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Current debate surrounds the promise of neuroscience for education, including whether learning-related neural
changes can predict learning transfer better than traditional performance-based learning assessments. Longstanding
debate in philosophy and psychology concerns the proposition that spatial processes underlie seemingly
nonspatial/verbal reasoning (mental model theory). If so, education that fosters spatial cognition might improve
verbal reasoning. Here, in a quasi-experimental design in real-world STEM classrooms, a curriculum devised to foster
spatial cognition yielded transfer to improved verbal reasoning. Further indicating a spatial basis for verbal transfer,
students’ spatial cognition gains predicted and mediated their reasoning improvement. Longitudinal fMRI detected
learning-related changes in neural activity, connectivity, and representational similarity in spatial cognition—-implicated
regions. Neural changes predicted and mediated learning transfer. Ensemble modeling demonstrated better prediction
of transfer from neural change than from traditional measures (tests and grades). Results support in-school “spatial
education” and suggest that neural change can inform future development of

transferable curricula.

INTRODUCTION

The promise of neuroscience to support education remains
theoretically intriguing but empirically underdeveloped (7-3). A
central question is whether brain imaging can improve traditional
performance-based means of assessing teaching and learning. More
accurate prediction of learning transfer (i.e., predicting when
learning a curriculum will generalize to untrained skill domains)
would be especially valuable because transferability is often
difficult to capture with traditional assessments (4). Other questions
concern the potential of neuroscience to achieve broad impacts for
education given the impracticality of large-scale neuroimaging (we
cannot scan every student’s brain). This limitation may constrain the
impacts of approaches intended to assess individual students’
learning or individual abilities and needs. However, research that
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can also support the design and improvement of curricula, assessing
the curriculum rather than the student, might achieve broad impacts

(RA.C);
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from relatively small- scale implementations because curricula that
are developed at small/ local scales can be applied broadly (5—7).
Thus, determining whether neural changes that accompany
curriculum learning can be leveraged to evaluate the efficacy of
curricula (e.g., using neural changes to help identify curricula that
impart transferable learning) has the potential for broad impacts.

A longer-standing question in philosophy and psychology
concerns the extent to which spatial cognitive processes might
covertly underlie seemingly verbal forms of human cognition (8, 9).
Mental model theory (MMT) posits that ostensibly verbal
information is processed by co-opted neural resources that evolved
to support visuospatial operations in primates (8, 70). If this is
correct, then fostering spatial processing could yield transfer to
improved performance beyond the spatial domain. MMT
specifically posits that the spatial process of “scanning,” inspecting
spatial representations of information for key features, supports
mental model-based reasoning (e.g., scanning spatial
representations of verbal reasoning premises to determine whether
they align to validate a logical conclusion) (/0). This leads to the
educational hypothesis that curricula designed to foster spatial
cognition, especially curricula that develop spatial scanning ability,
might yield transfer to cognitive abilities supported by mental
modeling beyond the spatial domain, especially verbal reasoning.
Behavioral and neuroimaging evidence indicates that verbal
deductive reasoning often elicits spatial representations and engages
spatially implicated brain regions [especially posterior parietal
cortex (PPC)] (10-12). However, beyond the binary question of
whether spatial resources are engaged, MMT suggests that
educational improvement is likely to depend on developing the
effectiveness of these resources (i.e., behavioral and neural
indicators of improved spatial processing) and their integration with
“executive” resources that guide reasoning [e.g., functional
connectivity of PPC to dorsolateral prefrontal cortex (DLPFC)
during reasoning] (10, 13-16).

These broader questions inform a timely decision for educators
and policy-makers, particularly in STEM (science, technology,
engineering, and mathematics), concerning whether schools should
adopt “spatial education” (i.e., classroom curricula devised to
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integrate visualization tools and spatial problem-solving strategies
to develop spatial thinking abilities) (17, /8). Individual differences
in spatial ability robustly predict STEM achievement (/7-21);
however, implementations of curricula designed to bolster spatial
ability remain rare in real-world classrooms (17, 18, 21). This
scarcity of school-based spatial education has made it difficult to
study outcomes. Reports from the National Research Council
(NRC) (17), the Organisation for Economic Cooperation and
Development (OECD) (18), and American Enterprise Institute
(AEI) (21), indicate that, despite great theoretical promise to
support STEM achievement, wider in-school adoption of spatial
education is likely to depend on empirically demonstrating efficacy
and mechanisms of change for spatial curricula implemented in
real-world classroom settings.

Here, we investigated a curriculum devised to foster spatial
cognition in real-world high school STEM classrooms and tested
near- and far-transfer hypotheses. We first tested the hypotheses that
the spatial curriculum would yield near transfer to improved spatial
scanning and mental rotation abilities and far transfer beyond the
spatial domain to verbal reasoning. To further test the hypothesis
that improved spatial ability accounted for improved verbal ability
(as proposed in MMT), we investigated whether the amount of
improvement in spatial ability predicted the amount of improvement
in verbal reasoning and whether improvement in spatial ability
mediated improvement in verbal reasoning.

At the neural level, we used longitudinal functional magnetic
resonance imaging (fMRI) in conjunction with the spatial
curriculum with a primary goal of testing whether neural change
could predict spatial-to-verbal transfer better than traditional
performance-based  learning  assessments.  Learning  is
fundamentally a change, so brainbased assessment of learning
requires measurement at more than one time point. Longitudinal
neuroimaging is frequently used to study learning in laboratory
contexts but is paired with laboratory- based interventions and/or
intensive training, rather than ecologically valid K-12 curricula in
real-world classrooms. By contrast, in-school neuroimaging
research has often used single time points of neural measurement
(e.g., before or after a curriculum). Pairing longitudinal fMRI with
the spatial curriculum in the present study (as an in-school learning
intervention) enabled investigation of learning in terms of
experimental intervention-related change effects rather than the
more purely descriptive observations that are available at a single
time point. We first investigated curriculum-related changes in
neural activity, connectivity, and representational similarity in brain
regions implicated in spatial cognition. We then investigated
whether these neural changes were associated with improvements
in verbal reasoning and spatial scanning and, if so, whether they
mediated transfer from the curriculum to these abilities. For
example, on the basis of the MMT claim that reasoning is supported
by the integration of spatial neural resources with executive
function resources (10, 13—16), we tested whether improvement on
verbal reasoning in the spatial curriculum was associated with
increased functional connectivity of spatial cognition—implicated
brain regions (including PPC) to a DLPFC region that is meta-
analytically implicated in verbal reasoning. Toward our primary
objective of predicting transfer from neural change, we tested
whether curriculum-related neural changes during the task of spatial
scanning (the spatial ability that we predicted would support mental
model-based reasoning) were associated with near transfer to
improved spatial scanning performance and (mirroring the
behavioral analysis of spatial scanning) whether these changes also
Cortes et al., Sci. Adv. 8, eabo3555 (2022) 10 August 2022

predicted improvement in verbal reasoning performance (far
transfer). Note that the term prediction refers here to statistical
prediction of curriculum-related change in task performance based
on cognitive and brain-based measures collected for all tasks at the
same two time points, as opposed to prediction of future outcomes.
Last, to compare neural change versus traditional performance-
based assessment, we tested whether neural changes observed
during the spatial scanning task predicted transfer to verbal
reasoning over- and-above performance on the same spatial
scanning task and overand-above performance on a broader set of
academic and cognitive assessments, including tests and grades.
Random assignment to in-school curricula is not possible in real-
world high schools because researchers cannot assign students to
classes (students choose for themselves which classes they take).
Thus, to bridge from the laboratory to the classroom, we used a
quasi- experimental approach that is devised to minimize selection
bias in real-world contexts, including propensity scoring—based
matching within schools (Supplementary Materials) (22, 23).
Students who received the spatial curriculum were compared to
propensity scoring— matched control students at the same schools.

