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Abstract: Multi-modal data are prevalent in many scientific fields. In this paper,

we consider the problem of parameter estimation and variable selection for multi-

response regression using block-missing multi-modal data. Our method allows

dimensions of both responses and predictors to be large, and the responses to be

incomplete and correlated. Such a problem arises in many practical situations in

the high-dimensional setting. Our proposed method includes two steps to make

prediction from the multi-response linear regression model with block-missing

multi-modal predictors. In the first step, without imputing the missing data, we

make use of all available data to estimate the covariance matrix of the predictors

and the cross-covariance matrix between the predictors and the responses. In the

second step, based on the estimated covariance and cross-covariance matrices, we

estimate both the precision matrix of the response vector given predictors and

the sparse regression parameter matrix simultaneously by a penalized method.

The effectiveness of the proposed method is demonstrated by theoretical studies,

simulated examples, and the analysis of a multi-modal imaging dataset from the

Alzheimer’s Disease Neuroimaging Initiative.
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1. Introduction

With the prevalence of large-scale multi-modal data in various scientific

fields, multi-response linear regression has attracted growing research at-

tentions in statistics and machine learning communities (Rothman et al.,

2010; Lee and Liu, 2012; Loh and Zheng, 2013). While linear regression

with a scalar response has been well studied, many applications may have

a vector as the response. In particular, multi-response models have wide

applications in scientific fields, especially for biological problems (Kim and

Xing, 2012). For example, for multi-tissue joint expression quantitative

trait loci (eQTL) mapping (Molstad et al., 2020), researchers consider pre-

dicting gene expression values in multiple tissues simultaneously by using a

weighted sum of eQTL genotypes. Separate prediction for each tissue can

be inefficient since same genes in different tissues are often correlated due

to the shared genetic variants or other unmeasured common regulators. In

order to use data from all tissues simultaneously, a joint eQTL modeling

has been proposed to take cross-tissue expression dependence into account

(Molstad et al., 2020).
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To apply variable selection methods for multi-response problems, one

could separately fit each response via a single-response model. There are

many well-studied variable selection methods for the single-response linear

regression model such as LASSO (Tibshirani, 1996). Although it is sim-

ple to apply a single-response linear regression method for each response

separately, such a procedure neglects the dependency structure among re-

sponses. By incorporating the dependency structure of the response vector,

one may obtain a more efficient multi-response linear regression approach

in terms of estimation and prediction.

To handle multi-response regression problems, a well-known approach,

the Curds and Whey, was proposed by Breiman and Friedman (1997) to im-

prove the prediction performance by utilizing dependency among responses.

Specifically, they first fit a single-response regression model for each re-

sponse and then modify the predicted values from those regressions by

shrinking them using canonical correlations between the response variables

and the predictors. Another popular approach to handle multi-response

regression is to use dimension reduction. In particular, reduced rank regres-

sion (Izenman, 1975) minimizes the least squares criterion subject to the

constraint on the rank of regression parameter matrix. Yuan et al. (2007)

further extended this method for the high dimensional setting. Their idea
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is to obtain dimension reduction by encouraging sparsity among singular

values of the parameter matrix. Although these methods may achieve bet-

ter prediction performance than the separate univariate regression, they did

not address the problem of variable selection.

In order to handle correlated responses together with variable selection,

the precision matrix of response vector given predictors and the regression

parameter matrix can be estimated separately or simultaneously (Lee and

Liu, 2012). For separate estimation, Cai et al. (2013) used a constrained `1

minimization that can be treated as a multivariate extension of the Dantzig

selector to estimate the regression parameter matrix. After removing the

regression effect using the estimated regression parameter matrix, the preci-

sion matrix of the error terms can be estimated accordingly. One potential

drawback of this indirect method is that it ignores the relationship be-

tween different responses given predictors when estimating the regression

parameter matrix. In order to use all information more efficiently, it can

be desirable to estimate the precision matrix and regression parameter ma-

trix simultaneously. In the literature, various joint estimation techniques

were studied by Rothman et al. (2010), Yin and Li (2011) and Lee and Liu

(2012). They formulated the multi-response regression problem in a penal-

ized log-likelihood framework, so that the parameter and precision matrices
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can be estimated simultaneously. Using a similar idea, Chen et al. (2018)

proposed an estimation procedure to estimate the parameter and precision

matrices simultaneously based on the generalized Dantzig selector.

Despite a lot of development for multi-response linear regression, most

existing methods only deal with complete data without missing entries.

However, many practical data are incomplete, especially for multi-modal

data. For instance, in the study of Alzheimer’s Disease (AD), data from

different sources are collected. This includes magnetic resonance imaging

(MRI) of the brain, positron emission tomography (PET) and cerebrospinal

fluid (CSF). In practice, observations of a certain modality can be missing

completely due to patient dropouts or other practical issues. This leads to

a block-wise missing data structure. It is important to integrate data from

all modalities to improve model prediction and variable selection.

To handle incomplete multi-modal data, one may simply remove those

observations with missing entries. However, such a procedure may greatly

reduce the number of observations and lead to loss of information. Another

approach is to perform data imputation. Existing imputation methods, such

as matrix completion (Johnson, 1990) algorithms may possibly be unstable

when the missing values happen in blocks. In order to deal with multi-modal

block-wise missing data, Yu et al. (2020) proposed a new direct sparse re-
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gression procedure using covariance from block-missing multi-modal data

(DISCOM). They first used all available information to estimate the co-

variance matrix of the predictors and the cross-covariance vector between

the predictors and the response variable. Based on the estimated covari-

ance matrix and the estimated cross-covariance vector, they then used an

extended Lasso-type estimator to estimate the coefficients. However, the

DISCOM only considers single-response regression. Recently, Xue and Qu

(2021) proposed the Multiple Block-wise Imputation (MBI) method for

single-response regression when data are block-wise missing. They devel-

oped an estimating equation approach to accommodate block-wise missing

patterns in multi-modal data. The method was shown to have high selec-

tion accuracy and low estimation error for single-response regression with

block-wise missing data. However, since their imputation method requires

analyzing all combinations of different blocks, it can be computationally

expensive when the number of modalities is large.

In this paper, we consider a multi-response regression model for block-

wise missing data. The main contribution of our method is to allow missing

values in both responses and predictors and correlations among responses.

This method can also handle the case that no subject has complete ob-

servations, while most traditional methods do not allow this. Our method
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includes two steps. The first step is to estimate each element of the co-

variance and cross-covariance matrices by using all available observations

without imputation. The second step is to use a penalized approach to

estimate the sparse regression coefficient matrix and the precision matrix

of the error terms simultaneously. We show that this method has estima-

tion and model selection consistency under the high-dimensional setting.

