2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR) | 978-1-6654-9548-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/MIPR54900.2022.00058

2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR)

Multi-Source Weak Supervision Fusion for Disaster Scene Recognition in Videos

Maria Presa-Reyes*, Yudong Tao!, Rui Maf, Shu-Ching Chen*, Mei-Ling ShyuT
*Knight Foundation School of Computing and Information Sciences
Florida International University, Miami, Florida 33199
Emails: {mpres029,chens} @cs.fiu.edu
TDepartment of Electrical and Computer Engineering
University of Miami, Coral Gables, FL 33124
Emails: {yxt128,rxm1351,shyu} @miami.edu

Abstract—Images or video recordings assist emergency re-
sponders in quickly inspecting the damage after a disaster
event. New techniques are needed to help responders organize
and find important information at the right time. However,
most existing methods do not meet public safety standards
due to a lack of training data. We propose a multi-source weak
supervision fusion technique to train on a highly imbalanced
dataset annotated with noisy labels. Using a Confident Learning
technique, we reduce the noise effect while boosting the class
labels’ quality. We combine the predictive power from models
trained on large-scale visual datasets using Differential Evo-
lution. This research demonstrates a fully-automatic approach
with great potential to reduce the required time and resources
while delivering exceptional results. In the TRECVID2021
Disaster Scene Description and Indexing (DSDI) Challenge,
our technique achieved the top score among all the submitted
runs, independent of the training data utilized.

Keywords-damage assessment; deep learning; convolutional
neural networks

I. INTRODUCTION

Image and video recognition algorithms have advanced
rapidly and with better precision, and are expected to
become a critical component of incident and disaster re-
sponses [1]. Using advanced technologies and deep learn-
ing methodologies such as Convolutional Neural Networks
(CNN:s), it is possible to deploy a drone ahead of the search
team to swiftly identify the most damaged areas that should
be prioritized during a disaster. The automated content-based
analysis and classification of the observed disaster-related
features in recorded videos will allow better curation and
retrieval of critical information for situational awareness.
Due to insufficient training data and standards, most of the
existing methods do not fulfill public safety demands [2].

Civil Air Patrol (CAP) has the technical capability to
function even when severe weather disrupts power, internet,
phones, and airplane takeoffs, making it a critical and
cost-effective tool for the Federal Emergency Management
Agency (FEMA) to survey the impacted region swiftly
and efficiently. CAP offers aerial pictures of flooded areas,
collapsed dams, and other natural disaster-related events.
To this end, several large-scale disaster imagery datasets,
including the Incidents Dataset [3], LADI (Low Altitude

Disaster Imagery) [4], xBD [5], etc., have been recently
released to stimulate the development of new research and
technologies in this field. Given the volume of data being
collected, it is also critical to develop sophisticated tools and
systems for curating all of the information.

It is challenging to analyze the images taken by low-
altitude planes since they have a low height perspective, an
oblique angle, and many disaster-related parts that image
recognition systems do not usually take into account. We
propose a weakly-supervised learning technique that incor-
porates data from a range of sources, many of which are
of low quality or have been trained on subjects significantly
different from the target classification task. The proposed
fully-automatic solution would significantly decrease the
time and expense associated with the classification jobs
while delivering superior outcomes.

The main contributions of this paper are summarized as
follows.

e« We propose a new semi-supervised training technique
that is robust to noisy, limited, and erroneous annota-
tions and class labels from multiple sources.

o For the multi-source weak supervision fusion frame-
work, a unique approach for recognizing and merging
the relevant predictions from various pre-trained net-
works is proposed.

o The proposed approach is evaluated on the LADI
dataset and achieved the top score among all the sub-
mitted runs in the TRECVID2021 [6] Disaster Scene
Description and Indexing (DSDI) Challenge, indepen-
dent of the training data utilized.

This paper is organized as follows. Section II examines
approaches that use deep learning techniques to analyze
low-altitude images. Section III introduces our proposed
weakly-supervised framework, including confident learning
and multi-source weak-supervision fusion. In Section IV, the
effectiveness of our proposed framework is shown through
the quantitative experimental results. Finally, Section V
summarizes this paper and recommends future research.
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II. RELATED WORK

