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ABSTRACT
Human mobility nowcasting is a fundamental research problem for
intelligent transportation planning, disaster responses and manage-
ment, etc. In particular, human mobility under big disasters such as
hurricanes and pandemics deviates from its daily routine to a large
extent, which makes the task more challenging. Existing works
mainly focus on traffic or crowd flow prediction in normal situa-
tions. To tackle this problem, in this study, disaster-related Twitter
data is incorporated as a covariate to understand the public aware-
ness and attention about the disaster events and thus perceive their
impacts on the human mobility. Accordingly, we propose a Meta-
knowledge-Memorizable Spatio-Temporal Network (MemeSTN),
which leverages memory network and meta-learning to fuse so-
cial media and human mobility data. Extensive experiments over
three real-world disasters including Japan 2019 typhoon season,
Japan 2020 COVID-19 pandemic, and US 2019 hurricane season
were conducted to illustrate the effectiveness of our proposed solu-
tion. Compared to the state-of-the-art spatio-temporal deep models
and multivariate-time-series deep models, our model can achieve
superior performance for nowcasting human mobility in disaster
situations at both country level and state level.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; •Applied
computing→ Sociology.
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1 INTRODUCTION
In recent years, the world was hit by an increasing number of severe
disasters, and tremendous amounts of human lives and properties
are under the risks. For example, Coronavirus disease 2019 (COVID-
19) has resulted in more than 6.5 million deaths as of October 2022,
while the 2019 Pacific Typhoon season and 2019 Atlantic Hurri-
cane season were both the costliest seasons on records. Against
this background, nowcasting human mobility in disaster is criti-
cal for disaster management and response (i.e., saving lives and
reducing economic losses), which also aligns with the Sustainable
Development Goals (SDGs) for promoting “Sustainable Cities and
Communities” and “Good Health and Well-being”.

Figure 1: The normalized human outflow volume and
disaster-related tweet count for two selected prefectures in
Japan during the TyphoonHagibis (upper, hourly aggregated)
and the first wave of COVID-19 (lower, daily aggregated).
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Each disaster event is distinct and almost unpredictable. Human
mobility under disasters will deviate from its routine, which makes
the human mobility nowcasting under disasters more challenging.
By leveraging the the state-of-the-art deep learning technologies,
enormous efforts [3, 6, 9, 20, 27, 31, 36, 39, 41, 43–45] have been
made to forecast human (crowd/taxi/bike) flow or density. How-
ever, these models mainly focus on learning the periodic patterns
of human mobility in normal situations, which makes it difficult to
apply in anomalous disaster situations. Meanwhile, social media
can provide valuable information to sense the collective sentiment
under disasters. Previous study showed that geo-tagged social me-
dia data can be leveraged to precisely estimate the locations of
earthquakes [26]. Residents’ evacuation decisions have been mod-
eled and predicted with their pre-disaster web search behaviors as
well [38]. Inspired by these, we collected Twitter and mobility data
from all 47 prefectures in Japan in 2019 Pacific Typhoon Season
and during COVID-19 pandemic, where the human outflow volume
and disaster-related tweet count in two selected prefectures have
been depicted in Figure 1. It can be found that the “hills” of disaster-
related tweet count co-occurred with the abnormal patterns in
human mobility volume during the landfall of Typhoon Hagibis on
October 12 and the prevalence of COVID-19 in March and April of
2020. In this sense, tweet count can be seen as a covariate to help
the human mobility nowcasting in disasters.

Thus, in this study, we propose to incorporate the disaster-related
social media data for human mobility nowcasting under disasters.
We develop a novel model called Meta-knowledge-Memorizable
Spatio-Temporal Network (MemeSTN) to learn the cross-modal cor-
relations and inter-dependencies between the social media and mo-
bility data. Specifically, we first extract the spatial meta-knowledge
(SMK) and temporal meta-knowledge (TMK) from the social media
data through one STN, then utilize the SMK and TMK to parame-
terize another STN for modeling the mobility data. Essentially, this
“learning-to-learn” meta-learning procedure is to perform data fu-
sion by “learning-social-to-learn-mobility”. Furthermore, we utilize
a learnable memory bank to store the socio-temporal prototypes
(e.g., normal days, disaster coming) learned from the history, and let
the current refer to the history via attention mechanism, through
which the abnormality caused by the disaster can be quickly per-
ceived. Our main contributions are summarized as follows:

• We propose to nowcast human mobility at country/state
level under big disasters, which is a novel and significant
topic for the field of web and society.
• The tweet count is utilized as an effective covariate for hu-
man mobility nowcasting during disasters, which guides the
modeling of the heterogeneity in the responses to the disas-
ters across different regions and the differences in human
mobility under normal and abnormal scenarios.
• Meta-knowledge-Memorizable Spatio-Temporal Network
(MemeSTN) is proposed for human mobility nowcasting. It
leverages the memory network and meta-knowledge distil-
lation to better learn the cross-modal dependencies between
social media and mobility data.
• Three large-scale multimodal disaster datasets including
Japan 2019 Typhoon, Japan 2020 COVID-19, and US 2019
Hurricane are developed with multi-month observations of

Figure 2: The 47 prefectures of Japan[33] and the binary adja-
cency matrix. White cell means two prefectures are adjacent.

tweet count and human mobility volume. Intensive experi-
ments have shown the superior performance of our proposed
model over the state-of-the-arts1.

2 PROBLEM FORMULATION
Definition 1. (Region-Wise HumanMobility): Let {𝑟1,𝑟2,...,𝑟𝑁 } be a

spatial area consisting of𝑁 non-overlapping regions and {𝜏1,𝜏2,...,𝜏𝑇 }
be𝑇 consecutive and equally-divided timeslots (time intervals). We
define different types of human mobility based on the original data
source: (1) GPS trajectory data. Each trajectory in J is processed
to a series of origin-destination (OD) pairs (essentially stay points)
[𝑢𝑖𝑑, (𝑜1, 𝑑1), . . . , (𝑜𝑖 , 𝑑𝑖 )] via trip segmentation, where 𝑜.𝑙 and 𝑑.𝑙
are the locations of the origin 𝑜 and destination 𝑑 , 𝑜.𝑡 is the depar-
ture time leaving 𝑜 , and 𝑑.𝑡 is the arrival time reaching 𝑑 . Then,
the human mobility that takes region 𝑟 as the origin or destination
within timeslot 𝜏 is defined as follows:

