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The COVID-19 pandemic has resulted in more than 440 million confirmed cases globally and almost 6 million
reported deaths as of March 2022. Consequently, the world experienced grave repercussions to citizens’ lives,
health, wellness, and the economy. In responding to such a disastrous global event, countermeasures are often
implemented to slow down and limit the virus’s rapid spread. Meanwhile, disaster recovery, mitigation, and
preparationmeasures have been taken tomanage the impacts and losses of the ongoing and future pandemics.
Data-driven techniques have been successfully applied to many domains and critical applications in recent
years. Due to the highly interdisciplinary nature of pandemic management, researchers have proposed and
developed data-driven techniques across various domains. However, a systematic and comprehensive sur-
vey of data-driven techniques for pandemic management is still missing. In this article, we review existing
data analysis and visualization techniques and their applications for COVID-19 and future pandemic man-
agement with respect to four phases (namely, Response, Recovery, Mitigation, and Preparation) in disaster
management. Data sources utilized in these studies and specific data acquisition and integration techniques
for COVID-19 are also summarized. Furthermore, open issues and future directions for data-driven pandemic
management are discussed.
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1 INTRODUCTION

Pandemics, the epidemics of infectious diseases, are considered a type of disaster, i.e., anthro-
pogenic hazards caused by human action or inaction, leading to unanticipated outcomes and losses.
Compared to natural hazards such as hurricane/typhoon, flood, and earthquake, pandemics could
affect many more regions and people. For example, the “Spanish” influenza pandemic in 1918
was estimated to cause the deaths of at least 50 million people all over the world [1]. Severe
Acute Respiratory Syndrome (SARS) in 2002 led to less than 1,000 deaths but around USD 30–
100 billion in economic losses [2]. Although human society has become more capable in managing
pandemics than a hundred years ago, there are still many gaps in capability, some of which de-
mand the investigation of novel technologies [3]. Unfortunately, we were hit by the Coronavirus
disease 2019 (COVID-19) global pandemic in late 2019, before we were able to be more prepared.
The Pathogen of COVID-19 is a variant of coronavirus, i.e., SARS-CoV-2. It is highly contagious

and very difficult for public officials to curb [4]. Thus, the World Health Organization (WHO)

announced that COVID-19 had caused a global pandemic [5]. Since the outbreak, COVID-19 has
resulted in grave repercussions globally to people’s lives, health, and the economy. As of June 2021,
there are more than 180 million confirmed cases and almost 4 million reported deaths caused by
COVID-19worldwide [6]. The elderly and peoplewith underlyingmedical conditions such as heart
difficulties, diabetes, and hypertension are the most vulnerable due to their increased likelihood
of developing severe and deadly illnesses when being infected. Meanwhile, the world economy
had suffered the most severe recession since the Great Recession in 2008, and the International
Monetary Fund has estimated the 2020 global GDP growth contraction at −3.5%, i.e., trillions of
dollars of reduction in GDP [7].
In response to a global pandemic with such an unanticipated large amount of cases, counter-

measures are necessary to mitigate the effect of COVID-19, manage its contagions, and begin
recovery. Social distancing policies such as quarantine and lockdowns have been deployed to re-
duce the speed of virus spread [8]. These policies focus on restricting human-to-human contacts,
protecting vulnerable communities, and allowing the development of therapeutics and vaccines
simultaneously [9]. While these countermeasures are effective in slowing down the spread, they
could result in adverse impacts on people’s livelihood, mental health, and the economy. Some of
these unfavorable consequences may include the permanent closure of small businesses, an in-
creased rate of unemployment, and loss of income to maintain basic living expenses [10]. The
complex consequences of social distancing policies make it difficult to make optimal decisions for
pandemic response, management, and recovery.
Meanwhile, 200 vaccines have been in various stages of development from teams around the

world. Among all candidates, 50 vaccines have conducted trials on humans, and there are 18 of
them under Phase III trials to evaluate their efficacy. Many vaccines have achieved satisfactory
efficacy rates [11] and are now being used in practice. However, vaccination requires more than
research and development. To achieve immunity for the global population, 10 to 11 billion high-
quality and safe doses need to be manufactured to effectively interrupt the transmission of COVID-
19. However, current manufacturing capacity is estimated to be 2 to 4 billion doses per year [12].
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Fig. 1. Disaster management cycle and data-driven techniques for COVID-19 and future pandemics.

This limitation raises more issues, such as vaccination access and equity, dissemination, and so
on [11]. To resolve these problems and provide practical solutions, further research is necessary.
The disaster management cycle [13] can be leveraged to separate pandemic management into

four phases: Response, Recovery, Mitigation, and Preparation, as shown at the top of Figure 1. In
each phase, a series of decisions are made to reduce pandemic consequences based on available
information.
Right after the occurrence of infected cases, it is necessary to begin the Response phase by un-

derstanding the immediate risks and threats to people from the pandemic. As the Response phase
progresses, the immediate and acute issues are resolved. Thereafter, in the Recovery phase, the
focus moves to counteracting the negative impact of the pandemic and bringing society back to
normal. Strategic plans to address the severe impacts of the pandemic should also be developed in
this phase. In the Mitigation phase, it is necessary to take action to protect people and their prop-
erty. Steps should also be taken to reduce vulnerability to future pandemics as well. The Prepa-

ration phase requires that the population be educated and trained based on a firm understanding
about the disaster and its impacts. Global understanding is necessary to be prepared for future
pandemics. A global pandemic such as COVID-19 could create multiple outbreaks in various ar-
eas and at different time periods after discovery (e.g., the influenza pandemic becomes seasonal
after it is controlled for decades). Pandemic management requires continuous effort to respond to
ongoing outbreaks, recover from previous outbreaks, and mitigate and prepare for the future.
Data science and data-driven techniques such as machine learning, Reinforcement Learn-

ing (RL), Deep Neural Network (DNN), and Natural Language Processing (NLP) have been
successfully applied to many domains in recent years [14]. These techniques provide powerful
tools that process, analyze, synthesize, and perceive various types of data. As shown in Figure 1,
data-driven techniques can be applied to support decision-making for critical pandemic manage-
ment tasks throughout the disaster management cycle, supported by data generated during pan-
demics and disaster management processes. Meanwhile, data visualization techniques can help
visualize both the data and outcomes of pandemic management tasks, as well as assist in Miti-

gation and Preparation. Useful information for battling COVID-19 [15], along with large volumes
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Table 1. Summary of COVID-19 and Pandemic Management Tasks Using Data-driven Techniques

Section Pandemic Management Tasks Related Phases Main Related Datasets

Section 2.1 Transmission Modeling and Prediction All the phases Epidemiology & Mobility

Section 2.2 Economic and Social Impact Estimation All the phases
Media, Economic &

Demographic

Section 2.3 Public Awareness Enhancement Preparation Epidemiology & Media

Section 2.4 Outbreak and Early Case Detection Response Media & Personal Health

Section 2.5 Contact Tracing Response Mobility

Section 2.6 Resource Allocation Mitigation & Response
Epidemiology, Mobility &

Demographic

Section 2.7 Mental Stress Relief Mitigation & Response Large-Scale Text Corpus

Section 2.8 Policy Recommendation All the phases
Epidemiology, Policy &

Mobility

of data collected by sensors and produced by users [8, 16, 17] are now available. The availability
of data and data-driven techniques has triggered plenty of research efforts towards developing
data-driven methods to mitigate COVID-19 transmission, facilitate pandemic management, and
support decision-making processes.
This article summarizes and emphasizes the contributions of data science and data-driven tech-

niques for modern pandemic management. We aim to help motivate further research to bridge the
gaps in responding to and preparing for ongoing and future pandemics. Existing data-driven tech-
niques for pandemic management have been surveyed, especially those using recent advances in
big data, machine learning, deep learning, and artificial intelligence. In total, 152 and 22 papers
acquired from Web of Science and arXiv/medRxiv databases, respectively, have been included
and discussed in this survey (some of them can also be retrieved from Scopus, Elsevier, IEEE,
and ACM databases as well). These papers were selected based on their quality and relevance
to both pandemic management and data-driven techniques. Different from the existing surveys
regarding COVID-19 management [15, 18–21], this article summarizes the data-driven techniques
for COVID-19 management from a unique perspective, i.e., the disaster management cycle (See
Figure 1). A broad range of applications in pandemic management is introduced and discussed
in this article. Moreover, instead of solely discussing the data-driven techniques or the pandemic
management, the data-driven techniques and the related data sources are presented with their
connections to the management process.
The rest of this article is organized as follows: Section 2 discusses existing data analysis tech-

niques for COVID-19 and pandemic management, organized by their applications. Data visual-
ization tools and methods for COVID-19 and pandemic management are presented in Section 3.
Thereafter, existing datasets for COVID-19 and pandemic management and continuous efforts to
collect data and monitor the status of COVID-19 are summarized in Section 4. Section 5 introduces
several open issues that emerge in COVID-19 management, as well as a few identified future re-
search directions for data-driven pandemicmanagement. Finally, Section 6 summarizes the current
data-driven COVID-19 and future pandemic management.

2 DATA ANALYTICS FOR PANDEMIC MANAGEMENT

In this section, we discuss data analytics for the Response, Recovery,Mitigation, and Preparation of
COVID-19 and future pandemics. We review several critical pandemic management applications
and tasks, including transmission modeling and prediction, economic and social impact estima-
tion, policy suggestion and recommendation, public awareness enhancement, and others. Since
data-driven techniques for these applications have been continuously developed and are frequently
published, we mainly review the most relevant high-impact papers. Table 1 summarizes existing
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Fig. 2. Illustration of three types of infectious disease transmission models.

COVID-19 and future pandemic management tasks that use data analysis techniques, their roles
in the disaster management cycle, and the related datasets used to support them.

