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Multi-response Regression for Block-missing

Multi-modal Data without Imputation

Haodong Wang, Quefeng Li and Yufeng Liu

The University of North Carolina at Chapel Hill

Abstract: Multi-modal data are prevalent in many scientific fields. In this paper,
we consider the problem of parameter estimation and variable selection for multi-
response regression using block-missing multi-modal data. Our method allows
dimensions of both responses and predictors to be large, and the responses to be
incomplete and correlated. Such a problem arises in many practical situations in
the high-dimensional setting. Our proposed method includes two steps to make
prediction from the multi-response linear regression model with block-missing
multi-modal predictors. In the first step, without imputing the missing data, we
make use of all available data to estimate the covariance matrix of the predictors
and the cross-covariance matrix between the predictors and the responses. In the
second step, based on the estimated covariance and cross-covariance matrices, we
estimate both the precision matrix of the response vector given predictors and
the sparse regression parameter matrix simultaneously by a penalized method.
The effectiveness of the proposed method is demonstrated by theoretical studies,
simulated examples, and the analysis of a multi-modal imaging dataset from the

Alzheimer’s Disease Neuroimaging Initiative.
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1. Introduction

With the prevalence of large-scale multi-modal data in various scientific
fields, multi-response linear regression has attracted growing research at-
tentions in statistics and machine learning communities (Rothman et al.,
2010; Lee and Liu, 2012; Loh and Zheng, 2013). While linear regression
with a scalar response has been well studied, many applications may have
a vector as the response. In particular, multi-response models have wide
applications in scientific fields, especially for biological problems (Kim and
Xing, 2012). For example, for multi-tissue joint expression quantitative
trait loci (eQTL) mapping (Molstad et al., 2020), researchers consider pre-
dicting gene expression values in multiple tissues simultaneously by using a
weighted sum of eQTL genotypes. Separate prediction for each tissue can
be inefficient since same genes in different tissues are often correlated due
to the shared genetic variants or other unmeasured common regulators. In
order to use data from all tissues simultaneously, a joint eQTL modeling

has been proposed to take cross-tissue expression dependence into account

(Molstad et al., 2020).



To apply variable selection methods for multi-response problems, one
could separately fit each response via a single-response model. There are
many well-studied variable selection methods for the single-response linear
regression model such as LASSO (Tibshirani, 1996). Although it is sim-
ple to apply a single-response linear regression method for each response
separately, such a procedure neglects the dependency structure among re-
sponses. By incorporating the dependency structure of the response vector,
one may obtain a more efficient multi-response linear regression approach
in terms of estimation and prediction.

To handle multi-response regression problems, a well-known approach,
the Curds and Whey, was proposed by Breiman and Friedman (1997) to im-
prove the prediction performance by utilizing dependency among responses.
Specifically, they first fit a single-response regression model for each re-
sponse and then modify the predicted values from those regressions by
shrinking them using canonical correlations between the response variables
and the predictors. Another popular approach to handle multi-response
regression is to use dimension reduction. In particular, reduced rank regres-
sion (Izenman, 1975) minimizes the least squares criterion subject to the
constraint on the rank of regression parameter matrix. Yuan et al. (2007)

further extended this method for the high dimensional setting. Their idea



is to obtain dimension reduction by encouraging sparsity among singular
values of the parameter matrix. Although these methods may achieve bet-
ter prediction performance than the separate univariate regression, they did
not address the problem of variable selection.

In order to handle correlated responses together with variable selection,
the precision matrix of response vector given predictors and the regression
parameter matrix can be estimated separately or simultaneously (Lee and
Liu, 2012). For separate estimation, Cai et al. (2013) used a constrained ¢;
minimization that can be treated as a multivariate extension of the Dantzig
selector to estimate the regression parameter matrix. After removing the
regression effect using the estimated regression parameter matrix, the preci-
sion matrix of the error terms can be estimated accordingly. One potential
drawback of this indirect method is that it ignores the relationship be-
tween different responses given predictors when estimating the regression
parameter matrix. In order to use all information more efficiently, it can
be desirable to estimate the precision matrix and regression parameter ma-
trix simultaneously. In the literature, various joint estimation techniques
were studied by Rothman et al. (2010), Yin and Li (2011) and Lee and Liu
(2012). They formulated the multi-response regression problem in a penal-

ized log-likelihood framework, so that the parameter and precision matrices



can be estimated simultaneously. Using a similar idea, Chen et al. (2018)
proposed an estimation procedure to estimate the parameter and precision
matrices simultaneously based on the generalized Dantzig selector.

Despite a lot of development for multi-response linear regression, most
existing methods only deal with complete data without missing entries.
However, many practical data are incomplete, especially for multi-modal
data. For instance, in the study of Alzheimer’s Disease (AD), data from
different sources are collected. This includes magnetic resonance imaging
(MRI) of the brain, positron emission tomography (PET) and cerebrospinal
fluid (CSF). In practice, observations of a certain modality can be missing
completely due to patient dropouts or other practical issues. This leads to
a block-wise missing data structure. It is important to integrate data from
all modalities to improve model prediction and variable selection.