Most current solutions rely on high-quality annotations to
build reliable models that can sufficiently automate image
processing and concept detection. Non-experts are likely
to have only seen low-altitude photos on rare occasions.
Consequently, it will be too costly to get enough high-
quality annotations to build a good training dataset. Numer-
ous researchers have developed a variety of deep learning
algorithms that are less reliant on the quality of the training
data. The weakly-supervised tags and visual information are
used to train semantic-aware hash functions [7]. Previously,
deep canonical correlation analysis (DCCA) [8] was used to
combine visual and text tag data. Many previously reported
techniques rely on sparse line reconstruction, sparse coding,
and dictionary learning to recover textual tags, which costs
time and space and is not suited for large-scale applications.
Research into automated disaster scene descriptions from
images has grown in popularity. Newly-released disaster
datasets such as xBD [5] and the Incidents Dataset [3]
feature a top-down and a ground-level view of the damages.
However, LADI [4] is unique in the low-altitude and oblique
views found in its images. More recent studies explore an
ensemble learning approach to tackle the class-imbalance
and noisy-label issues [9], [10]. The incorporation of spatio-
temporal information to increase the model’s contextual
awareness has also been investigated [11]. Our proposed
framework aims to improve the quality of noisy labels in the
LADI training data through a Confident Learning (CL) [12]
strategy. Furthermore, a novel multi-source information fu-
sion method is proposed to improve the performance of the
target features that are underrepresented in LADI.

III. PROPOSED FRAMEWORK

Figure 1 illustrates the full flow of our proposed frame-
work. CL is used to improve the quality of the noisy labels in
the crowdsourced annotated training set, which is the first
step in our multi-source architecture for combining weak
supervision from different sources. Given the scores of nu-
merous semantic concepts obtained from different machine
annotators, several semantically related predictions are used
to improve the performance of a target feature. The text that
describes the target feature is turned into high-dimensional
vectors, which are then used to look for semantic similarity
and pick relevant concepts from other networks. We optimize
a weighted average that incorporates all of the models’
relevant predictions into a single scalar that serves to rank
the video clip using Differential Evolution (DE).

A. Denoising with Confident Learning

According to the LADI researchers [4], annotations are
organized as Human Intelligence Task (HIT) which asks the
human worker whether any of the target features in each of
the five categories (i.e., damage, environment, infrastructure,
water, and vehicle) are correct. Each HIT is allocated to up
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to five workers (asking just one category at a time) in order
to reach the agreement on the label quality. Namely, for an
image ¢ and a target feature F that belongs to a specific
category C (ie., Fc € (), the initial soft score S; . is
calculated as follows.

#Positive Votes; .,

1
Total Votes; c )

Si,Fc =

To calculate S; r,, we assume that a particular image
must have at least one vote from an annotator who was
assigned a specific category C. Then, we employ cross-
validation confident intervals [12] to derive out-of-sample
prediction probabilities to further improve the label quality.

B. Multi-Source Weak Supervision Fusion

1) Machine Annotators: This study employs five CNN
network configurations (i.e., ResNet50, DenseNetl61,
YOLOV4, ViT-B/16, and InceptionV3) pre-trained on five
open-source datasets (i.e., Places365, Incidents Dataset, MS
COCO, ImageNet21k, and LADI+Others). ResNet50 [13]
and DenseNet161 are pre-trained on Places365 dataset which
contains 1.8 million training images taken from 365 scene
categories [14]. Another ResNet50 network is also pre-
trained on the Incidents Dataset containing 446,844 man-
ually annotated images covering 43 incidents across various
scenes [3]. YOLOv4 (You Only Look Once) [15] pre-trained
on Microsoft Common Objects in Context (MS COCO)
is one of the leading deep learning-based object detection
frameworks. The ViT-B/16 [16] model pre-trained on the
ImageNet21K dataset is proven to be a key component in
our proposed framework. Last but not least, an InceptionV3
model trained on LADI plus other sources by Presa-Reyes et
al. [11] have also been incorporated.

2) Multi-Source Concept Fusion: Given the predicted
scores X? of many machine annotators’ semantic concepts
(i.e., target classes), many of these related concepts may help
identify a target feature F'. A Universal Sentence Encoder
based on the Deep Averaging Network (DAN) [17] converts
the text describing the target feature into high-dimensional
vectors 7' that are then utilized to obtain the semantic
similarity among different concepts using the cosine distance
0 of the vectors. To fuse multi-source concepts, the high-
dimensional vectors of the target feature F' and the semantic
concept P are first matched, and the weighted average score
of those closely correlated concepts are fused, i.e.,

Sp(k,wp) = Z wﬁ’, . Xﬁ
peO

where O = {P|0(Tr,Tp) > ¥}, wh € Q is the set of
optimized weights representing the contributing power of
each pre-trained model’s predicted score X} for a key
frame k, and wp is the vector with all w% Moreover, the
values for w%. bounds and the ¥ threshold are empirically
decided based on the validation performance. Furthermore,
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Figure 1: The proposed weakly-supervised deep learning framework implements a confident learning approach to denoise
crowdsourced annotations along with a multi-modality fusion framework to search and combine relevant target features

predicted by multiple networks.

