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Abstract

In liquid chromatography (LC), it is often very useful to have an accurate model of the retention
factor, k, over a wide range of isocratic elution conditions. In principle, the parameters of a
retention model can be obtained by fitting either isocratic or gradient retention factor data.
However, in spite of many of our own attempts to accurately predict isocratic k£ values using
retention models trained with gradient retention data, this has not worked in our hands. In the
present study we have used synthetic isocratic and gradient retention data for small molecules
under reversed-phase LC conditions. This allows us to discover challenges associated with
predicting isocratic k’s without the confounding influences of experimental issues that are difficult
to model or eliminate. The results indicate that it is not currently possible to consistently predict
isocratic retention factors for small molecules with accuracies better than 10%, even when using
synthetic gradient retention data. Two distinct challenges in fitting gradient retention data were
identified: 1) a lack of ‘uniqueness’ in the parameters; and 2) an inability to find the global
optimum fit in a complex fitting landscape. Working with experimental data where measurement

noise is unavoidable will only make the accuracy worse.



41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

1. Introduction
Several aspects of simulation and method development in reversed-phase (RP) liquid
chromatography depend on isocratic retention data. For example, most models of RP selectivity
that are used to guide column selection (i.e., either to identify columns with similar or dissimilar
selectivities) for small molecule separations are built upon selectivity measurements made under
isocratic conditions [1-5]. Also, the theories used to make predictions about the effect of injection
volume and sample composition on peak shapes (i.e., volume overload and mobile phase / sample
solvent mismatch) depend on the availability of isocratic retention data for analytes of interest in
solvents corresponding to the sample and mobile phase compositions [6—10]. In contrast, retention
models (e.g., DryLab and similar tools) are often built as a part of method development using
training data obtained under gradient elution conditions [11-14]. In the course of predicting
optimal separation conditions these tools may suggest gradient conditions with very shallow
gradient slopes; as these slopes become more and more shallow, they approach isocratic
conditions. It is understood that such predictions are error-prone if they involve extrapolation to

gradient slopes outside of the scope of the training data [15].

Making isocratic retention measurements directly for the purposes listed above can be time-
consuming, because unless the retention behavior of the molecules of interest are already known,
many initial experiments will fail due to conditions that produce retention factors that are too low
or too high to be useful [16]. It would be incredibly useful in practice to be able to make retention
measurements under gradient elution conditions, and from these measurements extract retention
model parameters (i.e., fits of the data to retention models such as the Linear Solvent Strength
(LSS) model [17], or the Neue-Kuss (NK) model [18]) that can be used to accurately predict
retention under both isocratic and gradient conditions. This could potentially save a lot of time in
the process of collecting the training data because gradient methods are better suited to mixtures
of analytes, and because conditions can be chosen easily that will likely retain analytes that tend
to be poorly retained, while also avoiding retention that is too high (i.e., with a gradient running
from 5 to 90% ACN). In spite of many attempts to implement this type of scheme over the past
decade, this has been largely unsuccessful in our hands. Our experience has been that isocratic
predictions made using retention model parameters extracted from retention data collected under
gradient elution conditions are always too inaccurate to be useful for practical application (e.g.,

errors always larger than 1%, and usually much larger than 1%). We have considered a long list
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of experimental complications that are difficult to capture in retention models that might be
compromising our efforts. For example, it is understood that even modern UHPLC pumps do not
produce solvent gradients with perfect accuracy and linearity [19,20]. In our experiments, we have
chosen conditions that should mitigate these complications (e.g., using 50 mm x 4.6 mm i.d.
columns with 5 micron particles to minimize extra-column effects, viscous heating, pressure
effects on retention, and gradient non-linearity at low flow rates). However, even under these well
controlled conditions, we and others have not been able to regularly obtain accurate isocratic
retention predictions (errors < 1%) from training data collected under gradient conditions [21-23].
These experiences have led us to the present work, which aims to understand the factors that lead
to inaccurate predictions for isocratic retention factors calculated using retention parameters
obtained from fitting gradient retention data. In this work, we use synthetic data so that the study
is not affected by experimental complications that are difficult to eliminate, such as gradient delays

and distortions.

In this study we first determined isocratic retention factors experimentally for a variety of small
molecules under RP conditions using 61 different analyte/stationary phase pairs. Retention
parameters were then extracted from these data by fitting them to the NK model. The resulting
parameters were treated as “reference retention parameters”, and were used to calculate a set of
“reference retention factors”, k.. Using the reference retention parameters, different sets of
synthetic isocratic or gradient retention data were produced, with or without simulated
measurement noise added. Each set of synthetic data was then fit to the NK model to obtain
retention parameters using different fitting approaches. In this work, we have focused our attention
on the NK model, because in our experience it provides good isocratic predictions for a broad
range of molecules and experimental conditions. Finally the retention parameters were used to
predict isocratic retention factors, which were then compared to the k.. values and evaluated for

their accuracy.

2. Experimental

2.1 Collection of experimental isocratic retention data

2.1.1 — Chemicals
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Milli-Q water (18.2 MQ) was obtained from a Millipore purification system (Burlington, MA).
All analyte compounds, ammonium hydroxide (28-30%), formic acid (> 95%), and acetonitrile
(ACN) were purchased from Sigma-Aldrich (St. Louis, MO) and used as-is. The cis- isomer of
chalcone was obtained by exposing a solution of the trans- isomer in ACN to sunlight at room
temperature for one day. Stock solutions for each analyte were prepared at 10 mg/mL in either
neat ACN or 50/50 ACN/water. Analytical samples were prepared by diluting the stock solutions
to either 0.2 or 5.0 mg/mL using 50/50 ACN/water as needed to give a peak height greater than 10
mAU at 254 nm. The analytes used in this study are listed in the Supplemental Information, Table
S1.