2.1 Transmission Modeling and Prediction

Modeling and predicting the transmission of infectious diseases is critical for preventing, control-
ling, and managing pandemics. It can help people grasp the dynamic transmission characteristics
of infectious diseases, along with simulate and predict the spread under different scenarios. Based
on thorough investigation, we separate the data-driven modeling and prediction approaches into
two approaches. One is the mechanistic approach, where predefined mathematical models or
rules formulate the transmission dynamic. The data (Table 2 Main datasets) mainly accounts for
model initialization and the estimation of critical transmission parameters. In light of the model-
ing scales, i.e., the overall, regional, and individual level, this approach can be further divided into
three types: Classical Compartmental Model (Section 2.1.1), Meta-population Model (Section 2.1.2),
and Agent-based Model (Section 2.1.3), respectively, as illustrated in Figure 2. The other is the
machine learning approach (Section 2.1.4), which focuses on perceiving and modeling implied
correlations and dependencies of data to simulate or predict the future development of infectious
diseases. Note that in Tables 2 and 3, for brevity, we use different abbreviations to represent some
data types: Epidemiological data (EPI.), Mobility data (MOB.), Demographic data (DG.), So-

cioeconomic data (SE.), Policy data (POL.), Temperature data (TEMP.).

2.1.1 Classical Compartmental Model. The classical compartmental models consider the spread
of infectious diseases from an overall perspective. It divides the population into several mutu-
ally disjoint compartments, representing different health statuses. During simulation, people flow
between compartments, making the population size of each status vary over time. Such a pro-
cess is formalized by several differential equations, which depict the transition order and rate
between statuses. Figure 2(A) illustrates three typical compartmental models: SR, SIR, and SEIR,
which are widely used during COVID-19 [22–25]. Taking the SEIR model as an example, it in-
cludes four compartments that depict the health status: Susceptible (S), Exposed (E), Infected

(I), and Recovered or death (R). Three transmission parameters quantify the rate of transition
in the unit of time: spreading rate (S->E), incubation rate (E->I), and recovery/death rate (I->R).
During COVID-19, various modified compartmental models with different compartment design
schemes also emerged, e.g., Reference [24] took into account the super-spreaders, and Reference
[25] considered the quarantine.
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Table 2. Summary of Mechanistic Models for COVID-19 Transmission Modeling and Prediction

Category Ref. Compartments Highlighted Task
Main Datasets

EPI. MOB. DG. SE. POL.

Classical

Compartmental

Model

[22] SIR Modeling � �
[23] SEIR Simulation �
[24] Extended SEIR Modeling �
[25] Extended SEIR Modeling �

Meta-population

Model

[26] SEIR Simulation � � �
[27] SEIR Simulation � � �
[28] Extended SEIR Modeling � � �
[29] Extended SEIR Modeling � � � �
[30] Extended SEIR Simulation � � � �

Agent-based Model

[31] SEIR Simulation � �
[32] Extended SEIR Simulation � � �
[33] Extended SEIR Simulation � � �
[34] Extended SEIR Simulation � �
[35] User-defined Simulation � �
[36] Extended SIR Simulation � � �

To describe the observed infection condition with the epidemic model, the model parameters
need to be estimated first. Afterwards, it is possible to conduct retrospective analysis of real-world
propagation. For instance, by utilizing a least-square-based method with Poisson noise, Kuniya
et al. estimated the transmission parameters of the SEIR model, revealing the early transmission
dynamics of Japan [23]. Using the historical epidemical data as priors, Dehning et al. combined the
SIR model with Bayesian inference to detect the change points of spreading rate over time [22].
The estimated results matchedwell with the announcement time of government interventions, and
the corresponding spreading rate quantified the effect of interventions. According to the estimated
parameters, future transmission can be simulated/predicted. For example, holding the parameters

constant, References [23, 25] predicted the future magnitude of the epidemic for India and Japan,
respectively. Different from fixed parameters directly, Reference [22] used samples from the pa-
rameters’ posterior distribution to predict the future scenarios. Moreover, by manually modifying

the model parameters, the expected effects of interventions under different intensities were also
simulated. In particular, Chatterjee et al. evaluated the potential impact of different quarantine
compliance on the healthcare system [25].
The classical compartmental model has shown great modeling and prediction performance on

global scale. Additionally, benefiting from the model’s simplicity, the computation is fast. However,
it ignores the spatial distribution variation of individuals, treating all people homogeneous and
uniformly mixed. Therefore, it could not capture the disease’s spatial dissemination process.

2.1.2 Meta-populationModel. Themeta-populationmodel, as shown in Figure 2(B), is a general
term for the spatially extended compartment model. It treats the target population as spatially dis-
tinct patches (i.e., administrative regions in real-world scenarios), resorting to inter-patch mobility
for explaining the spatial spread process. However, the inner-patch transmission model remains
unchanged, still using the compartment model.
Table 2 shows the state-of-the-art works using this model, which adopt various compartment

classes and multiscale mobility data to accommodate different research objectives. Here, we sum-
marize the objectives into three categories. (a) Estimating the complex and variable epidemic

characteristics of COVID-19. Specifically, Li et al. divided the infection compartment of SEIR into
documented (i.e., confirmed or observed infections) and undocumented. The infection compart-
ment is then combined with inter-city migration data to investigate the infectivity and impact of
undocumented cases for different outbreak stages [28]. An ablation test towards mobility data was
performed to demonstrate the superiority of spatial models versus single-location ones. Similar to
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the goal of Reference [28], Gatto et al. considered ex-onset transmission and post-onset transmis-
sion at different symptom severity levels in the compartment design to examine the corresponding
differences in transmissibility [29]. It is noteworthy that in light of the uncertainty of case report-
ing (e.g., untested cases), Reference [29] selected indicators like the number of hospitalized, death,
and discharged, to estimate the transmission parameters. Most research typically used reported
case numbers for parameter estimation [26, 28]. (b) Assessing the impact of mobility restrictions.

For example, early in the COVID-19 pandemic, by combining the SEIR model with ground mobil-
ity data and airline data, Chinazzi et al. conducted what-if analysis to evaluate the impact of the
Wuhan travel ban on the spread at both national and international scales [26]. Using commuting
data released by official and mobile phone location data in the same period, Gatto et al. retro-
spectively reproduced the epidemic dynamics at the provincial level in Italy, revealing the effect
of progressive mobility restrictions [29]. Instead of directly coupling inter-regional mobility net-
works like References [26, 28, 29], Chang et al. introduced POI into the network and considered
POI as a medium for cross-regional dissemination [27]. Precisely, based on the aggregated mo-
bile phone location data, they constructed a bipartite graph with time-varying edges. The census
block groups (CBGs) and POIs are treated as nodes, and the dynamic edge indicates the number
of visits from CBG to POI in that hour. On this basis, the impact of mobility restriction at the POI
level could be assessed. Moreover, by integrating the demographic data, the demographic dispari-
ties in mobility and infections are investigated. (c) Simulating the spread under different reopening

plans. As the epidemic develops, relaxing emergency containment measures and making restart
strategies becomes crucial. An extended work of Reference [29] predicted the possible rebound
after lifting the lockdown in the presence of increased transmission rates, estimated the corre-
sponding isolation efforts needed to maintain the status quo [30]. By disrupting the network [27],
Chang et al. further projected the effect of different POI reopening strategies, such as constrain-
ing the maximum occupancy and reopening specified categories only. To enhance the usefulness
of the model, they developed an interactive dashboard to help policymakers evaluate the effect
of mobility restriction policies in near real-time [37]. However, the computational performance
becomes a bottleneck due to the large scale of the network. Thus, an incremental updating and
parallelized version of their previousmodel is devised to reduce the simulation time. To summarize,
the existing meta-population work integrates mobility data to model the critical parameters and
the geography spread of the epidemic. Afterwards, what-if analysis and prediction of the future
could be performed by disrupting the model parameters (e.g., mobility network). It is important to
note that handling mobility is not all you need to analyze the past or project the future, but only a
medium for controlling spatial dissemination. Changes in human behavior such as social distance
[29], wearing masks [37], are also vital to consider.

2.1.3 Agent-based Model. The agent-based model (ABM) is an approach for emulating the
interactions of agents to observe and understand the behavior of complex systems. Distinct from
the other two mechanistic models, ABM models the spread of infectious diseases at the individual
scale. These individuals are heterogeneous, with attributes such as age, gender, and occupation.
These individuals could also be the members of specific mixing groups, such as household, work-
place, and school. As time passes, the agent moves among groups and the contacts within a group
lead to the diseases spread. Most existing works [32, 34, 35] use demographic data to synthesize
these agents, called synthetic population. For example, Chang et al. generated over 24 million
agents for modeling and simulating the spread dynamics of COVID-19 over household, workplace,
and school in Australia [32]. Instead of synthesizing “fake” people and their interactions (i.e., con-
tact), some works resort to actual GPS trajectories to trace the movement and contacts of agents
[31, 33]. In these cases, the contacts and disease spreading are not only labeled with the geographic

ACM Computing Surveys, Vol. 55, No. 7, Article 141. Publication date: December 2022.



141:8 Y. Tao et al.

Table 3. Summary of Machine Learning Models for COVID-19 Transmission Modeling and Prediction

Main Target Ref. Method Metrics
Granularity Main Model Features

Spatial Temporal EPI. MOB. DG. TEMP.

Epidemic Parameters
[38] DL RMSE, R2 Country Daily � � �
[39] DL RMSE, MAE, MSE State Daily �
[40] DL KL divergence Grid Weekly � � �

Epidemic Curve

[41] Non-DL RMSE, MAE State Daily � � �
[42] Non-DL RMSE, MAE County Weekly � � � �
[43] DL RMSE, Pearson’s r Country Daily �
[44] DL RMSLE, Pearson’s r County Daily � �
[45] DL RMSE, MAE, RAE County Daily, Weekly � �

semantics, but could also be modeled at finer spatial granularity, such as grid [31] and POI [33]
levels.
By controlling the behavior of agents, the effects of an ensemble of non-pharmaceutical inter-

ventions has been simulated, such as quarantine [32–36], contact tracing [33–35], testing [33, 35],
school closures [32, 35], and telecommuting [31]. In particular, López et al. devised an ABS to
analyze the impact of different digital tracing app installation rates [34]. They found that higher
adult coverage could deliver indirect protection for the elderly. Unlike most ABM work that only
treats a person as an agent, Silva et al. modeled individuals, government, households, business, and
health care systems as separate agents. Economic relationships among them were constructed to
explore the economic impact of different intervention strategies [36]. Compared to the other two
mechanical methods, the ABM method can support a wider range of strategies in a more intuitive
manner (manipulate directly at the individual level), while obtaining an output with detailed de-
mographics. For example, mask-wearing [35, 36] and vaccination [35] could reflect on adjusting
the transmissibility per contact directly. Contact tracing can be achieved by registering the histor-
ical contact [33–35], and isolation can be accomplished by cutting off all the connections [32–36].
Nevertheless, ABM is often accompanied by a significant computational burden, as there are a
large number of heterogeneous individuals with various statuses, interaction rules, and contact
history to be maintained simultaneously. To solve such a problem, a common practice is to intro-
duce scaling factors that allow one person to represent multiple people, accelerating by reducing
the number of agents [35]. However, this may also pose sparsity issues; for more information,
please refer to Reference [35].