To handle incomplete multi-modal data, one may simply remove those
observations with missing entries. However, such a procedure may greatly
reduce the number of observations and lead to loss of information. Another
approach is to perform data imputation. Existing imputation methods, such
as matrix completion (Johnson, 1990) algorithms may possibly be unstable
when the missing values happen in blocks. In order to deal with multi-modal

block-wise missing data, Yu et al. (2020) proposed a new direct sparse re-



gression procedure using covariance from block-missing multi-modal data
(DISCOM). They first used all available information to estimate the co-
variance matrix of the predictors and the cross-covariance vector between
the predictors and the response variable. Based on the estimated covari-
ance matrix and the estimated cross-covariance vector, they then used an
extended Lasso-type estimator to estimate the coefficients. However, the
DISCOM only considers single-response regression. Recently, Xue and Qu
(2021) proposed the Multiple Block-wise Imputation (MBI) method for
single-response regression when data are block-wise missing. They devel-
oped an estimating equation approach to accommodate block-wise missing
patterns in multi-modal data. The method was shown to have high selec-
tion accuracy and low estimation error for single-response regression with
block-wise missing data. However, since their imputation method requires
analyzing all combinations of different blocks, it can be computationally
expensive when the number of modalities is large.

In this paper, we consider a multi-response regression model for block-
wise missing data. The main contribution of our method is to allow missing
values in both responses and predictors and correlations among responses.
This method can also handle the case that no subject has complete ob-

servations, while most traditional methods do not allow this. Our method



includes two steps. The first step is to estimate each element of the co-
variance and cross-covariance matrices by using all available observations
without imputation. The second step is to use a penalized approach to
estimate the sparse regression coefficient matrix and the precision matrix
of the error terms simultaneously. We show that this method has estima-
tion and model selection consistency under the high-dimensional setting.
Numerical studies and the ADNI data application also confirm that the
proposed method performs competitively for block-wise missing data.

The remainder of the paper is organized as follows. In Section 2, we
introduce the problem background and our model. In Section 3, we establish
some theoretical properties of our proposed method. We present simulation

studies and a multi-modal ADNI data example in Sections 4 and 5.

2. Methodology

2.1 Problem setup and notations

Consider the following multi-response linear regression model,

Y =XB*"+ ¢, (2.1)
where B* = (bj;) € RP*? is an unknown p X ¢ parameter matrix, Y =
(y1,.-- ,yn)T is the n X ¢ response matrix, X = (xy,...,X,) isthen x p
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design matrix and £ = (e1,...,€,)" is the n x g error matrix. We assume
that {x;}!", are i.i.d. realizations of a random vector (Xy,...,X,) with
zero mean and covariance matrix Xy = (affx ) € RP*P. We use Xxy =

(o

) € RP*? to denote the cross-covariance matrix between x; and y;.
We assume that the predictors come from multiple modalities and there
are p; predictors in the k-th modality. In addition, X has block-missing
values. That is, for one sample, its measurements in one modality can be
entirely missing. We assume elements of Y can also be missing. The errors
€ = (€1,... ,eiq)T for i = 1,...,n are i.i.d. realizations from a random
vector € with zero mean and covariance matrix X, = (0/77) € R4 We
let C* = E;l. Moreover, we further assume x; and €; are uncorrelated.
Denote the support of B* and C* as Sp = {j : vec(B*); # 0} and S¢ =
{7 : vec(C*); # 0}, where “vec” is the vectorization by column operator.
For a set S, we denote |S| as its cardinality. Denote sp = |Sg|, s¢ = |9¢|
and s = max(sg, s¢).

We employ the following notation throughout this article. The symbol
SiXd is used to denote the sets of d x d symmetric positive-definite matrices.
For a square matrix C = (¢;7) € RP*P, we denote its trace as tr(C) = ), ¢

and its diagonal matrix as diag(C). For a matrix A = (a;;) € RP*9, we

define its entrywise {;-norm as [[Afy = 3=, ;|a;;| and its entrywise (oo
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norm as ||A|« = max; ; |a;;| . In addition, we define its matrix ¢;-norm as
|Al[z, = max; ), [a;|, matrix lc-norm as ||Al|r, = max;}_;[a;|, the
spectral norm as ||All; = max|x|,=1 |[AX||2, the Frobenius norm as ||A|/r =
\/2_i; @i; and the number of nonzero elements as [|Allg = >, i I(a;; # 0).
Denote the largest and smallest eigenvalues of A by Apax(A) and Ay (A)
respectively. Denote the sub-matrix of A with row and column indices in
I and I, as Ap . For a vector v € RP, denote vy, as the sub-vector of v
with indices in Iy, ||[v|1 = >_; |vil, ||Vl = max; |v;], || V||min = min; |v;| and
[v]l2 = /3, v?. For a function h(X), we use Vxh to denote a gradient or
subgradient of h with respect to X, if it exists. Finally, we write a,, < b, if

a, < cb, for some constant ¢, and write a,, < b, if a,, < b, and b, < a,.

2.2 Proposed Multi-DISCOM method

For the multi-response linear regression model (2.1), if one separately ap-
plies least squares estimation with the ¢;—norm penalty to each response,

it essentially solves
argming E[||Y — XB||3] + A||B|; = argming tr (;B"SxxB — X1, B) + \|BJ|1, (2.2)

where A is a tuning parameter. We refer to this method as the separate
LASSO, whose solution is denoted as BLASSO, However, such an approach

fails to account for the correlations between responses and may lead to poor
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predictive performance (see, e.g., Breiman and Friedman (1997)). To pro-
duce a better estimator, we propose to incorporate 3. into the estimation

of B*and solve the following problem:

BY = arg ming tr [C*SYY + C'BTSxxB — 2C*BT2XY} FAIBlL, (23)

where A is a tuning parameter, ﬁ)yy, ) xx and 3 xy are some estimators
of Eyy, ZXX and EXy.
In practice, C* is also unknown. It is natural to estimate C* first, then

plug the estimate C into (2.3) and solve the following problem:

B = arg mBin tr |[C3yy + CB 2xxB — 2CB Sxy | + A|B;.  (24)

We refer this method as the two-step weighted LASSO. But as shown by the
toy example in Section 2.2.1, the two-step weighted LASSO may perform
worse than the separate LASSO in some problems.