Numerical studies and the ADNI data application also confirm that the

proposed method performs competitively for block-wise missing data.

The remainder of the paper is organized as follows. In Section 2, we

introduce the problem background and our model. In Section 3, we establish

some theoretical properties of our proposed method. We present simulation

studies and a multi-modal ADNI data example in Sections 4 and 5.

2. Methodology

2.1 Problem setup and notations

Consider the following multi-response linear regression model,

Y = XB∗ + E , (2.1)

where B∗ = (bjk) ∈ Rp×q is an unknown p × q parameter matrix, Y =

(y1, . . . ,yn)> is the n× q response matrix, X = (x1, . . . ,xn)> is the n× p
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2.1 Problem setup and notations

design matrix and E = (ε1, . . . , εn)> is the n× q error matrix. We assume

that {xi}ni=1 are i.i.d. realizations of a random vector (X1, . . . , Xp)
> with

zero mean and covariance matrix ΣXX = (σXXij ) ∈ Rp×p. We use ΣXY =

(σXYij ) ∈ Rp×q to denote the cross-covariance matrix between xi and yi.

We assume that the predictors come from multiple modalities and there

are pk predictors in the k-th modality. In addition, X has block-missing

values. That is, for one sample, its measurements in one modality can be

entirely missing. We assume elements of Y can also be missing. The errors

εi = (εi1, . . . , εiq)
> for i = 1, . . . , n are i.i.d. realizations from a random

vector ε with zero mean and covariance matrix Σε = (σEEij ) ∈ Rq×q. We

let C∗ = Σ−1ε . Moreover, we further assume xi and εi are uncorrelated.

Denote the support of B∗ and C∗ as SB = {j : vec(B∗)j 6= 0} and SC =

{j : vec(C∗)j 6= 0}, where “vec” is the vectorization by column operator.

For a set S, we denote |S| as its cardinality. Denote sB = |SB|, sC = |SC |

and s = max(sB, sC).

We employ the following notation throughout this article. The symbol

Sd×d+ is used to denote the sets of d×d symmetric positive-definite matrices.

For a square matrix C = (cii′) ∈ Rp×p, we denote its trace as tr(C) =
∑

i cii

and its diagonal matrix as diag(C). For a matrix A = (aij) ∈ Rp×q, we

define its entrywise `1–norm as ‖A‖1 =
∑

i,j |aij| and its entrywise `∞–
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2.2 Proposed Multi-DISCOM method

norm as ‖A‖∞ = maxi,j |aij| . In addition, we define its matrix `1–norm as

‖A‖L1 = maxj
∑

i |aij| , matrix `∞–norm as ‖A‖L∞ = maxi
∑

j |aij| , the

spectral norm as ‖A‖2 = max‖x‖2=1 ‖Ax‖2, the Frobenius norm as ‖A‖F =√∑
i,j a

2
ij and the number of nonzero elements as ‖A‖0 =

∑
i,j I(aij 6= 0).

Denote the largest and smallest eigenvalues of A by λmax(A) and λmin(A)

respectively. Denote the sub-matrix of A with row and column indices in

I1 and I2 as AI1I2 . For a vector v ∈ Rp, denote vI1 as the sub-vector of v

with indices in I1, ‖v‖1 =
∑

i |vi|, ‖v‖∞ = maxi |vi|, ‖v‖min = mini |vi| and

‖v‖2 =
√∑

i v
2
i . For a function h(X), we use ∇Xh to denote a gradient or

subgradient of h with respect to X, if it exists. Finally, we write an . bn if

an ≤ cbn for some constant c, and write an � bn if an . bn and bn . an.

2.2 Proposed Multi-DISCOM method

For the multi-response linear regression model (2.1), if one separately ap-

plies least squares estimation with the `1−norm penalty to each response,

it essentially solves

arg minB E [‖Y −XB‖2F ] + λ‖B‖1 = arg minB tr
(
1
2
B>ΣXXB−Σ>XY B

)
+ λ‖B‖1, (2.2)

where λ is a tuning parameter. We refer to this method as the separate

LASSO, whose solution is denoted as B̂LASSO. However, such an approach

fails to account for the correlations between responses and may lead to poor
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2.2 Proposed Multi-DISCOM method

predictive performance (see, e.g., Breiman and Friedman (1997)). To pro-

duce a better estimator, we propose to incorporate Σε into the estimation

of B∗and solve the following problem:

B̂0 = arg minB tr
[
C∗Σ̂YY + C∗B>Σ̂XXB− 2C∗B>Σ̂XY

]
+ λ‖B‖1, (2.3)

where λ is a tuning parameter, Σ̂Y Y , Σ̂XX and Σ̂XY are some estimators

of ΣY Y , ΣXX and ΣXY .

In practice, C∗ is also unknown. It is natural to estimate C∗ first, then

plug the estimate Ĉ into (2.3) and solve the following problem:

B̂0 = arg min
B

tr
[
ĈΣ̂YY + ĈB>Σ̂XXB− 2ĈB>Σ̂XY

]
+ λ‖B‖1. (2.4)

We refer this method as the two-step weighted LASSO. But as shown by the

toy example in Section 2.2.1, the two-step weighted LASSO may perform

worse than the separate LASSO in some problems.

In this article, we propose to estimate B∗ and C∗ simultaneously by

solving the following optimization problem:

(B̂, Ĉ) = arg min
C∈Sq×q

+ ,B
tr
[
CΣ̂YY + CB>Σ̂XXB− 2CB>Σ̂XY

]
+λB‖B‖1 + λC‖C‖1 − log det C,

(2.5)

where λB and λC are tuning parameters. When λC is large enough, Theorem

4 by Banerjee et al. (2008) implies that all off-diagonal entries in Ĉ become
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2.2 Proposed Multi-DISCOM method

zero. Then our proposed method (2.5) reduces to the separate LASSO

(2.2). For a univariate response regression problem, our proposed method

(2.5) reduces to the DISCOM algorithm (Yu et al., 2020). When there is no

missing entries, our proposed method (2.5) reduces to the sparse conditional

Gaussian graphical model introduced by Yin and Li (2011).

The toy example in Section 2.2.1 illustrates that our joint estimation

model (2.5) has better estimation performance than the two-step weighted

LASSO and the separate LASSO.

