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Figure 2: Scenario 1. The regret (logarithmic scale) and the false decision ratio on the
training or test set against sample size n.

We have proved the properties of training and test regrets of SRAT in theoretical anal-
ysis and they will be used here as an indication of training and test performance of each
algorithm. Each value function V is computed numerically using a sample of size 100, 000
randomly drew out of an independent population. The value function is estimated using
the mean reward on this set.

We first compare the convergence rate of regret for different algorithms. SRAT-E and
SRAT-B are implemented with eg = 0.1 and # = 0.01 or 1. As will be discussed later in
Figure 4, the training and test regrets are monotone in the parameters €3 and 8. Therefore,
to save space, we only show two possible combinations of parameters here. The scheduling
parameter ; for SRAT-B is taken as 0.999¢ so that it will not decay too fast to zero. RCT
is a special case of SRAT with g = 0.5 and 6 = 1. According to Li et al. (2010), the click-
through rate (mean reward) of LinUCB in news article recommendation does not change
much on the deployment bucket (test set) when a > 0.2, while it decreases quickly on the
learning bucket (training set) as « increases from 0.2. In our experiment settings, o does
not affect training and test regrets significantly. Therefore, we will fix a; = 0.2 for all
i for LinUCB and SRAT-B in our following experiments. The process is repeated 1, 000
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Figure 3: The weighted sum of training and test regrets in scenario 1 when n = 800.

times and the resulting values are averaged across all iterations. To better illustrate the
polynomial relationship between training or test regret and the sample size n, we plot the
regret values and the sample sizes on the logarithmic scale. The false decision ratio, or
1 — accuracy in classification literature, is also displayed against n. One standard error of
the mean regret or the mean false decision ratio across the 1,000 iterations is reported on
each point. The result of scenario 1 is plotted in Figure 2. The plot of scenario 2, Figure 7,
is included in the supplementary material since it shows a similar conclusion as scenario 1.

According to Figure 2, LinUCB is the greediest on the training process, with the least
regret and false decision ratio. As discussed in Section 4, LinUCB can actually be viewed as
a limiting case of SRAT-B on the training set. Indeed, our proposed greediest algorithms,
SRAT-E and SRAT-B with parameters ¢g = 0.1 and # = 0.01, perform similarly as LinUCB
in terms of training regret. AL-GP and RCT take purely randomized treatments on the
training set, so they have the largest training regret and a 50% training accuracy. Since the
training regret is calculated based on V( fn_l) which is increasing as n grows, the training
regret actually increases for largely randomized methods. In theory, the training regret of
RCT is bounded by a constant that does not rely on n when the e-sequence is constant.
SRAT-E and SRAT-B perform similarly in terms of regrets on both training and test sets,
but SRAT-B has a lower false decision ratio on the training set. The logarithms of their
training and test regrets are approximately linear in logn, which is consistent with our
theory.

On the test set, AL-GP and RCT perform the best due to their full exploration in the
training process. LinUCB needs to fit the regression model of rewards and thus relies on
both the main effect and the treatment effect model. In addition, to estimate the upper
confidence bound, it needs an assumption on the inference model. With these limitations,
the regret or false decision ratio of LinUCB on the test set does not decrease. When n is
small, the final ITR estimated by LinUCB can sometimes be optimal since the true ITR is
linear. However, the ITR converges to the projection onto that of the linear total reward
space when n is large and thus the average regret gets pulled up. On the other hand,
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Figure 4: Scenario 1 with ¢y = 0.5. The regret (logarithmic scale) and the false decision
ratio on the training or test set against parameter 6.

OWTL tries to find the decision function that maximizes the reward directly. It only requires
a correct model of the treatment effect for consistency, without any assumption on the
main effect or the distribution of the error term. Therefore, SRATs with ¢g = 0.1, =1
outperform LinUCB on the test set when n is larger than 200.

We plot a weighted sum of training and test regrets in Figure 3 to show their balance.
Specifically, the weighted sum is defined as

V(fi—1) = R + (1 = NV(f*) — V()]

1

ARegret;. + (1 — A)Regretygin = A

n

S

1

for A € [0,1], so that it equals the training regret when A = 0 and equals the test regret
when A = 1. The sample size is fixed at 800. The initial value of truncation parameter
€p equals 0.1 and the decay parameter 8 takes values in 0.01,1 for SRAT-E and SRAT-B.
The plot shows that we should choose LinUCB when we consider the training regret only,
and should choose AL-GP or RCT when we consider the test regret only. However, if we
want to consider the performance on both the training and the test sets, we should choose
SRAT-E or SRAT-B with 8 = 1.