In this article, we propose to estimate B* and C* simultaneously by

solving the following optimization problem:

(B, C) = arg min tr [CEYY + CBTgxxB - 2CBT2XY
Ces?*7 B

(2.5)
+A5|Bll1 + Ac[[C|l1 — logdet C,

where Ag and A\¢ are tuning parameters. When A\¢ is large enough, Theorem

4 by Banerjee et al. (2008) implies that all off-diagonal entries in C become
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zero. Then our proposed method (2.5) reduces to the separate LASSO
(2.2). For a univariate response regression problem, our proposed method
(2.5) reduces to the DISCOM algorithm (Yu et al., 2020). When there is no
missing entries, our proposed method (2.5) reduces to the sparse conditional
Gaussian graphical model introduced by Yin and Li (2011).

The toy example in Section 2.2.1 illustrates that our joint estimation
model (2.5) has better estimation performance than the two-step weighted

LASSO and the separate LASSO.

2.2.1 Toy example

For illustration, we consider a toy example similar to the one in Lee and
Liu (2012). Assume p = ¢ =2, X' X =T and X, = (}){’), where p is an
unknown constant. We perform simulation studies for this example with
200 training samples, 300 tuning samples and 1000 testing samples. Set
B* = (9.%)in Case 1 and (% ;%) in Case 2. Figure 1 shows the estimation
error for the separate LASSO, the two-step weighted LASSO and the joint
estimation model (2.5). In Case 1, the two-step weighted LASSO has a
smaller estimation error than the separate LASSO when p is positive. The

result flips when p is negative. While in Case 2, the separate LASSO has

a smaller estimation error than the two-step weighted LASSO when p is
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CASE 1 CASE 2
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Figure 1: Plots of the estimation errors for separated LASSO, two-step
weighted LASSO and joint estimation when X, = (; " ) The left panel is

for B* = (9 %) and the right panel is for B* = ( % % ).

positive. The joint estimation model performs the best in all cases.

The simulation results can be explained by the following calculations.
With the penalty parameter A, the solution of the separate LASSO is given
by BEASSO = sign(BS)[BS — A/2]+, where [u]; = u if u > 0, [u]; = 0 if
u<0and BS = (XTX)"'XTY.

We can show that the two-step weighted LASSO (2.4) is equivalent to
B2 — arg ming [(vec(B) — vee(BS)) (I ® €) (vee(B) — vec(BS)) + || vec(B)||1] . (2.6)

When estimate C is accurate, B2 should be very close to the solu-
tion of (2.3), where we use X! as the weight. After we plug C = X!
. . . . H2step . HS RS

into (2.6), the solution is given by B;;"” = sign(B;))[|Bjj| — M1+ p)/2]+

when sign(B5B3) = 1 and ijsmp = s1gn(§5)[|35| X1 = p)/2], when
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)

sign(B5 B3) = —1. Compared with BEASSO — Slgn(ng)[Bg —-A/2]4, f??jstep
only differs in the shrinkage amount for each entry. The shrinkage amounts
for all entries of the Separate LASSO are the same, which only depend on
the tuning parameter A\. The shrinkage amounts for all entries of the two-
step weighted LASSO depend on p, A and the sign of BS. Each entry of
the two-step weighted LASSO may have different shrinkage amounts.

0

. . * 0 . * s
We consider two cases of p in Case 1, where B* = (9 ,% ). Since B}, Bs,

are far from 0, for simplicity, we assume that sign(B5)) = sign(B5,) = 1.

1. Consider p = —0.4. When sign(éfléfz) = —1, the shrinkage amounts
for B:'" and B2' are 0.7, while the shrinkage amounts for B3
and BEP are 0.3\, Thus the shrinkage amounts for B2 and B2
are smaller than the shrinkage amounts for B and B2, This
means that with the tuning parameter A that shrinks B'? and B2
to 0, the shrinkage amounts for Bs:'® and By'® are smaller than
the shrinkage amounts for BQLlASSO and BQLQASSO. Thus the two-step
weighted LASSO has a smaller estimation error than separate LASSO
in this scenario. When sign(B? BY,) = 1, the shrinkage amounts for

all entries in B?**? are equal.

2. Consider p = 0.4. When sign(B? BS,) = —1, the shrinkage amounts

for B3'” and B33’ are 0.3\, while the shrinkage amounts for B};'
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and B3 are 0.7\. This means that with the tuning parameter

~

A that shrinks B%™ and BX'™ to 0, the shrinkage amounts for
B2 and B2 are larger than the shrinkage amounts for BEASSO
and ézLQASSO. Thus the separate LASSO is preferred to the two-step
weighted LASSO in this scenario. When sign(B%, BS,) = 1, all entries

in B2%P have the same shrinkage amount.

In Case 2, where B* = ( % %), the two-step weighted LASSO is pre-
ferred to separate LASSO only when p is negative. In conclusion, the
performance of the two-step weighted LASSO compared with the separate
LASSO depends on the sign of B* and the covariance matrix 3.. In con-
trast, the joint estimation model (2.5) is more flexible. When ¥, and B*
favor the separate LASSO, the joint estimation model (2.5) can perform
better by choosing a large Ac. Otherwise, the joint estimation model (2.5)
can perform better by choosing a relatively small A\c. Thus the joint esti-

mation model (2.5) can perform competitively in all cases.