2.1.2 — Mobile phase preparation

The aqueous component of the mobile phase, which we refer to as 25 mM ammonium formate,
pH 3.2, was prepared gravimetrically in 2-L batches, according to the following recipe. To a 2-L
solvent bottle were added 1986.2 g of water, 2.92 g of ammonium hydroxide (29.1%), and 9.92 g
of formic acid (97.4%). The solution was used after mixing thoroughly without any further pH

adjustment.

2.1.3 — Instrumentation, columns, and conditions

Retention measurements were made using an Agilent HPLC system (Waldbronn, Germany). The
system included a binary pump (G4220A) with Jet Weaver V35 Mixer (G4220-68135),
autosampler (G7167A), thermostatted column compartment (G1316C), and diode-array detector
(DAD) (G4212A) equipped with a Max-Light Cartridge Cell (G4212-60038, 10 mm path length).
The system was controlled using Agilent OpenLAB CDS Chemstation Edition (Rev. C.01.10).
The injection volume for each analysis was 0.15 pL. Two columns were used in this work: 1)
Agilent Zorbax SB-C18 (5§ mm x 2.1 mm i.d., 1.8 um); 2) Agilent Zorbax Bonus RP (5 mm x 2.1
mm i.d., 1.8 um) (see Table S1).

The flow rate for all measurements was 1.0 mL/min., and the temperature was 40 °C. Mobile

phases were “machine-mixed” by the binary pump. A minimum of five mobile phases were used
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for each compound, where the compositions were chosen such that all retention factors were
between 1 and 50, but roughly evenly spaced in that range. Five replicate retention measurements
were made at each composition, and the means of these values were used as described in Section

3.1.

2.1.4 — Retention factor calculations

Isocratic retention factors were calculated using Eq. 1, where the column dead time (#,) and the
extra-column time (f.x) were determined using uracil (0.1 mg/mL) in a mobile phase of 50/50
ACN/buffer. We are well aware that these conditions do not provide the most accurate measure of
the column dead time [24], however a small inaccuracy in this value will have no effect on the
conclusions we draw from the study described in this paper. Based on other work in our laboratory
we have made a correction to these k values to compensate for the volume of the column frits that
is normally unaccounted for in the measurements of #.., and important when working with columns
as small as those used here. This correction amounts to an increase all £ values of about 20%;
details the provide the basis for this correction will be published separately elsewhere, but should

have no influence on the conclusions that follow from this study.

k=——* (1

3. Calculations

3.1 Initial fitting of experimental isocratic data

The experimental k vs. ¢ data were fit to the NK model [18], described by the equation

In(k) = In(k,) + 2In(1 + S,¢) — —22 )

1+ S¢

where k,, is the retention factor in pure weak solvent, S; is analogous to the slope of In(k) vs. ¢ in
LSS theory [17], and S, accounts for any curvature in the In(k) vs. ¢ plot. Fitting was performed
with the Isqnonlin function in MATLAB using the trust-region reflective algorithm, which

required an initial guess for each parameter. This initial guess for /sgnonlin was generated by
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setting S, = 0 and computing the closest straight-line approximation of In (k) vs. ¢ to give
approximate values for S; and k,,. These approximate values were then used with S, = 0 as the
initial guess for Isgnonlin, with the algorithm set to run for a maximum of 1x10° iterations, 1x10°
function evaluations, and to minimize to a function tolerance of 1x10'°. If this procedure did not
result in a reasonable fit to the data as measured by correlation coefficients (R? > 0.999), the initial
guess was manually tuned and Isqnonlin was run again until a reasonable fit was obtained. In total,
61 sets of parameters were obtained and used as described below. The three-dimensional space
occupied by the parameters is shown in Fig. S1. In Fig. 1 (box 2) these parameters are referred to
as the “reference” values of Sy, S2, and k... We note that all fitting results reported throughout this

paper refer to fits of synthetic data generated using these “reference” values.
3.2 Generation and fitting of synthetic retention data
3.2.1 Isocratic elution

To generate synthetic isocratic retention data for fitting, the reference values of k,,, S;, and S,
were used in combination with Eq. 2 to calculate the ¢ values that correspond to k values of 1
(Pupper) and 50 (¢jower). Ten evenly spaced data points (with respect to ¢) were then selected
between ¢ypper and @ e Retention factors were calculated using these ¢ values; these are
referred to hereafter as k..r(Fig. 1 (box 3)). In cases where noisy synthetic data were used, five
replicates at each ¢ value were generated with normally distributed noise with a specified standard
deviation, . The synthetic In(k) vs. ¢ data were then fit to a straight line to give approximate
values of In (k,,) and S; (Fig. 1 (box 5)). These approximate values were then used with S, =0
to provide an initial guess for Isqnonlin, which then fit the In(k) vs. ¢ data to Eq. 2 (Fig. 1 (box
6)). Errors were calculated as mean residual percent errors (MRPE) using Eq. 3 (Fig. 1 (box 7))

keip—k
2:’- flktirefxloo

=1 re
MRPE = ——~L 3)

n

where n is the number of datapoints, &y is the retention factor predicted by the fit model (Fig. 1
(box 6)), and k. is the ‘reference’ retention factor predicted by the ‘reference’ parameters obtained
from the initial fitting of the experimental isocratic data (Fig. 1 (boxes 2,3)). For each fit, ks and

krer were calculated for ten points in the range of ¢, <¢<g, ...
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3.2.2 Gradient elution

In Fig. 1, the step in box 2 was followed by determination of gradient times (z,) that would give
effective retention factors (key) between 1 and 50, where k.;r was calculated using Eqs. 4a and 4b

[23,25]