2.2.1 Toy example

For illustration, we consider a toy example similar to the one in Lee and

Liu (2012). Assume p = q = 2, X>X = I and Σε =
(
1 ρ
ρ 1

)
, where ρ is an

unknown constant. We perform simulation studies for this example with

200 training samples, 300 tuning samples and 1000 testing samples. Set

B∗ = ( 0 0
2 3.5 ) in Case 1 and ( 0 0

−2 3.5 ) in Case 2. Figure 1 shows the estimation

error for the separate LASSO, the two-step weighted LASSO and the joint

estimation model (2.5). In Case 1, the two-step weighted LASSO has a

smaller estimation error than the separate LASSO when ρ is positive. The

result flips when ρ is negative. While in Case 2, the separate LASSO has

a smaller estimation error than the two-step weighted LASSO when ρ is
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2.2 Proposed Multi-DISCOM method

Figure 1: Plots of the estimation errors for separated LASSO, two-step

weighted LASSO and joint estimation when Σε =
(
1 ρ
ρ 1

)
. The left panel is

for B∗ = ( 0 0
2 3.5 ) and the right panel is for B∗ = ( 0 0

−2 3.5 ).

positive. The joint estimation model performs the best in all cases.

The simulation results can be explained by the following calculations.

With the penalty parameter λ, the solution of the separate LASSO is given

by B̂LASSO
ij = sign(B̂S

ij)[B̂
S
ij − λ/2]+, where [u]+ = u if u ≥ 0, [u]+ = 0 if

u < 0 and B̂S = (X>X)−1X>Y.

We can show that the two-step weighted LASSO (2.4) is equivalent to

B̂2step = arg minB

[
(vec(B)− vec(BS))>(I2 ⊗ Ĉ)(vec(B)− vec(BS)) + ‖ vec(B)‖1

]
. (2.6)

When estimate Ĉ is accurate, B̂2step should be very close to the solu-

tion of (2.3), where we use Σ−1ε as the weight. After we plug Ĉ = Σ−1ε

into (2.6), the solution is given by B̂2step
ij = sign(B̂S

ij)[|B̂S
ij| − λ(1 + ρ)/2]+

when sign(B̂S
i1B̂

S
i2) = 1 and B̂2step

ij = sign(B̂S
ij)[|B̂S

ij| −λ(1 − ρ)/2]+ when
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2.2 Proposed Multi-DISCOM method

sign(B̂S
i1B̂

S
i2) = −1. Compared with B̂LASSO

ij = sign(B̂S
ij)[B̂

S
ij−λ/2]+, B̂2step

ij

only differs in the shrinkage amount for each entry. The shrinkage amounts

for all entries of the Separate LASSO are the same, which only depend on

the tuning parameter λ. The shrinkage amounts for all entries of the two-

step weighted LASSO depend on ρ, λ and the sign of B̂S. Each entry of

the two-step weighted LASSO may have different shrinkage amounts.

We consider two cases of ρ in Case 1, where B∗ = ( 0 0
2 3.5 ). Since B∗21, B

∗
22

are far from 0, for simplicity, we assume that sign(B̂S
21) = sign(B̂S

22) = 1.

1. Consider ρ = −0.4. When sign(B̂S
11B̂

S
12) = −1, the shrinkage amounts

for B̂2step
21 and B̂2step

22 are 0.7λ, while the shrinkage amounts for B̂2step
11

and B̂2step
12 are 0.3λ. Thus the shrinkage amounts for B̂2step

21 and B̂2step
22

are smaller than the shrinkage amounts for B̂2step
11 and B̂2step

12 . This

means that with the tuning parameter λ that shrinks B̂2step
11 and B̂2step

12

to 0, the shrinkage amounts for B̂2step
21 and B̂2step

22 are smaller than

the shrinkage amounts for B̂LASSO
21 and B̂LASSO

22 . Thus the two-step

weighted LASSO has a smaller estimation error than separate LASSO

in this scenario. When sign(B̂S
11B̂

S
12) = 1, the shrinkage amounts for

all entries in B̂2step are equal.

2. Consider ρ = 0.4. When sign(B̂S
11B̂

S
12) = −1, the shrinkage amounts

for B̂2step
21 and B̂2step

22 are 0.3λ, while the shrinkage amounts for B̂2step
11
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2.2 Proposed Multi-DISCOM method

and B̂2step
12 are 0.7λ. This means that with the tuning parameter

λ that shrinks B̂2step
11 and B̂2step

12 to 0, the shrinkage amounts for

B̂2step
21 and B̂2step

22 are larger than the shrinkage amounts for B̂LASSO
21

and B̂LASSO
22 . Thus the separate LASSO is preferred to the two-step

weighted LASSO in this scenario. When sign(B̂S
11B̂

S
12) = 1, all entries

in B̂2step have the same shrinkage amount.

In Case 2, where B∗ = ( 0 0
−2 3.5 ), the two-step weighted LASSO is pre-

ferred to separate LASSO only when ρ is negative. In conclusion, the

performance of the two-step weighted LASSO compared with the separate

LASSO depends on the sign of B∗ and the covariance matrix Σε. In con-

trast, the joint estimation model (2.5) is more flexible. When Σε and B∗

favor the separate LASSO, the joint estimation model (2.5) can perform

better by choosing a large λC . Otherwise, the joint estimation model (2.5)

can perform better by choosing a relatively small λC . Thus the joint esti-

mation model (2.5) can perform competitively in all cases.

2.2.2 Covariance estimation

Next we introduce how to obtain Σ̂XX , Σ̂XY and Σ̂Y Y when data have

block-missing values. The following notation will be used in this article. For

the jth predictor, define SXj = {i : xij is not missing}. For the jth response,
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2.2 Proposed Multi-DISCOM method

define SYj = {i : yij is not missing}. Define SXXjk = {i : xij and xik are not

missing}, SXYjk = {i : xij and yik are not missing}, SXX/Yjkl = {i : xij, xik

are not missing but yil is missing}, SXY/Xjkl = {i : xij, yik are not missing

but xil is missing} and SY Yjk = {i : yij and yik are not missing}. Denote

the cardinality of SXj , S
Y
j , SXXjk , SXYjk , S

XX/Y
jkl , S

XY/X
jkl and SY Yjk as nXj , n

Y
j

nXXjk , nXYjk , n
XX/Y
jkl , n

XY/X
jkl , and nY Yjk , respectively. Denote nX = minj |SXj |,

nXX = minj,k |SXXjk |, nXY = minj,k |SXYjk |, nY Y = minj,k |SY Yjk |, nXX/Y =

maxj,k,l |SXX/Yjkl | and nXY/X = maxj,k,l |SXY/Xjkl |.