2.2.2 Covariance estimation

Next we introduce how to obtain 3 XX, ) xy and ﬁ]yy when data have
block-missing values. The following notation will be used in this article. For

the jth predictor, define S]X = {i : z;; is not missing}. For the jth response,
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define S]Y = {7 : y;; is not missing}. Define Sﬁx = {i: x;; and z;;, are not

. . . XX/Y .

missing}, Sj,iy = {i: 2y and yy are not missing}, S Yo {i:aij, wa,
. L XY/X . .

are not missing but y; is missing}, Sjkl/ = {i: @;j,yir are not missing

but zy is missing} and %Y = {i:y; and yy are not missing}. Denote
the cardinality of SJX , SJY, Sjlix , Sfiy, Sj,(dX/ Y, Sj,i?// X and Sﬁy as nf ,n}/

XX Xy XX/Y XY/X YY : — mi X
na, gy, M Ny, and ng, respectively. Denote nx = miny [S7,

nxx = minj,k |Sj](€X|, nxy = minj,k |SJ)](€Y’, Nyy = minjyk ‘S};ﬁy’, nX)(/Y =
max; y |S;,(§ZX/Y| and nyy/x = max; |Sj,2//x|.

We propose the initial estimators of 3 x x, 2 xy and Xyy to be the sam-
ple covariance matrices using all available data, i.e. xx = (6j)-§X), Sy =
(5ﬁy)>2YY = (63?/)7 where 6J)§X = Ziesﬁx xijxit/nj)gxa 5])'(Y = Ziesﬁy

Xy
Ty /15, and

. 1
jt

sy
We point out our method requires ) XX > xy and ﬁ]yy to be unbiased
estimators of their counterparts. When the missingness in X and Y is
missing completely at random, the unbiasedness assumption is satisfied.
However, the unbiasedness assumption may also hold under some other
missing mechanism. For our theories, we do not specify any particular
missing mechanism. The unbiasedness assumption suffices.

For block-missing data X, the above estimate ) xx can be ill-conditioned



2.2 Proposed Multi-DISCOM method

and have negative eigenvalues. Therefore, it may not be a good estimate of
3 xx and cannot be used in (2.5) directly. Next, we introduce an estimator
that is both well-conditioned and more accurate than the initial estimate
)y xx- According to the partition of the predictors into K modalities, > XX
can be partitioned into K2 blocks, denoted by Skik2 for 1 < kq,ky < K and

>:F1k2 being a py, X pr, matrix. We denote

I 0o X2z . 3K

3 3722 3 221 0 12K
Y= and Yo =

KK )ILEIED L |

where X is called the intra-modality sample covariance matrix, which is a
pxp block-diagonal matrix containing K diagonal blocks of > xx,and 5]0 =
> — 3 is called the cross-modality sample covariance matrix containing
all off-diagonal blocks of Syx. Let ¥; and 3¢ be the true intra-modality
and cross-modality covariance matrices, respectively. For the block-missing
multi-modal data, due to the imbalanced sample sizes, the estimate 3;
can be relatively accurate while the estimate 3 can be inaccurate. In that
case, we estimate X x x by a linear combination of )y 7 and f)c with different
weights. In addition, to ensure positive definiteness of our estimation, we

adopt the idea of shrinkage estimation of the covariance matrix (Fisher and
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Sun, 2011) and add the diagonal matrix diag(2;) to our estimator,
Sxx =mE; + (1 — o) diag(E)) + axXc, (2.8)

where a1, as € [0, 1] are two shrinkage weights. We add the diagonal matrix
diag(X;) to ensure the diagonal entries of our estimator are not shrunk.
By Weyl’s theorem, the eigenvalues of our estimator are greater than or
equal to al)\min(ﬁh) +(1— al))\min(diag(if)) +062)\min(2c>. Since diag(ﬁh)
is a positive definite matrix, by carefully selecting the tuning parameters o
and as, the eigenvalues of our estimator can be guaranteed to be positive.
As we dicussed before, our estimator 3 xx is a shrinkage estimator.
Using a similar idea, we use a shrinkage estimator to estimate X xy. That

is, we propose to estimate X xy by
EXY = OdgiXy, (29)

where a3 € [0, 1] is the shrinkage weight. We want to find the optimal
linear combination 3%, = a3 xy whose expected quadratic loss E[ 3%, —
Y xy||F is minimized.

In our paper, we only consider a relative low dimension of Y with not too
many incomplete observations, so we will use Xyy defined in (2.7) directly.
But when the dimension of Y is very high, or there are many incomplete

observations of Y, a shrinkage estimator of 3yy is recommended instead.
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Denote 7* = (¥f,....7k) = (tx(Z")/pr, ..., tr(ZEK) fp)T, 6; =

VEIS: — 12, 6c = /E[Sc — Sel%, 6xy = \/E[Sxy — Sxy |3 and

0 = || diag(X;)— X;||r. The optimal choice for the weights of oy, as, and

a3 is shown in the following proposition 2.1.

Proposition 2.1. The solutions to the following two optimization problems:

(a7, o) = arg min E[|Sxx — Sxxi (2.10)
1,0
~ 2
Oé;) :argminE ny—zxyH (211)
as P

are

2 2
O[* _ 02 Oé* _ ||EC||F * ||EXY||F
1 2 2 29 3 — ) bR
1Zclly + dc X xy |y + dxy

0% + 07’
In addition, for 3% = a3, + (1 — of) diag(X;) + 4X¢ and ﬁl}y =
o{{i]Xy, we have

) e D20l ;
= + <5+’ = E|Zxx—Zxx]|F,
P42 52 2l T | I

IEJHE}X S

2

5 2 D 2 ~
XY H XYHF <5XY2:EH2XY_2XYH%'

EHE D ST | <
o Foobxy? + [[Sxv |y

Define the fo-error of the estimators 3y x and Xy as IEHEXX —xx|%
and E||Xxy — Zxy |, respectively. Proposition 2.1 shows that our estima-

tor is more accurate than the sample covariance matrix.
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Proposition 2.1 is closely related to Proposition 1 in Yu et al. (2020).
They calculated the optimal weight and estimation error for their proposed

estimator X% v prscom of 2xx, whose estimation error is

626 o’ || Ze |z
82462 6+ |Bc|

IE‘3||ﬁlXX,/:)[S(JOM — Zxx|[F =

where 62 = ||tr(2)I,/p — £;||%. We can see that our estimator S yx has
smaller fy-error compared to their estimator. Comparing to their proposi-
tion, we also prove that our weighted estimator 3 vy is more accurate than

the sample covariance matrix.