Sodbs __S19;
¢i+wln 1+BkwS1| to ) 6 | 1+ S520;
kyw(1+Sypp)2e 1+ S2Pi é
—¢i
Sa(1+ S29;) | t \ ML ]|
1—25712’ln|1+ﬁkwsll to D ST /|e 1+ Sz¢iJ|
t kw(1+Sap)2e 1T S20i
kopp = 2+ ST 4a
€ff to ﬁtO ( )
g = ¢r— b (4b)
tg

where tj is the gradient delay time, t; is the column dead time (0.1 min), ¢; is the solvent
composition used at the starting point in the gradient (¢; = 0.05 was used here), ¢ is the solvent
composition used at the endpoint in the gradient (¢5 = 0.70 was used here), and ¢ is the duration
of the gradient. Equation 4a was solved for the gradient times corresponding to ks = 1 (g 10wer)
and ke 55 = 50 (tg upper) for each set of parameters. If the lower bound on k¢ could not be reached
for a given analyte, then tg ;,,er Was set to be equal to 0.1 min greater than tg i, Where tg min

was defined as the shortest gradient time providing elution of the analyte within the gradient time

(i.e., tr <ty), and calculated as

. __519;
1+ So*¢p;
(b= ) Jew S1( o g TP
2 TI¥S,;
_ kw(1+55)%e 290
tg,min - (r—¢pS1 (4C)

ol +52(¢i + ¢f)+ 5229, ¢r_,

Similarly, if the upper bound on k¢ could not be reached (i.e., kefrmar < 50, given ¢p; = 0.05),
tgupper Was set to be 15 min. Then, ten evenly spaced gradient times were then selected between
tg,lower and tg ypper, and ko ¢ was calculated using Eq. 4a for each value of 7. In the case where

noise was added to synthetic retention data (Fig. 1 (box 9)), the same procedure was used as

described in Section 3.2.1.
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Three different strategies were used to fit the synthetic gradient retention data (Fig. 1 (boxes 10a-
c/l11a-c)), with each yielding a set of S7, S>, and 4, values. A summary of the approaches used for

fitting both isocratic and gradient data, and the corresponding results, is given in Table 1.

3.2.2.1 - Basic Fitting Procedure (Fig. 1 (box 10a/11a))

The k.fr vs. t, data were fit to Eq. 4a using the Isgnonlin algorithm with small positive, non-zero

initial guesses for each parameter (i.e., S1, Sz, kv all equal to 1 (Fig. 1 (box 10a)).

3.2.2.2 - Global Search Fitting Procedure (Fig. 1 (box 10b/11b))

The kezf vs. ty data were fit to Eq. 4a using the GlobalSearch algorithm in MATLAB, rather than
Isqnonlin, with bounds for each parameter set at k,, = 1.0 to 1.0x10°, S; = 5.0 to 400, and
S, = 0.05 to 15. GlobalSearch generates a large number of initial guesses within these bounds
and evaluates them using the fmincon fitting algorithm (a constrained function minimizer using
the interior-point approach and 100,000 start points) before returning the best set of fit parameters.

This best set was then further refined using the Isgnonlin algorithm.

3.2.2.3 — Fitting Procedure with Parameter Scanning (Fig. 1 (box 10c/11¢))

The kefs vs. t, data were fit to Eq. 4a using Isqgnonlin with S, fixed at 0 in order to provide
approximate values for k,, and S;. Multiple fits were then performed using Isqnonlin along with
the estimates of k,, and S;, along with multiple values of S, in the range of 0-15 at 0.01 unit

increments, with the best fit parameters reported at the end.

Following each fitting procedure, errors were evaluated in the same way as described in Section
3.2.1. The S1, S>, and k,, values obtained from a fit of gradient retention data were used to calculate

isocratic retention factors (kzs; Fig. 1 (box 12)) and compared to the k;..r values calculated from

the ‘reference’ parameters (Fig. 1 (box 2)).
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4. Results and Discussion

4.1 Fitting noise-free isocratic data

In order to ensure that Isgnonlin was an appropriate choice of algorithm for determining parameters
for the NK model, the procedure for isocratic fitting described in Fig. 1 (boxes 5, 6) was applied
to synthetic isocratic data generated (Fig. 1 (box 3); no noise added) using the 61 parameter sets
(Fig. 1 (box 2)). In the Supporting Information we provide several figures that illustrate the
characteristics of these fits. Figure S2A shows the fit for 2,2°-dipyridyl, and Fig. S2B shows the
fit for benzonitrile. Figures S2C and S2D show the kz: values and the error in the ks, values for all
61 parameter sets. In one case (berberine, SB-C18, see Fig. S2D), errors of about 0.1% in k£ were
observed due to slow progress toward the correct parameters near the minimum of the objective
function, rather than convergence to an incorrect set of parameters. Otherwise, given a sufficiently
good initial guess (based on a linear approximation of In(k) vs. @; see Section 3.2.1) and noise-free
data, the Isqnonlin algorithm consistently converged on correct NK parameters, producing
isocratic kg values (Fig. 1 (box 7)) that were within 0.01% of the k. values (Fig. 1 (box 3)). In
other words, the algorithm works well in the case of fitting noise-free isocratic data. The numerical

values of the parameters from each fit are provided as Supporting Information in Table S1.