We propose the initial estimators of ΣXX , ΣXY and ΣY Y to be the sam-

ple covariance matrices using all available data, i.e. Σ̃XX = (σ̃XXjt ), Σ̃XY =

(σ̃XYjt ), Σ̂Y Y = (σ̂Y Yjt ), where σ̃XXjt =
∑

i∈SXX
jt

xijxit/n
XX
jt , σ̃XYjt =

∑
i∈SXY

jt

xijyit/n
XY
jt , and

σ̂Y Yjt =
1

nY Yjt

∑
i∈SY Y

jt

yijyit. (2.7)

We point out our method requires Σ̃XX , Σ̃XY and Σ̂Y Y to be unbiased

estimators of their counterparts. When the missingness in X and Y is

missing completely at random, the unbiasedness assumption is satisfied.

However, the unbiasedness assumption may also hold under some other

missing mechanism. For our theories, we do not specify any particular

missing mechanism. The unbiasedness assumption suffices.

For block-missing data X, the above estimate Σ̃XX can be ill-conditioned
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2.2 Proposed Multi-DISCOM method

and have negative eigenvalues. Therefore, it may not be a good estimate of

ΣXX and cannot be used in (2.5) directly. Next, we introduce an estimator

that is both well-conditioned and more accurate than the initial estimate

Σ̃XX . According to the partition of the predictors into K modalities, Σ̃XX

can be partitioned into K2 blocks, denoted by Σ̃k1k2 for 1 ≤ k1, k2 ≤ K and

Σ̃k1k2 being a pk1 × pk2 matrix. We denote

Σ̃I =



Σ̃11

Σ̃22

. . .

Σ̃KK


and Σ̃C =



0 Σ̃12 . . . Σ̃1K

Σ̃21 0 . . . Σ̃2K

...
...

. . .
...

Σ̃K1 Σ̃K2 . . . 0


,

where Σ̃I is called the intra-modality sample covariance matrix, which is a

p×p block-diagonal matrix containing K diagonal blocks of Σ̃XX , and Σ̃C =

Σ̃ − Σ̃I is called the cross-modality sample covariance matrix containing

all off-diagonal blocks of Σ̃XX . Let ΣI and ΣC be the true intra-modality

and cross-modality covariance matrices, respectively. For the block-missing

multi-modal data, due to the imbalanced sample sizes, the estimate Σ̃I

can be relatively accurate while the estimate Σ̃C can be inaccurate. In that

case, we estimate ΣXX by a linear combination of Σ̃I and Σ̃C with different

weights. In addition, to ensure positive definiteness of our estimation, we

adopt the idea of shrinkage estimation of the covariance matrix (Fisher and

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2.2 Proposed Multi-DISCOM method

Sun, 2011) and add the diagonal matrix diag(Σ̃I) to our estimator,

Σ̂XX = α1Σ̃I + (1− α1) diag(Σ̃I) + α2Σ̃C , (2.8)

where α1, α2 ∈ [0, 1] are two shrinkage weights. We add the diagonal matrix

diag(Σ̃I) to ensure the diagonal entries of our estimator are not shrunk.

By Weyl’s theorem, the eigenvalues of our estimator are greater than or

equal to α1λmin(Σ̃I)+(1−α1)λmin(diag(Σ̃I))+α2λmin(Σ̃C). Since diag(Σ̃I)

is a positive definite matrix, by carefully selecting the tuning parameters α1

and α2, the eigenvalues of our estimator can be guaranteed to be positive.

As we dicussed before, our estimator Σ̂XX is a shrinkage estimator.

Using a similar idea, we use a shrinkage estimator to estimate ΣXY . That

is, we propose to estimate ΣXY by

Σ̂XY = α3Σ̃XY , (2.9)

where α3 ∈ [0, 1] is the shrinkage weight. We want to find the optimal

linear combination Σ̂∗XY = α∗3Σ̃XY whose expected quadratic loss E‖Σ̂∗XY −

ΣXY ‖F is minimized.

In our paper, we only consider a relative low dimension of Y with not too

many incomplete observations, so we will use Σ̂Y Y defined in (2.7) directly.

But when the dimension of Y is very high, or there are many incomplete

observations of Y , a shrinkage estimator of ΣY Y is recommended instead.
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2.2 Proposed Multi-DISCOM method

Denote γ∗ = (γ∗1 , . . . , γ
∗
K)> = (tr(Σ11)/p1, . . . , tr(Σ

KK)/pK)>, δI =√
E‖Σ̃I −ΣI‖2F , δC =

√
E‖Σ̃C −ΣC‖2F , δXY =

√
E‖Σ̃XY −ΣXY ‖2F and

θ = ‖ diag(Σ̃I)− ΣI‖F . The optimal choice for the weights of α1, α2, and

α3 is shown in the following proposition 2.1.

Proposition 2.1. The solutions to the following two optimization problems:

(α∗1, α
∗
2) = arg min

α1,α2

E‖Σ̂XX −ΣXX‖2F (2.10)

α∗3 = arg min
α3

E
∥∥∥Σ̂XY −ΣXY

∥∥∥2
F

(2.11)

are

α∗1 =
θ2

θ2 + δ2I
, α∗2 =

‖ΣC‖2F
‖ΣC‖2F + δC

2
, α∗3 =

‖ΣXY ‖2F
‖ΣXY ‖2F + δXY

2
.

In addition, for Σ̂∗XX = α∗1Σ̃I + (1 − α∗1) diag(Σ̃I) + α∗2Σ̃C and Σ̂
∗
XY =

α∗3Σ̃XY , we have

E
∥∥∥Σ̂∗XX −ΣXX

∥∥∥2
F

=
δ2Iθ

2

δ2I + θ2
+

δC
2 ‖ΣC‖2F

δC
2 + ‖ΣC‖2F

≤ δ2I+δC
2 = E‖Σ̃XX−ΣXX‖2F ,

E
∥∥∥Σ̂∗XY −ΣXY

∥∥∥2
F

=
δXY

2 ‖ΣXY ‖2F
δXY

2 + ‖ΣXY ‖2F
≤ δXY

2 = E‖Σ̃XY −ΣXY ‖2F .

Define the `2-error of the estimators Σ̂XX and Σ̂XY as E‖Σ̂XX−ΣXX‖2F

and E‖Σ̂XY −ΣXY ‖2F , respectively. Proposition 2.1 shows that our estima-

tor is more accurate than the sample covariance matrix.
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2.3 Computational algorithm

Proposition 2.1 is closely related to Proposition 1 in Yu et al. (2020).