𝑥
𝑟 (𝑂 )
𝜏 = |{(𝑜, 𝑑) ∈ J | 𝑜.𝑙 ∈ 𝑟 ∧ 𝑜.𝑡 ∈ 𝜏}|

𝑥
𝑟 (𝐷 )
𝜏 = |{(𝑜, 𝑑) ∈ J | 𝑑.𝑙 ∈ 𝑟 ∧ 𝑑.𝑡 ∈ 𝜏}|

(1)

where | · | denotes the cardinality of a set. To be intuitive, we call
𝑥
𝑟 (𝐷 )
𝜏 as human inflow (i.e., people who reach 𝑟 in 𝜏) and 𝑥𝑟 (𝑂 )𝜏 as
human outflow (i.e., people who leave 𝑟 in 𝜏). By aggregating all
of the regions and timeslots, we can obtain an inflow or outflow
tensor 𝑋 ∈ R𝑇×𝑁 . (2) POI visitation data. The visitation record for
each Point-Of-Interest (POI) denoted as 𝑝 is structured as (𝑖𝑑, 𝑙, 𝑡, 𝑣),
where 𝑖𝑑 , 𝑙 , 𝑡 , 𝑣 respectively represent POI ID, location, datetime,
and people visit number. Then the human mobility based on POI
visitation number is defined as:

𝑥
𝑟 (𝑉 )
𝜏 =

∑︁
𝑝.𝑣, ∀𝑝, 𝑝.𝑙 ∈ 𝑟 ∧ 𝑝.𝑡 ∈ 𝜏 (2)

Through this, the POI visit tensor 𝑋 ∈ R𝑇×𝑁 can be obtained.

Definition 2. (Spatial and Temporal Knowledge): Given the de-
fined region set {𝑟1,𝑟2,...,𝑟𝑁 }, there are plenty of attributes to describe
regional profiles (e.g. geospatial, demographic, socio-economic),
which are in our context encapsulated in spatial knowledge, de-
noted by a matrix 𝐾 (𝑆 ) ∈ R𝑁×𝑓𝑆 . And a topological graph G =
(V , E, A) can be easily built, with region set |V| = 𝑁 and edge
set indicating spatial relations in regions. Figure 2 takes Japan as
1Data and codes are available at https://github.com/deepkashiwa20/MemeSTN.git
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an example by demonstrating adjacent relationship A ∈ R𝑁×𝑁 of
its 47 prefectures. Similarly for the timeslot set {𝜏1,𝜏2,...,𝜏𝑇 }, we use
the term temporal knowledge to represent the inherent properties
of each timeslot (e.g. time-of-day, day-of-week, whether-holiday),
denoted by matrix 𝐾 (𝑇 ) ∈ R𝑇×𝑓𝑇 . 𝑓𝑆 /𝑓𝑇 denote feature dimensions.

Definition 3. (Social Covariate): In this study, our motivation is
leveraging social media to assist nowcasting human mobility in
disaster/emergency situations. We have collected disaster-related
geo-tagged tweets (tweetid, timestamp, location, text) and aggregate
them into a tensor 𝑆 ∈ R𝑇×𝑁 for the given region and timeslot sets.
This tensor is termed as social covariate as it shares same spatial
and temporal granularity with the region-wise human mobility.
Here we choose Twitter as the social data source because of its
good accessibility and large volume.

Definition 4. (Nowcasting Human Mobility with Social Covari-
ate): Given human mobility and social covariate from the past 𝛼
timeslots, we aim to build a model F with learnable parameters 𝜃 to
generate the inflow/outflow for 𝑁 regions in the future 𝛽 timeslots,
denoted as follows.

[𝑋𝜏−𝛼+1, ..., 𝑋𝜏 ]; [𝑆𝜏−𝛼+1, ..., 𝑆𝜏 ]
F−→
𝜃
[𝑋𝜏+1, ..., 𝑋𝜏+𝛽 ] (3)

3 METHODOLOGY
In this section, we propose Meta-knowledge Memorizable Spatio-
Temporal Network (MemeSTN), for social covariate-guided human
mobility nowcasting.

3.1 Spatio-Temporal Network (STN)
Without loss of generality, we use Spatio-Temporal Network (STN)
to denote a class of deep neural networks for spatio-temporal mod-
eling [18]. As introduced in Definition 2, the underlying relationship
in regions of irregular polygons can be modeled as an undirected
graph, so we apply spectral graph convolution to handle the spatial
dependency among regions as follows:

𝐻 = 𝜎 (𝑋 ★𝐴 Θ) ≈ 𝜎 (
𝐾∑︁
𝑘=0

𝐴̃𝑘𝑋𝑊𝑘 ) (4)

where ★𝐴 denotes a graph convolution operation on graph 𝐴 ∈
R𝑁×𝑁 that can be approximated by Chebyshev polynomials to
the order of 𝐾 based on 𝐴̃ (normalized 𝐴) [5], 𝑊𝑘 denotes the
weights of graph convolution, and 𝜎 denotes a non-linear activation
function. Here 𝐴 is usually a static graph (e.g., binary adjacency
matrix) pre-defined based on prior knowledge, such as regional
adjacency, distance, functionality [20, 22, 39]. To avoid arbitrary
choice and discover latent spatial dependency, we generate a self-
learnable graph 𝑃 to replace 𝐴̃ in Eq. 4 utilizing a parameterized
node embedding 𝐸 ∈ R𝑁×𝑒 [3, 36] with random initialization. This
graph structure learning for 𝑃 is denoted by:

𝑃 = softmax(relu(𝐸𝐸𝑇 )) (5)

where the activation function relu regulates the product of node
embedding 𝐸 and its transpose to be non-negative and softmax
further normalizes in a random walk fashion. Moreover, we exploit
a recurrent structure (e.g., GRU) to model the short-term temporal
dependency in nowcasting. By replacing matrix multiplications

with graph convolution operations (defined in Eq. 4), we build our
spatio-temporal unit (STU), which is essentially graph convolu-
tional recurrent unit [20] for simultaneous spatial and temporal
modeling, denoted by:

u𝜏 = sigmoid( [𝑋𝜏 , 𝐻𝜏−1] ★𝑃 Θu + 𝑏u)
r𝜏 = sigmoid( [𝑋𝜏 , 𝐻𝜏−1] ★𝑃 Θr + 𝑏r)
C𝜏 = tanh( [𝑋𝜏 , (r𝜏 ⊙ 𝐻𝜏−1)] ★𝑃 ΘC + 𝑏C)
𝐻𝜏 = u𝜏 ⊙ 𝐻𝜏−1 + (1 − u𝜏 ) ⊙ C𝜏

(6)

in which u, r andC denote the update gate, reset gate and candidate
cell of STU, respectively. Commonly, each parameter 𝜃 is a matrix
with shape R(1+𝑣)×𝑢 . Projecting [𝑋𝜏 , 𝐻𝜏−1] ∈ R𝑁×(1+𝑣) with 𝜃 is
practically equivalent to applying same parameter uniformly on 𝑁
regions, which ignores the heterogeneity over space. Thereby, we
adopt node-specific parameters Θ ∈ R𝑁×(1+𝑣)×𝑢 [3, 23] to handle
diverse scales and patterns of human mobilitys in different regions.