4.2 Fitting noisy isocratic retention data

Figure S3 shows the impact of adding noise to synthetic isocratic retention data (Fig. 1 (box 4))
on the errors (Fig. 1 (box 7)) obtained from fitting using the basic approach illustrated described
in Section 3.2.1 (Fig. 1 (box 6)). As discussed in Section 4.1, Fig. S3A shows that in the absence
of noise, an initial guess calculated by simply fitting a straight line to a plot of In(k) vs. ¢ (Fig. 1
(box 5)) is sufficient for the Isqnonlin algorithm to find parameters that enable accurate predictions
of isocratic k values with average errors below 0.001%. This is the same type of result shown in
Fig. S2, but now for all 61 parameter sets, and the errors plotted in a histogram. This was not a
surprising result, as the lack of noise combined with the good initial guess meant that the fitting
algorithm was able to reach a high level of accuracy in the fit parameters given enough iterations.
This result also provides a baseline against which we can compare results obtained after fitting

retention with noise added to synthetic data. Figure S3B shows the effect of adding noise at 0.05%
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(see Section 3.2.1; 100*a/k = 0.05) to the synthetic retention data. While all but one fit resulted in
less than 1% average prediction error, the distribution of errors shifted towards larger errors,
indicating that adding noise imposes a limit on the accuracy of the predictions. Figure S3C shows
that the distribution of errors shifts even further to the right when the added noise is increased to
0.5%. The fraction of fits with >1% average error in predicting isocratic k values rose to 26.2%,
indicating that even isocratic fits with a good initial guess are not immune to the effects of

increasing levels of measurement noise.

4.3 Fitting noise-free gradient data

Using the same underlying parameters (Fig. 1 (box 2)), a similar investigation was conducted using
synthetic gradient retention data instead of synthetic isocratic retention data. Figure 2 shows
representative fits for two specific compounds (A - 2,2’-dipyridyl, and B - benzonitrile), and a
summary of errors obtained for all 61 fits (Panels C and D). A significant difference between fitting
the isocratic (Section 4.1) and gradient (Section 4.3) data is related to the initial guess used to
initiate the /sqnonlin algorithm. Whereas in the isocratic case (Section 4.1) we were able to
compute an initial guess for each fit by first approximating Eq. 2 with a linear relationship, this is
not the case when fitting to Eq. 4, as there is no obvious analogous approximation that can be
made. Therefore, for each fit leading to the results shown in Fig. 2, the initial guess was chosen to
be k,, = 1.0, S; = 1.0, and S, = 1.0. While Fig. 2B shows that starting with this simple guess
led to a fit that resulted in accurate predictions of isocratic k values for some compounds such as
benzonitrile (SB-C18), Fig. 2A shows that the same procedure fails significantly in other cases
(2,2’-dipyridyl; SB-C138). Figures 2C/D show how extensive the disagreement between kf;; and
kyer was in general, as the percent error in k ranged anywhere from about 0 to 10,000%. The
numerical values of the parameters from each fit are provided as Supporting Information in Table
S2. Specifically, for the 61 cases investigated, 27 cases yielded parameters within 0.1 % of the
‘reference’ parameters; the remaining cases resulted in parameters that showed dramatic deviations
from the ‘reference’ values. This is a very important result. Even though we have started with the
same parameter sets (Fig. 1 (box 2)) for fitting the isocratic (Section 4.1) and gradient (Section
4.3) data, fitting noise-free isocratic retention data consistently yields highly accurate retention

parameters, whereas fitting noise-free gradient retention data does not, at least when a simple initial



288
289

290

201

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

311
312
313
314
315

316

guess is used. In the case of the gradient data, the resulting fits are so bad they cannot be trusted at

all.

4.3.1 Effect of Initial Guess on Fitting Gradient Retention Data

Figure 3 shows the impact of using different initial guesses on the quality of fitting noise-free
synthetic gradient retention data using the Isqnonlin algorithm (Fig. 1 (box 11a). Each panel in
Fig. 3 is a histogram of the errors (i.e., average difference between k.- (Fig. 1 (box 8)) and ks (Fig.
1 (box 12)); logarithmic x-axis) obtained for all 61 parameter sets (Fig. 1 (box 2)) using initial
guesses that were different from the reference parameters by a multiplier a. Panels A and B show
the most and least challenging cases, with a equal to 1 x 10® or unity, respectively. In other words,
Panel A shows the errors obtained when the initial guess is kw=1 X 108%ky, e, S1= 1 X 108xS] 1o,
and S>=1 x 10°xS5,. , and Panel B shows the errors obtained when the fitting procedure is
initiated with the same parameters (Fig. 1 (box 2)) used to produce the synthetic retention data.
The results in Panel B show that the fitting procedure works correctly when the initial guess is
very close to the correct solution. On the other hand, starting with guesses near zero for all three
parameters yields poor results (i.e., errors >> 1%) for 50% of the observations. Figure 3C, shows
that increasing the values of the initial guess just 10% beyond the reference values (i.e., @ = 1.1)
resulted in errors larger than 1% about 9% of the time. Scaling the initial guess even farther from
the reference parameters resulted in larger errors, as one might expect. Figure 3D shows results
for guesses with o = 2, where we see that 18% of the fits produced average errors larger than 1%.
These results make it clear that the initial guess provided to the fitting algorithm plays a critical
role in determining whether or not the Isgnonlin algorithm converges on the correct NK

parameters.

In attempt to understand why the initial guess influenced the accuracy of fitting gradient retention
data using the Isqnonlin algorithm so strongly, visualizations of the fitting space were constructed.
Figure 4 shows three-dimensional plots (one for amitriptyline, and one for 2,2’-dipyridyl) of the
value of the sum of squared differences (SSD) between the gradient k. ;¢ values calculated (Eq. 4)
using the ‘reference’ fitting parameters (Fig. 1 (box 2)) and the k.f; values calculated using the

parameters indicated by a point in the space (i.e., each point in the space represents a possible