They calculated the optimal weight and estimation error for their proposed

estimator Σ̂∗XX,DISCOM of ΣXX , whose estimation error is

E‖Σ̂XX,DISCOM −ΣXX‖2F =
δ2I θ̃

2

δ2I + θ̃2
+

δC
2 ‖ΣC‖2F

δC
2 + ‖ΣC‖2F

,

where θ̃2 = ‖tr(Σ)Ip/p−ΣI‖2F . We can see that our estimator Σ̂XX has

smaller `2-error compared to their estimator. Comparing to their proposi-

tion, we also prove that our weighted estimator Σ̂XY is more accurate than

the sample covariance matrix.

2.3 Computational algorithm

In this section, we describe the computational algorithm to solve the opti-

mization problem (2.5). Since (2.5) is a bi-convex problem, the standard

approach to solve this problem is via the alternating minimization method.

In particular, starting with some given initial point (B̂0, Ĉ0), at the t–th

iteration, we solve solving the following problems

B̂t = arg minB tr
[
Ĉt−1Σ̂Y Y + Ĉt−1B

>Σ̂XXB− 2Ĉt−1B
>Σ̂XY

]
+ λB‖B‖1, (2.12)

Ĉt = arg minC∈Sq×q
+

tr
[
CΣ̂Y Y + CB̂>t−1Σ̂XXB̂t−1 − 2CB̂>t−1Σ̂XY

]
+ λC‖C‖1 − log det C. (2.13)

In each iteration of our algorithm, given Ĉt−1, we first update the es-

timator B̂t by solving (2.12). Since (2.12) is quadratic in B, we use the
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2.3 Computational algorithm

coordinate descent algorithm to solve it. Then we adopt the graphical lasso

method by Friedman et al. (2008) to solve (2.13). We summarize the above

procedures in Algorithm 1 below.
Algorithm 1: Alternating minimization updating algorithm

Input: X, Y, λC , λB

Output: B̂, Ĉ

1 Obtain Σ̂XX by (2.8), Σ̂XY by (2.9), Σ̂Y Y by (2.7).

2 Initialize with

B̂0 = argmin
B

tr
[
Σ̂Y Y + B>Σ̂XXB− 2B>Σ̂XY

]
+ λB0‖B‖1, (2.14)

Ĉ0 = arg min
‖C‖1≤R,C∈Sd×d

+

tr(CΣ̂0)− log det(C) + λC0‖C‖1, (2.15)

where R is a large enough tuning parameter which is usually

chosen to be λ−1C0
(Loh and Wainwright, 2015) and

Σ̂0 = Σ̂Y Y − 2Σ̂>XY B̂0 + B̂>0 Σ̂XXB̂0.

3 while max
{
‖B̂t − B̂t−1‖F , ‖Ĉt − Ĉt−1‖F

}
> threshold do

4 For a given Ĉt−1, let

B̂t = arg min
B

tr
[
Ĉt−1Σ̂Y Y + Ĉt−1B

>Σ̂XXB− 2Ĉt−1B
>Σ̂XY

]
+λB‖B‖1;

For a given B̂t, let

Ĉt = arg min
‖C‖1≤R,C∈Sq×q

+

tr
[
CΣ̂Y Y + CB̂>t−1Σ̂XXB̂t−1 − 2CB̂>t−1Σ̂XY

]
+

λC‖C‖1 − log det C,5

6 return Ĉt, B̂t.
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3. Theoretical study

We establish the following theoretical results. First, we prove in Theorem

3.1 that the proposed estimators Σ̂XX , Σ̂XY and Σ̂Y Y are consistent with

high probability. We then show the convergence rate of our proposed es-

timators B̂ and Ĉ in Theorem 3.4. Finally, the selection consistency of

our proposed method is shown in Theorem 3.5. The technical assumptions

(A1) to (A5), and all proofs are provided in the Supplementary Material.

In the following analysis, we allow p and q to diverge as nXX , nXY and nY Y

increase.

In Theorem 3.1, we prove the large deviation bounds for our proposed

estimators Σ̂XX , Σ̂XY and Σ̂Y Y .

Theorem 3.1. Suppose 1−α1 = O(
√

log p/nX), 1−α2 = O(
√

log p/nXX),

and 1 − α3 = O(
√

log pq/nXY ). If Conditions (A1) and (A2) hold, there

exists positive constants v′1, v
′
2, and v′3 such that

P

(∥∥∥Σ̂XX −ΣXX

∥∥∥
∞
≥ v′1

√
log p

nXX

)
≤ 4

p
, (3.16)

P

∥∥∥Σ̂XY −ΣXY

∥∥∥
∞
≥ v′2

√
log(pq)

nXY

 ≤ 4

pq
, (3.17)

P

(∥∥∥Σ̂Y Y −ΣY Y

∥∥∥
∞
≥ v′3

√
log q

nY Y

)
≤ 4

q
. (3.18)
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If we only use samples with complete observations, sample covariance

estimators Σ̃XX,complete, Σ̃XX,complete and Σ̃XX,complete have the following

convergence rates

∥∥∥Σ̃XX,complete −ΣXX

∥∥∥
∞

= Op

(√
(log p)/ncomplete

)
,∥∥∥Σ̃XY,complete −ΣXY

∥∥∥
∞

= Op

(√
(log(pq))/ncomplete

)
,∥∥∥Σ̃Y Y,complete −ΣY Y

∥∥∥
∞

= Op

(√
(log q)/ncomplete

)
,

where ncomplete is the number of samples with complete observations; see Yu

et al. (2020). For block-missing data, ncomplete can be much smaller than

nXX , nXY and nY Y .

Next, we give the properties of initial estimators B̂0 and Ĉ0. The

following lemma describes estimation consistency of the initial estimator

B̂0.

Lemma 3.2. Suppose Conditions (A1)–(A4) hold, 1−α1 = O(
√

log p/nX),

1 − α2 = O(
√

log p/nXX), and 1 − α3 = O(
√

log pq/nXY ). If we choose

λB0 = C(log(pq)/min(nXY , nXX))
1
2‖B∗‖L1 for some large enough constant

C, then with probability at least 1 − 4/p − 4/(pq), the initial estimator
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B̂0 = arg minB tr[Σ̂Y Y + B>Σ̂XXB− 2B>Σ̂XY ] + λB‖B‖1 satisfies

∥∥∥B̂0 −B∗
∥∥∥
F
.
√
qsB

∥∥∥Σ̂XY − Σ̂XXB∗
∥∥∥
∞

.‖B∗‖L1

√
qsB log(pq)

min(nXX , nXY )
.