RESULTS

Spatial education was studied in five public high schools in northern
Virginia that adopted a spatially enriched Geoscience curriculum
(24) in which students construct and evaluate spatial representations
(maps) of real-world geographical datasets using geographic
information systems (GIS) technology (Supplementary Materials;
fig. S1). The course, first adopted by a group of Virginia high
schools in 2005, is named “The Geospatial Semester,” although it
is now implemented over two semesters. A central component of the
curriculum, designed by R.A.K. and classroom educators, is to
develop students’ ability to scan maps to identify key spatial
features and determine how these features are related across maps
(e.g., across different times or places; Supplementary Materials; fig.
S1) (24). The curriculum is also intended to foster more frequent
use of spatial thinking strategies through the use of GIS technology
to visualize and analyze spatial representations between a wide
range of real-world variables and draw conclusions about the
relationships between these variables. In the present study, the
intervention was the Geospatial course itself; that is, it was a course
offered by the schools, as opposed to any sort of program or training
outside the school curriculum. The structure and content of the
curriculum were completely unaltered by the researchers to ensure
that the study reflected an ecologically valid classroom
implementation of spatial education rather than a laboratory-based
intervention.

In 346 students (206 females and 140 males; mean age = 16.61
years), propensity scoring methods were used using linear
combinations of background variables including experience,
interests, demographics, and  academic  performance
(Supplementary Materials) to match Geospatial students with
controls on their overall “propensity” to enroll in the Geospatial
course (22, 23). Propensity scoring methods reduce selection bias in
real-world experimental paradigms for which randomization to
groups is impossible (22). Participants in the main study (N = 182),
comprising Geospatial (n ="77; 32 females; 16.66 years) and control
(n = 105; 56 females; 16.63 years) groups, were tested in the
summers before (T1) and after (T2) the school year on measures of
verbal reasoning (/0), spatial scanning (25), and mental rotation
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(Fig. 1) (26). Sixty-three participants performed these tasks during
fMRI (Geospatial, n = 32; 13 females; 16.36 years; control, n =31;
18 females; 16.60 years). The primary performance outcome was
correct responses per second (Supplementary Materials) (27).
Participants also completed a survey measure of spatial “habits of
mind” (28) before and after the school year. Geospatial and control
groups (and fMRI subgroups) did not differ significantly on any task
at T1. Likewise, the final Geospatial and control groups (and fMRI

verbal reasoning task (Reasoning) modified from the work of Ruff
et al. (31). MMT research has strongly indicated that syllogistic
deduction is supported by mental modeling (32). On each trial,
participants read two premises and determined whether a
subsequent conclusion was valid on the basis of the premises (Fig.
1B). Half of the trials included words that referred to overtly spatial
relations (e.g., “The cow is above the pig”), and half included words
that referred to overtly nonspatial relation trials (e.g., “The cow is

Fig. 1. Study design and transfer results. (A) The longitudinal (pre-post) quasi-experimental in-school design comparing Geospatial students to matched controls at the same
high schools. The paired map images representing the Geospatial curriculum (called “Geospatial Semester”) are an example GIS-based visualization of spatial data
relationships, taken from a student project mapping the distribution of high-speed internet resources within a geographic region. (B) Example stimuli for tasks administered
before and after the school year and longitudinal performance change for these tasks (*P < 0.05 and **P <0.01, ns, not significant). Alternate versions of Reasoning, embedded
figure task (EFT), and mental rotation task (MRT) were counterbalanced across T1 and T2. The spatial habits of mind inventory was administered at
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subgroups) were equated on all background variables that predicted
Geospatial enrollment and other demographic, academic, and
spatial ability variables (table S1), indicating that propensity score
matching was successful (29).

Assessing spatial learning and verbal transfer

We tested whether participation in the Geospatial curriculum
yielded  improvement on  behavioral = measures  via
Group(Geospatial, control)by-Time(T1, T2) analyses of variance
(ANOVAs) covarying academic ability preliminary scholastic
aptitude test (PSAT), scholastic performance grade point average
(GPA), and gender (30) in the full main study sample (N = 182). To
test the MMT-based hypothesis of transfer from spatial education to
verbal reasoning, participants completed a syllogistic deductive
Cortes et al., Sci. Adv. 8, eabo3555 (2022) 10 August 2022

Control

better than the pig”). Consistent with the MMT-based prediction of
verbal-domain transfer, Geospatial students showed greater
Reasoning improvement than controls from T1 to T2 (Group-by-
Time interaction: F4,15 = 5.60, P = 0.019, np* = 0.034; Fig. 1B and
table S3). Geospatial students also showed greater improvement
when nonspatial relation trials (e.g., “better than”) were analyzed
separately

(Fa158=6.65, P=0.011, np* = 0.040; table S4), providing additional
evidence that transfer extended beyond the spatial domain.

Two measures tested spatial learning outcomes related to the
Geospatial curriculum (Fig. 1B). The embedded figure task (EFT)
(25), taken from the work of Walter and Dassonville (33), was
selected to assess spatial scanning because of the theorized role of
spatial scanning in supporting mental modeling (/0). The
Geospatial curriculum aims to develop spatial scanning of maps
(e.g., scanning the spatial features represented on a map to
determine whether they align with spatial features on another map).
30f13
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In EFT, participants spatially scanned features of complex figures
to determine whether simpler target figures aligned with figures
embedded in the complex figures. Consistent with the prediction of
improved spatial scanning ability in the spatial curriculum,
Geospatial students improved more than controls on EFT (Fs 158 =
5.38, P =0.022, np* = 0.033; Fig. 1B and table S2). Although EFT
was overtly spatial and measured a skill emphasized by the
Geospatial curriculum (two-dimensional spatial scanning), students
were not exposed to EFT during the Geospatial course. The
curriculum-driven improvement in EFT can thus be considered near
transfer. Geospatial students also increased more than controls in
self-reported use of spatial thinking strategies on the spatial habits
of mind inventory (Fa,1ss = 10.27, P = 0.002, np* = 0.062; Fig. 1B
and table S6) (28). The Geospatial curriculum thus achieved two
primary learning goals within the spatial domain (improved spatial
scanning and increased spatial habits of mind). In addition,
Geospatial course grades were generally high (78.4% A or A+),
indicating strong curriculum learning (Supplementary Materials).
A third spatial measure, mental rotation task (MRT), taken from
the work of Shepard and Metzler (26, 34), was used to assess
transfer to three-dimensional spatial rotation of objects. Participants
determined whether two images of three-dimensional objects
depicted rotations of the same object. Although three-dimensional
rotation is not strongly related to the content of the Geospatial
curriculum, which focuses on two-dimensional spatial
representations (as in EFT), we hypothesized that the Geospatial
course might improve spatial cognition broadly, and MRT was of
interest because it is implicated in mental modeling (8, 10).
However, MRT performance did not show significant curriculum-
specific improvement (Group-by-Time interaction: Fa,158 = 1.40, P
= 0.239, np? = 0.009; Fig. 1B and table S5), although Geospatial
students improved nominally more than controls. All behavioral
Group-by-Time effects of the Geospatial curriculum remained
significant (all P < 0.044) after experiment-wise correction for

