x).

Lemma 3.12 Assume that cV < cU , then for all cU V < c1 < c2 < cU ,

lim
t→+∞ sup

c1t<x<c2t
(|u(t, x) − p(t)| + |v(t, x)|) = 0.

Proof From Lemmas 3.3, 3.10 and 3.11, we have

(u, v)(t, x) � (u, v)(t, x) for t ≥ T̂ and c1t ≤ x ≤ c2t . (3.41)

Hence, for t ≥ T̂ and c1t ≤ x ≤ c2t , it then follows that{
u(t, x) ≥ u(t, x) ≥ Ŷ(t, x − čt − η(t)) − ϑ1(t) ≥ Ŷ(t, (c1 − č)t − η(t)) − ϑ1(t),
v(t, x) ≤ v(t, x) ≤ Ẑ(t, x − čt − η(t)) + γ1(t) ≤ Ẑ(t, (c1 − č)t − η(t)) + γ1(t).

(3.42)
Note that c1 > č, then from (3.42) and

lim
z→+∞ Ŷ(t, z) = pτ̂ (t), lim

z→+∞Z(t, z) = 0 uniformly in t ∈ [0, T ],
we get limt→+∞ supc1t≤x≤c2t v(t, x) ≤ 0 and

lim
t→+∞ sup

c1t≤x≤c2t
[u(t, x) − pτ̂ (t)] ≥ 0 (3.43)

123



99 Page 28 of 30 L. Pang et al.

for any τ̂ ∈ (0, τ̂0). Given any small enough ε > 0. Since limτ̂→0+ pτ̂ (t) = p(t) uniformly
in t ∈ [0, T ], we can deduce τ̂0 > 0 such that pτ̂ (t) ≥ p(t) − ε for any τ̂ ∈ (0, τ̂0), and
hence

lim
t→+∞ sup

c1t≤x≤c2t
[u(t, x) − p(t)] ≥ −ε.

By the arbitrariness of ε > 0 and the fact that u(t, x) ≤ p(t) for any (t, x) ∈ R
2, we have

lim
t→+∞ sup

c1t≤x≤c2t
(|u(t, x) − p(t)| + |v(t, x)|) = 0.

This completes the proof of Theorem 1.5 (iii). ��
Acknowledgements Weare very grateful to the anonymous referee for careful reading and helpful suggestions
which led to an improvement of our original manuscript.
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