there exist multiple key frames inside a given video shot v.
Therefore, the average score over all the key frames in v
is computed as the shot-level feature score, which can be
formally written as

Sy (V,wr) = Z Sr(k,wr) 3

1
VI &
Then, for a given dataset of video shots V and a target
feature F', the top-N shots with F' can be defined as an
ordered sequence Vg = [V1, Vo, ..., Vy], where V; € V and
Vi > j, Sv(Vj,wF) > Sv(vz,wp)

3) Weight Optimization based on Differential Evolu-
tion: The remaining problem is to determine the optimal
weights wp for each target feature F'. Differential Evolu-
tion (DE) [18] is a kind of evolutionary optimization tech-
nique that works with a population of candidate solutions.
It uses genetic operators like mutation and recombination to
repeatedly enhance the population. The objective function
G determines each candidate’s fitness. If G(s1) < G(s2),
candidate s; is judged to be superior to candidate s,. The
objective function seeks to improve the average precision
for a specific target feature (i.e., to minimize 1 — APY)
by measuring the performance of a collection of retrieved
results using the precision and recall metrics. Assuming
the solution contains N video shots ordered by the final
aggregated confidence scores, our objective is to minimize
the error as shown in Equation 4. Semantically relevant
predictions are then combined into a single scalar which
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is used to score the video clip.

= argmin [1 — APY(Vp)]

wg

4)

wp = argmin G(wr)
wF

IV. EXPERIMENT RESULTS
A. Experimental Setup

This section discusses the LADI dataset to evaluate the
proposed methodology compared to other currently available
approaches to determine how effective it is. We fine-tune
the weights of the CNN network trained on ImageNet to
train the feature score models using only the LADI dataset
via transfer learning. Using DE, the feature scores that
have been predicted are then integrated with the predictions
made by CNN networks pre-trained on relevant open dataset
benchmarks.

1) Dataset: We test our methods using the LADI dataset,
which comprises images acquired by CAP from a low-
flying aircraft and maintained by FEMA. The LADI training
dataset consists of images captured from an airplane, and
the LADI test dataset consists of brief video clips captured
from a UAV. The DSDI track’s test dataset in 2021 com-
prises 2,802 video shots with a maximum duration of 60
seconds per shot, focusing on the devastation wrought by an
earthquake tragedy. The test set supplied in TRECVID2020-
DSDI [20] is used as validation during the DE processing
in our case. The Mean Average Precision (MAP) metric is
used to examine and compare the performance of different
approaches.
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Table I: Performance comparison among our proposed technique and competing methods.

Training Precision@k Recall@k Fl1@k
Method Data k=10 k=100 k=1000 | k=10 k=100 k=1000 | k=10 k=100 Kk=1000 MAP
BUPT_MCPRL [6] L 0.271 0.225 0.228 0.271 0.232 0.405 0.271 0.227 0.244 0.159
VCL_CERTH [19] L+ 0.510 0.367 0.245 0.511 0415 0.378 0.510 0.377 0.255 0.282
Presa-Reyes er al. [11] [e) 0413  0.392 0.285 0413  0.448 0.682 0413  0.404 0.316 0.298
Ours-CL-BA L 0.394  0.346 0.279 0.394  0.383 0.648 0.394  0.351 0.307 0.254
Ours-CL-ZS (¢} 0471  0.409 0.296 0471  0.522 0.789 0471  0.425 0.332 0.339
Ours-CL-DE (proposed) L 0.384  0.351 0.286 0.384  0.395 0.683 0.384  0.360 0.315 0.268
prop 0 0481 0425 0310 | 0481 0502 0793 | 0481 0439 0345 | 0.359
L+ LADI-based (L) training data plus additional human annotations (i.e., instance and segmentation).
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Figure 2: The boxplot shows the distribution for a feature’s precision score compared across all submissions to
TRECVID2021-DSDI, independent of which training dataset was used to train each technique. The placement of our
proposed method’s performance is demonstrated using a black diamond.

2) Competing Methods: To determine the effectiveness of
the proposed technique, we compare it to other competing
methods, such as BUPT_MCPR [6] and VCL_CERTH [19].
Both competing methods are trained solely on the LADI-
dataset. In particular, the problem was approached by
VCL_CERTH as a panoptic segmentation problem with
additional instance and semantic segmentation annotations
for 300 LADI images. The method proposed by Presa-
Reyes et al. [11] trained on LADI plus other datasets
was also included. Two baseline fusion techniques using
the average of the best performing model (Ours-CL-BA)
and aggregated predictive scores after z-score normalization
(Ours-CL-ZS) are also explored to compare against our
proposed DE fusion.