A

multiple comparisons (correcting for all Group-by-Time models)
(39).

Further testing the educational prediction of MMT

We next investigated the MMT-based hypothesis of spatial
curriculum transfer in greater depth. If development of the spatial
processes theorized to support mental modeling actually accounted
for the transfer to verbal reasoning that we observed, then
improvement in verbal reasoning should be related to improvement
in these spatial abilities. We tested this prediction, again controlling
for PSAT, GPA, and gender in all models. Consistent with MMT,
longitudinal change in spatial scanning performance on EFT from
T1 to T2 (OEFT) predicted change in Reasoning performance from
T1 to T2 (OReasoning) for all Reasoning trials (O = 0.288, P <
0.001; table S11) and for the subset of nonspatial relation trials (e.g.,
“better”; O = 0.291, P < 0.001; table S12). That is, the more
students’ spatial scanning improved, the more their verbal reasoning
improved. Furthermore, DEFT mediated the transfer association of
the spatial curriculum to improved reasoning for all Reasoning trials
[12% of total variance explained by mediator (36-38); indirect
effect: P = 0.028; Fig. 2] and nonspatial relation trials separately
(10% of total variance; P = 0.036; fig. S6), further suggesting that
improvement in spatial scanning may have been a cognitive
mechanism by which spatial education improved verbal reasoning.
In addition, supporting MMT, longitudinal change in mental
rotation (OMRT) predicted OReasoning for all trials (O = 0.453, P
< 0.001; table S13) and nonspatial trials separately (O = 0.522, P <
0.001; table S14). That is, the more students’ three-dimensional
rotation improved, the more their verbal reasoning improved.
OMRT was not tested as a mediator because, as noted above, it was
not significantly associated with the independent Group variable
(Geospatial versus control). Simultaneous regression showed that
OEFT and
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Fig. 2. Mediation of transfer by changes in spatial scanning. (A) Mediation of transfer from the spatial curriculum to improved reasoning by the performance changes and
neural changes on the spatial scanning task (EFT) that are shown in (B). The brain images in (B) display clusters in anterior intraparietal sulcus (alPS) and inferior parietal
lobule (IPL) where Geospatial students showed greater longitudinal increases in activation than controls during EFT. The table in (B) displays the path coefficients and indirect
effects for models with each of the three EFT change variables as mediators. (* P < 0.05 and **P < 0.01, ns, not significant).
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OMRT each independently predicted OReasoning (for all Reasoning

trials and for the subset of nonspatial relation trials; all O > 0.149,
all P <0.034; tables S15 and S16).

Spatial curriculum-related neural changes during verbal
reasoning

Having observed transfer from the spatial curriculum to verbal
reasoning performance, we sought to relate this transfer to
curriculum- driven neural changes. We first investigated whether
transfer was accompanied by concurrent longitudinal changes at the
neural level during the Reasoning task, using whole-brain
Group(Geospatial, control)-by-Time(T1, T2) ANOVA in the 63
fMRI participants. This analysis revealed a Group-by-Time
interaction, indicating longitudinal changes in activity during
Reasoning that were greater for students who received the
Geospatial curriculum than for control students in two regions of
PPC: left anterior intraparietal sulcus (alPS; Fig. 3A) and a cluster
extending from left alPS into left superior parietal lobule (alPS-
SPL; table S19). Because we hypothesized that the spatial
curriculum would yield neural change in spatial cognition—
implicated regions, we masked the whole-brain results with the
meta-analytic Neurosynth (39) association test map for the term
“spatial” (henceforth, “SpatialMap”). The more anterior IPS cluster
overlapped with SpatialMap and was thus included in subsequent
analyses. The aIPS-SPL cluster did not overlap with SpatialMap and
was thus subsequently excluded. alPS activity is strongly
implicated in spatial cognition and especially spatial attention (33,
40—42). No changes were greater for control than Geospatial within
SpatialMap (Supplementary Materials). We additionally explored
whether the effects of the spatial curriculum differed by gender, but
Group-byTime-by-Gender ANOVA indicated no three-way
interaction.

MMT posits that spatial cognition resources operate in
conjunction with executive function resources to support reasoning
(10, 13-16). Prior neuroimaging evidence indicates that spatial
cognition—implicated brain regions interact with domain-general
reasoning resources centered in DLPFC to support mental model—
based reasoning (10, 14). Thus, concurrent with our prediction that
the spatial curriculum would improve reasoning (supported by the
above behavioral findings), we predicted that the spatial curriculum
would be associated with longitudinally increased functional
connectivity of DLPFC to SpatialMap during Reasoning. To
represent this prediction, we generated a seed region for
connectivity analysis using a DLPFC region identified by a meta-
analysis of neuroimaging studies of verbal syllogistic deductive
reasoning (the form of reasoning studied here) (/2). Whole-brain
Group-by-Time ANOVA for psychophysiological interaction
(PPI)-based functional connectivity to the DLPFC seed region was
then masked with SpatialMap. Consistent with the MMT-based
prediction, this analysis revealed that Geospatial students increased
more than controls in connectivity of SpatialMap regions to DLPFC
(Fig. 3C, fig. S10, and table S23). No connectivity changes were
greater for control students than Geospatial students. A Group-by-
Time-by-Gender interaction emerged whereby female Geospatial
students showed greater curriculum- related increase in connectivity
to parietal and premotor regions than males (fig. S11 and table S24),
suggesting that this connectivity increase was especially strongly
associated with spatial curriculum— based reasoning improvement
in female students.