The change of SRAT-E with different parameters # and sample size n is demonstrated
in Figure 4 for scenario 1. Since SRAT-B performs quite similarly to SRAT-E as shown
in Figures 2 and 7, we omit it here to save space. The parameter € can take values from
0.01,0.1,0.2,...,1 and n can take values from 100, 200,400,800. Note that only when
eg0 = 0.5 and # = 1, our algorithm represents pure RCT. Thus we only illustrate our
findings with eg = 0.5 here. Other €p’s give similar conclusion, and smaller ¢y means better
training performance and worse test performance. The values and standard errors of the
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Figure 5: Sample size consideration for SRAT-E in scenario 1 with ¢¢ = 0.5. Correct
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a sample size n and each point on the line represents a value of #. Points to the
right correspond to smaller #, and thus lead to higher correct decision ratio on
the training set and lower ratio on the test set.

mean regret and mean false decision ratio are shown. For all sample sizes, the plots clearly
show the tradeoff between training and test performance. Note that when @ increases, ¢;
increases for all 7 and the treatments are more randomized in the training process. While
the training regret increases with more randomization, the test regret decreases. The false
decision ratio shows a similar tendency. All the points with & = 1 have an accuracy of
50% on the training set, which indeed illustrates the pure randomization. In accordance
with the theory, the logarithm of training and test regrets are approximately linear in 6.
In practice, the training regret is more affected than the test regret by #. As shown in
Figure 4, when n = 800, the training regret increases by e 127 — ¢72:93 — (0.227 while the
test regret decreases by e 38% — ¢7491 — 0.014 when @ increases from 0.01 to 1.

Using this simulation example, we can also illustrate how to find the sample size needed
for a clinical trial of certain purposes. Given different requirements for the trial and the
population, we need different sample sizes. Here we illustrate the situation when the pro-
portion of patients assigned the better treatments is required to reach a certain level in
Figure 5 for SRAT-E in scenario 1. Note that the variation trends of correct decision ratios
against @ are opposite for the training and test data. In particular, # should be small enough
so that the decision process is greedy on the training set, and in the meanwhile it should
be large enough so that the final ITR is efficient on the test set. It is clear that the two
accuracies are negatively correlated. For example, when we need the training ratio to be
greater than 65%, 6 < 0.1 for n = 150, # < 0.2 for n = 200, # < 0.3 for n = 250, # < 0.4
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Figure 6: Mean cross-validated HRSD scores against the sample size n.

To simulate an adaptive clinical trial, we first generate a treatment suggestion based on
the tailoring variables of the next patient using our algorithm. If the actual treatment taken
is consistent with our suggestion, we take down the whole record of this patient, including
feature variables, the treatment and the reward; otherwise, we drop this record and move
on to the next. Note that the first ng suggestions are given with equal probabilities on each
treatment. Five-fold cross validation is used here to avoid overfitting. Specifically, the data
set is partitioned into five parts randomly. Four of the five parts are used iteratively as
training data to apply our algorithm in generating the treatment suggestion. The last part
is used as the test set to evaluate the ITR. The performance on the test data is evaluated
using an unbiased estimator of the value function V(f) (Qian and Murphy, 2011; Minsker
et al., 2016)

"\ Rl [A; = sign{f(Xi)}] /~= 1[Ai =sign{f(X:)}]
2 mi(Ag; Xi) /2_: mi(Ai; Xi) '

i=1
Here the rewards R;’s are defined as the negative HRSD scores.
The initial sample size ng is fixed at 50. The recruitment stops when the sample size
n reaches 100, or the training data run out. We average the mean reward on each test
fold for n = 10, 20,...,100. The process is repeated 1,000 times. Finally, the means and
standard errors of means across all iterations are reported. From Section 5, we know that
the training and test values are monotone in ¢y and 6. Therefore, we only demonstrate the
situation when g = 0.1 and # = 0.01, 1. The contextual bandit algorithm LinUCB and the
active clinical trial method AL-GP are also compared here. Figure 6 displays the negative
mean rewards, that is, the mean cross validated HRSD scores, against the sample size n.
Lower scores are more satisfactory.
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References

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs.
Machine Learning Research, 3(Nov):397-422, 2002.

Journal of
Jongsig Bae and Shlomo Levental. Uniform CLT for Markov chains and its invariance
principle: a martingale approach. Journal of Theoretical Probability, 8(3):549-570, 1995.

Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification, and risk
bounds. Journal of the American Statistical Association, 101(473):138-156, 2006.

Hamsa Bastani and Mohsen Bayati. Online decision making with high-dimensional covari-
ates. Operations Research, 68(1):276-294, 2020.

Olivier Bousquet. A Bennett concentration inequality and its application to suprema of
empirical processes. Comptes Rendus Mathematique, 334(6):495-500, 2002.

38



https://CRAN.
R-project.org/package=DTRlearn?


https://CRAN.R-project.org/package=DTRlearn2
https://CRAN.R-project.org/package=DTRlearn2










	Introduction
	Methodology
	Learning Algorithm for Updating ITRs
	Sequentially Rule-Adaptive Trials (SRATs)

	Theoretical Results for SRAT
	Performance Guarantee for the Test Set
	Performance Guarantee for the Training Set
	Tradeoff Between Training and Test Values

	Implementation
	Simulation Study
	Real Data Analysis
	Discussion
	Preliminaries
	Proof of Lemma 6
	Proof of Theorem 1
	Proof of Theorem 7
	Proof of Corollary 10
	Proof of Theorem 11
	Additional Simulation Results