Cai et al. (2013) showed that when there is no missing data and the true

coefficient B∗ is exactly sparse, their estimator B̂Cai has the convergence

rate of ‖B̂Cai −B∗‖F = Op(Np

√
qsBlog(pq)/n), where n is the sample size

of the data and Np is the upper bound of ‖Σ−1XX‖L∞ . When there is no

missing data, our initial estimator B̂0 has the convergence rate of ‖B̂0 −

B∗‖F = Op(‖B∗‖L1

√
qsBlog(pq)/n). If we assume ‖B∗‖L1 � ‖Σ−1XX‖L∞ ,

the convergence rate of B̂0 is the same as that of B̂Cai. When the data

are block-wise missing, and we only use complete samples to estimate B∗,

we will have ‖B̂0 − B∗‖F = Op(‖B∗‖L1

√
qsB log(pq)/ncomplete), which can

be much slower than the rate in Lemma 3.2 as ncomplete is typically much

smaller than nXX and nXY for block-wise missing data.

For the single-response regression with block-wise missing data, the

result in Lemma 3.2 is the same as Theorem 2 in Yu et al. (2020) and the

estimator B̂0 performs well when the dimension of Y is small. But when

the dimension of Y becomes large, the estimator B̂0 may perform poorly.

The following lemma describes consistency of our initial estimator Ĉ0.
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Lemma 3.3. Suppose Conditions (A1)–(A4) hold, 1−α1 = O(
√

log p/nX),

1 − α2 = O(
√

log p/nXX), 1 − α3 = O(
√

log pq/nXY ). If we choose

λC0 = C‖C∗‖22‖B∗‖L1

(
‖B∗‖L1 + sB

√
q
)

(log(pq)/min(nXX , nXY ))1/2 for a

large enough C, it holds with probability at least 1−4/p−4/(pq)−4/q that

∥∥∥Ĉ0 −C∗
∥∥∥
F
.
√
sC‖C∗‖22‖Σε − Ĉ−10 ‖∞

.‖C∗‖22‖B∗‖L1 (‖B∗‖L1 + sB
√
q)

√
sC log(pq)

min(nXX , nXY )
.

There are two terms in the estimation error bound of Ĉ0. The first

term ‖C∗‖22‖B∗‖2L1

√
sC log(pq)

min(nXX ,nXY )
comes from the error induced by using

incomplete observations to estimate ΣXX and ΣXY . The second term

‖C∗‖22‖B∗‖L1sB

√
sCq log(pq)

min(nXX ,nXY )
comes from the estimation error of B̂0.

We next derive the convergence rates of B̂ and Ĉ. The convergence

rates are related to nXX/Y and nXY/X , which are fractions of nXX and

nXY respectively. Hence, we let nXX/Y � nτ1XX and nXY/X � nτ2XY with

τ1, τ2 ∈ {−∞}∪[0, 1]. When the responses are complete while the covariates

have missing entries, nXX/Y = 0 and τ1 = −∞, nXY/X > 0 and τ2 ∈ [0, 1].

When the covariates are complete while the responses have missing entries,

nXY/X = 0 and τ2 = −∞, nXX/Y > 0 and τ1 ∈ [0, 1]. When both the

responses and covaraites are complete, nXX/Y = nXY/X = 0 and τ1 = τ2 =

−∞. Theorem 3.4 below establishes the consistency of proposed estimators

B̂ and Ĉ in (2.5).
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Theorem 3.4. Suppose Conditions (A1)–(A4) hold, 1−α1 = O(
√

log p/nX),

1 − α2 = O(
√

log p/nXX), 1 − α3 = O(
√

log(pq)/nXY ). If we choose

λB and λC satisfying λB = C((log p)1/2/min(n
1−τ1/2
XX , n

1−τ2/2
XY )‖B∗C∗‖L1 +

{log(pq)/nXY }1/2) and λC = C‖C∗‖22[‖B∗‖2L1
+sB‖B∗C∗‖L1/min(n

1/2−τ1/2
XX , n

1/2−τ2/2
XY )]

(log(pq)/min(nXX , nXY ))1/2 for a large enough C, then it holds with prob-

ability at least 1− 4/p− 4/(pq)− 4/q that

∥∥∥B̂−B∗
∥∥∥
F
.
√
sB

 ‖B∗C∗‖L1(log(pq))
1/2

min
(
n
1−τ1/2
XX , n

1−τ2/2
XY

) +

{
log(pq)

nXY

}1/2
 ,

∥∥∥Ĉ−C∗
∥∥∥
F
.
√
sC‖C∗‖22

sB‖B∗C∗‖L1(log(pq))
1/2

min
(
n
1−τ1/2
XX , n

1−τ2/2
XY

) +
‖B∗‖2L1

(log(pq))1/2

min
(
n
1/2
XX , n

1/2
XY

)


∥∥∥B̂−B∗
∥∥∥
1
.sB

 ‖B∗C∗‖L1(log(pq))
1/2

min
(
n
1−τ1/2
XX , n

1−τ2/2
XY

) +

{
log(pq)

nXY

}1/2
 ,

∥∥∥Ĉ−C∗
∥∥∥
1
.sC‖C∗‖22

sB‖B∗C∗‖L1(log(pq))
1/2

min
(
n
1−τ1/2
XX , n

1−τ2/2
XY

) +
‖B∗‖2L1

(log(pq))1/2

min
(
n
1/2
XX , n

1/2
XY

)
 .

Next, we discuss some direct implications of Theorem 3.4. First, we

show that our estimators are at least as good as the initial estimators un-

der some conditions. Since τ1, τ2 ≤ 1 as n
XX/Y
jkl ≤ nXXjk and n

XY/X
jkl ≤ nXYjk ,

the convergence rate of ‖B̂−B∗‖F is no slower than Op(max(‖B∗C∗‖L1 , 1)√
sB log(pq)/min(nXX , nXY )). Similarly, the convergence rate of ‖Ĉ−C∗‖F

is no slower than Op(
√
sC‖C∗‖22(‖B∗‖2L1

+ sB‖B∗C∗‖L1)
√

log(pq)
min(nXX ,nXY )

).

Here the two slowest convergence rates are achieved when τ1 = τ2 = 1.

If we assume ‖B∗C∗‖L1 = O(‖B∗‖L1

√
q), the upper bounds of ‖B̂−B∗‖F
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and ‖Ĉ−C∗‖F are at least as tight as ‖B̂0 −B∗‖F and ‖Ĉ0 −C∗‖F .