Given an observational sequence (i.e., 𝛼 steps of human mobil-
ity), we use one STU layer as an encoder to extract hidden spatio-
temporal representation 𝐻𝜏 ∈ R𝑁×𝑢 as follows:

𝐻𝜏 = STU(𝑋 ) (𝑋𝜏−𝛼+1, ..., 𝑋𝜏−1, 𝑋𝜏 ) (7)

Then, instead of stepwise decoding 𝐻𝜏 with another STU layer,
which leads to low inference efficiency and error accumulation, we
implement a temporal deconvolutional (TDC) decoder to project𝐻𝜏
for the multistep human inflow/outflow 𝑋 ∈ R𝑁×𝛽 at one shot [3].
Let ∗ denote an 1D deconvolution operation with filter 𝑔 ∈ R1×𝛽
over horizon 𝜖 ∈ (1, ..., 𝛽), we define the TDC operation as:

𝑋𝜏+1, ..., 𝑋𝜏+𝛽 = TDC(𝐻𝜏 ) = 𝐻𝜏 ∗ 𝑔(𝜏 + 𝜖) (8)

Combining STU encoder and TDC decoder gives the vanilla
STN, which performs human mobility nowcasting (defined in Eq.
3) in an autoregressive manner without leveraging auxiliary social
covariate 𝑆𝜏 . While concatenating 𝑆𝜏 to 𝑋𝜏 as dual-channel input
for spatio-temporal encoder can be a straightforward solution, we
find it is actually suboptimal since an shared encoder may not gain
directly benefit from the raw input of social covariate. Instead, it
can act as noise and hurt the performance (demonstrated later in
Figure 4).

3.2 Meta-knowledge Distiller
To utilize the knowledge in social covariate to guide humanmobility
nowcasting in a more effective way, we propose a meta-knowledge
distiller to learn two types of meta-knowledge, namely spatial meta-
knowledge (SMK) and temporal meta-knowledge (TMK). Note that
knowledge distillation commonly refers to the process of knowl-
edge transferring from a large model to a small one. In our case,
the teacher and student models do not differ in size, but in input
source. Here we apply another STU layer (defined in Eq. 6) for
social covariate input. The rationale is to let teacher model STU(𝑆 )

to encode precursor to guide student model STU(𝑋 ) . Formally,

𝐷𝜏 = STU(𝑆 ) (𝑆𝜏−𝛼+1, ..., 𝑆𝜏−1, 𝑆𝜏 ) (9)

3.2.1 Distilling Spatial Meta-knowledge. Given a set of regions
{𝑟1,𝑟2,...,𝑟𝑁 } and a group of attributes describing regional profiles
(e.g., population), a matrix for spatial knowledge𝐾 (𝑆 ) ∈ R𝑁×𝑓𝑆 can
be built. In case where no prior knowledge is available, 𝐾 (𝑆 ) can
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Figure 3: Meta-knowledge Memorizable Spatio-Temporal Network (MemeSTN): (1) Encoding Social Covariate and Distill Spatial
Meta-knowledge; (2) Querying Socio-Memory Pool to Distill Temporal Meta-knowledge; (3) Encoding Human Mobility with
Distilled Meta-knowledge and Decoding for Nowcasting.

be treated as a parameter matrix. Then, we embed 𝐾 (𝑆 ) and treat it
as SMK for parameterizing spatial topology 𝑃 (𝑆 ) and node-specific
parameters Θ(𝑆 ) , formally:

𝐸 (𝑆 ) = 𝜎 (𝐾 (𝑆 )𝑊𝑆 + 𝑏𝑆 )

𝑃 (𝑆 ) = softmax(relu(𝐸 (𝑆 )𝐸 (𝑆 )𝑇 ))
Θ(𝑆 ) = tanh(𝐸 (𝑆 )𝑊Θ)

(10)

where 𝑊𝑆 ∈ R𝑓𝑆×𝑒𝑆 and 𝑊Θ ∈ R𝑒×(𝐶+1) ·𝑣×𝑢 denote trainable
parameters. Distilled by updating Θ(𝑆 ) (𝐸 (𝑆 ) -dependent) in (both)
STU, SMK 𝐸 (𝑆 ) ∈ R𝑁×𝑒𝑆 encapsulates the high-level spatial knowl-
edge of diverse social covariate patterns.

3.2.2 Distilling Temporal Meta-knowledge. Given a set of consec-
utive timeslots {𝜏1, 𝜏2, . . . , 𝜏𝑇 } and a group of attributes describing
each timeslot (e.g., time-of-day, day-of-week, whether-holiday), a
matrix for temporal knowledge 𝐾 (𝑇 ) ∈ R𝑇×𝑓𝑇 can be built. Differ-
ent from spatial knowledge, temporal knowledge is time-dependent,
indicating TMK of a corresponding observational sequence should
also be a function of time. We thereby utilize the extracted hidden
social representation 𝐷𝜏 by teacher model STU(𝑆 ) to distill TMK.
Our motivation is to augment 𝐾 (𝑇 ) , which essentially depicts tem-
poral periodicity and regularity, by injecting anomaly awareness
brought by social covariate. 𝐾 (𝑇 ) is commonly taken in by linear
projection [41, 43, 45], denoted by:

𝐸
(𝑇 )
𝜏 = 𝜎 (𝜎 (𝐾 (𝑇 )𝜏 𝑊𝑇1 + 𝑏𝑇1 )𝑊𝑇2 + 𝑏𝑇2 ) (11)

where𝑊𝑇1 ∈ R𝑓𝑇 ×𝑒𝑇 and𝑊𝑇2 ∈ R𝑒𝑇 ×1 denote two parameter matri-
ces. Here we propose to reparameterize them by the representation
extracted from the teacher model, denoted by:

𝑄𝜏 = 𝐷𝜏𝑊𝑄 + 𝑏𝑄 (12)