317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

342
343
344
345
346
347

combination of k., S, S> the algorithm may encounter in fitting the data). Each data point is colored
to indicate the value of the SSD at that point, with the color applied on a logarithmic scale given
the many orders magnitude spanned by the objective function. In both Fig. 4A and Fig. 4B we
observe multiple, broad regions populated by relatively low SSD values separated by “sheets” of
large SSD values, which we refer to as “barriers” that fitting algorithms must get over or through
on the way to finding the global minimum. For Fig. 4A, the maxima in the SSD values populate
a curved surface (yellow/orange band), which cut the fitting space into two regions where the
correct parameters for amitriptyline were located on one side of the surface and the other side is
quite “flat” with no major barriers populated by large SSD values. A band of low SSD values (dark
blue) was also present in the plot, which includes the values of the ‘reference’ parameters (Fig. 1
(box 2)). The maxima acted as a barrier to the fitting algorithm, as any initial guess placed in the
region opposite to the one that contained the ‘reference’ parameters always resulted in a fit that
moved away from the correct minimum, as the algorithm will always move in a direction that
decreases the value of the sum of squared differences. Likewise, an initial guess placed in a region
of uniform color was not likely to converge on the correct set of parameters as the objective
function was flat in that space — while it was not flat in a three-dimensional sense, it was flat in a
four-dimensional one, as moving to any point nearby in the fitting space did not cause a significant
change in the value of the sum of squared differences. For Fig. 4B, the fine structure of the maxima
are more obvious due to the scaling of the plot. The maxima formed shells that split the fitting
space into multiple regions, with the ‘reference’ parameters for 2,2’-dipyridyl only located within
one of the shells. For this parameter set, any initial guess that was made would have converged on
the minimum of the SSD in the corresponding shell and returned the location of this local minimum
as the fit parameters. In this case, finding the correct, ‘true’ parameters is highly unlikely, as this
would require the algorithm to get over/through multiple barriers, whereas in the case of Fig. 4A

there is only one major barrier involved.

Figure 5 shows the mean percent difference between isocratic retention factors k. and kg
obtained by fitting noise-free synthetic gradient retention data using Isgnonlin with the indicated
point in the three-dimensional space as the initial guess. For Fig. SA, three distinct regions are
observed: 1) initial guesses that result in fits with negligible error in k;; (dark blue points); 2)
initial guesses that result in a large amount of error (red points); and 3) initial guesses that result

in a (relatively) moderate amount of error (light blue points). The boundary separating the regions
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of high and low errors mirrors the location of the maxima in the SSD plot in Fig. 4A, confirming
that the fitting algorithm could not penetrate the barrier in the objective function that separates the
parameter space into two main parts. It is also clear that on each side of the barrier there are
multiple local minima in the objective function, and that these minima lead to very different levels
of prediction error (10°% and 10°°%). However, Fig. 5A also shows that being on the same side
of the barrier as the ‘true’ parameters was not sufficient to guarantee convergence to the ‘true’
parameters, as starting with an initial guess located too far from the ‘true’ parameters sometimes
yielded prediction errors greater than 10°%. This was likely due to the SSD surface being flat in
this region, as indicated by Fig. 4A, which prevented the fitting algorithm from making significant
progress toward the correct parameters. Note that in the presence of noise, the effective ‘flatness’
of the SSD surfaces will be enhanced, causing even more difficulties in converging to the k..r
values. Figure 5B shows the same type of mean isocratic retention factor error plot, but for 2,2-
pydridyl. Comparing Figs. 4B and 4B we see a similar mirroring of the characteristics in these
plots that we observed with Figs. 4A and 5A. Whereas the boundary between the regions of low
and high error in Fig. 8A closely resembled a plane, in Fig. 5B we see a shell-like structures similar
to those in Fig. 4A where the magnitude of the prediction error depended on which shell the initial
guess was located. The region that produced the lowest prediction error was again the shell that
contained the ‘reference’ parameters, while initial guesses located in any other shell resulted in
prediction errors that ranged from 10° to 10'°%. The largest errors corresponded to the initial
guesses located close to the k,, axis (where the initial guess for S; approaches 0). Note that the
basins of convergence for both Fig. SA and Fig. 5B (regions where the prediction error is
negligible) did not conform to a simple geometric shape, making a useful mathematical description
of the shape of these regions difficult. Manual inspections of the parameter landscapes in Figs. 4
and 5 showed that the regions corresponding to very large errors often involve combinations of S,
S>, and k, that lead to chromatographically unrealistic outcomes. In principle the apparent barriers
in the fitting landscape could be avoided by preventing the fitting algorithm from evaluating
combinations of parameters that lead to chromatographically unrealistic outcomes, but this would
eliminate the possibility of unsupervised fitting, and at this point it time we do not know how
transferrable the behavior illustrated in Figs. 4 and 5 are to other compounds, columns, and

conditions. This is an area of ongoing study. Readers interested in the fine structure of the cubes
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in Fig. 5 are referred to movies provided as Supplemental Information that have been constructed

by viewing one slice of the cube at a time (see Section S3).

Figure 6 gives some insight as to what the barriers in Fig. 4 and the various regions of error in Fig
5 corresponded to in terms of fit quality. Figure 6A shows the final fit (black line) to the synthetic
gradient retention data (red points) for 2,2’-dipyridyl, while Fig. 6D shows the corresponding
comparison of isocratic predictions (Kf;;) to kyr. The initial guesses used in these cases were k,,
=1.0,S; =1.0,and S, = 1.0, which fell into a region with approximately 10°% error. Figures 6B/E
show the results obtained when the initial guess was shifted to k,, = 7.0, S; = 7.0, and S, = 0.0.
Although this initial guess was only 9% closer to the ‘reference’ parameters, the average error in

isocratic predictions decreased by 15 orders of magnitude to 10°%.

Given these results, it is clear that other algorithms that are designed to more comprehensively
sample the parameter space are worth exploring. Among several algorithms we have tried for this
purpose, the Matlab GlobalSearch algorithm has performed the best in our hands; the results of
this work are described below in Section 4.4. Finally, in Figures 9C/F, we show the case for initial
guesses of kw =115, S; =7.8, and Sz = 15, Here, the fit to ke is particularly bad throughout the
range. While a fit quality metric would lead to rejecting this result, cases with a large number of
experiments could result in many poor fits. This would lead to much lower data analysis throughput

and more manual intervention to obtain adequate fits (with results that still may not be unique).