On the other hand, if ‖B∗C∗‖L1 = o(‖B∗‖L1

√
q) or max(τ1, τ2) < 1 and

‖B∗C∗‖2L1
= o(min(n

1/2−τ1/2
XX , n

1/2−τ2/2
XY )), the upper bounds of ‖B̂ − B∗‖F

and ‖Ĉ−C∗‖F are strictly tighter than that of ‖B̂0−B∗‖F and ‖Ĉ0−C∗‖F .

One example is when var(εj) >
1√
q

for all j ≤ q and cov(εj, εk) = 0 for

j 6= k. Another example is when nXX/Y = o(nXX), nXY/X = o(nXY ), and

‖B∗C∗‖2L1
= o(min(n

1/2−τ1/2
XX , n

1/2−τ2/2
XY )).

When Y is complete while X has missing entries, τ1 = −∞ and τ2 ∈

[0, 1]. Then convergence rate of B̂ in Theorem 3.4 becomes

∥∥∥B̂−B∗
∥∥∥
F
.
√
sB

(
‖B∗C∗‖L1(log(pq))1/2

n
1−τ2/2
XY

+

{
log(pq)

nXY

}1/2
)
.

When X are complete while Y have missing entries, τ2 = −∞ and τ1 ∈

[0, 1]. In this case, we can set α1 = α2 = 1 and have

∥∥∥B̂−B∗
∥∥∥
F
.
√
sB

(
‖B∗C∗‖L1(log(pq))1/2

n
1−τ1/2
XX

+

{
log(pq)

nXY

}1/2
)
.

When both X and Y are complete, τ1 = τ2 = −∞. In this case, we can set

α1 = α2 = α3 = 1 and have

‖B̂−B∗‖F .
√
sB log(pq)/n, (3.19)

where n is the sample size. The error bound in (3.19) is the minimax rate

of the `1-penalized estimator as shown in Raskutti et al. (2011).
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In Theorem 3.5 below, we show that our proposed method is model

selection consistent.

Theorem 3.5. Assume that Conditions (A1)–(A5) hold. Suppose 1−α1 =

O(
√

log p/nX), 1− α2 = O(
√

log p/nXX), 1− α3 = O(
√

log(pq)/nXY ). If

(log(pq)/nXY )
1
2
−γ2/λB = o(1), λB‖((C∗⊗ΣXX)SBSB

)−1‖L∞/minj∈SB
|β∗j | =

o(1), sB‖((C∗ ⊗ΣXX)SBSB
)−1‖L∞(log p/nXX)

1
2
−γ2 = o(1), and sB

(log p/nXX)
1
2
−γ1−γ2/λB = o(1), then with probability at least 1 − 4/p −

4/(pq)−4/q, there exists a solution B̂ to (2.5) such that sign(B̂) = sign(B∗).

4. Numerical study

In this section, we examine the performance of our proposed method (Multi-

DISCOM) related to Σε, the signal-to-noise ratio and the distribution of

error ε through some numerical studies. We compare the efficiency of our

proposed method with some other methods. These methods include (1)

Complete Lasso, which separately applies Lasso to each response only using

samples with complete observations (both X and Y have no missing values);

(2) Imputed-Lasso, which separately applies Lasso to each response using

all samples, where missing data are imputed by the Soft-thresholded SVD

method; (3) MBI, which separately applies the MBI (Xue and Qu, 2021)

to each response using all samples, where missing data are imputed by the
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Multiple Block-wise Imputation; (4) DISCOM, which separately applies the

DISCOM (Yu et al., 2020) to each response; (5) Imputed-MRCE, which

runs the MRCE (Rothman et al., 2010) using all samples with missing data

imputed by the Soft-thresholded SVD method.

In all examples, we set q = 4, xi = (xi1, . . . , xip)
> ∼ N(0,Σ) with

σjt = 0.6|j−t|. The ith row of the coefficient matrix B∗ is (1, 1.5, 1, 1.5) for

i = 1, p1+1, p1+p2+1 and 0 otherwise. The response Y has missing entries

completely at random, with the missing proportion 0.01.

For each example, the data were generated from three modalities whose

dimensions p1, p2 and p3 are specified below. The training dataset contains

n1 samples with complete observations, n2 samples from the third modality,

n3 samples from the first and the third modalities and n4 samples from

the first modality. The tuning dataset contains 75 samples with complete

observations and the testing dataset includes 300 samples with complete

observations. For each method, we train our model with different tuning

parameters on the training dataset. Then we choose the optimal tuning

parameter minimizing the mean squared error on the tuning dataset.

For each example, we repeat the simulation 50 times. To evaluate the

selection performance of the algorithm, we use false-positive rate (FPR) and

false-negative rate (FNR) as criteria: FPR = FP/(FP + TN) and FNR =
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FN/(FN + TP), where FN represents the number of coefficients wrongly

detected to be zero, TN are the number coefficients rightfully detected to

be zero, TP are the coefficients rightfully detected to be nonzero and FP are

the coefficients wrongly detected to be nonzero. Furthermore, to evaluate

the accuracy of our estimators, we used the mean squared error (MSE) on

the testing dataset and the `2 distance ‖B̂−B∗‖F as criteria.

In Example 1, we examine our method related to Σε. Let n1 = n2 =

n3 = n4 = 30, p1 = p2 = p3 = 30. We set error εi = (εi1, . . . , εiq) ∼ N(0,Σε)

with Σε = 3I2 ⊗
(
1 ρ
ρ 1

)
. We choose ρ ranging from −0.4 to 0.4.

In Example 2, we examine the performance of our method related to

the signal-to-noise ratio. Let n1 = n2 = n3 = n4 = 30, p1 = p2 = p3 = 30.

We set error εi = (εi1, . . . , εiq) ∼ N(0,Σε) with Σε = αI2⊗
(

1 −0.4
−0.4 1

)
, and

range α from 1 to 5.

In Example 3, we examine the robustness of our method when the

error follows heavy-tailed distribution. Let n1 = n2 = n3 = n4 = 30 and

p1 = p2 = p3 = 30. We set error εi = (εi1, . . . , εiq) ∼ t10(0,Σε) where

Σε = 3I2 ⊗
(

1 −0.4
−0.4 1

)
, and tν(0,Σε) refers to student’s t distribution with

location vector 0 and scale matrix Σε.

To demonstrate the results, we focus on the results of Example 1. We

report the results of other examples in Supplementary Materials.
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The results in Table 1 indicate that the Multi-DISCOM delivers the

best performance in all settings. Specifically, the Multi-DISCOM produces

smaller MSE and estimation errors than the other methods in all settings,

especially when the correlations between different responses are large. In

addition, the Lasso method using the imputed data may deliver worse selec-

tion performance, possibly due to randomness involved in the imputation

of block-missing data. The results in Table 4 in the Supplement Materials

indicate that the Multi-DISCOM has more advantage when signal-to-noise

ratio is small. When the signal-to-noise ratio is smaller, the noise has

stronger effect on Y and hence taking the precision matrix into account is

more helpful for our estimation.