Curriculum-related change in activity during
Reasoning in alPS

Curriculum-related change in alPS neural similarity for
Reasoning (spatial vs. nonspatial relations)

T T2
——GSS —Control

Curriculum-related change in SpatialMap-to-DLPFC
connectivity during Reasoning

Cortes et al., St
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Fig. 3. Longitudinal neural changes during Reasoning. Relative to control students, Geospatial students showed greater longitudinal increase in alPS activity within
Neurosynth-based SpatialMap (A), increased representational similarity between spatial and nonspatial reasoning relations in this alPS cluster (B) (*P < 0.05 and **P < 0.01,
ns, not significant), and increased connectivity of SpatialMap to a DLPFC region meta-analytically implicated in syllogistic deductive verbal reasoning (C) (12).
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A pedagogical goal of spatial education is to encourage students
to “spatialize” the information that they encounter (i.e., developing
spatial representations of information even when the information is
presented in nonspatial modalities) (20, 24). As noted above, the
Reasoning task was devised such that half'the trials included overtly
spatial relations (e.g., “above”) and the other half included overtly
nonspatial relations (e.g., better). A primary reason for this was to
enable us to directly test the prediction that the Geospatial
curriculum was associated with “spatialized” representation of
overtly nonspatial relations. We operationalized this prediction
using representational similarity analysis (RSA; Supplementary
Materials). Specifically, we tested whether the neural patterns
associated with overtly nonspatial relation trials became more
similar to the patterns associated with overtly spatial relation trials
in the SpatialMap cluster that showed spatial curriculum-related
change in activity during Reasoning (aIPS; Fig. 3A) and whether
such spatialization was greater for Geospatial relative to control
students. Consistent with these predictions, Geospatial students
showed increased similarity between nonspatial and spatial trials in
alPS (paired ¢ test for T1 versus T2 similarity in Geospatial students:
t =3.43, P =0.001, d = 0.83; Supplementary Materials). Further
analysis of alPS patterns indicated that the change in nonspatial-to-
spatial similarity was primarily driven by changes in the nonspatial
trials (i.e., nonspatial trials becoming more similar to spatial trials).
That is, nonspatial relation trials at T1 were significantly less similar
to nonspatial relation trials at T2 than spatial relation trials at T1
were to spatial relation trials at T2 (¢ =2.44, P = 0.018, d = 0.80).
Group-by-Time ANOVA showed that this increase in nonspatial-to-
spatial similarity in alPS was greater in Geospatial students than in
controls (Fa61 =4.71, P=0.034, np? = 0.072; Fig. 3B and table S25).

To further investigate potential neural mechanisms of change
associated with the effect of the spatial curriculum on verbal
reasoning, we tested whether each curriculum-related longitudinal
neural change that we observed for Reasoning was associated with
change in Reasoning performance (OReasoning). All models again
controlled for PSAT, GPA, and gender. Local change in Reasoning
activity in alPS was not strongly associated with change in
Reasoning performance (O = 0.152, P = 0.238; table S31). RSA-
based nonspatial-to-spatial similarity increase within the alPS
cluster showed a medium effect on OReasoning (O = 0.242),
although this association was marginally nonsignficant (P = 0.062;
table S32). Increased connectivity of SpatialMap to DLPFC showed
a medium effect on OReasoning (O = 0.309), and this association
was significant (P = 0.016; table S30). That is, the more
SpatialMap-to-DLPFC connectivity during Reasoning increased
longitudinally, the more students’ reasoning improved. Subsequent
mediation analyses indicated a medium indirect effect of the
Geospatial curriculum on OReasoning (14% of total variance) (36—
38), although this was not significant (indirect effect, P = 0.088).

Spatial curriculum-related neural changes during spatial
scanning (EFT)

As described above, the spatial curriculum was associated with
improvement in spatial scanning performance on EFT. As above,
our first pass at the imaging data was to investigate whether this
improvement was accompanied by concurrent curriculum-driven
longitudinal changes in neural activity for EFT. Whole-brain
Group(Geospatial, control)-by-Time(T1, T2) ANOVA controlling
for PSAT, GPA, and gender in the 63 fMRI participants identified

Cortes et al., Sci. Adv. 8, eabo3555 (2022) 10 August 2022

longitudinal changes that were greater in Geospatial students than
controls in two PPC regions (Fig. 2): left aIPS (proximate to, but
not overlapping, the change in alPS during Reasoning) and right
inferior parietal lobule (IPL), as well as regions in middle frontal
gyrus, frontal pole, and premotor cortex (fig. S7 and table S18).
Because EFT is a spatial cognition task, we did not mask the results
with SpatialMap to identify regions implicated in spatial cognition.
While all of the regions where longitudinal changes were observed
for EFT have previously been associated with spatial function, this
evidence is strongest for the PPC regions (40, 43—45). No changes
in activity were greater for control students than Geospatial
students, and Group-by-Time-by-Gender ANOVA indicated no
three-way interaction. No connectivity or RSA analyses were
conducted for EFT because there were no relevant hypotheses.

Paralleling the Reasoning task analyses above, we next tested
whether each of these curriculum-related changes for EFT neural
activity was associated with change in spatial scanning performance
(OEFT), again controlling for PSAT, GPA, and gender. Longitudinal
change in each of the observed PPC regions, i.e., change in alPS
activity (OalPS_EFT) and change in IPL activity (OIPL_EFT), was
strongly associated with OEFT (all O > 0.424, all P < 0.001; tables
S26 and S27). That is, the more that activity in each of these PPC
regions increased longitudinally, the more students improved in
spatial scanning performance. The activity changes observed in
frontal and premotor regions were not strongly associated with
OEFT (A1l 0 <0.201, all P> 0.091). IPL and aIPS (as noted above)
have been consistently implicated in spatial attention (40, 43—45),
including the attentional demands of spatial scanning in EFT (33).
Notably, these regions also appear to support attentional demands
of ostensibly nonspatial tasks (e.g., mental modeling—associated
verbal reasoning, numerical cognition, and nonspatial working
memory) (33, 41, 42, 46).

fMRI data for the other spatial ability measure that we adminis-
tered (i.e., MRT) were collected, but analyses of those data were not
included among the primary analyses that sought to identify neural
correlates of spatial curriculum-related change in performance
because, as described above, MRT performance was not
significantly related to the Geospatial curriculum. fMRI analyses
for MRT are reported in the Supplementary Materials (fig. S9 and
tables S21 and S22).

Does neural change predict transfer?