4.4 Fitting noisy gradient retention data

After establishing a baseline for the performance of the basic approach for fitting synthetic
retention data as shown in Fig. 6, the performance of the basic approach for fitting synthetic
gradient retention data with noise added was assessed using an initial guess of k,, = 1.0, S; = 1.0,
and S, = 1.0; these results are shown in Fig. 7. Figure 7A confirms the results discussed earlier in
Section 4.2 for noise-free synthetic gradient retention data; 47.5% of fits resulted in average errors
larger than 10% for prediction of isocratic retention. This compares to 100% of fits yielding
prediction errors less than 1% when predictions are made based on fits of isocratic data (i.e., Fig.
S3A). As was the case in Fig. S3, adding noise to synthetic gradient retention data shifts the

distributions of errors to the right (Figs. 7B/C), making a bad situation even worse. Again, the
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higher the noise level, the further the shift of the error distribution to larger errors. At a relative
noise level of 0.5% (Fig. 7C), 95.1% of fits produced average isocratic prediction errors larger
than 1%. When compared to the basic approach for fitting isocratic retention data, the basic
approach to fitting gradient retention data performs much worse at any level of noise. This is partly
due to the fact that a reasonable initial guess can be estimated when fitting isocratic data using Eq.
2, while no such option is available for Eq. 4 due to its complexity. Another challenge is that
gradient retention data are oftentimes not as ‘unique’ as isocratic retention data. While an
individual gradient retention measurement may span a range of ¢ values compared to a single
isocratic measurement, the effective retention factor is fundamentally an integrated quantity
dependent on the mobile phase history experienced by the analyte up to the point in time that it
exits the column. This can result in a situation where two compounds with very different retention
histories (i.e., different mobile phase experiences) can wind up eluting with exactly the same ks
value. As a result, it becomes necessary to thoroughly search the NK parameter space in order to

get consistently accurate results.

One approach to address this challenge is to use a different fitting algorithm. Figure 8 shows the
performance of the GlobalSearch algorithm for fitting synthetic gradient retention data with the
same levels of noise as in Fig. S3. For noise-free retention data (Fig. 8A), GlobalSearch returned
parameter sets that yield isocratic predictions with less than 1% average error, which represents a
significant improvement over the basic fitting approach (i.e. compare Fig. 8A to Fig. 7A).
However, when noise is added to the synthetic retention data at the level of 0.05%, the percentage
of fits yielding average isocratic predictions errors below 1% error falls to just 41%, with 53% of
fits producing errors between 1 and 10%. At a relative noise amplitude of 0.5%, only 4.9% of fits

produced parameters that yielded isocratic predictions better than 1% on average.

While the GlobalSearch algorithm approach to fitting noise-free gradient retention data did not
perform as well as the basic approach to fitting noise-free isocratic retention data, it did offer a
significant improvement over the basic approach to fitting noise-free gradient retention data,
providing parameters that yielded isocratic predictions with better than 1% average error in an
additional 43% of cases. However, this improvement was diminished as the level of noise added
to the synthetic retention data was increased. Relative to the basic approach to fitting isocratic

retention data, the GlobalSearch algorithm was much more susceptible to the influence of noise.
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We again attribute this to the lack of ‘uniqueness’ in the gradient retention data — while thoroughly
searching the fitting space could result in the correct answer in most cases where noise is absent,
adding noise at even the 0.05% level significantly obscured real gradients the SSD surfaces to the
point that finding accurate parameters became impossible. Mathematically, this lack of uniqueness
is due to the fact that the slope of ke as a function of the parameters is very small for some solutes
and experimental conditions. This is not as much of a problem for fitting the isocratic retention
data, such that fitting isocratic data is more robust against the influence of measurement noise

when compared to both the basic and GlobalSearch approaches to fitting gradient retention data.

Our view is that there are two distinct challenges we face in fitting gradient retention data; 1) lack
of “uniqueness’; and 2) inability to simply find the global minimum in a complex fitting landscape.
Figure 9 shows several representative fits selected from the results shown in Fig. 11C. Pictured in
Fig. 9A-D are the synthetic gradient data (red points) with noise added at o = 0.5% along with the
corresponding fits produced by GlobalSearch (black line) for 2,2’-dipyridyl (A), benzonitrile (B),
4-n-butylbenzoic acid (C), and trans-stilbene (D). Additionally, Figs. 9E-H show the
corresponding predictions of isocratic k using the parameters obtained from fitting the gradient
data (black line) across the range of ¢p=0.0-1.0 compared to the k..r values (red points). In all four
examples, the fit of the NK model produced by GlobalSearch to the synthetic gradient data resulted
in a standard error of the fit that was comparable to or less than the standard error in the gradient
retention data introduced by the noise itself, as determined by a comparison via F-test. However,
even though the standard errors for each fit were comparable to the standard errors of the data, the
MRPE for each fit spanned several orders of magnitude, ranging from 3.92x10"% to 1.16 X 10°%.
We recognize that such a comparison requires extrapolation of the model to ¢ values outside of
the range of conditions experienced by the molecules in the simulated gradient experiments (i.e.,
0.05 < ¢ <0.7; and, some weakly retained analytes will not even experience a large fraction of
this range). Reducing the scope of the error calculation to 0.05 < ¢ < 0.7 does reduce the errors
substantially (0.2, 2.0, 148, and 36% for 2,2’-dipyridyl, benzonitrile, 4-n-butylbenzoic acid, and
trans-stilbene, respectively), but two of them are still much higher than 1%. For some compounds,
such as 2,2’-dipyridyl, the fit parameters yielded accurate predictions of isocratic k values across
the entire range of ¢. For other compounds, such as benzonitrile, significant errors in the prediction
of isocratic k values were only observed at only one end of the isocratic range. For the others - 4-