2.3 Computational algorithm

In this section, we describe the computational algorithm to solve the opti-
mization problem (2.5). Since (2.5) is a bi-convex problem, the standard
approach to solve this problem is via the alternating minimization method.
In particular, starting with some given initial point (B, Cp), at the t-th

iteration, we solve solving the following problems

Bt = arg IHil’lB tr |:Ct,12yy + thlBTzA:X)(B - QthlBTgxy} + )‘B”B”h (212)

G, = argming, gy tr [Ciyy + OB SxxBey — 2013],12”} +Ac||Clly — logdet C. (2.13)

In each iteration of our algorithm, given Ct,l, we first update the es-

timator B, by solving (2.12). Since (2.12) is quadratic in B, we use the
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coordinate descent algorithm to solve it. Then we adopt the graphical lasso
method by Friedman et al. (2008) to solve (2.13). We summarize the above

procedures in Algorithm 1 below.

Algorithm 1: Alternating minimization updating algorithm
Input: X, Y, A\¢, A\p

Output: B, C
1 Obtain Bxyx by (2.8), Sxy by (2.9), Byy by (2.7).
2 Initialize with

By = argn}gintr [ﬁ:yy + BTXA:X)(B — QBTXA:xy} + )\BOHBHI, (2.14)

Co = arg min tr(C3p) — logdet(C) + A¢, |Cll1, (2.15)
ICl1<R,Cestx?

where R is a large enough tuning parameter which is usually
chosen to be Ag! (Loh and Wainwright, 2015) and
)= Sy — 25T, By + Bl SxxBy.

3 while max{HBt — ]:%t_1||F, HCt — Ct_1||F} > threshold do

4 For a given Ct_l, let

B, = arg mBin tr [ét_lﬁlyy +C,1B"SxxB — 2Ct_1BTﬁ]Xy] +A5||B|1;
For a given By, let

C, = arg min tr |:C$yy + CBllfJXXBt,I — 20]3;[12)(;/} +

[Cll1<R,Cest?

5 Ac||Cll1 — log det C,

¢ return C,, B;.




3. Theoretical study

We establish the following theoretical results. First, we prove in Theorem
3.1 that the proposed estimators 3 XX, ) xvy and f]yy are consistent with
high probability. We then show the convergence rate of our proposed es-
timators B and C in Theorem 3.4. Finally, the selection consistency of
our proposed method is shown in Theorem 3.5. The technical assumptions
(A1) to (Ab), and all proofs are provided in the Supplementary Material.
In the following analysis, we allow p and ¢ to diverge as nxx, nxy and nyy
increase.

In Theorem 3.1, we prove the large deviation bounds for our proposed

estimators ZXX, EXY and Eyy.

Theorem 3.1. Suppose 1 —a; = O(\/logp/nx), 1—ay = O(\/logp/nxx),
and 1 — az = O(y/logpg/nxy). If Conditions (A1) and (A2) hold, there

exists positive constants vy, vy, and vy such that

) I 4
P (Hzxx - EXXH > v ng) < (3.16)
p

0o nxx

. fi 4
P HEXY _ EXYH > o OSW) < (3.17)
e e} XY

. I 4
P (szy - EYYH > v qu) <z (3.18)
q

00 Nyy




If we only use samples with complete observations, sample covariance
estimators X xx completes 22X X,complete ad 2 x X complete Nave the following

convergence rates

HEXX,complete - z:XX = Op <\/<logp>/ncomplete> )

ATTT—

’ ) EXY,Complete - ZXY
9]

z~:YY,complete - EYY = Op (\/(lOg Q)/ncomplete) )

where ncomplete 1S the number of samples with complete observations; see Yu
et al. (2020). For block-missing data, ncompiete can be much smaller than
nxx, Nxy and nyy.

Next, we give the properties of initial estimators By and Co. The
following lemma describes estimation consistency of the initial estimator

A

By.

Lemma 3.2. Suppose Conditions (A1)-(A4) hold, 1—a; = O(y/logp/nx),
1 —ay = O(y/logp/nxx), and 1 — a3 = O(y/logpq/nxy). If we choose
Mg, = C(log(pq)/min(nxy,nxx))2||B*||L, for some large enough constant

C', then with probability at least 1 — 4/p — 4/(pq), the initial estimator



By = argming tr[Syy+ BTSxxB — 2BTS yy] + Ap||B||1 satisfies

HBO _B

- SVass Hﬁ]XY - ZA]XXB*H

. qsplog(pq)
<|IB HLl\/

min(nxx,nxy)

Cai et al. (2013) showed that when there is no missing data and the true
coefficient B* is exactly sparse, their estimator Beai has the convergence
rate of | Bea — B*||r = O,(N,+/gsplog(pq)/n), where n is the sample size
of the data and N, is the upper bound of |23 ||r... When there is no
missing data, our initial estimator By has the convergence rate of |By —
B*|lr = Op(|IB*||z,v/gs5log(pg)/n). 1f we assume |[B*|z, < [Eiy (...
the convergence rate of BO is the same as that of Bcai- When the data

are block-wise missing, and we only use complete samples to estimate B*,

we will have | By — B*||z = O,(||B*||L, V455 108(Pq) /Ncomplete); Which can
be much slower than the rate in Lemma 3.2 as Ncomplete 15 typically much
smaller than nxx and nyy for block-wise missing data.