{
𝑊 ′𝑇1 = 𝑄𝜏𝑊𝑄1 + 𝑏𝑄1

𝑊 ′𝑇2 = 𝑄𝜏𝑊𝑄2 + 𝑏𝑄2
(13)

where 𝐷𝜏 ∈ R𝑁 ·𝑢 denotes the vectorized 𝐷𝜏 , and𝑊𝑄 ∈ R𝑁 ·𝑢×𝑑
denotes a parameter matrix for projecting 𝐷𝜏 to a query vector
𝑄𝜏 ∈ R𝑑 , which can be interpreted as a global social representation
at the moment.𝑊𝑄1 ∈ R𝑑×𝑓𝑇 ×𝑒𝑇 and𝑊𝑄2 ∈ R𝑑×𝑒𝑇 ×𝑁×1 denote
two reparameterizing matrices for deriving𝑊 ′

𝑇1
and𝑊 ′

𝑇2
to replace

𝑊𝑇1 and𝑊𝑇2 in Eq. 11. We denote this TMK distillation process as
𝐸
(𝑇 )
𝜏 = Γ(𝐷𝜏 , 𝐾 (𝑇 ) ) for simplicity.
Given distilled SMK and TMK, we manage to improve vanilla

STN to Meta-knowledge STN (MeSTN) by letting 𝐸 (𝑆 ) parame-
terize 𝑃 (𝑆 ) , Θ(𝑋 ) of the student model STU(𝑋 ) (in the same way
illustrated in Eq. 10) and update input𝑋 ′𝜏 ← [𝑋𝜏 , 𝐸

(𝑇 )
𝜏 ] ([·] denotes

a concatenation operation).

3.3 Meta-knowledge Memorizable
Spatio-Temporal Network

Although utilizing spatial and temporal meta-knowledge, MeSTN
directly applies momentary query 𝑄𝜏 as the prototype of reparam-
eterization, which does not fully exploit similar socio-temporal
patterns in history (considering the multiwaves of typhoons and
pandemic as illustrated in Figure 1). Therefore, we are further
motivated to encourage the teacher model to refer to historical
lessons by constructing a socio-memory pool for storing and guid-
ing TMK distillation. To be specific, we parameterize a memory
bank 𝑀 ∈ R𝑚×𝑑 , which consists of 𝑚 vectors and each vector
represents a socio-temporal prototype (e.g., normal days, disaster
coming). Whenever the teacher model finishes encoding, it makes a
query to𝑀 using𝑄𝜏 (defined in Eq. 12) for searching and retrieving
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a similar prototype, denoted by:
𝑎𝑖 =

𝑒𝑄𝜏 ∗𝑀𝑇
𝑖∑𝑚

𝑖=1 𝑒
𝑄𝜏 ∗𝑀𝑇

𝑖

𝑄 ′𝜏 =

𝑚∑︁
𝑖=1

𝑎𝑖 ·𝑀𝑖

(14)

where 𝑎𝑖 is a similarity measure or attention score [2, 30] between
the query 𝑄𝜏 and 𝑖-th item of the memory pool, and the recon-
structed prototype𝑄 ′𝜏 can further replace𝑄𝜏 in Eq. 13 for memory-
guided TMK distillation 𝐸 (𝑇 )𝜏 = Γ𝑚𝑒𝑚 (𝐷𝜏 , 𝑀, 𝐾 (𝑇 ) ). In our case, we
want the prototypes learnt by the socio-memory bank as diverse
as possible, to cover both (but not limited to) normal and abnor-
mal socio-temporal patterns. Motivated by a line of research on
memory-augmented anomaly detection [8, 24], we put constraints
on the learnable parameters to contrast differency of memory items.
Particularly, we take advantage of the triplet loss to implement
a memory contrastive constraint by treating query vector 𝑄𝜏 as
anchor, its most similar memory item𝑀𝑝 as positive sample, and
the second similar memory item𝑀𝑛 as negative sample.

L𝑐𝑜𝑛 =

𝑇∑︁
𝜏=1

max{| |𝑄𝜏 −𝑀𝑝 | |2 − ||𝑄𝜏 −𝑀𝑛 | |2 + 𝜌, 0} (15)

where 𝜌 denotes a margin between the positive and negative pairs.
By applying this constraint, we encourage 𝑄𝜏 to be near to 𝑀𝑝
but distant from 𝑀𝑛 to push memory items far away from each
other, which essentially guides the memory bank to discriminate
various socio-temporal patterns. Thus far, we have enhanced meta-
knowledge STN to our proposed Meta-knowledge Memorizable
Spatio-Temporal Network (MemeSTN), as illustrated in Figure
3.The entire model is optimized by minimizing the weighted sum
of prediction loss (i.e., L1 Loss) and contrastive constraint:

L𝑡𝑎𝑠𝑘 =

𝑇∑︁
𝜏=1

𝛽∑︁
𝜖=1
|𝑋𝜏+𝜖 − 𝑋𝜏+𝜖 | + 𝜆L𝑐𝑜𝑛 (16)

4 EXPERIMENT
4.1 Datasets
We take three real-world disasters as our experimental targets: 2019
Typhoon in Japan, 2020 COVID19 in Japan, and 2019 Hurricane in
US. The specifications of the multimodal datasets with different
scales (country-level or state-level) are summarized in Table 1. Blog-

Table 1: Summary of Datasets

Dataset Typhoon-JP COVID-JP Hurricane-US

Time 2019/7/1-2019/10/30 2020/1/1-2021/2/28 2019/7/1-2019/9/10
122 days by hour 425 days by hour 72 days by hour

Space Japan 47 prefectures Florida 67 counties
Mobility Inflow and outflow volume POI visit volume
Twitter Disaster-related tweet number in each prefecture/county

watcher GPS trajectory data is used as the Japan human mobility
data, while SafeGraph POI visitation data is used as the US hu-
man mobility data. Geo-tagged tweets related to the disasters are
collected through Twitter API V2. After preprocessing (e.g., trip
segmentation and spatio-temporal aggregation), human inflow and

outflow 𝑋 in Typhoon case are respectively generated as a (2928,
47) tensor. Social covariate 𝑆 is also a (2928, 47) tensor. Similarly, the
inflow, outflow, and social covariate in COVID case are respectively
a (10185, 47) tensor. The mobility and social tensor in Hurricane
case are both (1728, 67). For each hour, we generate a 32-dimension
vector as the temporal metatata, formed by hour-of-day (24), day-
of-week (7), and is-holiday (1). Refer to Appendix for more details.