2.1.4 Machine Learning Model. In this section, we discuss the application of Machine Learn-

ing (ML)model for transmission modeling and prediction from two aspects, task and data,break
respectively. Task 1: Model parameters simulation/prediction. According to the analysis on the
mechanical method, when performing simulation and prediction tasks, the mechanical method
mainly relies on the manual configuration of key model parameters to accommodate complex sce-
narios [23, 26, 27, 30], posing high demands for expert experiences. Moreover, the granularity of
some parameters may make manual settings harder, e.g., fine-grained mobility network [27, 30].
In such a context, several research efforts have been conducted to utilize deep learning techniques
(e.g., Deep Neural Network-DNN [38, 40], Graph Neural Network-GNN [39]) to learn the po-
tential relationship between complex scenarios andmodel parameters at different spatial-temporal
granularity (see Table 3, Epidemic Parameters). The learning targets include disease parameters
[38], mobility patterns [39, 40]. For example, a spatial-temporal conditional Generative Adver-
sarial Network (cGAN)was proposed to model the relationship between various real-world con-
ditions (e.g., policy interventions, COVID-19 statistics) and fine-grained mobility [40]. Then, the
mobility data under different intervention conditions can be generated for propagation simula-
tions. Task 2: End-to-End epidemic curves prediction. Instead of estimating the model parameters
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first and then bringing them into themechanical model for prediction [38, 39], manyworks directly
apply machine learning models to predict future epidemic curves (see Table 3, Epidemic Curves).
They can be divided into two types according to whether they use Deep learning (DL) or not

(Non-DL). For the Non-DL model, classical statistical models enhanced by multisource real-world
data have been designed for COVID-19 scenarios. For example, mobility markedHawkes Processes
model [41], Spatiotemporal Autoregressive model integrating inter-and intra-county human inter-
actions [42]. Whereas DL models are primarily used to uncover hidden dependencies (e.g., tempo-
ral [43, 46], spatial-temporal [44, 45]) of multisource data. For example, variants of GNN [44, 45]
have been proposed to capture the potential spatial-temporal dependencies betweenmobility trend
data and future case count. Data is the cornerstone of machine learning models. Table 3 provides
a checklist of different types of data used by the aforementioned models. It reveals the importance
of mobility and epidemiological data for ML model features. In particular, the types of commonly
used mobility data include OD data [39, 41, 42, 44]—capturing cross-regional transmission, and
POI visits count—sensing potential contacts [38, 40, 44, 45]. In addition, there are also some works
using temperature data [41, 42], socioeconomic and demographic data [38, 40, 42] for feature en-
gineering. Temperature is related to the transmissibility of virus, while the socioeconomic and
demographic data models region-specific features.

2.2 Economic and Social Impact Estimation

2.2.1 Economic Impact Estimation. The economic impact due to COVID-19 on various indus-
tries and its possible outcomes have been investigated by various studies. Data-driven techniques
can be utilized to analyze and quantify these economic impacts and predict future trends. For exam-
ple, Ou et al. utilized a multi-layer perceptron neural network to predict the impact of COVID-19
on the demand of gasoline in the United States [47]. Themodel uses multiple data sources as inputs,
including epidemiology data, government orders, and demographic data. And the neural network
produces a human mobility index as output, a metric that closely correlates with motor gasoline
consumption and demand. They found out that a lock-down with sufficient length will reduce the
gas demand initially but helps to boost the demand back to pre-pandemic level faster due to its
effect on curbing the infection rate.
COVID-19 has also heavily affected the stock markets. Investors, regulators, and policymakers

constantly monitored the performance of the financial markets during the pandemic, as there is
a close correlation between COVID-19 and stock market performance [48]. Baek et al. tried to
explain the changes in stock market volatility using a Markov Switching AR Model with various
feature selection algorithms [49]. The model takes daily U.S. stock index values, macro-economic
signals, and daily COVID-19 cases as input to specify volatility fluctuation for the United States
stock markets based on the generated CRSP Value Weighted Market Index Returns. The study
found out that the stock market is very sensitive and shows significant risks for all industries
when the number of COVID-19 cases soars.

Studies investigating the impact of pandemics on consumption also demonstrate how COVID-
19 could alter consumer behavior and impact the economy. Chen et al. attempted to estimate the
impact of pandemics on goods and service spending based on daily transaction data in more than
200 cities in China [50]. A difference-in-differences regression model was adopted to evaluate
the influence of COVID-19 on daily offline consumption. The simulation results suggest that con-
sumption could greatly benefit from effective virus containment policies despite the consumption
decreases in the early stage.

2.2.2 Social Impact Estimation. COVID-19 has also impacted various aspects of human society,
where data analysis techniques can facilitate in both measuring and analyzing the effects of the
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pandemic. One significant effect of COVID-19 is the increase in stress and mental health problems.
Sentiment analysis can be applied to social media data as a probe to assess the psychological impact
of COVID-19. Sentiment in social media posts can be generated using transformer-based DNN
models. COVID-19 outbreaks are found to significantly and negatively affect estimated sentiment
across social media [51]. Furthermore, increases in frequency and exposure length to social media
during COVID-19 led to a higher prevalence of depression and anxiety in the general public [52].
Survey data collected from citizens from various regions in China suggest that such mental health
problems are related to unnecessary stress caused by false information spread over social networks.
Another critical social impact of COVID-19 that can be perceived by data-driven techniques is

the public’s opinion towards the pandemic and associated policies and countermeasures. Social
media data regarding policies, countermeasures, and their statistics can be analyzed to understand
the public’s opinions. Han et al. developed a topic classification model using Chinese word seg-
mentation, Latent Dirichlet Allocation (LDA), and random forest to analyze COVID-19-related
Weibo data in a hierarchical manner [53]. Time-series analysis is performed on the number of
posts and sentiment of the content within each topic, along with their spatial distribution. It is
also possible to detect synchronous changes in public opinion with the progression of COVID-19
across different regions. Similar approaches to analyze social media data from various platforms
including Twitter, Telegram, and so on, have been developed [54, 55]. The public opinion and its
dynamics on different topics, such as quarantine, vaccination, can thus be obtained [54, 56].

2.3 Public Awareness Enhancement

Due to the high contingency of COVID-19, the public needs to learn how they can protect them-
selves to effectively mitigitate transmission. The government has provided guidelines for effective
self-protection methods to the public, since the early stages of the pandemic. Pre-prints, instead
of peer-reviewed journals, have been preferred to publish findings regarding COVID-19 to obtain
earlier visibility [57]. However, limited understanding about the disease and the rapid informa-
tion dissemination process make released information less reliable, especially for an unknown
virus such as SARS-CoV-2. Meanwhile, social media platforms, such as Twitter, have become the
main channel for people to acquire pandemic-related information and for healthcare professionals
to disseminate their findings [58]. Misinformation can be extremely prevalent. For example, 25%
of the top-viewed videos on YouTube contained misinformation about COVID-19 [59] with such
phenomena occurring across all social media platforms [60]. As a result, misinformation has been
created and distributed along with correct knowledge and the mix of true and false information
could confuse the public and regular audiences. Moreover, rumors are found to be spread over
social media much faster than the facts [61], which raises the “infodemic” challenge. Misinfor-
mation spread across social networks consequently has negative impacts on the management of
COVID-19 [62]. Social media exposure is also found to have a strong association with misconcep-
tions about COVID-19 [63].

While the “infodemic” challenge can bemitigated by perceiving knowledge from reliable sources
and avoiding over-exposure to social media [64], most of the public have limited awareness of
the problem and/or lack the capability to differentiate the reliability of the information. Fact-
checking is another commonly used method to tackle the misinformation problem. However, it
is difficult to monitor massive volumes of information produced over social media and pre-print
publications regarding COVID-19 and pandemics, and the requirement of professional knowledge
makes it difficult to differentiate facts from questionable and wrong information [65]. Therefore,
data analysis techniques can be utilized to address the problem by detecting misinformation au-
tomatically [66]. Specifically, systems that identify non-factual information regarding a new topic
and according to the most updated knowledge need to be developed. Alam et al. developed several
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Table 4. Summary of Outbreak/Early Case Detection Models for COVID-19

Main Target Ref. Method Metrics Spatial Coverage Temporal Granularity Data Source

Outbreak Detection

[69] Non-DL Time-lag State (US) Weekly Social Media
[70] Non-DL Time-lag Country (China) Daily Social Media
[71] Non-DL DT, DLH, PA City (Case 2) 5 Minutes (Case 2) Water Sensor Networks
[72] DL MAE Region (Italy) Daily National Government

Early Case Detection

[73] DL CCE - - Chest X-Ray
[74] DL L2, CE, BCE - - Chest X-Ray
[75] DL Logarithmic Loss - - Chest X-Ray, CT
[76] Non-DL RHR-Diff, HROS - Hourly Wearable Device
[77] Non-DL AUC - Daily Wearable Device

transformer-based models and fine-tuned them using an annotated dataset about COVID-19 infor-
mation. Metadata such as original information sources, the social media platforms to publish the
data, and available fact-checking data are integrated to improve model performance [67]. However,
such an approach requires a large-scale annotated dataset, which can not be obtained in the early
stage of the pandemic. To address this problem, a multi-modal feature fusion framework using an
ensemble of weak learners was proposed [68]. In this framework, multi-modal features available
in social media, including URL, number of retweets, hashtags, mentions, and so on, are leveraged
to model the users’ behaviors. A meta-model integrates decisions from a set of weak learners to
generate the final prediction results.