For the single-response regression with block-wise missing data, the
result in Lemma 3.2 is the same as Theorem 2 in Yu et al. (2020) and the
estimator BO performs well when the dimension of Y is small. But when
the dimension of Y becomes large, the estimator B, may perform poorly.

The following lemma describes consistency of our initial estimator Co.



Lemma 3.3. Suppose Conditions (A1)-(A4) hold, 1 —a; = O(y/logp/nx),

1 —ay = O(KWlogp/nxx), 1 —as = O(y\/logpg/nxy). If we choose
Acy = ClICBIIB |z, (B2, + s5+/) (log(pa) /min(nxx, nxy))"? for a

large enough C, it holds with probability at least 1 —4/p—4/(pq) —4/q that

oo

» SVClCTIB)Ze = Co oo

sc log(pg)
min(nXX, an)

SIC3IB 1z, (1B |z, + s5+/a) \/

There are two terms in the estimation error bound of Co. The first
term [|C*||5]|B*||7, ﬁ% comes from the error induced by using
incomplete observations to estimate ¥ yxx and X xy. The second term
|C*|1311B* ||, 5B % comes from the estimation error of By.

We next derive the convergence rates of B and C. The convergence
rates are related to nxx/y and nyy,x, which are fractions of nyx and
nxy respectively. Hence, we let nxx/y < nyy and nxy,x =< n¥, with
71, T2 € {—00}U[0, 1]. When the responses are complete while the covariates
have missing entries, nxyx/y = 0 and 71 = —o0, nxy,;x >0 and 75 € [0, 1].
When the covariates are complete while the responses have missing entries,
nxy/x = 0 and 7 = —o0, nxx;y > 0 and 7y € [0,1]. When both the
responses and covaraites are complete, nxx/y = nxy/x =0 and 7, = 75 =

—00. Theorem 3.4 below establishes the consistency of proposed estimators

B and C in (2.5).



Theorem 3.4. Suppose Conditions (A1)-(A4) hold, 1—ay = O(y/logp/nx),

1 —ay = O(/logp/nxx), 1 —ag = O(\/log(pq)/nxy). If we choose

Ap and \¢ satisfying Ap = C’((log10)Uz/mhn(nﬁf_)?m,ni(_YTQ/Q)||B*C*||L1 +

{log(pq) /nxy }'/2) and Ao = C||C[3[IB|[3,+s5(B*C* 1,/ min(n¥x ™2, nyfy

(log(pq)/ min(nxx, nxy))/? for a large enough C, then it holds with prob-

ability at least 1 —4/p — 4/(pq) — 4/q that

8w <ve |B~C* |l (log(p))"/* | flog(pg) | *
g VB . (1—71/2 1—72/2> nxy ’
min (nyy ' Ny
. B*C*|, (1 12 ||B*||7, (log(pg)) /2
g Ve 2 . 1-71/2 1-12/2 . /2 1/2
min (nXX s Nyy ) min (nXX,nXY)

. * VK 1/2 1/2
- <SB(B Ol (st {logen) )

~ . 1-11/2  1-72/2 n
min (nXX s Nxy XY

< o2 [ 58IB*C*||L, (log(pg))/*  I1B*|17, (log(pa))'/?
SscllC7l2 . 1-71/2  1-72/2 . /2 1/2
min (nXX s Ny ) min (nXX,nXY)

Next, we discuss some direct implications of Theorem 3.4. First, we

!

show that our estimators are at least as good as the initial estimators un-

.- . XXy XX XY/X XY
der some conditions. Since 71,72 < 1as njy; " < ny~ and ny, '™ < ng’,

the convergence rate of |[B — B*|| is no slower than O,(max(||B*C*||1,, 1)

V/s51og(pg)/min(nxx, nxy)). Similarly, the convergence rate of ||C—C*|

: * * * * 1
is no slower than O,(/5c/|C*[3(IB*[3, + spIB*C*||r,)\/ mmsll—).

Here the two slowest convergence rates are achieved when 7 = 7 = 1.

If we assume ||B*C*||z, = O(||B*||1,/4), the upper bounds of IB — B*||»

)]



and ||C — C*||r are at least as tight as |Bo — B*|| and ||Co — C*||5.
On the other hand, if |B*C*||z, = o(||B*||z,/q) or max(7;,7) < 1 and
|B*C*||7, = o(min(ny ™% n¥27™/%)), the upper bounds of |B — B*|»

and ||C—C*|| are strictly tighter than that of |Bo—B*||z and [|[Co—C*|| #.

L

7 for all j < ¢ and cov(ej, ;) = 0 for

One example is when var(e;) >

J # k. Another example is when nxx/y = o(nxx), nxy/x = o(nxy), and

. o o 1/2-11/2  1/2—1)2
|B*C ”%1 =o(min(nyy " nyy 7))
When Y is complete while X has missing entries, 71 = —o0 and 75 €

[0,1]. Then convergence rate of B in Theorem 3.4 becomes

HB _B*

— — (IB*C*||1, (log(pa)) > [ log(pq) "
P SB 1-12/2 - n '
nXY XY

When X are complete while Y have missing entries, 7, = —oo0 and 7, €

[0,1]. In this case, we can set ay = ap = 1 and have

HB _ B

_ ([ IB*C*|l1, (log(pg))V* | [log(pg) "
~ SB 1—7’1/2 _I_ '
F Ny x nxy

When both X and Y are complete, 71 = 75 = —o0. In this case, we can set

o1 = ap = a3 = 1 and have

IB — B*||r < Vsplog(pg)/n, (3.19)

where n is the sample size. The error bound in (3.19) is the minimax rate

of the ¢;-penalized estimator as shown in Raskutti et al. (2011).