4.2 Settings
Nowcasting human mobility (i.e., inflow, outflow, POI visit) in each
of the disasters (i.e., typhoon, COVID, hurricane) is conducted as
five independent experiments. For each experiment, 60%, 20%, and
20% of thewhole dataset are split for training, validation, and testing
in chronological order. The testing period contains both normal
days and disaster days. Adam optimizer with batch size = 64 and
learning rate = 0.001 is used for model training. The models will be
trained up to 200 epochs. If the validation error does not improve for
10 consecutive epochs, the training process will be early-stopped. 𝛼
and 𝛽 are both set to 6, which means the past 6-hour observations
are used to nowcast the next 6 hours of human mobility volume.
Our model and the baselines were implemented with Python 3.8.8
and PyTorch 1.9.1. The mobility data and the Twitter data were
respectively normalized to range [-1, 1] with MinMaxScaler method
provided by scikit-learn. The predicted values are rescaled back and
the performance of the multi-step mobility prediction is evaluated
using three metrics: RMSE (Root Mean Square Error), MAE (Mean
Absolute Error), andMAPE (Mean Absolute Percentage Error). Two
layers of GCRNwith RNN hidden states = 64 and graph convolution
kernel size = 2 are stacked together as the STN bone. 10 memory
prototypes, each represented by an 8-dimension vector, form the
social memory pool. The balancing factor 𝜆 for the two loss terms
is tuned from 0 to 1.

4.3 Overall Evaluation
Baselines. We first implement two non-deep learning baselines.
(1) Historical Average (HA): it averages the historical values of
the corresponding hours. (2) CopyLastWeek: it copies the cor-
responding inflow/outflow values from last week. The results are
further corrected with a recent weekday or weekend if the target
day or the “last week” day is a holiday and the other is not. Then
we compare our model with the following deep learning models: (3)
STGCN [39], (4) ASTGCN [9], (5) DCRNN [20], (6) GW-Net [36],
(7) LSTNet [19], (8)GMAN [43], (9)MTGNN [35], (10)AGCRN [3],
and (11) STTN [37]. For (3)∼(6), we use the binary adjacency matrix
in Definition 2 as the input graph, while (7)∼(11) do not need the
adjacency matrix as the input. To make a fair comparison with
our model, we put the Twitter information as the second input
channel for all baselines by following the similar strategy with [25].
Through this, LSTNet [19] can be seen as an improved version of
[25], so we omit [25] from our baselines.
Overall Performance. In Table 2, we compare the overall per-
formance between the baselines and the proposed model over the
datasets, namely {Typhoon-JP, COVID-JP}×{Inflow, Outflow} and
Hurricane-US (POI Visit). CopyLastWeek corrected for holidays
works well and has relatively low MAEs and MAPEs as human
mobility holds a strong weekly pattern in normal situation. Mean-
while, the graph-based deep learning models and the MTS models
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Table 2: Performance Comparison with Baselines on {Typhoon-JP, COVID-JP, Hurricane-US}

Model
Typhoon-JP COVID-JP Hurricane-US

Inflow Outflow Inflow Outflow POI Visit
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

HA 4061.2 1281.3 13.39% 4022.6 1289.6 13.44% 1986.3 818.1 14.19% 1963.6 820.7 14.27% 966.2 337.3 37.46%
CopyLastWeek 3980.5 947.3 10.81% 3981.8 949.0 10.77% 1531.3 536.1 10.12% 1522.6 536.3 10.12% 837.2 253.4 29.90%
STGCN[39] 3611.2 1308.3 16.43% 4098.3 1585.6 22.35% 1866.8 719.3 14.50% 1713.0 662.9 13.86% 1111.6 387.0 49.40%
ASTGCN[9] 3366.6 1065.1 15.18% 3288.1 1067.5 15.72% 1546.4 592.8 12.96% 1508.0 542.1 12.13% 883.8 278.3 32.12%
DCRNN[20] 3470.8 1081.8 12.66% 3551.3 1066.8 13.59% 1466.0 523.2 12.96% 1996.6 656.0 15.41% 864.4 291.0 37.46%
GW-Net[36] 2856.4 951.6 12.28% 2922.3 1007.7 13.68% 1282.2 515.8 13.51% 1232.3 530.6 14.75% 786.6 266.9 35.86%
LSTNet [19] 4635.9 1604.9 18.69% 4981.9 1672.8 21.50% 1744.1 644.1 16.24% 1545.0 637.0 14.64% 1059.3 354.5 39.39%
GMAN[43] 3248.8 1000.6 13.24% 4209.3 1188.1 17.37% 1367.1 543.9 10.34% 1431.3 602.0 11.17% 992.4 312.2 33.03%
MTGNN[35] 3698.4 1189.7 17.76% 3454.4 1152.3 17.61% 1616.5 597.8 14.05% 1329.7 522.4 12.32% 901.7 317.0 39.61%
AGCRN[3] 3675.7 1132.8 18.45% 3266.5 1033.6 16.07% 1601.2 603.1 15.96% 1532.8 592.8 15.60% 1023.7 346.4 41.09%
STTN[37] 3628.2 1207.5 18.25% 3431.0 1172.8 16.40% 1388.8 555.4 13.34% 1325.9 537.6 13.14% 1197.7 398.5 58.77%
MemeSTN 2470.5 805.8 9.62% 2491.0 822.1 9.87% 1125.4 438.8 9.68% 1079.6 424.0 9.60% 718.6 247.2 28.96%

Table 3: Performance Comparison with Model Variants on {Typhoon-JP, COVID-JP, Hurricane-US}

Model Variant
Typhoon-JP COVID-JP Hurricane-US

Inflow Outflow Inflow Outflow POI Visit
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

STN [Sec. 3.1] 3933.8 1283.2 18.86% 3257.0 1038.9 15.33% 1653.9 610.8 16.08% 1743.0 728.0 19.49% 1221.3 428.5 54.16%
MeSTN [Sec. 3.2] 2833.7 908.3 12.02% 2735.9 874.5 10.99% 1245.8 472.3 10.75% 1169.5 468.6 11.00% 770.9 271.5 30.25%
MemeSTN (w/ noise) 2991.8 1002.6 13.35% 2738.5 916.4 12.06% 1234.4 484.7 12.41% 1172.8 451.2 10.24% 788.8 279.9 31.92%
MemeSTN [Sec. 3.3] 2470.5 805.8 9.62% 2491.0 822.1 9.87% 1125.4 438.8 9.68% 1079.6 424.0 9.60% 718.6 247.2 28.96%

have their own advantages, among which GW-Net [36] based on
Diffusion Graph Convolution and WaveNet generally achieved the
second best performance. Our proposed model (MemeSTN) reaches
the best performance in all metrics over all of the datasets. Besides,
we compare the performances between using or without using
Twitter information as the auxiliary input to the baselines in Figure
4, where we take RMSEs on Typhoon dataset as the representative.
We can see that the performance gain could be achieved by some
specific baselines over some specific datasets, but they were not
consistent over all cases. This implies that (1) the social covariate
cannot be straightforwardly learned by the state-of-the-art spatio-
temporal models, and (2) it is necessary for us to explicitly extract
and learn the knowledge from the social covariate by designing
the corresponding modules. In terms of runtime, our trained model
only takes 2 milliseconds to perform one prediction.