A primary objective of this research was to test whether neural
change predicted learning transfer and, if so, whether neural change
offered predictive value over-and-above traditional performance-
based assessments. We specifically sought to test the brain-based
hypothesis of MMT that development of spatial resources,
especially resources associated with spatial scanning, predicted
improved verbal reasoning. We thus investigated whether neural
changes on the spatial scanning task (EFT) predicted transfer to
Reasoning. All models again controlled for PSAT, GPA, and gender.
Neural change on Reasoning was not considered in these analyses
because the goal was to identify neural changes that could predict
transfer to Reasoning. If the transfer task itself (Reasoning) is
required to obtain a neural measure of transferable learning, then it
is not clear that a meaningfully predictive inference can be made.
Consistent with MMT, both of the spatial curriculum-related
longitudinal changes in PPC activity identified for EFT
(OaIPS_EFT and OIPL_EFT) were strongly associated with change
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in Reasoning performance (OReasoning; All O > 0.492, all P <
0.001; tables S28 to S29). That is, the more that spatial scanning—
related activity in alPS and IPL increased, the more students
improved on verbal reasoning. Recall that, consistent with MMT,
improved spatial scanning performance (OEFT) mediated the
transfer association of the Geospatial curriculum to improved
reasoning. We thus sought to mirror this analysis at the neural level,
testing OalPS_EFT and OIPL_EFT as neural mediators of transfer.
Consistent with the behavioral findings, OalPS_EFT and
OIPL_EFT each mediated the transfer association of the Geospatial
curriculum to OReasoning (OalPS_EFT: 41% of total variance, P <
0.001; OIPL_EFT: 49% of total variance, P < 0.001; Fig. 2). The
changes in EFT activity in prefrontal and premotor regions that
were not associated with OEFT (above) were also not associated
with OReasoning (All 0 <0.124, all P> 0.312).

Does neural change outpredict traditional performance-based
assessments?
Having identified two curriculum-related changes in neural activity
during spatial scanning (EFT) that predicted transfer to verbal
reasoning, we next sought to compare these neural changes
(OaIPS_EFT and OIPL_EFT) to performance-based assessments.
To enable a direct comparison of the predictive value derived from
neural change versus performance-based learning assessment, we
compared EFT neural change versus performance-based learning
on the same EFT task (OEFT). OEFT represented curriculum
learning (specifically, the curriculum-related improvement in
spatial scanning). As described above, OEFT was also highly
predictive of improvement in the Reasoning transfer task
(OReasoning), which was the outcome variable that we sought to
predict in the current analysis. Thus, OEFT represented a strong
performance-based predictor against which to compare neural
change variables. Performance change on another curriculum-
related learning outcome (spatial habits of mind) (24, 28) was also
included as a predictor of transfer, as were change in MRT
performance (OMRT), traditional academic assessments (PSAT and
GPA), and gender. In addition, Geospatial course grades were
included for models considering Geospatial students only. Including
these multiple performance-based measures, in addition to OEFT,
was intended to further increase the rigor of the comparison to
neural change and to reflect that the standard for demonstrating the
value of neuroimaging predictors should be comparison to multiple
performance-based tasks (not just one task) because of the greater
pragmatic burden required for obtaining neuroimaging measures.
Multiple regression models (Supplementary Materials) found the
following: (i) The two neural change predictor variables
(OaIPS_EFT and OIPL EFT) each individually yielded
significantly better model fit for predicting OReasoning than any of
the performance-based assessments in the full neuroimaging sample
and in the sample of Geospatial students only [OEFT, OMRT,
change in spatial habits of mind, PSAT, GPA, Geospatial course
grade (Geospatial students only), and gender; likelihood ratio tests:
all P <0.001]. (ii) The combination of OalPS_EFT and OIPL_EFT
yielded significantly better fit than the best-fitting combinations of
performance-based assessments (in the full neuroimaging sample:
OEFT, OMRT, and PSAT; in Geospatial students only: OEFT,
OMRT, and Geospatial course grades; all P < 0.007; tables S45 and
Cortes et al., Sci. Adv. 8, eabo3555 (2022) 10 August 2022

S46). (iii) Adding OalPS_EFT and OIPL EFT to the best-fitting
combination of performance-based assessments in the full and
Geospatial-only neuroimaging samples significantly improved fit
(all P <0.043; table S49 and S52), and adding either DalPS_EFT or
OIPL_EFT individually improved fit for the full sample (all P <
0.002; tables S47 and S48) and for the Geospatial-only sample in
the case of OalPS_EFT (P = 0.021; table S50) but not OIPL_EFT
(P = 0.066; table S50). Notably, although the neural change
variables were the strongest individual predictors, the strongest fit
among all models was achieved by a model combining the two
neural change variables (OalPS_EFT and OIPL EFT) with three
performance- based assessments (OEFT, OMRT, and PSAT;
adjusted R? = 0.39; table S53).

We further used data-driven ensemble modeling prediction
analysis (Supplementary Materials) (47) to identify the predictor
variables that are most likely, in general, to be predictive of the
outcome variable (in this case, OReasoning); that is, the variables
that contribute the most to prediction across the possible models
represented by the ensemble rather than within an individual model.
We first used an ensemble model “boosting” analysis intended to
optimize model accuracy (Supplementary Materials) (46, 47), again
including OalPS_ EFT and OIPL EFT as the neural predictors,
along with OEFT and the same set of additional performance-based
predictors [OEFT, OMRT, change in spatial habits of mind, PSAT,
GPA, Geospatial course grade (Geospatial students only), and
gender]. The prediction analysis identified the two neural change
predictor variables as the variables that contributed most to
prediction of OReasoning (table S33): OIPL_EFT (accounting for
38% of predictor “importance”) and OalPS EFT (accounting for
28%). Of the performance- based assessment variables, OEFT was
assigned the highest predictor importance (16%) across the
ensemble model. When Geospatial course grade was included as a
predictor (Geospatial students only), the model again indicated
OalPS_EFT (26%) and OIPL_EFT (24%) as the most important
predictors, with OEFT next at 18% (table S35). Additional ensemble
modeling analyses to build “standard” prediction models (tables
S33 to S44) largely converged with the boosting analyses. That is,
data-driven variable selection resulted in the inclusion of neural
change predictors in the most informative model (Akaike
information criterion). Specifically, three variables were selected
for inclusion in the standard prediction model: OIPL_EFT, PSAT,
and OalPS_EFT (Supplementary Materials). Iterating this analysis
with the Geospatial course grades included (Geospatial students
only) resulted in the selection of two variables: OalPS_EFT and
PSAT.

Last, post hoc exploratory analyses investigated whether the
longitudinal neural changes that were associated with improved
Reasoning performance were also associated with each other. As
described above, the change in SpatialMap-to-DLPFC connectivity
was the only longitudinal neural change during the Reasoning task
that was significantly associated with improved reasoning
performance. As also described above, changes in two PPC regions
(OaIPS_EFT and OIPL  EFT) predicted improved reasoning
performance. We thus sought to test whether OalPS EFT and
OIPL_EFT were related to change in SpatialMap-to-DLPFC
connectivity during Reasoning. The OalPS_EFT and OIPL EFT
clusters spatially overlapped (in IPS and IPL) with areas of
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increased SpatialMap-to-DLPFC connectivity during Reasoning,
and both OalPS EFT (O = 0.414, P < 0.001; table S55) and

OIPL_EFT (O0=0.262, P =0.038; table S56) predicted the increase
in SpatialMap-to-DLPFC connectivity. This post hoc finding
provides an additional indication that spatial education may
influence IPS and IPL function in ways that support both spatial
scanning and verbal reasoning (putatively because the same spatial
attentional resources that support spatial scanning also contribute to
verbal reasoning, including via communication with DLPFC).
Relatedly, as well as post hoc, we tested whether the longitudinal
changes in alPS activity that we observed separately in EFT and
Reasoning were associated with each other and found that they were

(0 =0.340, P = 0.0006; table S57).