In Theorem 3.5 below, we show that our proposed method is model

selection consistent.

Theorem 3.5. Assume that Conditions (A1)-(A5) hold. Suppose 1 —a; =
O(\/logp/nx), 1 —az = O(\/log p/nxx), 1 — ay = O(y/og(pg) /nxy)- If
(log(pg) /nxy )2 /A = o(1), As[(C*®@Bxx)sps,) 'L /minjes, [B;] =
0(1), 55]|((C* @ xx)sps5) 1. (logp/nxx)z™" = o(1), and sp

(10gp/nxx)%_71_72//\3 = o(1), then with probability at least 1 — 4/p —

4/(pq)—4/q, there exists a solution B to (2.5) such that sign(B) = sign(B*).

4. Numerical study

In this section, we examine the performance of our proposed method (Multi-
DISCOM) related to X, the signal-to-noise ratio and the distribution of
error € through some numerical studies. We compare the efficiency of our
proposed method with some other methods. These methods include (1)
Complete Lasso, which separately applies Lasso to each response only using
samples with complete observations (both X and Y have no missing values);
(2) Imputed-Lasso, which separately applies Lasso to each response using
all samples, where missing data are imputed by the Soft-thresholded SVD
method; (3) MBI, which separately applies the MBI (Xue and Qu, 2021)

to each response using all samples, where missing data are imputed by the



Multiple Block-wise Imputation; (4) DISCOM, which separately applies the
DISCOM (Yu et al., 2020) to each response; (5) Imputed-MRCE, which
runs the MRCE (Rothman et al., 2010) using all samples with missing data
imputed by the Soft-thresholded SVD method.

In all examples, we set ¢ = 4, x; = (xil,...,:vip)T ~ N(0,X) with
oji = 0.6V 7. The ith row of the coefficient matrix B* is (1,1.5,1,1.5) for
1= 1,p1+1,p1+p2+1 and 0 otherwise. The response Y has missing entries
completely at random, with the missing proportion 0.01.

For each example, the data were generated from three modalities whose
dimensions py, po and p3 are specified below. The training dataset contains
ny1 samples with complete observations, ns samples from the third modality,
nz samples from the first and the third modalities and n, samples from
the first modality. The tuning dataset contains 75 samples with complete
observations and the testing dataset includes 300 samples with complete
observations. For each method, we train our model with different tuning
parameters on the training dataset. Then we choose the optimal tuning
parameter minimizing the mean squared error on the tuning dataset.

For each example, we repeat the simulation 50 times. To evaluate the
selection performance of the algorithm, we use false-positive rate (FPR) and

false-negative rate (FNR) as criteria: FPR = FP/(FP + TN) and FNR =



FN/(FN 4 TP), where FN represents the number of coefficients wrongly
detected to be zero, TN are the number coefficients rightfully detected to
be zero, TP are the coefficients rightfully detected to be nonzero and FP are
the coefficients wrongly detected to be nonzero. Furthermore, to evaluate
the accuracy of our estimators, we used the mean squared error (MSE) on
the testing dataset and the £, distance |B — B*||p as criteria.

In Example 1, we examine our method related to X.. Let ny = ny =
ng =ny = 30, p1 = pa = p3 = 30. Weset error €; = (&1, ..., €4) ~ N(0,%,)
with 3, = 3L, ® (; f) We choose p ranging from —0.4 to 0.4.

In Example 2, we examine the performance of our method related to
the signal-to-noise ratio. Let ny = ny = ng = ny = 30, p; = p2 = p3 = 30.
We set error €; = (€1, - .., €4) ~ N(0,%,) with £, = al, @ (_5, 1*), and
range « from 1 to 5.

In Example 3, we examine the robustness of our method when the
error follows heavy-tailed distribution. Let ny = ny = n3 = ny = 30 and
p1 = p2 = p3 = 30. We set error €; = (€;1,...,€64) ~ ti0(0,3,) where
2 =3L® (_¢4 ), and t,(0, X,) refers to student’s ¢ distribution with
location vector 0 and scale matrix 3.

To demonstrate the results, we focus on the results of Example 1. We

report the results of other examples in Supplementary Materials.



The results in Table 1 indicate that the Multi-DISCOM delivers the
best performance in all settings. Specifically, the Multi-DISCOM produces
smaller MSE and estimation errors than the other methods in all settings,
especially when the correlations between different responses are large. In
addition, the Lasso method using the imputed data may deliver worse selec-
tion performance, possibly due to randomness involved in the imputation
of block-missing data. The results in Table 4 in the Supplement Materials
indicate that the Multi-DISCOM has more advantage when signal-to-noise
ratio is small. When the signal-to-noise ratio is smaller, the noise has
stronger effect on Y and hence taking the precision matrix into account is

more helpful for our estimation.