Figure 4: Performances of Baseline Models with/without So-
cial Covariate (Twitter Information).
Ablation Study. Table 3 summarizes the performances of the vari-
ants over all the datasets. Specifically, (1) STN is just the STN bone
of MemeSTN, i.e., the stacked two layers of GCRN that only takes
the humanmobility as the input and output; (2) MeSTN excludes the

memory module from MemeSTN and directly generate the social
meta-knowledge and temporal meta-knowledge (TMK) through
the social STN, which still takes both social covariate and human
mobility as the input; (3) MemeSTN (w/ noise) uses the random
floats with range [-1, 1] as the noisy covariate to replace the social
covariate (i.e., the Twitter data). Through Table 3, we can see: (1)
compared with vanilla STN, the Meme module with social covari-
ate (MemeSTN) gives us a huge performance gain (almost 40%);
(2) memory-guided distillation mechanism in MemeSTN improves
the overall performance of MeSTN by approximately 10%∼12%; (3)
compared with MemeSTN (w/ noise), we confirm that the social
covariate did contain the essential information that can guide the
human mobility nowcasting in disasters.

4.4 Case Study
Time Series. Typhoon Hagibis made landfall on the Greater Tokyo
Area on October 12, 2019 at 8:00 pm. It is significant for us to verify
whether our model can successfully adapt to such a sudden event
from the normal situation. Thus, based on population and affected
degrees, we select six representative prefectures, namely Tokyo,
Chiba, Kanagawa, Osaka, Aichi, and Hokkaido, and plot the 1 hour
ahead nowcasting results of the human outflow. The time-series
charts in Figure 5 report the ground-truth and the prediction re-
sults from our model MemeSTN and three baseline models, namely
CopyLastWeek, GW-Net [36], and GMAN [43]. These baselines all
achieved relatively good overall performances as listed in Table 2.
The baseline models could perform rather well before and after the
disaster, namely the normal situation. However, they were quite
struggling for the disaster period, especially CopyLastWeek and
GMAN [43]. CopyLastWeek can’t make a good “copy” for such an
unprecedented disaster. Traditional regression models (e.g., panel
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Figure 5: Case Study: 1-Hour Ahead Human Outflow Nowcasting during Typhoon Hagibis for Six Japan Prefectures.

(a) MemeSTN with {Social, Noise} Covariate over 121 days (Jul. 1 ∼
Oct. 29, 2019) on Typhoon-JP.

(b) MemeSTN {With, Without} Memory Contrastive Constraint in 8
days (Oct. 8 ∼ 15, 2019) on Typhoon-JP.

Figure 6: Query Weights of Selected Memory Items.

Figure 7: Visualization of Reconstructed Prototype (𝑄 ′𝜏 ) Em-
beddings of MemeSTN Variants with t-SNE on Typhoon-JP.

regression, mixed effects) are expected to have the same issue.
GMAN [43] is a transformer-based deep model that requires the
pre-calculated spatial and temporal embedding vectors as the input,
corresponding to the position encoding module in Transformer.
Such mechanism tends to make the model fit more to the periodic-
ity (i.e., the regular time periods) and have less capability to fast
adapt to the abnormality (i.e., the disaster time periods). On the
other hand, GW-Net [36] designs an adaptive graph with learnable

parameters to gain the good adaptability to the current pattern, and
thus it could achieve a relatively good performance in the disaster
situation comparing to GMAN [43]. But still, MemeSTN could show
a superior performance to GW-Net [36] on different prefectures.
Note that Table 2 shows the general performance (most on normal sit-
uations) and Figure 5 focused more on the disaster date. By combining
both, we can verify that our model can not only learn the normality
but also hold good adaptability to the abnormality, which is the core
contribution we would like to appeal for our study.
Latent Space.We further examine the latent space of MemeSTN
in two steps. Firstly, Figure 6 illustrates the query weights of items
in socio-memory pool through the typhoon season and under a se-
lected typhoon. In Figure 6a, comparing two kinds of input signals,
namely white noise and social covariate, we confirm the informa-
tiveness of the latter and the benefits by introducing this memory
design, which not only regulates the input (certain memory items
are queried frequently throughout the period) but memorize similar
patterns in history for reacting to new ones (i.e. Typhoon Krosa and
Hagibis). This capability is especially important when we are han-
dling events with potential multiple strikes or waves (e.g. hurricane,
pandemic). In Figure 6b, we verify the effectiveness of memory
contrastive constraint. It is noticeable L𝑐𝑜𝑛 boosts the power of
socio-memory to echo about a specific event (i.e. typhoon Hagibis),
before and after its occurrence. Secondly, Figure 7 shows 2D em-
beddings of reconstructed prototypes (𝑄 ′𝜏 ) produced by different
MemeSTN variants. Apparently, white noise signal fails to help
model distinguish typhoon (anomalous) cases from normal situ-
ations. In comparison, hour-level samples during typhoons are
mostly clustered and differentiated from normal ones by social
covariate input, which means we are using a good indicator for
event recognition and prediction guiding. At the same time, the
implementation with L𝑐𝑜𝑛 tends to have a broader socio-temporal
distribution than the one without it, which demonstrates the dis-
criminative decomposing power brought by this constraint.

4.5 Hyperparameter Study
First, we conduct the hyperparameter study by varying the obser-
vation and prediction horizons among {3/3, 6/6, 9/9, 12/12}. The
typhoon case is far more sensitive to these hyperparameters com-
paring with the COVID case, which may be ascribed to the stronger

2661



WWW ’23, April 30–May 04, 2023, Austin, TX, USA R. Jiang, Z. Wang, and Y. Tao et al.

fluctuation of the humanmobility within a relatively short timewin-
dow. Therefore, we plot the prediction errors (RMSE) for typhoon
case at two specific horizons: 1st prediction horizon (1 hour ahead)
shown in Figure 8-left and 3rd prediction horizon (3 hours ahead)
shown in Figure 8-right. We can see 𝛼 , 𝛽 = 6, 6 marks the lowest
RMSEs for both 1 hour and 3 hours ahead prediction. Thus, they
are chosen as the final hyperparameters so as to make nowcasting
as long as possible while maintaining a high accuracy.