2.4 Outbreak and Early Case Detection

Outbreak and early case detection are essential to ensure that regulatory guidance can be adapted
to manage pandemic situations at a given location and time. For this survey, we differentiate out-
break and early case detection as separate yet intertwined tasks. Outbreak detection deals with
population-level understanding of the dynamics of a pandemic event such as COVID-19. Early
case detection is concerned with the state of a specific individual through their medical data.
Table 4 compares some existing methodologies presented in literature to aid in outbreak and early
case detection of COVID-19.

2.4.1 Outbreak Detection. Event detection using social media data has been applied since the
beginning of the pandemic for outbreak detection and surveillance [68–70]. One method to predict
outbreaks using Twitter data is described in Reference [69], which searched for tweets containing
commonwords describing symptoms of COVID-19. Their results demonstrated that Twitter discus-
sions in the different states in the U.S. reached an informal outbreak stage from 7–19 days before
drastic increases in actual case reports for COVID-19. Search engine trend data has also been used
to evaluate the lag correlation coefficient between social media trends and actual outbreaks [70].
Research in outbreak detection algorithms includes models that represent the pandemic out-

break as a spread of pathogens, e.g., a computer virus, across the network. The authors in Ref-
erence [71] propose a method for the optimal placement of sensors to detect an outbreak in a
network as quickly as possible. This work uses the property of sub-modularity among many com-
mon objective functions that are used to evaluate an outbreak. These objective functions include
Detection Time (DT), Detection Likelihood (DLH), and Population Affected (PA), allowing
for an efficient non-greedy method to get near-optimal node placement. Reference [72] provides
an algorithm for anomaly detection using Italy’s COVID-19 dataset. DL techniques such as 3D
Convolution layers predict the date of the start of an outbreak in a specific region.

2.4.2 Early Case Detection. Early case detection is a necessary component of any effective way
to prevent pandemic outbreaks. For example, Computed Tomography (CT) scans and Chest

X-Rays (CXR) have proven to be useful in identifying COVID-19 at the early stages. To this end,
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Table 5. Common Smartwatch Devices and Their Health-related Biometric Data Capabilities

Capability Apple Watch Series 7 Fitbit Versa 3 Samsung Galaxy Watch Active 2

Heart Rate � � �
Heart ECG � � �
Step Count � � �
Sleep Tracking � � �
GPS � � �
Microphone � � �
Oxygen Saturation � � �
Activity Tracking � �
Skin Temperature �
Electrodermal Activity �
Blood Pressure �

many works have been proposed, aiming to automate the process of classifying such images to
detect COVID-19 early. DNNs have been broadly used to analyze CXR and CT scans to detect pa-
tients infected by COVID-19 accurately [73, 74]. DNN models for early case detection are usually
trained on several CXR and/or CT image datasets. Image categories include healthy, COVID-19 in-
fected, and other unrelated medical issues such as Pneumocystis Pneumonia (PCP) and Acute
respiratory distress syndrome (ARDS). Convolutional Neural Networks (CNNs) have been
the primary method used for image-based case classification, given the ability for CNNs to operate
on image data. Transfer learning is effective in training existing CNN models such as Xception-
Net, Inception-V3, and ResNeXt [73] and achieves good performance on several testing datasets
when classifying using Categorical Cross-Entropy (CCE). Furthermore, advanced DL models
have been developed for COVID-19 early detection such as Convolutional Long Short-Term Mem-
ory [75], which achieve an even higher accuracy. Alternatively, anomaly detection models can
also be applied. Abnormal images are identified and healthcare professionals can further deter-
mine whether a given patient has been infected by COVID-19 or not [74].
Moreover, the proliferation of wearables such as smartwatches and fitness trackers allows for

biometric data to be collected passively, as shown in Table 5. These devices may help predict
COVID-19 in those who have not yet taken a test and are therefore not officially counted as
a COVID-19 case [76–78]. Smartwatch data was utilized in Reference [76], which used resting

heart rate (RHR), heart rate over steps (HROS), sleep, and activity metrics with self-reported
symptoms. These metrics led to better Area Under the Curve (AUC) scores than using symp-
toms alone to differentiate healthy, sick, and COVID-19 patients. Reference [77] leverages Logistic
Regression to generate the probability of COVID-19 hospitalization based on data collected from
wearable devices and self-reported symptoms. Similarly, Iwendi et al. proposed a boosted random
forest algorithm to predict the possible health condition (death or recovery) of a patient based
on travel history and demographic and symptom data [79]. Smartphone oxygen saturation read-
ings were also found to be a useful proxy to detect silent hypoxia, which is an early marker of
COVID-19-related pneumonia [78].

2.5 Contact Tracing

Contact tracing is another critical component in handling COVID-19 and pandemics alike. It helps
to monitor pandemic spread and therefore enables early detection, efficient disease spread preven-
tion, and less medical personnel and facility burden. In most countries, mobile devices, including
smartphones and smartwatches, are adopted as the go-to platform for hosting the contact tracing
application. By taking advantage of different technologies such as Global Positioning System
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(GPS), Bluetooth, and electronic transaction data, the authorities could perform real-time contact
tracing and analysis with a very high accuracy. Therefore, utilizing data-driven approaches to fa-
cilitate the harnessing and analysis of the information collected by the tracing systems has been
intensively researched. Alsdurf et al. proposed a COVID-19 digital contact tracing system that uses
machine learning to generate a risk factor [80]. The risk factor indicates the possibility of infection
and the temporal and spatial information regarding contagiousness in the past days. More specifi-
cally, a Dynamic Bayesian Network [81] is trained using synthetic epidemiological data (contains
age, sex, health conditions, location data, etc.), which predicts the contagiousness and infection sta-
tus of each human subject. The proposed application also emphasizes preserving user privacy by
adapting several procedures. All personal information, including exact encounter time, is removed
and only coarser GPS locations are used.
In the smartphone-based contact tracing application developed by Maghdid et al. [82], a lock-

down prediction model is adopted to estimate the specific lockdown area. The model uses geo-
graphic data and crowding level of the user as input and then the K-means++ algorithm [83] is
used to calculate the centroid position. By utilizing the identified clusters, the model calculates the
frequency of each user approaching one another. If the frequency is too high for a specific cluster
(greater than 10), then the system will suggest the area to be locked down.

Besides mobile-based contact tracing applications, other platforms such as surveillance cameras
placed in busy public locations could also provide data that helps to achieve human contact tracing.
A study by Pi et al. [84] proposed a contact tracing system that utilized footage from surveillance
cameras located at street intersections. The system uses CNN, or more specifically, the YOLO-v3
model, to analyze video footage and therefore identifies human subjects and their movement tra-
jectories. The authors claim that the model could achieve an average precision of 69.41%. The pro-
posed system was also used to simulate the spread of COVID-19 in a healthy population. Transfer
learning is used to overcome data availability issues such as privacy.

2.6 Resource Allocation

In response to COVID-19, many countries have encountered resource shortages and starvation.
This shortage is extremely severe for medical resources, such as ventilators, individual protection
equipment, and so on. Thus, resource allocation, i.e., where and when to allocate the available re-
sources fairly, ethically, and consistently becomes an important problem to mitigate the negative
impacts of COVID-19 and pandemics. Resource allocation can be formulated as an optimization
problem and the transmission, demographic, and mobility data can be utilized to provide effective
numerical solutions. Such optimization methods have been used in many past pandemics, where
the pandemics are formulated as the transmission among regions and populations in a network.
The geometric programming technique can be applied to produce optimal resource allocation so-
lutions to mitigate and manage the pandemic transmission effectively [85, 86].
However, these solutions usually assume sufficient amounts of resources are available, which

is not suitable for the resource-starving scenario during COVID-19. To take the efficiency of re-
source usage into consideration, Lorenzo et al. proposed to allocate the available COVID-19 test-
ings to various regions in Italy by formulating it as a quadratic optimization problem, where the
COVID-19 detection capability is optimized [87]. Meanwhile, given the number of available test
kits of COVID-19 and the amounts of people to be tested, an optimization algorithm has been ap-
plied to determine the best size of group testing [88]. These data analysis and modeling techniques
improve testing efficiency and efficacy under limited resources.
Vaccines are another important resource to be allocated to manage pandemics globally. While

vaccines have currently become available, the dissemination and allocation of vaccines to allow
for fair and global access, as well as ensuring the effectiveness of group immunity across various
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areas, remains a huge challenge [89]. Similar approaches to resource allocation can also be utilized
to facilitate planning and decision-making for vaccine dissemination. Vaccine dissemination can
be modeled as a resource distribution and allocation problem, where vaccines are distributed from
storage spaces such as warehouses to the public [90]. Nowzari et al. integrate geometric program-
ming and transmission modeling techniques to find the most effective allocation strategies to pre-
vent pandemic transmissions given a fixed budget [91]. This proposedmethod can facilitate vaccine
dissemination across a large region and accounts for the randomness of pandemic transmission
and vaccine immunization. Furthermore, Roy et al. proposed a time-varying optimization method
to allocate the vaccines while avoiding resource starvation (whenever possible) [92]. Specifically,
a clustering algorithm is incorporated to determine potential storage locations for vaccines to im-
prove the efficiency and effectiveness of the dissemination. Then, given the pre-determined storage
locations, vaccine dissemination is formulated as a linear optimization problem to allocate vaccines
across storage locations better. Meanwhile, real-time transmission and vaccination factors are con-
sidered to update the allocation solution dynamically.

2.7 Mental Stress Relief

Due to the pandemic and the consequent social distancing policies, it can be observed that people
get depressed and stressed. Mental health therapies have been proven effective to the relief of such
stress and many alternative mental health therapies during the pandemic have been developed
and studied [93, 94]. In addition, regional and national call centers have been set up to help relieve
mental stress for people. For example, the Washington Department of Health set up a hotline to
provide consults and address people’s concerns [95]. However, there are insufficient resources to
serve large amounts of people to mitigate their stresses and worries. And only limited numbers of
individuals can be served simultaneously via either mental health therapies or hotlines. Therefore,
many citizens fail to obtain necessary guidance to respond to COVID-19 and pandemics.
The chatbot is a new technique that leverages NLP to automatically generate reasonable and

human-understandable responses to language input from human beings. The data-driven model
trained on massive conversation corpora enables chatbots to communicate like humans and have
been successfully applied to provide clinical consults and achieve a comparable quality of services
as professional medical doctors [96]. Therefore, the chatbot technique has been deployed to relieve
concerns related to COVID-19, providing help and professional advice to people. For example, the
pre-screening of COVID-19 can be performed by chatbots, where citizens can report their symp-
toms, and the chatbot will automatically generate follow-up questions and suggestions according
to the text [97]. Compared to conventional call centers and hotline services, the chatbot has the
potential to be widely applied and used for large populations.