DISCUSSION

Spatially based accounts of human cognition (e.g., MMT) (9, 48)
suggest the educational hypothesis that fostering improvement in
spatial cognitive processes might improve abilities beyond the
spatial domain, including verbal reasoning. Consistent with this
prediction, a spatial STEM curriculum in the present study
transferred to an untrained verbal reasoning task that is strongly
linked to mental modeling. Furthermore, the more students
improved on spatial scanning and mental rotation, abilities that are
specifically theorized to support mental modeling (70), the more
they improved on verbal reasoning, and improvement on spatial
scanning mediated the association of the spatial curriculum to
improved verbal reasoning. Likewise, at the neural level,
longitudinal fMRI detected spatial curriculum—related increases in
the activity of spatial cognition— implicated brain regions (alPS and
IPL) during spatial scanning (EFT). These neural changes were
associated with improvement in spatial scanning performance and
mediated the association of the spatial curriculum to verbal
reasoning. These findings extend evidence for mental modeling as
a basis of human reasoning (8) by experimentally intervening to
improve spatial ability as a means of improving verbal ability and
indicate that MMT can be translated to real-world STEM
classrooms via spatial education. The present evidence suggests
further exploration of spatial scanning in particular as a trainable
ability to support reasoning in educational and other contexts.
Although we did not find curriculum-specific effects on MRT,
mental modeling involves multiple aspects of spatial cognition
(including both spatial scanning and mental rotation) (8), and it is
possible that a curriculum focused on three-dimensional objects and
rotation might have produced greater improvements in MRT
performance.

Addressing research priorities noted in the NRC, OECD, and
AEI reports (17, 18, 21), the present work provides evidence for the
real-world efficacy of an in-school implementation of spatial
education and empirically indicates plausible cognitive and neural
mechanisms of change. With respect to efficacy, improved spatial
scanning, spatial habits of mind (another outcome strongly linked
to STEM achievement) (28), and verbal reasoning represent spatial
curriculum— driven gains both within and beyond the spatial
domain. This evidence was strengthened by the use of propensity
scoring methods to reduce selection bias. Prior research has
demonstrated transfer effects from implementations of spatial
training (49-52); however, these studies have assessed transfer to
measures of nonverbal cognition, including spatial tasks, such as
mental rotation (49, 50), and mathematics, such as numerical
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processing and geometry (57, 52). That work is thus distinct from
the present evidence of transfer from the spatial curriculum to verbal
reasoning. Regarding mechanisms of change, the above-noted
findings implicate curriculum-related cognitive and neural changes
in spatial scanning as plausible mechanisms. Additional evidence
indicated that SpatialMap connectivity to a reasoning-associated
DLPFC region increased longitudinally in Geospatial students
relative to controls. The amount of increase in this connectivity
predicted the amount of improvement in reasoning. These findings
point to increased SpatialMap-to-DLPFC communication as a
neural change that may enable better reasoning, putatively because
this communication facilitates greater contribution of spatial
resources to reasoning (e.g., spatial attentional resources linked to
IPL and IPS). Female students showed greater curriculum- driven
increases in connectivity than males, suggesting that this
connectivity may be especially important for the effects of spatial
education in girls. This is noteworthy with respect to previous
evidence indicating the potential of spatial education to support
female students’ participation and achievement in STEM (53),
particularly given the relationship of both spatial abilities and
reasoning to STEM achievement (/9). In addition, evidence that the
spatial curriculum was associated with changes in activity and
representational similarity in IPS during reasoning, although these
changes were not associated with task performance, further suggests
that spatial education influences the function of IPS, which is
associated with diverse spatial cognition—related abilities (33, 40—
42). In the context of growing evidence and enthusiasm for the
importance of spatial cognition among education researchers,
especially in STEM (77, 18, 48), which has not yet permeated
education policy and practice (/7, 18, 21), the classroom-based
evidence obtained in the present study provides new empirical
support for the adoption of spatial education.

Interpretation of the present results with respect to transfer to
reasoning in real-world contexts is constrained by the use of a
traditional laboratory test of verbal reasoning as our reasoning
transfer measure (rather than an assessment of real-world
reasoning), although syllogistic verbal reasoning of the kind studied
here has been shown to predict real-world academic and
professional achievement across a variety of domains (e.g., reading,
chemistry, nursing, and medicine) (54). Note that, while all
Reasoning trials were verbal, only half (20 trials) involved overtly
nonspatial relations (e.g., better), limiting the number of trials upon
which the most direct evidence regarding transfer beyond the spatial
domain is based.

The present research shows proof of principle for using in-school
neural change to predict learning transfer more accurately than
traditional ~ performance-based assessments. We predicted
improvement on the Reasoning transfer task from neural change on
a separate task (EFT; reflecting the MMT-based hypothesis that
spatial scanning supports mental model reasoning) (/0). Direct
model comparisons and ensemble modeling prediction analysis
showed that EFT neural changes in IPL and IPS were stronger
predictors of transfer than performance-based academic and
cognitive assessments (even when comparing neural versus
performance change on the same EFT task). Notably, however, the
best prediction of learning transfer was achieved by combining
neural changes with traditional assessments. These findings indicate
that neural change has the capacity to improve assessment of the
transferability of curricula and suggest that the most effective
approaches may use measures of neural change to bolster (but not
replace) traditional assessments.
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Assessing the transferability of curricula used for classroom
teaching can be accomplished on relatively small scales, including
the small-scale development of the Geospatial curriculum by
researchers and high school educators in Virginia (24). Nonetheless,
the curricula that emerge from these assessment efforts can have
broad impacts (5—7). Leveraging neural changes that predict
transferability to enable neurally informed curriculum assessment
thus has longterm promise as a means by which neuroscience may
inform education by informing curriculum design (e.g., by
identifying existing curricula that are likely to achieve transfer,
identifying changes to curricula that can improve transfer, and
informing development of novel transferable curricula) while
avoiding the practical and ethical limitations of large-scale
neuroimaging (i.e., by assessing curricula rather than individual
students). At a more basic implementation level, fMRI detection of
curriculum-specific, in-school longitudinal changes in neural
activity, connectivity, and representational similarity in the present
study supports the efficacy of longitudinal fMRI to study learning
of specific curricula in real-world K-12 classroom environments.
This suggests further potential for longitudinal fMRI to help address
the gap between real-world school settings, where learning is
perhaps most consequential, and laboratory settings, where
longitudinal neural measurement is regularly applied to specific in-
laboratory curricula/regimens. Insightful work on first grade
attendance/exposure and an intensive Law School Admission Test
(LSAT) preparation course in college classrooms (55) and
neuroimaging during lectures viewed remotely by college students
outside the classroom (56) have previously suggested the potential
efficacy of longitudinal fMRI, although they have not sought to
measure curriculum-specific neural change in real-world K-12
classroom environments.