n-butylbenzoic acid and trans-stilbene — significant prediction errors were observed at both ends
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of the range of ¢. These plots demonstrate a distinction between fits where the main problem is
that the global minimum has not been found (such as those shown in Fig. 6A/C) and fits where the
main problem is a lack of ‘uniqueness’ in the parameter landscape. GlobalSearch is better able to
locate the global minimum in the fitting landscape as evidenced by similarity of the standard error
of'the fit to the standard error of the data. However, even when this algorithm was able to converge
upon parameters where the standard error of the fit was comparable to the standard error of the
noise in the data, this did not guarantee accurate predictions of isocratic k. Even worse, in practice
it is not obvious how one would distinguish between fits that will result in accurate vs. inaccurate
isocratic predictions given that the standard errors in both cases are comparable to (or better than)
the standard errors of the noisy data itself. For 60 out of the 61 fits in Fig. 8C, the standard errors
of the fit were comparable to or better than the standard errors of the data. This suggests that the
correlation between gradient data and the underlying NK parameters is fundamentally weaker than
that for isocratic data — while it is possible to recover the underlying parameters from gradient data
given a sufficiently small level of noise, it is much easier to do so with isocratic data. While this

difference is not likely to affect the accuracy of predictions of gradient k,r from gradient data,

the impact on the accuracy of predictions of isocratic k can be significant.

S. Conclusions

In this work we have studied factors that affect extraction of retention model parameters from
isocratic and gradient and elution retention data. We have used synthetic retention data — modelled
after experimental data collected under isocratic reversed-phase conditions for 61
analyte/stationary phase pairs — to enable a detailed investigation of the factors affecting fitting of
data to the Neue-Kuss retention model without the complications invariably encountered with

experimental data. Following are the principal conclusions drawn from the study.

e Unsupervised fitting of synthetic, noise-free isocratic retention data using a basic trust-
reflective region algorithm yields fitting parameters that enable accurate recovery of the

original isocratic retention factors. When noise is added to the synthetic data to simulate
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measurement noise, the accuracy of predictions of isocratic retention factors using the
fitting parameters degrades significantly, roughly in proportion to the noise level.
Unsupervised fitting of synthetic, noise-free gradient elution retention data using the same
basic trust-reflective region algorithm yields fitting parameters that cannot consistently
accurately predict isocratic retention factors. Adding noise to the synthetic gradient
retention data to simulate measurement noise makes the prediction accuracy even worse.
A good initial guess to initiate fitting using the basic trust-reflective region algorithm
improves the predictive accuracy of the resulting retention parameters substantially.
However, a significant improvement in performance demands a very high quality guess.
For example, starting with an initial guess only 10% different from the known model
parameters still produced some errors larger than 1% in isocratic retention factor, even
when starting with noise-free gradient retention data, and we are unaware of any current
approach that could provide such good initial guesses without considerable experimental
effort.

Using a more sophisticated fitting algorithm that more systematically searches the
parameter space for the best solution — GlobalSearch in this case — significantly improves
the fitting performance for gradient retention data, compared to the use of the basic trust-
reflective region algorithm. However, again performance with this approach is not
consistent enough to be completely trusted for the purpose of extracting retention model
parameters to be used for predicting isocratic retention factors. Our results suggest that this
task is challenging for two distinct reasons: 1) the parameter space containing potential
model parameters is vast (particularly in the &, parameter, which spans many orders of
magnitude), and in some cases populated by numerous barriers that the fitting algorithm
must getting over to find the correct solution — this facet of the problem could be solved
using a GlobalSearch type of algorithm and a fine parameter grid, at considerable
computational expense (e.g., hours per fit on a typical desktop computer); and 2) there is
frequently a lack of ‘uniqueness’ in the parameters obtained from fitting gradient data —
that is, there are many combinations of model parameters that lead to fits of similar quality,
as measured by the standard error of the fit. This facet of the problem cannot be solved by
the search algorithm — it is fundamentally a challenge associated with the nature of the data

and the retention model. One possible strategy to alleviate this difficulty is to reparametrize
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the model to predict the retention factor at a different mobile phase composition, i.e.,
instead of kyw (pure water), to a retention factor at a different organic phase composition, as
suggested recently by Peris-Garcia et al. [26]. We are currently investigating the potential

utility of this approach to address the uniqueness problem.

These results suggest that with current knowledge and retention fitting algorithms it is not possible
to consistently obtain retention model parameters that can be used to accurately predict isocratic
retention factors from gradient elution retention times. This is the case even with noise-free,
synthetic data, where we know the correct answers. Working with experimental data will make the
situation worse. If one can tolerate a non-trivial error rate (e.g., more then 5% of results leading to
errors in isocratic k >> 1%), then using a thorough search algorithm such as GlobalSearch will
help improve the likelihood of obtaining useful results. Even so, it would be wise to somehow

validate the resulting parameters, perhaps using targeted isocratic experiments.
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Figure Captions

Figure 1. Description of fitting process and error evaluation. The input data for box 1 was collected
using 61 analyte/stationary phase pairs. All parameter sets output in box 2 had R? values greater
than 0.999 for the isocratic NK model. For the steps where Isqnonlin was used, the function
tolerance was set to 1x107!°, the number of function evaluations was set to 100,000, and the
number of function evaluations was set to 100,000. When GlobalSearch was used, the number of
trial data points was set to 100,000 and the limits on each parameter were: k,, = 1.0-1.0x 10,
S1 = 5.0-400, and S, = 0.05-15. The numbers in parentheses are referred to as box 1, etc. in the

text.