2.8 Policy Recommendation

While social distancing policies are effective in controlling the pandemic transmission among the
population, they can lead to adverse side effects on the economy and society. As mentioned above,
these side effects can be modeled based on the observed data. And thus, it is possible that policies
can be determined by balancing their pros and cons for future outbreaks of COVID-19 and other
pandemics.
To this end, Kompella et al. proposed to leverage reinforcement learning methods, where the

optimal policies can be learned to minimize the designed goal of controlling the pandemic without
suffering unaffordable social impacts in terms of hospital capacity [98]. According to the contin-
uous observations and monitoring of epidemiology data and contact tracing data across various
areas, policies can be dynamically changed. Transmission models are leveraged to simulate the
impacts of the pandemic, which will be minimized. It is demonstrated that the application of RL
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to construct dynamic policies achieve the goal of avoiding exceeding hospital capacity while min-
imizing economic costs.
Furthermore, a Mixed Observability Markov Decision Process (MOMDP) problem is uti-

lized to formulate the policy recommendation problem that is capable of optimizing the overall
welfare of all the populations [99]. In this approach, both damages to people’s health and the di-
rect economic losses from COVID-19 are considered as a type of economic loss. Therefore, the
proposed RL framework would produce estimated Pareto-optimal policies. Policymakers can use
these results to reduce the economic losses and human lives on one objective without sacrificing
the other.
Moreover, theDeep Reinforcement Learning (DRL) technique that integrates reinforcement

learning with a deep neural network has also been developed to help recommend and optimize
social distancing policies. Uddin et al. proposed a DRL-based approach to simulate the economic
impacts of social distancing, people’s living quality, and used resources, in addition to the pandemic
transmission [100]. Various DRL models, including Deep Q-Networks and Deep Deterministic Pol-
icy Gradient, were implemented and produced better results compared to full lockdown or other
simple manually crafted policies.

3 DATA VISUALIZATION FOR PANDEMIC MANAGEMENT

In addition to the state-of-the-art data analytic techniques introduced in the last section, data
visualization is another important data-driven technique that can facilitate pandemicmanagement,
especially enhancing situation awareness. By employing appropriate data visualization techniques,
the public, emergency managers, domain experts, and first responders would understand, perceive
and distribute data (i.e., ground observation, modeling results) in a much easier manner. With
COVID-19 rampant, many visualization works emerged and can be broadly classified into three
categories, as shown in Table 6. The first category is Disease Characteristics, which focuses on
visualizing disease-related characteristics (e.g., symptoms, virus structure). The second category
is Human Responses, which covers the visualization of human response behavior in the face
of a pandemic. The third category is Mitigation and Preparedness, which concentrates on the
visualization contributions toward mitigating and preparing for the pandemic.

3.1 Visualization of Pandemic Characteristics

Understanding epidemic characteristics is essential for the prevention and control of infectious dis-
ease. Here, we summarize the relevant visualization work in terms of 3D-architecture, variations,
symptoms, region-based features, and transmission-based features of a virus.

3.1.1 3D Architecture. By integrating 2D microscopy scan data and additional geometric rules
of a biological entity, Nguyen et al. proposed a novel visualization technique that could efficiently
and accurately construct the 3D mesoscale structure of a biological entity [101]. They adopted the
proposed method to visualize the 3D ultrastructure of the COVID-19 virus. In addition, Kouvril
et al. proposed a method capable of visually narrating molecular structures in a documentary-like
style to facilitate public understanding and dissemination [102].

3.1.2 Variations. Genetic variants of COVID-19 have been appearing and spreading around the
world. Tracing and analyzing the variants is crucial for adjusting responsemeasures and guiding re-
lated research (e.g., effective drug and vaccine development). Driven by the variants data collected
worldwide, Reference [103] developed interactive data visualization platforms to assist domain ex-
perts in exploring and analyzing the structural distribution of genetic variations of SARS-CoV-2.
The phylogenetic tree view has been employed by References [104, 105] to track the circulating
lineages of COVID-19 and elucidate the relationships among the variants and the evolution over
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Table 6. Summary of Data Visualization Tools and Methods for COVID-19 and Future

Pandemic Management

Category Subdivision Tools/Methods

Disease Characteristics

3D Architecture [101, 102]
Variations [103–105]
Symptoms [106, 107]

Region-based Features [108, 109]
Transmission-based Features [31, 110–113]

Human Responses

Public Responses [114–116]
Government Responses [8, 117]
Academia Responses [21, 118–121]

Mitigation and Preparedness
For General Public [122]
For Policymaker [31, 123–125]

time. In addition, the stacked area chart [104, 105] has been applied to convey how the dominant
variants shift with time.

3.1.3 Symptoms. Massive COVID-19 confirmed cases yielded data about clinical symptoms
(e.g., fever, muscle or body aches, loss of smell, and taste). Data visualization techniques can as-
sist people in better understanding and perceiving the significance of these data. For example, the
CDC has created illustrations1 to describe the typical symptoms of COVID-19, which can raise
public awareness and guide self-checking. Bijoy et al. designed and developed an interactive vi-
sual analytics tool that integrates views such as symptom word clouds and clustered symptom
maps. This tool aims to track and analyze the spatial distribution, temporal evolution, and spatio-
temporal differences of COVID-19-related symptoms in around 462 million tweet data [107]. In the
UK, the daily self-reported health data from over 1.6 million individuals were collected by Drew
et al. in a mobile application [106]. They visualized the geographic distribution of collected sam-
ples’ symptoms in real-time and found that such surveillance could be helpful for the discovery of
early infection hotspots.

3.1.4 Region-based Features. On the basis of the continuous collection of infection case infor-
mation, we can aggregate incidence rate, mortality rates, demographics, and other statistical data
at different spatial scales. The visualization of these data is widely integrated into interactive dash-
boards [108, 109], enabling tracking, analyzing, and comparing of the pandemic progression at
different spatial scales (e.g., county level, country level). In particular, for representing spatial vari-
ables such as incidence rate and mortality rates, the choropleth map or user-defined markers are
the most widely used ones. For example, the incidence rates around the world are encoded with
circles of different radii [108]. In addition, the log scale is introduced in some dashboards2 to dis-
play data with different orders of magnitude simultaneously for comparative analysis. Other than
monitoring in the geographic and temporal dimensions, some dashboards, such as that by the
Georgia Department of Public Health,3 integrate demographic information (e.g., gender, age, and
race distribution) of infections to depict the impact of COVID-19 on different groups.

3.1.5 Transmission-based Features. To better contain the spread of infectious diseases, it is vi-
tal to understand the modes of transmission. Researchers have conducted visualization studies on

1https://www.cdc.gov/coronavirus/2019-ncov/downloads/COVID19-symptoms.pdf.
2https://aatishb.com/covidtrends/.
3https://dph.georgia.gov/covid-19-daily-status-report.
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virus transmission at different scales: individual and region level. At the individual level, several
works have been proposed to study the transmission chain from person to person [110, 111]. By
working with public health departments in Germany, Antweiler et al. proposed a new visual ana-
lytic method to identify COVID-19 infection clusters in contact tracing networks [111]. Baumgart
et al. proposed a novel visualization system to explore and analyze pathogen transmission path-
ways in hospitals [110]. The system integrates several practical views, such as the transmission
pathway view inspired by storyline visualization for efficient and intuitive contact tracing. At the
region level, based on the real-world trajectory of Japan, Yang et al. constructed an interactive
transmission network exploration view to analyze the secondary effect of different mobility re-
strictions [31]. On account of a sizable agent-based pandemic spread dataset, Guo et al. devised
a visual analytic method to discover interesting spatial interaction patterns among regions [112].
Given the propagation source airport, the import risk model, and the effective distance between
airports, Brockmann et al. visualize the transmission tree between airports worldwide [113]. Here,
the authors present the distribution of import risk and the most likely spreading routes.

3.2 Visualization of Human Responses

During the pandemic, the general public decreased their risk of infection and transmission by
wearing masks and reducing mobility. The government issued a series of prevention and control
policies to contain the pandemic. The academic community also actively researches pandemic
response strategies. Different social participants have adjusted their responses to cope with this
unprecedented pandemic. Timely perception and analysis of these responses can assist us in better
knowing ourselves and strengthening the strain capacity of communities. This section summarizes
the visualization work for monitoring and analyzing human responses in three subdivisions: the
public responses, government responses, and academia responses.

3.2.1 Public Responses. A web portal to monitor the county-level mobility pattern changes in
the United States has been developed [114]. The dashboard is driven by large-scale location ser-
vice data and visualizes the county-level mobility change in the choropleth map. Similarly, the
research team from the University of Maryland developed an impact analysis platform to inform
mobility and social distance change affected by COVID-19 spread and government policies [115].
Social media platforms are the windows for people to express themselves during the epidemic.
After extracting the sentiment feature, Naseem et al. drew a word cloud of positive, negative, and
neutral COVID-19-related tweets to sense and analyze people’s expressions in different states of
mind [116]. In addition, Lee et al. investigated how COVID-19-related visualizations circulated
on social media, finding the cognitive divergence of different groups in similar materials [126].
Although visual analysis of social media data has been an area of extensive research, not much
work has been adopted during COVID-19. We expected to see more state-of-the-art analytics
tools [127, 128] adopted for pandemic management.