5. Application to the ADNI study

We apply the Multi-DISCOM to the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) study (Mueller et al., 2005) and compare it with several

existing approaches. A primary goal of this analysis is to identify biological

markers and neuropsychological assessments to measure the progression

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).

We are interested in predicting Mini-Mental State Examination (MMSE),

ADAS1 and ADAS2. These scores are commonly used diagnotic scores of
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Method ‖B̂−B∗‖F MSE FPR FNR

ρ = −0.4

Lasso 1.51(0.06) 3.70(0.06) 0.09(0.02) 0.00(0.00)

Imputed-Lasso 1.73(0.06) 3.57(0.06) 0.11(0.01) 0.00(0.00)

MBI 2.10(0.08) 4.26(0.09) 0.12(0.02) 0.11(0.03)

DISCOM 1.44(0.04) 3.56(0.06) 0.05(0.00) 0.05(0.01)

Imputed-MRCE 1.53(0.05) 3.72(0.08) 0.17(0.03) 0.08(0.02)

Multi-DISCOM 1.40(0.04) 3.39(0.08) 0.02(0.01) 0.09(0.02)

ρ = 0.4

Lasso 1.55(0.06) 3.77(0.06) 0.11(0.02) 0.00(0.00)

Imputed-Lasso 1.75(0.06) 3.61(0.06) 0.13(0.01) 0.00(0.00)

MBI 2.14(0.08) 4.30(0.09) 0.13(0.02) 0.11(0.03)

DISCOM 1.46(0.04) 3.59(0.06) 0.06(0.00) 0.05(0.01)

Imputed-MRCE 1.54(0.05) 3.73(0.08) 0.19(0.03) 0.09(0.02)

Multi-DISCOM 1.43(0.04) 3.44(0.08) 0.04(0.01) 0.07(0.02)

Table 1: Performance comparison of different methods for Example 1 with

different ρ’s. The values in the parentheses are the standard errors of the

measures.
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AD. Data processing steps are summarized in the supplementary materials.

After data processing, we have 93 features from MRI, 93 features from

PET and 5 features from CSF. There are 805 subjects in total, including

199 subjects with complete MRI, PET and CSF features, 197 subjects with

MRI and PET features only, 201 subjects with MRI and CSF features only

and 208 subjects with MRI features only.

In our analysis, we divide the data into training, tuning, and testing

sets. The training set consists of all subjects with incomplete observations

and 40 randomly selected subjects with complete features. The tuning set

consists of another 40 randomly selected subjects with complete observa-

tions. The testing set contains the remaining 119 subjects with complete

observations. We train our model with different tuning parameters on the

training set. Then we choose the tuning parameter which minimizes the

mean squared error on the tuning set. The testing set is used to evaluate

different methods. We used all methods shown in the simulation study

to predict the MMSE score. For each method, the analysis was repeated

30 times using different partitions of the data. In addition to the sum of

mean squared errors (MSE) of all three responses, we compare MSEs for

each response (MSEMMSE, MSEADAS1 and MSEADAS2) as criteria. We also

compare the number of features selected by each method.
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Method Overall MSE MSEMMSE MSEADAS1 MSEADAS2 # of Selected Features

Lasso 93.37(3.82) 5.31(0.19) 29.84(1.35) 58.23(2.40) 54.20

Imputed-Lasso 80.40(1.62) 4.54(0.12) 25.80(0.51) 50.07(1.15) 165.00

MBI 91.84(3.02) 5.13(0.14) 28.43(1.17) 58.29(2.16) 59.87

DISCOM 67.47(1.33) 4.26(0.11) 21.76(0.51) 41.45(0.86) 72.87

Imputed-MRCE 67.41(2.02) 4.29(0.10) 21.61(0.65) 41.50(1.33) 218.50

Multi-DISCOM 65.82(1.21) 4.22(0.12) 21.18(0.46) 40.41(0.80) 89.67

Table 2: Performance comparison for the ADNI data.

As shown in Table 2, the Multi-DISCOM delivers better performance

than all other methods. The DISCOM has a similar overall MSE as the

Multi-DISCOM, but worse MSEADAS1 and MSEADAS2. One possible reason

is that ADAS1 and ADAS2 are highly correlated, so taking the precision

matrix into account can help. Since there are 208 subjects with MRI fea-

tures only, the MBI method may not impute those 208 subjects accurately.

As a consequence, the MBI method may not perform well in this case.

Regarding to model selection, both the DISCOM and the Multi-DISCOM

can deliver relatively simple models. Figure 2 shows the selection frequency

of the 191 features when predicting ADAS1. The selection frequency of each

feature is defined as the number of times of being selected in the 30 repli-

cations. As shown in Figure 2, for our method, some features are often
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Figure 2: Selection frequency of 191 features for prediction of ADAS1 score.

selected and many other features are rarely selected. This means that our

method could deliver robust model selection. However, for the Imputed-

Lasso method, it selects very different features in different replications. One

possible reason for the unstable performance on model selection is due to

the randomness involved in the imputation of block-missing data. Hip-

pocampus formation left (69th region) and amygdale right (83th feature)

are frequently selected by our method and known to be highly correlated

with AD and MCI by many existing studies (Jack et al., 1999; Misra et al.,

2009; Zhang and Shen, 2012), but the DISCOM rarely selects these features.
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6. Conclusion

In this paper, we propose a joint estimation method in a penalized frame-

work with the entry-wise `1 regularization using block-missing multi-modal

predictors. We first estimate the covariance matrix of the predictors using

a linear combination of the estimates of the variance of each predictor, the

estimates of the intra-modality covariance matrix, and the cross-modality

covariance matrix. The proposed estimator of the covariance matrix can be

positive semidefinite and more accurate than the sample covariance matrix.

In the second step, based on the estimated covariance matrix, a penalized

estimator is used to deliver a sparse estimate of the coefficients in the op-

timal linear prediction. Theoretical studies on the estimation and feature

selection consistency are established. Extensive simulation studies also indi-

cate that our method has promising performance on estimation, prediction

and model selection for the block-missing multi-modal data. Finally, we

apply the Multi-DISCOM to the ADNI dataset and demonstrate that our

model has good prediction power and meaningful interpretation.

Supplementary Materials

Supplementary Material includes additional results of our numerical studies,

technical conditions and proofs.
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