Figure 8: Hyperparameter Study on Observation/Prediction
Horizons (𝛼/𝛽).

Figure 9: Hyperparameter Study on Number of Memory Pro-
totypes and Dimension of Memory Prototype.

Second, we conduct the hyperparameter study on the num-
ber of memory prototypes and the dimension of each prototype
in Memory-guided Meta-knowledge distiller (Meme module). As
shown by Figure 9, 10 memory prototypes give us the best perfor-
mance across all datasets among the options {5, 10, 15, 20}; when
the dimension of each memory prototype varies among {4, 8, 16,
32}, 8 is generally the best across all datasets. Large number and
dimension may be difficult to make the model converge, while small
number and dimension may not be enough to cover all the under-
lying patterns. Therefore, {Num_Memory, Dim_Memory}={10, 8} is
chosen as the final hyperparameter for Meme module.

5 RELATED WORK
Under major events or disasters, human mobility would vary from
its routine and regular patterns dramatically. To address this, ma-
chine learning models to detect large deviations from the routine as
anomalies have been developed based on tensor decomposition[34,
42], deep neural networks [1, 12, 21], Bayesian inference [11], and
other techniques [40, 42]. A recent approach that efficiently ex-
plores the abnormal mobility patterns in a broader area and longer
period was introduced by integrating the multi-head attention mod-
ule in the deep learning model [13]. Wu et al. proposed an anomaly

prediction model based on Gibbs sampling and tensor decompo-
sition to forecast future incidents based on the historical mobility
data [34]. However, these models can only detect and predict the
abnormal events and do not learn the patterns of human mobility
under abnormal scenarios. To this end, an early approach [28] was
developed to leverage additional disaster-related information such
as locations and intensities of the events to simulate individual-
level human trajectories after disasters. Furthermore, the severity of
COVID-19 and local policy interventions were incorporated to train
a conditional generative adversarial network to estimate the human
mobilitys under the COVID-19 pandemic [4]. Unfortunately, these
methods can hardly be used for applications in disaster manage-
ment and responses since the required additional disaster-related
information are usually not available immediately after the disas-
ters. Tomitigate this issue, without using additional data, some deep
learning models were proposed to predict the short-term crowd
dynamics [14, 16], transportation demands [32], and individual tra-
jectories [7, 15] under various major events. But nowcasting human
mobility in disasters remains challenging for nationwide spatial
scale and regions in different countries.

Web and social media technologies can provide essential infor-
mation for situation understanding. For example, web search logs
were found effective to predict residents’ evacuation decisions in
disaster [38]. In this paper, a different problem in this direction is
tackled, i.e. nowcasting human mobility in disasters. Specifically,
we exploit the integration of social co-variants based on timely
social media data to improve the human mobility prediction. Re-
cently, [25] proposed an LSTM model that integrates social media
and evacuation flow volume data to forecast the traffic flow for spe-
cific highways under several major hurricanes in Florida. However,
this naive LSTM-based model could not well capture the spatial
correlations among regions or roads.

6 CONCLUSION
In this study, disaster-related Twitter data is incorporated to un-
derstand the public awareness and attention about the disaster
events and thus perceive their impacts on the human mobility.
Towards this, we propose a Meta-knowledge-Memorizable Spatio-
Temporal Network (MemeSTN) that leverages memory network
and meta-learning techniques to fuse the past social media and
human mobility data and predict future human mobility under a
disaster. Extensive experiments over Typhoon-JP, COVID-JP, and
Hurricane-US datasets were conducted to verify the effectiveness
of our model on different scales. In the future, we plan to improve
the data preprocessing part by extracting semantic information
from the social media data with advanced natural language pro-
cessing techniques (e.g., sentiment analysis, topic modeling) and
taking the accurate semantic information as the social covariate in
our model. Meanwhile, we will try to validate our model on more
disaster scenarios such as earthquake, flood, and blizzard. Also,
we will investigate the possibility of applying our method to the
origin-destination flow nowcasting task at nationwide scale [17].
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APPENDIX
A NOTATION TABLE
Table 4 describes all the important notations used in this paper.

Table 4: Description of Important Notations

Symbol Description
𝑁,𝑇 Total number of regions and timeslots
𝑋𝜏 , 𝑋̂𝜏 Real and predicted human mobility at time 𝜏
𝑆𝜏 Social covariate tensor at time 𝜏
STU(𝑋 ) The STU encoder for human mobility
STU(𝑆 ) The STU encoder for social covariate
TDC The TDC decoder for human mobility
A Binary adjacency matrix of regions
𝑃 Self-learnable adaptive graph
𝑊𝑐 ,𝑊𝑆 , . . . Weights in MemeSTN
𝑏u, 𝑏r, . . . Biases in MemeSTN
Θu,Θr, . . . Node-specific parameters in MemeSTN
𝐾 (𝑆 ) , 𝐾 (𝑇 ) Input spatial and temporal metadata
𝑃 (𝑆 ) , 𝐸 (𝑇 ) Extracted SMK and TMK
𝑀𝑖 The 𝑖-th prototype in memory pool

B EXPERIMENT
B.1 Datasets
Japan HumanMobility Data. The big human GPS trajectory data
in Japan are obtained via the collaboration with Blogwatcher Inc.
The data covers 5 million people in the 47 prefectures of Japan.
Under user’s consent, the data is acquired from smartphone apps
with the built-in module from Blogwatcher Inc, which contains six
attributes: anonymized ID, timestamp, longitude, latitude, accuracy,
and OS type. No personally identifiable information was collected.
The raw data file involves around 180 GPS records per day per user
and is roughly 1TB in the CSV format. The data covers around 9%
of the total population of Japan. On average, 10 records of GPS data
(either the origin or destination location) for each ID remain after
data cleaning and trip segmentation. The linear regression between
the population proportion and Census data for all the prefectures
is 𝑅2 ≥ 0.8, which shows the good representativeness of our data.
The human inflow and outflow tensor will be further generated
according to Definition 1.
US Human Mobility Data. SafeGraph Point-of-Interest (POI) vis-
itation data (https://www.safegraph.com/academics) records the
hourly visit number for a large number of POIs in US from 2019 to
2020. The POI information includes state/county, longitude/latitude,
location name, and the location type (category). Taking Miami
metro area as an example, there are 40,964 POIs in total. We crop
the data in Florida state during 2019 Atlantic hurricane season out
and aggregate the total POI visits by county and hour.
Twitter Data.We collect the geo-tagged tweets related to the se-
lected disasters in Table 1 through the full-archive search endpoint

in Twitter API V2 (https://api.twitter.com/2/tweets/search/all), and
aggregate the total number of tweets for each prefecture. It should
be noted that accurately distinguishing whether a tweet contains
disaster-related information is a task of natural language processing
(NLP), which is not the main concern of our study. Therefore, we
simplify the procedure by using a set of pre-defined keywords to
extract the relevant tweets. Using keywords typhoon, strong wind,
windproof, and big rain, we collect a total 347,431 typhoon-related
tweets from 89,324 users in Japan. Using keywords COVID, infection,
quarantine, and state of emergency, we collect a total of 1,470,744
COVID-related tweets from 191,720 users in Japan. Using keywords
hurricane, strong wind, windproof, big rain, and storm, we collect a
total of 36,629 hurricane-related tweets from 15,908 users in Florida.