3.2.2 Government Responses. The government has issued a series of control policies through-
out the pandemic. These policies were further collected and structured by Reference [8]. The
exploratory analysis of these policies could reveal many insights. For example, by mapping a
pixel-based heatmap of the containment and health policies’ intensity across countries, Hale et al.
discovered convergence among them within the same two-week period, even though the pan-
demic was quite different from country to country at that period [8]. In addition, using Lux, a
recommendation-based interactive data visualization exploration library, Lee et al. explored the
relationship of policies’ stringency with the local’s life expectancy and levels of inequality [117].
They found that a more well-developed public health infrastructure prompted a stricter response
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to the early pandemic. Nevertheless, three “outlier” countries were discovered with limited public
health resources but with high stringency.

3.2.3 Academia Responses. A significant amount of research has been conducted to address the
emerging COVID-19 challenges in academia. Visualization techniques have been widely adopted
to portray the development status of these research efforts. For example, by combining the bib-
liometric analysis and a series of visualization views (i.e., treemap, heatmap, choropleth map,
network graph), Haghani et al. surveyed the research hotspots, term network, and geographical
distribution of COVID-19-related research [118]. Radanliev et al. conducted a dedicated biblio-
metric investigation of scientific literature involving COVID-19 mortality, immunity, and vaccine
development [21]. The relationships under the literature were mined and visualized, such as the
keywords co-occurrence and international collaboration. Besides, combined with a hierarchical
topic model for literature organization, Bras et al. developed a theme-based visualization method
allowing quick discovery of COVID-19 research topics, trends, and resources [119]. Clinical trials
are another critical component for fighting against the pandemic. Thorlund et al. have developed
a dashboard to monitor the clinical trials’ progress [120] worldwide to avoid unnecessary dupli-
cation of effort and promote the perception of ongoing trials. The dashboard comprises a spatial
view showing geographical distribution, a network view of relationships between clinical trials,
and several charts showing basic statistical information. Likewise, an interactive web application
was developed to monitor vaccine development progress [121].

3.3 Visualization-assisted Mitigation and Preparedness

As an efficient tool for perceiving, understanding, and transferring information, data visualization
can affect public awareness of infectious diseases and thus influence mitigation and preparedness.
Moreover, visualizations can also guide the government to make decisions. In this section, rel-
evant data visualization techniques for the mitigation and preparedness of COVID-19 from the
perspective of the public and policy-maker are summarized.

3.3.1 For General Public. The dashboards, charts, and diagrams, including the visualization
works mentioned above, could be used to communicate information to the general public either
directly or through secondary processing. Therefore, these visualizations can influence the behav-
ior and opinions of the public on COVID-19. In particular, Zhang et al. collected and analyzed
668 COVID-19 visualizations created for the public, revealing the detailed landscape of COVID-19
Crisis Visualizations, which is insightful for future pandemics [122].

3.3.2 For Policymaker. A number of visualization efforts have emerged to help policy-makers
make decisions under a more informative context. Afzal et al. created a novel visual analytical
environment capable of simulating the spread of COVID under various conditions. Some of the
tunable parameters include changeable locations of initial cases, enabled/disabled air transport,
different speed of spread, and other deterministic measures [123]. Through collaboration with
infectious disease experts, Yang et al. proposed an interactive visual analytics system for simulat-
ing the impact of different mobility restrictions on epidemic [31]. The system was built on real-
world human trajectory data. It enables users to interactively generate restricted human mobility
and pandemic transmission data when a certain set of policies is enacted. Furthermore, users could
perform in-depth analysis to visually explore the deployed policy’s secondary effect. Another pow-
erful tool is GLEaMviz [125], a public software that enables the exploration of realistic scenarios
of infectious disease transmission at a global scale. It provides a simple, intuitive, and visual way
to enhance the disease modeling and simulation setting. GLEaMviz also evaluates simulation re-
sults using various maps, charts, and data analysis tools. An online dashboard was also created to
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Table 7. A Summary of COVID-19 Data Sources and Datasets

Category Type Sources Resolution and Granularity

Epidemiology

Data

Case Statistics
John Hopkins University [108] Daily & Regional
Our World in Data [129, 130] Daily & Regional

Case Report [131–133] Individual

Policies and Regulations
OxCGRT [8] Daily & Regional
ACAPS [134] Policy-based

Mobility Data

Trip Surveys [29, 135, 136] Daily & Regional
Aggregated Footprint

Locations

Google and Apple [137, 138] Daily & Regional
Descartes Labs and SafeGraph [139] Hourly/Daily & Regional

Transportation Flux Derived from Footprint [140] Depends on Footprint Data

Trajectories
Taxi and Bike [141, 142] Per-Trip
Social Media [16, 143] Real-Time & Regional/Precise Location

Media Data
Social Media

Twitter, Weibo, Instagram [144–148] Real-Time Posts from Users
Data with Annotations [147, 149–151] Real-Time Posts from Users

News Media Multiple Channels [152] Articles from Various Institutes

Personal

Health

Data

Medical Imaging

CXR and CT for Diagnosis [153–157] Images with Diagnosis
Ultrasound Images for Diagnosis [158] Images with Diagnosis
CXR Images for Complicated Tasks [159, 160] Images for Various Purpose

Electronic Health

Records
OpenSafely [161] Individual Data without Direct Access

Other OxCOVID19 [162] Daily & Regional

provide real-time, geo-located risk information [124]. The aforementioned dashboard allows set-
ting a gathering event size interactively for estimating the risk of having at least one COVID-19
case present in a gathering at the county level in the US. This is instructive for the government in
adjusting size limits for activities.

4 DATA SOURCES FOR COVID-19 AND PANDEMIC MANAGEMENT

Data from differentmodalities collected from various sources are one of the necessary fundamental
components of data-drivenmethods for COVID-19 and pandemic management. Therefore, govern-
ments, research communities, the private sector, and other entities have conducted collaborative
efforts to collect data from various sources, develop tools and software to facilitate continuous
data acquisition and aggregation, and build datasets for different applications. In this section, a list
of important and well-known datasets and data acquisition tools for COVID-19 pandemic man-
agement is introduced, from daily confirmed cases to mobility data during COVID-19 to policy
responses by regions and countries. The existing data are mainly within six data categories and a
summary of all the existing datasets is presented in Table 7.

4.1 Epidemiology Data

4.1.1 Case Statistics. The most commonly used epidemiology data are the number of cases in
various groups and categories. Case number groups and categories include the number of tested
cases, confirmed cases, hospitalized cases, deaths, recoveries, vaccinated, and others. These data
are usually disclosed by local authorities, media, and government agencies every day for a certain
region (e.g., cities, counties, and countries). However, raw data from various regions and coun-
tries have heterogeneous formats and are not directly ready for data-driven methods. The first
and well-known attempt to integrate such information globally was accomplished by John Hop-
kins University, where data from various countries are aggregated semi-automatically [108]. Thus,
convenient data access and analysis on global epidemiology data are enabled. A similar approach
is developed by “Our World in Data,” where hospitalization and vaccination data are added to the
dataset [129, 130].

4.1.2 Case Report. There are also datasets that exist for meta-populations at the level of cities,
counties, or individual-level epidemiological data of COVID-19 cases in China [131–133]. These
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datasets contain more than 13,000 individual laboratory-confirmed cases in China (outside Hubei
Province). A rich set of features are present in the datasets, including when each patient showed
symptoms and what symptoms and when the patient was confirmed to get COVID-19. Data also
exist for hospital admission, patient travel history, and patient demographic information (e.g., age,
sex). These datasets are updated regularly to include more cases.

4.2 Policies and Regulations

Since the emergence of COVID-19, policies and regulations have been announced as countermea-
sures to control the transmission of the pandemic. As an essential factor that significantly im-
pacts the transmission patterns, it is valuable to develop a dataset to characterizes the policies
in different regions to facilitate applications. The Oxford Coronavirus Government Response

Tracker (OxCGRT) [8] tracks government response categorized into 17 aspects, such as school
closure policies, quarantine policies, economic policies, testing regimes, and so on. The changes
in policies and regulations are tracked on a daily basis to maintain timing and stringency over
the pandemic period. Such datasets can help explain the differences in the impacts of COVID-19
across countries and regions, with respect to the government’s responses and decision-making.
As a result, better decision-making can be potentially made for future pandemics and the losses
caused by future pandemics can be reduced.
Another approach to aggregate government countermeasures of COVID-19 is built by the

Assessment Capacities Project (ACAPS).4 Specifically, the COVID-19 Government Measures
Dataset [134] is developed, where multiple countermeasures of COVID-19 pandemics leveraged
by different governments are put together. Compared to the OxCGRT dataset, the ACAPS dataset
includes additional information such as the limitation in medical exports. Meanwhile, while both
testing policies are recorded in both datasets, the ACAPS dataset provides some detailed informa-
tion, such as whether the health screenings for travelers are enforced. Different from the OxCGRT
dataset, which provides structural data and each aspect of the policies is normalized into several
categories, the ACAPS dataset describes each policy in text.

4.3 Mobility Data

4.3.1 Trip Surveys. Conducting trip surveys is the most conventional way to obtain mobility
data, where the journeys of the surveyed individuals on a given day or given time period are
recorded. During COVID-19, several surveys are collected to understand the human mobility pat-
terns and the regional strategies for pandemic management [29, 135, 136]. However, the survey
data usually suffer significant delays between the journey and the data collection. Also, the cover-
age of the survey is limited and has data biases due to the limited sample size.

4.3.2 Aggregated Footprint Locations. Themobility patterns of human beings are closely related
to pandemic transmission, since in-person contacts are the primary way of transmission for most
infectious diseases, including COVID-19. Due to the privacy issue, public datasets are usually ag-
gregated by countries and regions. Mobility data can be leveraged to analyze the relation between
mobility patterns and epidemiological patterns and help public health officials understand com-
munity response to mobility constraint policies, such as lockdown. One of the earliest-released
datasets to report trending mobility during COVID-19 is the COVID-19 community mobility re-
ports by Google [137]. In this report, mobility indicators are reported at the region and country
levels, based on the number of visitors in locations of six categories, including residential areas,
workplaces, retail, and so on. In total, data frommore than 150 countries have been included. Since

4https://www.acaps.org.
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data are aggregated, no identifiable personal information remains in the dataset. Furthermore, in-
dicators measure the number of visitors compared to a common baseline, instead of reporting
absolute numbers, to further ensure data to be anonymous. Meanwhile, Apple generates a similar
mobility trends report dataset [138]. Mobility data provided by Apple have a finer resolution at the
city level compared to county-level data from Google. However, Apple only has general mobility
information and does not categorize it into different types of locations.
More detailed information about digital footprint is made available by Descartes Labs and Safe-

Graph [139]. Mobility statistics, such as maximum distances traveled, and so on, are made available
for the United States at the county level on a daily basis by Descartes Labs. SafeGraph leverages
their digital footprint data to generate aggregated data, including time spent staying at home,
the number of visitors at Point-of-Interest (POI) locations, and so on. County-level and census-
truck-level data are aggregated every day or hour for the United States and Canada. A dashboard
application is developed to visualize data from Descartes Labs and SafeGraph [139].