3) Feature Score Model and Fusion: Two feature score
models, EfficientNet-B5 [21] and ResNet50 [13], are trained
on the LADI’s confident labels generated by the CL-based
approach. Using transfer learning, we fine-tune the network’s
weights on ImageNet. The network’s final classification head
is replaced with a fully-connected layer followed by a sig-
moid activation for multi-class soft-label classification. With
a starting learning rate of (n le —4), we use the Adam
solver to optimize our model. We use a weighted average
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ensemble where the weights are optimized through DE to
get superior performance by combining human and machine-
generated annotations. For the DE search, we employ the
DE/best/1/bin technique which generates new candidate so-
lutions by randomly picking solutions from the population,
subtracting one from the other, and adding a scaled version
of the difference to the population’s best candidate solution.

B. Results and Discussion

The proposed framework is compared to competing meth-
ods mainly categorized as LADI-based (L) the LADI + Oth-
ers (O) track submission—where “Others” in our proposed
approach refers to the inclusion of models pre-trained on
open-source data benchmarks. Table I summarizes the per-
formance comparison across different methods. The excel-
lent results obtained by the panoptic segmentation approach
proposed by VCL_CERTH on the LADI-based (L) track
underline the necessity to integrate additional information
about the images other than the noisy labels.

Our proposed technique achieves impressive results on the
LADI + Others (O) track, particularly compared to other
competing methods. The high recall rate illustrates our clas-
sification model’s ability to detect and recover the majority
of positive examples within a relevant target feature. By
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Figure 3: Ablation research demonstrating how the per-
formance of the proposed Ours-CL-DE improves with the
inclusion of each machine annotator’s dataset.

comparing the baseline methods Ours-CL-BA and Ours-CL-
ZS, we demonstrate our proposed Ours-CL-DE approach
can find better weights when aggregating the predictions
of different models. Furthermore, compared to the method
that simply trains on the LADI-based (L) data, the proposed
method introduced on LADI + Others (O) improves the
MAP score by roughly 34%, indicating the effectiveness of
our strategy of fusing the weak supervision from multiple
sources.

In Figure 2, the average precision at the target feature
level shows that our suggested approach has obtained the
greatest performance for the target features such as debris,
rock, snow/ice, building, utility-line, boat, river, and road.
Figure 3 depicts the performance contribution of each addi-
tional dataset used to train the machine annotators previously
described in Section III-B1. Starting from our proposed CL
technique trained on LADI only, each additional dataset
is added to the ensemble as depicted by a checkmark
in the figure. The ResNet50 pre-trained on the Incidents
Dataset contributed a performance boost for the environment
category, detecting concepts such as ‘snow covered’ and
‘field’ and improving on features snow/ice and grass. The
damage features, on the other hand, did not improve as
expected given the damage concepts from the Incidents
Dataset, necessitating further investigation. The environment
features achieve better performance because they are simpler
to discern from long distances and show lower inter-class
variation than other categories. YOLOv4 network pre-trained
on MS COCO contributes a performance boost for the
vehicle categories, detecting concepts for ‘aeroplane,” ‘boat,’
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‘car, and ‘truck.

We employ a weighted average ensemble that achieves
better performance thanks to the integration of human and
machine-generated annotations. Since it is clear that the re-
lationship between the relevant features is not linear to their
semantic similarity, our proposed technique has been proven
to be a viable approach to identify the best predictions based
on the performance of each machine annotator. Because our
proposed technique outperforms existing methods with min-
imal training, they are an excellent means of leveraging and
transferring information from the methods that have already
been presented in previous research into any emerging topic.

V. CONCLUSION AND FUTURE WORK

Due to a lack of appropriate training data, most present-
day picture recognition algorithms fail to meet public safety
requirements. As part of our multi-source weak supervision
fusion architecture, we apply the CL technique to enhance
the quality of noisy labels in the crowdsourced annotated
training set. Semantic similarity is used to identify relevant
concepts predicted by other networks. We use DE to rank the
video clip based on a weighted average of all relevant model
predictions. Combining many classifiers pre-trained on well-
known data benchmarks improves the overall performance,
but only the best and most relevant predicted score towards
a particular target feature should be used. Overall, the study
shows how this framework has great potential to save a sig-
nificant amount of time and resources while still achieving
outstanding results in the disaster scene description task.
Although this work focuses on disaster scene description, the
proposed methods have been developed with extendability
in mind. Our approaches are effective for leveraging and
transferring knowledge from past study into any new topic.
As a potential future work, we will explore more advanced
techniques of incorporating other multi-modality sources
using our proposed technique, such as spatio-temporal data.
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