B.2 Settings
Metrics.Our evaluationmetrics including RMSE (RootMean Square
Error), MAE (Mean Absolute Error), and MAPE (Mean Absolute
Percentage Error) are defined as follows:

RMSE =

√√√
1
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where 𝑇𝑡𝑒𝑠𝑡 is the total number of testing samples (timeslots), 𝑌𝜏 ∈
R𝛽×𝑁 and𝑌𝜏 ∈R𝛽×𝑁 are the ground-truth tensor and predicted ten-
sor, namely [𝑋𝜏+1, 𝑋𝜏+2, ..., 𝑋𝜏+𝛽 ] and [𝑋𝜏+1, 𝑋𝜏+2, ..., 𝑋𝜏+𝛽 ]. Zero
values in ground-truth will be ignored when calculating MAPE.
Model Input/Output. Taking one batch of Typhoon-JP dataset as
an example, the inputs to ourmodel are: humanmobility (in/outflow)
tensor (64, 6, 47), social covariate tensor (64, 6, 47), and temporal
knowledge tensor for both the past and the future 6 hours (64, 12,
32). The output human mobility is a tensor (64, 6, 47). In practice,
we append an additional channel axis (64, 6, 47, 1) to the human
mobility and social covariate tensor for the GCN operation.
Experiment Machine. Our machine is a GPU server with four
NVIDIA GeForce RTX 3090 graphics cards.

B.3 Social Covariate Effectiveness
As illustrated in Figure 1, the abnormal patterns of human mobility
data under disasters co-occur with the “hills” of disaster-related
tweet count. To further quantify the effectiveness of social covari-
ate for human mobility nowcasting during the disaster events,
we measure the partial distance correlation (PDisCorr) [29] be-
tween [𝑆𝜏−𝛼+1, ..., 𝑆𝜏−1, 𝑆𝜏 ] and [𝑋𝜏+1, 𝑋𝜏+2, ..., 𝑋𝜏+𝛽 ] with respect
to [𝑋𝜏−𝛼+1, ..., 𝑋𝜏−1, 𝑋𝜏 ] and test whether its value equals to zero.
This metric measures the correlation between past tweet count
and future human mobility volume after removing the effects of
past human mobility volume. To focus on the periods impacted
by disaster events, a subset of our collected multimodal data, two
days before and after typhoon events in 2019 Typhoon Season and
three weeks before the peak of confirmed cases for each wave of
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Figure 10: The partial distance correlations (PDisCorr) be-
tween the past tweet count and future human inflow/outflow
volume with respect to the past human inflow/outflow vol-
ume at three selected prefectures in Japan. Non-zero par-
tial distance correlation indicates the effectiveness of past
disaster-related tweet count for human mobility nowcasting.

COVID-19 pandemic, is used for the analyses in this section. Fig-
ure 10 illustrates the PDisCorr metrics for both inflow and outflow
volumes during COVID-19 and in 2019 Typhoon Season at various
window sizes𝑊 , where we take 𝛼 = 𝛽 =𝑊 timeslots for both the
past and future data to compute the PDisCorr. For all the scenarios
when 5 ≤𝑊 ≤ 8, the values of PDisCorr do not equal to zero with
𝑝 < 0.01, which suggests that disaster-related tweet count can help
the humanmobility nowcasting under disasters. Note that PDisCorr
measures the correlation between the disaster-related tweet count
and human mobility under disasters, not the causal relationship be-
tween them. Both disaster-related tweet count and human mobility
under disasters are actually impacted by the disaster events. How-
ever, the complicated non-linear relationship between the social
covariate and the human mobility remains unknown. To properly
model their relationship and develop models for learning a better
joint representation and more precise human mobility nowcasting
under disasters, we propose MemeSTN based on spatio-temporal
network and meta-knowledge learning techniques.

B.4 Evaluation on US Hurricane Dataset
We illustrate the normalized POI visit volume and hurricane-related
tweet volume in three selected counties in Florida state in Figure 11.
County Miami-Dade and Broward County together correspond to
City of Miami, while Orange County covers Orlando City. These
counties were impacted by hurricane Dorian on different days
during September 1-3, 2019. We can clearly observe the decrease
of POI visit and the increase of disaster tweets during this period.
Moreover, we plot the time series charts in Figure 12 to show the
prediction results on Hurricane dataset. Lastly, we do the t-SNE
visualization for the reconstructed prototypes (𝑄 ′𝜏 ) produced by
different MemeSTN variants (w/ socio or w/ noise) on Hurricane
dataset in Figure 13. Apparently, socio signal helps our model better
distinguish anomalous (hurricane) cases from normal situations,
as hour-level samples during hurricane are more concentrated in
the latent space of socio-input model and the hurricane samples
scatter all over the latent space of noise-input model.

Figure 11: Illustration of POI Visit Number and Disaster-
Related Tweet Number under Hurricane Dorian in US.

Figure 12: Case Study: 1-Hour Ahead POI Visit Nowcasting
during Hurricane Dorian for Three Counties in Florida.

Figure 13: Visualization of Reconstructed Prototype (𝑄 ′𝜏 ) Em-
beddings of MemeSTN Variants with t-SNE on Hurricane-US

C DISCUSSION
We acknowledge that publicly accessible geo-tagged tweets only
account for a very small proportion of the whole Twittersphere [10].
However, during the past severe disaster events, such as COVID-19
and Typhoon Hagibis, users in the impacted areas posted large
amounts of disaster-related tweets. Thus, geo-tagged tweets can be
effectively used as a good indicator to perceive people’s awareness
and attention of major disasters. For future disastrous events, the
source of social covariate should be properly selected to reflect the
real impact of disasters on users. Other geo-tagged social media
data can also be used in the same way.
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