An important limitation/caveat to consider in such work,
including in the current study, is that, when neural change is
accompanied by change in behavioral performance, it may be
difficult to fully rule out effects of factors that influence
performance (e.g., difficulty/ effortfulness) as opposed to the
hypothesized changes in neural recruitment that reflect curriculum
learning. While we cannot conclusively rule out such potentially
confounding influences, these influences do not appear likely to
account for the differences in activity that are the focus of the
current study. In particular, performance improved from T1 to T2 in
Geospatial students (suggesting less difficulty at T2), yet activity
increased in specific parietal regions heavily associated with spatial
cognition. By contrast and speaking in very broad terms, decreased
difficulty is generally associated with decreased activation (57, 58),
and activation did show more global decreases from T1 to T2
(Supplementary Materials). In addition, the regions that we focused
on do not appear to be strongly reflective of task difficulty in general
(57-60). Furthermore and in our view, the MRI analyses of greatest
interest in the present study (i.e., analyses leveraging neural data to
predict transfer) appear to be less susceptible to potential
interpretive confounds related to task performance. In particular, we
found that EFT neuroimaging outcomes (e.g., changes in activation
in alPS and IPL during EFT) predicted curriculum- related far
transfer to performance on a separate transfer task (Reasoning) even
when controlling for EFT behavioral performance (i.e., controlling
for the performance that occurred for this task in the scanner while
the MRI data were being collected). The differences in MRI data
from T1 to T2 during EFT provided much stronger prediction of
transfer to Reasoning than the behavioral data on the EFT task in
both the conventional regression models and the ensemble modeling
Cortes et al., Sci. Adv. 8, eabo3555 (2022) 10 August 2022

prediction analyses. These results suggest that the differences that
we observed in imaging data are meaningfully distinct from the
behavioral performance and are unlikely to be simply attributable to
differences in performance.

While neural change—based prediction of learning transfer
suggests future educational applications, determining how broad or
specific such applications might be will require investigating the
breadth of transferability that neural changes, especially in spatial
cognition— related regions, can predict. Whereas this proof-of-
principle study focused on spatial scanning in EFT (near transfer)
and more distant transfer to verbal Reasoning, it seems unlikely that
the curriculum- related neural changes observed here would
uniquely influence these two tasks. Testing wider arrays of transfer
tasks to determine the extent to which neural changes reflect
development of generalizable underlying abilities (i.e., abilities that
are not task-specific) can determine the more global value of
neuroimaging-based transfer prediction. Neural changes in spatial
cognition—implicated brain regions are plausible candidates to
predict broad transferability. Transfer from spatial training to math
has been recently observed (61), and spatial resources, including
spatial attentional resources associated with IPL and IPS. appear to
support diverse forms of cognition (e.g., planning, creativity,
numeracy, causal understanding, linguistic representation, and
physics concept knowledge), many of which are linked to mental
modeling (8, 46, 62—64).

MATERIALS AND METHODS

The Geospatial course

The Geospatial course (24) was created as a partnership between
public high schools in Virginia and the Integrated Science and
Technology Department at James Madison University (JMU).
Students take the course for either 45 min daily or 90 min every
other day and receive college credit from JMU. JMU faculty
members mentor the high school teachers, providing technical
support, teaching and observing classes, and assisting in mentoring
students on their course projects. The Geospatial Course curriculum
is designed to enhance spatial thinking skills, including spatial
scanning, and foster increased use of spatial thinking strategies
through the use of geospatial technology such as GIS (e.g., ArcGIS;
www.arcgis.com). More information about the Geospatial Course is
provided at www.isat. jmu.edu/geospatialsemester/. This study
(protocol 2014-0725; title: “Cognitive and neural indicators of
school-based improvements in spatial problem solving”) was
approved by the Georgetown University Institutional Review
Board.

Behavioral tasks Reasoning

On each Reasoning trial [see fig. S2 and see the work of Ruff et al.
(31)], participants indicated by keypress (“yes”/*no”) whether a
conclusion sentence followed logically from two preceding premise
sentences. Of 60 total trials, 40 were reasoning problems, 20
involving spatial relations (e.g., above/“below”) and 20 involving
nonspatial relations (e.g., better/“worse”). The remaining 20 trials
were matching problems, which required participants to determine
whether the conclusion exactly matched either of the two premises.
Following Ruff et al. (31), these matching items served as a control
condition for neuroimaging analyses and were not included in
behavioral performance analysis. For each trial type, half were true
and half were false. Once the conclusion sentence appeared,
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participants had up to 8 s to respond (Supplementary Materials; fig.
S2 displays complete timing). Behavioral performance scores for
the Reasoning task (and all behavioral tasks) were computed as the
number of correct responses per second (rate correct score;
Supplementary Materials) (65). Table S8 displays descriptive
statistics for Reasoning. Results of Group(Geospatial, control)-by-
Time(T1, T2) ANOVA are shown in table S3.

Embedded figure task

On each EFT trial [fig. S3; see the work of Walter and Dassonville
(33)], participants were given up to 10 s to respond by keypress
(yes/no) to indicate whether a simple figure could be found within
a more complex figure. There were 30 total trials (20 true and 10
false). Task trials were compared to baseline fixation in the fMRI
analyses, as in previous implementations (66, 67). Descriptive
statistics for EFT are shown in table S7. Results of
Group(Geospatial, control)by-Time(T1, T2) ANOVA are shown in
table S2. Mental rotation task

On each MRT trial [fig. S4; see the work of Shepard and Metzler
(26, 34)], participants were given up to 7 s to indicate by keypress
(“Yes”/“No”) whether two images depicted rotations of the same
three-dimensional object. Of 84 total trials, each of three different
angles of rotation (50°, 100°, and 150°) was used 24 times.
Following the work of Voyer and Hou (68), we used a 2:1 ratio of
true (same object) to false (different objects) trials across all trial
types. Consistent with prior work (45), fMRI analysis contrasted
true trials versus control trials (0° of rotation). Descriptive statistics
for MRT are shown in table S9. Results of Group(Geospatial,
control)-by-

Time(T1, T2) ANOVA are shown in table S5.

Spatial habits of mind inventory

The spatial habits of mind inventory (28) is a 28-item self-report
survey assessing the extent to which individuals engage in essential
dimensions of spatial thinking strategy use, including pattern
recognition, spatial description, visualization, and spatial concept
use. Participants rate (1 to 5) how well statements about spatial
thinking strategy use apply to them, and a total sum score is
calculated (highest possible score = 140). While other behavioral
measures were administered at T1 and T2, spatial habits of mind
inventory was administered at pretest and T2. Descriptive statistics
for spatial habits of mind inventory are shown in table S10. Results
of Group(Geospatial, control)-by-Time(T1, T2) ANOVA are shown
in table S6.