4.3.3 Transportation Flux. Compared to regional footprint statistics, transportation flux data
can better describe the dynamics of movement, recording the volume of traffic on the roads or
between regions. OD matrix is a common way to represent the transportation flux, and based on
footprint data, OD matrix about inter-region mobility can also be measured and estimated [140].

4.3.4 Trajectories. The most fine-grained mobility data are trajectories. Due to recent advances
in remote sensing and GPS technologies, trajectory data can be potentially obtained by service
providers. Such data are usually not available to the public due to data privacy and security con-
cerns. However, some of the trajectory datasets from public transportation, such as taxis and
bikes, can be accessed by researchers and facilitate fine-grained analyses on human mobility pat-
terns [141, 142]. Such data provide the finest information about the human mobility of a certain
population, which can not be fully obtained via other mobility data types. This fine-grained mobil-
ity can be utilized to investigate the relationship between mobility, COVID-19 transmission, and
social activities in detail.
Furthermore, the trajectories of an individual can also be accessed using social media records

if geo-locations of their posts are available. For example, Twitter allows the user to include loca-
tion information within their tweets. Following this idea, Qazi et al. released a dataset, including
huge amounts of COVID-related tweets that contain users’ locations [16]. Similarly, Wang et al.
acquired location information from the Foursquare application [143]. Meanwhile, it is also possible
to retrieve customized data via the Twitter Developer Platform.

4.4 Media Data

4.4.1 Social Media. Social media platforms allow users to freely post their thoughts about any
topic and record their daily lives. In addition to the trajectories available in social media posts,
social media data are valuable information sources to understand public opinion as well. While
most social media data can be publicly accessed, the data might not be ready for data analysis and
machine learning. Thus, researchers have developed large-scale AI-ready datasets to facilitate this
problem. Some examples include Twitter streaming dataset [144], multilingual Twitter conversa-
tion dataset regarding COVID-19 [145], Weibo dataset [148], and multimedia Instagram COVID-19
dataset [146]. These datasets characterize various aspects of the social dynamics of COVID-19 and
usually contain tens of or hundreds of millions of social media posts. These posts include both
textual contents and metadata, and they are retrieved by using different keywords. But the data
collection processes of various datasets are designated for various purposes. For example, Refer-
ence [145] is developed to analyze the dynamics of user conversations on social media, which helps
identify rumors, misinformation, and negative sentiments distributed and spread on social media
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platforms. Furthermore, some of the datasets have been continuously maintained and updated to
include new social media data [144, 145]. As of June 2021, this dataset has included more than
1.1 billion tweets posted by users across the countries.

While social media data can be easily accessed, one challenge of building datasets for data
analysis and machine learning is to obtain sufficient amounts of pandemic-specific annotations
and labels for data modeling. Given the large amounts of misinformation spread over social me-
dia, a few annotated datasets for detecting COVID-19 misinformation in social media have been
built [149, 150]. Human annotators have classified social media records in the datasets into differ-
ent categories to indicate whether and howmuch misinformation is included in the posts. Another
task addressed by annotated social media data is to detect the worries and negative sentiments re-
garding COVID-19 in the posts. Understanding public sentiment and stances is critical to the man-
agement of the global crisis, such as COVID-19. Reference [151] released a Twitter dataset, where
the stance of each tweet is captured by the ClaimsKG algorithm [163]. While the pre-trained model
can be used to achieve the same goal, the model performance can be further improved with addi-
tional annotated data. Kleinberg et al. developed a dataset of annotated tweet-sized texts, called
Real World Worry Dataset [147]. Text to describe the sentiment and emotion about COVID-19
were written by 2,500 participants from the United Kingdom along with their rating at a nine-
point scale to score their sentiment regarding the situation of COVID-19. Such datasets can be
utilized to train and fine-tune the NLP model to better recognize the sentiments of contents in the
tweets and other social media data.

4.4.2 News Media. News Media is another main channel to disseminate information regard-
ing COVID-19. Therefore, these articles are also valuable to understand the public awareness of
COVID-19 and pandemics. However, different presses and institutes publish in their own elec-
tronic and paper-based channels. To integrate news from different channels, Jingyuan developed
a COVID-19 news and article dataset [152]. This dataset includes articles from a total of 52 major
news channels across the countries and a fewwell-known national and international organizations,
such as WHO and the CDC.

4.5 Personal Health Data

4.5.1 Medical Imaging. Sincethe COVID-19 outbreak, automated diagnosis and early detection
of COVID-19 based onmedical imaging data have become an important research topic. Most of the
datasets are being updated continuously. CXR and CT are the two major imaging techniques used
for COVID-19 detection and diagnosis. As one of the pioneer works of building public medical
imaging datasets, Cohen et al. combined data from four sources [164], namely, Corona Cases,5 the
Italian Society of Medical and Interventional Radiology,6 Radiopaedia,7 and EuroRad.8 This dataset
contains more than 500 CXR and CT data from patients with COVID-19 and other infectious dis-
eases such as SARS, Middle East Respiratory Syndrome, and Acute Respiratory Distress Syndrome.
Metadata of each image in the dataset have been attached, including the age of the patient, the data
collection date and location, and more. Manymachine learning and DNNmodels for COVID-19 de-
tection and diagnosis are (partially) trained and validated on this dataset [155, 164, 165]. Similarly,
Zhao et al. developed a COVID-CT-Dataset containing 349 COVID-19 positive cases from 216 pa-
tients and 695 negative samples from multiple [17]. Many such small-scale datasets with hundreds
to thousands of CXR and/or CT images have been developed, composed of samples from positive

5https://coronacases.org/.
6https://www.sirm.org/category/senza-categoria/covid-19/.
7https://radiopaedia.org/.
8https://www.eurorad.org/.
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COVID-19 cases, negative pneumonia cases, and negative cases of normal patients [165–167].
These medical imaging datasets have been well summarized in Reference [153].

However, to achieve more reliable diagnosis and detection, it is necessary to build larger-scale
datasets so the biases in trained machine learning models can be mitigated. Cohen et al. leverage
a combination of large-scale negative CXR datasets [154], such as MIMIC-CXR [168], PADCH-
EST [169], and so on, to pre-train the deep learning model for enhanced diagnosis performance
and reliability. However, due to the limited amounts of positive samples in both training and testing
datasets, many problems of the model remain. Wang et al. developed a COVIDx dataset contain-
ing 13,975 CXR data, and almost every image is collected from different patients. [155]. Based on
such a dataset, a deep learning model, called COVID-Net, has been trained to detect COVID-19
infected cases from the imagery, and the model can achieve 93.3% test accuracy. Meanwhile, many
large-scale datasets used in publications for deep-learning-based COVID-19 diagnosis are pri-
vate [156, 157]. Some of these private datasets are composed of data collected from multiple lo-
cations and can better validate the effectiveness of data-driven models.
Except for the most commonly used CXR and CT data, Born et al. developed an effective COVID-

19 detection algorithm based on ultrasound images, and a small-scale dataset called Point-of-care
Ultrasound (POCUS) was introduced [158]. POCUS integrates data from multiple sources and
contains 1,103 video data, where 654 positive COVID-19 samples are included. Ultrasound is a
non-invasive medical imaging technique that does less harm to patients than CSR and CT. The
ultrasound technique is also more portable, and collecting ultrasound data is cheaper than collect-
ing CSR and CT medical images, which makes it more accessible to professionals in developing
countries.
In addition to diagnosis and detection of COVID-19, data-driven methods can be applied for

many complicated tasks such as prognosis for severity [159], segmentation of infected areas in the
scans [160], and so on. However, due to the high cost and requirements of professional knowledge,
these datasets are all very small, including tens or hundreds of samples. While the current data-
driven models rely on large amounts of data to achieve good performance, it is challenging to
develop larger-scale annotated datasets with affordable costs.

4.5.2 Electronic Health Records. While medical imaging is an effective data source to provide
informative data for COVID-19 diagnosis and detection, comprehensive decision-making and anal-
ysis should depend on complete medical history and thorough information about a patient, which
can be accessed via personal health records. However, personal health records contain sensitive in-
formation that usually cannot be shared with the public. To tackle this challenge, a pseudonymized
data analysis platform that allows the researchers to conduct data mining and develop data-
driven methods is proposed [161]. Data analysis scripts can be submitted to the platform, and the
corresponding aggregated results can be obtained. Specifically, there aremore than 17million adult
electronic health records available on the platform. Therefore, the users will not have direct access
to the data to maintain data privacy. At the same time, a broad range of data-driven methods can
be performed on massive amounts of electronic health records.

4.6 Other Data

Other than the directly related data as described above, many supplementary data can be help-
ful for specific applications of COVID-19 and pandemic management. These data can be obtained
via various domain-specific sources. In this survey, only a few commonly used datasets are in-
troduced. First, population and demographic information are closely related to analyzing data
patterns and developing robust models for human behaviors and pandemic transmission across
various regions. Such data are usually collected and released by government agencies, such as the
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United States Census Bureau,9 Eurostat,10 and so on. To model the social and economic impacts
of pandemics, survey data and derived social and economic indexes can be used to measure the
effects of pandemics [170, 171]. Another common data related to COVID-19 and pandemic man-
agement is meteorological data, i.e., weather information, which can be obtained via a numerical
weather prediction dataset from NOAA,11 the UK Met Office,12 and more. All these data are avail-
able across various sites on the Internet, and it is non-trivial to aggregate all of them together. To
this end, the OxCOVID19 dataset is proposed to integrate demographic, socioeconomic, weather
data, as well as other information, such as mobility and government responses, for more than
50 countries [162]. There are many other domain-specific data related to COVID-19 and pandemic
management, which are out of the scope of this survey and not included in this section.