5. Application to the ADNI study

We apply the Multi-DISCOM to the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study (Mueller et al., 2005) and compare it with several
existing approaches. A primary goal of this analysis is to identify biological
markers and neuropsychological assessments to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
We are interested in predicting Mini-Mental State Examination (MMSE),

ADAS1 and ADAS2. These scores are commonly used diagnotic scores of



Method |B—B*||r MSE FPR FNR
Lasso 1.51(0.06)  3.70(0.06)  0.09(0.02)  0.00(0.00)
Imputed-Lasso ~ 1.73(0.06)  3.57(0.06)  0.11(0.01)  0.00(0.00)
MBI 2.10(0.08)  4.26(0.09)  0.12(0.02)  0.11(0.03)
e DISCOM 1.44(0.04)  3.56(0.06)  0.05(0.00)  0.05(0.01)
Imputed-MRCE  1.53(0.05)  3.72(0.08)  0.17(0.03)  0.08(0.02)
Multi-DISCOM ~ 1.40(0.04) 3.39(0.08) 0.02(0.01) 0.09(0.02)
Lasso 1.55(0.06)  3.77(0.06)  0.11(0.02)  0.00(0.00)
Imputed-Lasso  1.75(0.06)  3.61(0.06)  0.13(0.01)  0.00(0.00)
MBI 2.14(0.08)  4.30(0.09)  0.13(0.02)  0.11(0.03)
= DISCOM 1.46(0.04) 3.59(0.06)  0.06(0.00)  0.05(0.01)
Imputed-MRCE  1.54(0.05)  3.73(0.08)  0.19(0.03)  0.09(0.02)
Multi-DISCOM ~ 1.43(0.04) 3.44(0.08) 0.04(0.01) 0.07(0.02)

Table 1: Performance comparison of different methods for Example 1 with

different p’s. The values in the parentheses are the standard errors of the

measures.



AD. Data processing steps are summarized in the supplementary materials.

After data processing, we have 93 features from MRI, 93 features from
PET and 5 features from CSF. There are 805 subjects in total, including
199 subjects with complete MRI, PET and CSF features, 197 subjects with
MRI and PET features only, 201 subjects with MRI and CSF features only
and 208 subjects with MRI features only.

In our analysis, we divide the data into training, tuning, and testing
sets. The training set consists of all subjects with incomplete observations
and 40 randomly selected subjects with complete features. The tuning set
consists of another 40 randomly selected subjects with complete observa-
tions. The testing set contains the remaining 119 subjects with complete
observations. We train our model with different tuning parameters on the
training set. Then we choose the tuning parameter which minimizes the
mean squared error on the tuning set. The testing set is used to evaluate
different methods. We used all methods shown in the simulation study
to predict the MMSE score. For each method, the analysis was repeated
30 times using different partitions of the data. In addition to the sum of
mean squared errors (MSE) of all three responses, we compare MSEs for
each response (MSEy/arsp, MSEapags1 and MSE 4pag2) as criteria. We also

compare the number of features selected by each method.



Method Overall MSE ~ MSE vsE MSE4pasi MSEpas2 # of Selected Features
Lasso 03.37(3.82)  5.31(0.19)  29.84(1.35)  58.23(2.40) 54.20
Imputed-Lasso 80.40(1.62)  4.54(0.12)  25.80(0.51)  50.07(1.15) 165.00
MBI 91.84(3.02)  5.13(0.14)  28.43(1.17)  58.29(2.16) 59.87
DISCOM 67.47(1.33) 4.26(0.11)  21.76(0.51)  41.45(0.86) 72.87
Imputed-MRCE |  67.41(2.02) 4.29(0.10) 21.61(0.65)  41.50(1.33) 218.50
Multi-DISCOM | 65.82(1.21) 4.22(0.12) 21.18(0.46) 40.41(0.80) 89.67

Table 2: Performance comparison for the ADNI data.

As shown in Table 2, the Multi-DISCOM delivers better performance
than all other methods. The DISCOM has a similar overall MSE as the
Multi-DISCOM, but worse MSE spas1 and MSE 4pag2. One possible reason
is that ADAST and ADAS?2 are highly correlated, so taking the precision
matrix into account can help. Since there are 208 subjects with MRI fea-
tures only, the MBI method may not impute those 208 subjects accurately.
As a consequence, the MBI method may not perform well in this case.

Regarding to model selection, both the DISCOM and the Multi-DISCOM
can deliver relatively simple models. Figure 2 shows the selection frequency
of the 191 features when predicting ADAS1. The selection frequency of each
feature is defined as the number of times of being selected in the 30 repli-

cations. As shown in Figure 2, for our method, some features are often
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Figure 2: Selection frequency of 191 features for prediction of ADASI score.

selected and many other features are rarely selected. This means that our
method could deliver robust model selection. However, for the Imputed-
Lasso method, it selects very different features in different replications. One
possible reason for the unstable performance on model selection is due to
the randomness involved in the imputation of block-missing data. Hip-
pocampus formation left (69th region) and amygdale right (83th feature)
are frequently selected by our method and known to be highly correlated
with AD and MCI by many existing studies (Jack et al., 1999; Misra et al.,

2009; Zhang and Shen, 2012), but the DISCOM rarely selects these features.



6. Conclusion

In this paper, we propose a joint estimation method in a penalized frame-
work with the entry-wise ¢; regularization using block-missing multi-modal
predictors. We first estimate the covariance matrix of the predictors using
a linear combination of the estimates of the variance of each predictor, the
estimates of the intra-modality covariance matrix, and the cross-modality
covariance matrix. The proposed estimator of the covariance matrix can be
positive semidefinite and more accurate than the sample covariance matrix.
In the second step, based on the estimated covariance matrix, a penalized
estimator is used to deliver a sparse estimate of the coefficients in the op-
timal linear prediction. Theoretical studies on the estimation and feature
selection consistency are established. Extensive simulation studies also indi-
cate that our method has promising performance on estimation, prediction
and model selection for the block-missing multi-modal data. Finally, we
apply the Multi-DISCOM to the ADNI dataset and demonstrate that our

model has good prediction power and meaningful interpretation.

Supplementary Materials

Supplementary Material includes additional results of our numerical studies,

technical conditions and proofs.
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