Statistical analysis

All statistical analyses were computed in RStudio (69) and SPSS
version 27 (70). Ensemble modeling prediction analyses were
computed via Automatic Linear Modeling in SPSS 27 (47).
Hierarchical modeling was not an appropriate approach for
analyzing our data, as it is generally advised to have at least 10 level
2 observations (i.e., schools) when running HLM or MLM, with
some research estimating that 50 or more clusters are necessary for
accurately estimating effects (7/—74). Data in the present study
were from five schools (each with only one classroom in which the
Geospatial curricullum was taught), which is below the
recommended 10 level 2 observations. See the Supplementary
Materials for more detailed descriptions of analyses.

fMRI data acquisition

Imaging acquisition was performed on a Siemens 3T TIM Trio MRI
scanner. All task fMRI data were acquired from T2*-weighted
Cortes et al., Sci. Adv. 8, eabo3555 (2022) 10 August 2022

echoplanar imaging sequences (37 3.0-mm transversal slices; 64 x
64 matrix; repetition time = 2000 ms; echo time = 130 ms; field of
view = 192 mm; 3.0 mm by 3.0 mm by 3.0 mm voxels; flip angle =
90°). To account for magnet stabilization, the first two volumes
were excluded from analysis. High-resolution T1-weighted
anatomical images (176 1.00-mm slices; 256 x 256 matrix;
repetition time = 1900 ms; echo time = 2.52 ms; field of view = 250
mm; 1.0 mm by 1.0 mm by 1.0 mm; flip angle = 90°) were obtained
for registration of functional data.

fMRI data preprocessing

All fMRI data processing was carried out using FEAT (fMRI Expert
Analysis Tool) version 5.98, part of FSL (FMRIB’s Software
Library). General linear model-based analysis in FEAT uses FSL
tools including Brain Extraction Tool (BET) (75), an affine
registration tool, FMRIB’s Linear Image Registration Tool (FLIRT)
(76, 77), and a motion correction tool based on FLIRT (MCFLIRT)
(76). FEAT carries out standard-space registration after time series
statistics. FSL time series statistics correct for temporal smoothness
by applying prewhitening (78). The following prestatistics
processing was applied: spatial smoothing using a Gaussian kernel
of full width at half maximum of 5 mm, grand-mean intensity
normalization of the entire four-dimensional dataset by a single
multiplicative factor, and highpass temporal filtering (Gaussian-
weighted least-squares straight line fitting, with sigma = 50.0 s).
Registration to high-resolution structural and, subsequently,
standard space images was performed using FLIRT.

fMRI data analysis Whole-brain

activation analysis

At the individual subject level, a design matrix was fitted to each
subject’s data as part of a general linear model with each condition
modeled as events with a specified duration (i.e., the time from
stimulus onset to onset of the response) convolved with a canonical
hemodynamic response function. This was done separately for each
task: EFT, MRT, and Reasoning. For all three tasks, we used a
randomized, event-related design in which duration of each trial
depended on how fast the participant responded during the response
period (meaning that each trial for each participant was modeled in
accordance with their actual onset and duration). At a group level,
differences in whole-brain activation between the Geospatial and
control groups were compared at both sessions (T1 and T2) using a
mixed ANOVA model (Group-by-Time) for each of the above-
indicated contrasts. This group level analysis was performed using
FMRIB’s local analysis of mixed effects (79). Group-level analyses
were conducted using FLAMEIL, a mixed-effects model
implemented in FSL. FLAME] is a relatively conservative method
for multiple comparisons correction, which effectively mitigates
inflated false positive rates (80). Corrections for multiple
comparisons used Gaussian random field theory (voxel level: Z >
3.1, P < 0.001; cluster level: family wise error (FWE)-corrected
threshold: P < 0.05). We subsequently masked the whole-brain
results with the meta-analytic Neurosynth (39) association test map
for the term spatial (SpatialMap). Region of interest analysis

We used region of interest (ROI) analysis to extract levels of
activation in the clusters that we identified in the whole-brain
Group-byTime analyses for EFT and Reasoning. This analysis was
conducted using FSL’s featquery tool
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/
UserGuide#Featquery - FEAT Results_Interrogation). First, we
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used the fslmaths tool to create masks of the clusters (from the
corresponding Group-by-Time interaction Z statistic image).
Second, we registered these cluster masks to the individual subject
level. Third, we used the FSL featquery command to extract mean
activation levels in clusters of interest during corresponding
contrast. Mean percent signal change in activity was calculated at
both time points (T1 and T2), where change in activation was
calculated as T2 activation minus T1 activation. Functional
connectivity analysis

To examine changes in functional connectivity, we used PPI
connectivity analysis in FSL (87). We used a standard PPI analysis
procedure (81, §2) that explicitly models and controls for overall
task activation and hence models effective rather than synchronized
task- related coactivation (87). We selected an a priori left DLPFC
seed region from a neuroimaging meta-analysis of syllogistic verbal
deductive reasoning (the form of reasoning used in the present
reasoning task) (/2) and constructed a 10-mm sphere around this
peak voxel at the following Montreal Neurological Institute (MNI)
coordinates: X = —45, Y= 35, and Z = 10. Our PPI analyses used
three regressors: (i) a physiological variable representing the
deconvolved time series within the left PFC seed region, (ii) a
psychological variable representing the two task conditions,
Reasoning versus Matching, and (iii) a PPI term that represented the
cross-product of the first two regressors. Whole-brain Group-by-
Time analyses of functional connectivity were performed as
described above in the “Whole-brain activation analysis” section.
We then extracted the degree of connectivity from the left DLPFC
seed to brain regions overlapping with the SpatialMap map for each
participant at both time points. Analyses were then completed in a
similar fashion to the ROI analyses: We registered the masks to the
individual subject level, extracted the mean level of connectivity for
each participant at both time points and created a change variable
for each SpatialMap- toDLPFC analysis. This variable, which
reflects change (from T1 to T2) in connectivity from SpatialMap
regions to left DLPFC, during the Reasoning versus Matching
contrast, was then used in all relevant correlation, regression, and
mediation analyses. Representational similarity analysis

RSA (83) was applied within the SpatialMap cluster (alPS) in which
Geospatial students showed increased activity during reasoning. We
used the fslstats tool to extract mean activation levels from each
voxel in the aIPS cluster during three conditions: spatial reasoning,
nonspatial reasoning, and matching (control). For each of these
conditions, activity from the baseline fixation condition was
subtracted from task-related activity, such that each condition was
a contrast (e.g., spatial reasoning > fixation baseline). Controlling
for individual baseline activity in this manner is a statistical means
of reducing the influence of elements of no interest, such as shared
vascular, neural, and imaging elements often found in adjacent
voxels (84). Then, Pearson’s partial correlations were computed
between voxel activity (within the aIPS cluster) during spatial
reasoning and nonspatial reasoning while controlling for activity in
the matching control condition. This was done for each participant
at both T1 and T2. Because  values are non-normally distributed, »
values were next transformed using Fisher’s z transformation. All
relevant statistics and analyses regarding this RSA were then
computed using these z values as inputs for each participant at T1
and T2.
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