5 OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

Since the emergence of the global COVID-19 pandemic, large amounts of innovative research
and development work using data-driven techniques for COVID-19 management have been re-
leased and published. However, there remain many open issues and new directions that can be
resolved and explored to leverage data-driven methods for pandemic management. Further
research and development efforts should be done to prepare ourselves for future pandemics. In
this section, a few important open issues and future research directions are discussed to provide
insights about what needs to be done and which data-driven techniques can potentially help.

5.1 Trustworthy and Reliable Machine Learning

When data analysis results are used for decision-making in COVID-19 and pandemic management,
it can be life-changing. Data-driven models that produce life-changing results should be reliable
and trustworthy. How the data can be used in decision-making is critical to its outcomes, neces-
sitating transparent and trustworthy machine learning models. The “black box” model, such as
DNN, needs to be opened to provide certain transparency of how the results are generated. For
example, it was recently discovered that most of the existing models built for COVID-19 detection
using machine learning algorithms for diagnosis cannot be practically used in the clinical setting
due to their biases and uncertainties [172]. The first step in deploying advanced machine learning
models in safety-critical applications is to ensure that trustworthy results can be produced. Many
existing publications lack appropriate model validations and evaluations and use internal datasets
for evaluating model performance. Consequently, undetected biases in COVID-19 data could lead
to misleading results [173].
A trustworthy and reliable machine learning requires fair, explainable, auditable, and safe pro-

cesses and outcomes [174]. Specifically, in the context of pandemic management, fairness avoids
discrimination and biases within data and prevents additional risks for certain groups of people.
Explainability focuses on techniques to provide a human-understandable rationale for the model’s
outcomes to allow disaster managers to utilize them better. Auditability allows for monitoring and
supervision of the operation of machine learning models for pandemic management by the third
parties. Finally, safety focuses on preventing the models from malicious attacks.
To achieve each aspect of these desired characteristics for a machine learning model, various

techniques have been proposed. For example, to ensure the model fairness, a regulation term was
designed and added to a logistic regression classifier for achieving unbiased classification [175].

9https://www.census.gov/about/policies/open-gov/open-data.html.
10https://ec.europa.eu/eurostat/web/population-and-housing-census/census-data/database.
11https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/numerical-weather-prediction.
12https://www.metoffice.gov.uk/services/data.
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Two main solutions are proposed to explain results from machine learning models, i.e., ex-ante
and ex-post. Ex-ante approaches refer to the models with explicit decision paths from inputs to
the results, such as the decision tree model, while ex-post approaches examine the local or global
behaviors of the model to generate explanations [176]. Auditability can be obtained by examining
the model’s sensitivity of results on input features, where “decision provenance” can be lever-
aged [177]. Model safety can be ensured by improving the model’s confidentiality (discussed in
the next subsection) and integrity. The integrity of a model can be improved by incorporating
error detection methods [178] and fault-tolerant model training strategies [179]. While current
solutions can improve model trustworthiness, there are many challenges in each aspect to be fur-
ther addressed. Meanwhile, many problems, such as how the model can achieve multiple aspects
simultaneously, how the trustworthy model achieves comparable performance as the “black box”
model, and so on, remain unknown. A more detailed survey for general trustworthy machine
learning techniques and their limitations is available in Reference [174].

5.2 Data Privacy

All data-driven techniques depend on the quantity and quality of available data. High-quality data
are one of the most important components to develop effective methods and models for managing
COVID-19 and future pandemics. However, the increase of data availability and feasibility could
raise concerns about data privacy, especially for health and mobility data [180]. When machine
learning is applied, data privacy becomes more difficult to protect from attacks, since machine
learning algorithms could automatically memorize sensitive personal information within training
datasets, either intentionally or unintentionally. Malicious users can extract and recover such infor-
mation from the machine learning models [181]. Furthermore, public awareness of such a problem
is limited due to the lack of professional knowledge about machine learning. Therefore, the public
might volunteer their sensitive personal information without knowing it.
Many privacy-preserving machine learning models have been proposed to tackle the data pri-

vacy issue in machine learning. Existing techniques mainly use three approaches, i.e., encryption,
obfuscation, and aggregation, and a detailed survey of state-of-the-art privacy-preservingmachine
learning solutions is provided in Reference [181]. In brief, encryption protects data privacy by en-
crypting either training data or the trained machine learning model and preventing malicious
access to the data. Obfuscation protects privacy by intentionally adding noise to the data and/or
models. Aggregation intends to train the machine learning models in a distributed environment,
where the final models do not directly access the raw data. However, novel and advanced privacy
attacks are being discovered, and continuous research in privacy-preserving techniques should be
conducted to protect the public from personal information leakage.

5.3 In-crisis Community Identification

Based on Table 1, we can observe that data-driven methods for disaster recovery are under-
researched. Recovery from COVID-19 and pandemics involves many complex decision-making
processes, which can be supported by data-driven techniques. Specifically, we find it important
to identify those communities that need the most help from society and understand the problems
faced by them [182]. During a global pandemic like COVID-19, various communities could en-
counter different unanticipated problems. Meanwhile, countermeasures to mitigate the pandemic
transmission could further trigger other problems such as adverse effects to the economy. There-
fore, to provide immediate and dynamic assists to these communities, data-driven methods that
automate the in-crisis community identification can be helpful. Many community detection algo-
rithms have been proposed within a social network [183] and based onmobility data [184]. Most of
these methods follow a similar framework: (a) Treating each trajectory as a node; (b) Calculating
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the distance between nodes with a predefined distance function; and (c) Using a graph clustering
method to get the communities. For the members of in-crisis communities during a pandemic, sig-
nificant and abrupt changes in their behaviors can be expected [185, 186], which can be utilized to
identify which communities or subgroups of a community are in crisis. Given the identified com-
munities, the behavioral changes during the pandemics can be monitored based on the collected
data from various sources, such as social media, mobility, and so on. Whenever abnormal and un-
usual changes in the behavior of certain communities are observed, such communities might have
encountered a crisis. These behavioral changes could be observed from various aspects in data. For
example, suppose many members in a community turn to have negative sentiment, which can be
measured by the contents of tweets posted by the community members. In that case, such a com-
munity might be suspected to be in crisis. Furthermore, when candidates of in-crisis communities
are identified, social media data and other data available for the community can be analyzed to
further understand their demands and problems.

5.4 Compound Disaster Management

As COVID-19 remains a threat to the public, natural disasters could disrupt the normal procedures
of pandemic management. It is important to develop strategies to minimize the losses of life and
properties from natural disasters in the context of COVID-19 and any future pandemics [187].
However, managing natural disasters usually involves measures, such as the displacement of large
populations, which directly conflicts with the countermeasures of pandemics [188]. The risks of
pandemic transmission will greatly increase if people are clustered and housed within a limited
space, where social distancing is no longer feasible. It has been reported that mass evacuation and
sheltering processes during COVID-19 could cause significant increases in infected cases [189].
Therefore, a combination of countermeasures can be deployed to manage the compound disasters
instead of a single solution. For example, in the event of a hurricane, shelter-in-place and evacua-
tion can be incorporated for citizens to keep safe when the shelter capacity needs to be limited to
mitigate the risks of COVID-19, where risks from both natural disasters and pandemics need to be
balanced.
While the complexity of the problem increases, it is harder for human disaster managers tomake

optimal decisions. As a result, the emergency managers could face increased stress and pressure
from the unknown consequences of their decisions to manage compound disaster situations [190].
Therefore, data-driven methods can be leveraged to provide insights and suggestions for disaster
planning. By integrating pandemic transmission models with human mobility and disaster-related
data, the situations of natural disasters and pandemics can be simulated and estimated. These
results can thereafter be used to predict the combined risks of both natural disasters and pandemics
together. However, such data-driven tools to support decision-making are not yet ready. Research
on managing compound disasters should be further investigated.

6 CONCLUSION

While COVID-19 has taken a toll on the world health, economy, and many other aspects, it raised
broad attention to pandemic management in the research communities. Given the recent advances
in data science andmachine learning, data-driven techniques have been developed and have played
a more important role in managing global pandemics. Unlike conventional pandemic management
methods that rely heavily on human expertise and are not scalable, data-driven techniques can
process data from all over the world and provide assistance to manage global pandemics. These
techniques can scale to large amounts of countries and regions and massive numbers of people.
This article surveys the state-of-the-art data-driven techniques that facilitate the management

of global pandemics, especially the ongoing COVID-19 pandemic. It starts with the current status
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of COVID-19 and its global impacts and then moves to various phases of disaster and pandemic
management where data-driven methods can contribute. Then, recent data-driven methods and
algorithms that apply to some critical applications for pandemic management are presented. These
applications and corresponding data-driven methods are related to the four phases in the disaster
management cycle. We discuss the data used for each application, which facilitates the manage-
ment of COVID-19 and future pandemics. For applications such as transmission modeling, trans-
mission prediction, outbreak detection, and early case detection, many data-driven methods have
been proposed. The methodologies, advantages, and disadvantages of these existing methods have
been compared. Meanwhile, three-category data visualization techniques for pandemic manage-
ment and situation awareness enhancement and existing tools used for COVID-19 are presented.
Thereafter, datasets among six categories that contribute to the COVID-19 and pandemic manage-
ment have been introduced, including epidemiology data, policies and regulations, mobility data,
media data, personal health data, and other data. This article discusses several open issues and
future research directions of the data-driven COVID-19 and future pandemic management. Sev-
eral existing and potential solutions to these topics are provided, but many of them have yet to
be fully addressed, as data-driven techniques are not yet ready but could potentially help in the
future.
To summarize, data-driven methods and algorithms open numerous opportunities across vari-

ous applications for COVID-19 and future pandemic management. However, many challenges in
data science and machine learning need to be solved to appropriately aid in solving these issues.
Data-driven methods that could objectively and dynamically respond to the pandemic at scale will
certainly be one of the key components in the future of pandemic management.
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