Figure 2. Performance of unsupervised fitting algorithm on gradient data (Table 1, Row #5).
Synthetic gradient retention data for fitting were generated as described in Fig. 1 (box 8) and fit as
described in Fig. 1 (box 11a), while data shown for comparison was calculated as described in Fig.
1 (box 12). The initial guess in Fig. 1 (box 10a) was chosen to be k,, = 1.0, S; = 1.0, and
S, = 1.0. Example plots of In (k) vs. ¢ are shown for 2,2’-dipyridyl (A) and benzonitrile (B),
where the isocratic ks values are displayed as the red points, and the ks values calculated from
the fit of the synthetic gradient data are shown as the black line. The percent difference between

kyer and kg, (D) are shown for all 61 compounds, as well as a plot of kg;¢ vs. kyer (C).

Figure 3. Distribution of average of the absolute value of the percent errors between isocratic k. r
and isocratic ky;, after fitting noise-free gradient data with an unsupervised algorithm using several
initial guesses. The histograms shown contain errors for all 61 sets of parameters. Fitting data were
generated as described in boxes 8 and 11a of Fig. 1, with percent errors calculated as described in
box 12. The initial guess in box 10a was chosen using the equation xo = a X X;.or, where X ¢

is the parameter set obtained in box 2 and « is a multiplier. a values for each plot were: 1x107 (a),

1 (b), 1.1 (c), and 2 (d).

Figure 4. Plot of sum of squared differences (SSD) between gradient k. values calculated using
either ‘reference’ NK parameters (Fig. 1, box 2)), or a set of parameters indicated by a point in the
three-dimensional space, for ten different gradient times. Reference parameters were: A)
k, = 2.077 x 108, S; = 199.5, and S, = 7.297 for amitriptyline (a) on SB-C18; and B)
k, = 63.89, §; = 63.98, and S, = 7.344 for 2,2’-dipyridyl. Gradient parameters were
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¢o = 0.05, Ap = 0.65, t; = 0 min, and t, = 0.1 min. Effective retention factors were

calculated using Eq. 3.

Figure 5. Plot of average of the absolute values of the percent difference between isocratic k
values calculated using either ‘reference’ NK parameters (Fig. 1, box 2)) (k.y), or a set of
parameters obtained by fitting gradient k,r; values using a point in the three-dimensional space
as an initial guess, for ten different ¢ values between @iower and @upper (ksir). Reference parameters
were k,, = 2.077 x 108, §; = 199.5, and S, = 7.297 for amitriptyline (A) on SB-C18 and
k, = 63.89, S; = 63.98, and S, = 7.344 for 2,2’-dipyridyl (B). Gradient conditions were the
same as those used in Fig. 5. Noise-free synthetic gradient retention data were fit with Isqgnonlin
in MATLAB using the trust-region-reflective algorithm with the number of iterations set to

100,000, the number of function evaluations set to 100,000, and the function tolerance set to 1 xX10
10

Figure 6. Fits obtained after applying the basic unsupervised fitting algorithm (Fig. 1 (box 11a))
to synthetic gradient retention data (Fig. 1 (box 8)) for 2,2’-dipyridyl using several different initial
guesses as the starting point. Plots A-C show the final fit (solid line) to the gradient retention data
(red points) for each starting point, while plots D-F show comparisons of the corresponding
isocratic predictions (ks; black line) to ks (red points) (Fig. 1 (box 12)). The reference
parameters (and those converged to in plot (B)) were k,, = 63.89, S; = 63.98, and S, = 7.344;
the parameters converged to in plot (A) were k, = 1.116 x 10°, §; = 2.318%x 10° and
S, = 87.38; the parameters converged to in plot (C) were k,, = 1.132 x 10°, §; = 2.321x 10°,
and S, = 87.43.

Figure 7. Distributions of average of the absolute value of the percent differences (Fig. 1 (box 7))
between k,.r and kf;; after fitting noisy gradient retention data (Fig. 1 (box 8/9)) using an
unsupervised algorithm (Fig. 1 (box 10a/11a)) for all 61 sets of NK parameters and different noise
levels: A) o =0%; B) 6 =0.05%; C) o = 0.5%. The initial guess in Fig. 1 (box 10a) was chosen to
be k, = 1.0,5; = 1.0,and S, = 1.0.

Figure 8. Distributions of average of the absolute value of the percent differences (Fig. 1 (box 7))

between k. and kg, after fitting noisy gradient retention data (Fig. 1 (box 8/9)) using a the
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GlobalSearch algorithm (Fig. 1 (box 10b/11b)) for all 61 sets of NK parameters and different noise
levels: A) 6 =0%; B) 6 =0.05%; C) 6 = 0.5%.

Figure 9. Fits obtained after applying the GlobalSearch fitting algorithm (Section 3.2.2.2, and Fig.
1 (box 11b)) to synthetic gradient retention data with 0.5% relative noise added (Fig. 1 (box 8))
for several compounds. Plots A-D show the fit produced by GlobalSearch (solid line) to the
synthetic gradient data (red points), while plots E-H show comparisons of the corresponding
isocratic predictions (ks black line) to k..r (red points) (Fig. 1 (box 12)). Panels A and E
correspond to 2-2’dipyridyl; B and F correspond to benzonitrile; C and G correspond to 4-n-
butylbenzoic acid; and D and H correspond to trans-stilbene. For each fit shown in A-D, the
standard error of the fit was either equivalent to the standard error of the noise (determined by F-
test) or was lower. The mean residual percent errors for plots E-H were 0.392, 3.49, 1.16x10°, and
39.1%, respectively when calculated over the range 0 < ¢ < 1.0. Reducing the range to 0.05 < ¢ <
0.7 reduces the errors to 0.2, 2.0, 148, and 36%, respectively.



