

Accuracy of retention model parameters obtained from retention data in liquid chromatography

Tyler Brau¹, Bob Pirok^{1,2}, Sarah Rutan³, and Dwight Stoll^{1*}

- 1) Gustavus Adolphus College
- 2) Van 't Hoff Institute for Molecular Sciences
- 3) Department of Chemistry, Box 842006

7

8

9

10

11

12

13 ***Corresponding author:** Professor Dwight Stoll; Gustavus Adolphus College; 800 West
14 College Avenue; Saint Peter, MN 56082; dstoll@gustavus.edu

15

16 Non-Standard Abbreviations:

17 DAD – diode array detector

18 LSS – linear solvent strength

19 MRPE - mean residual percent error

20 NK – Neue-Kuss

21 SSD – sum of squared differences

22

23 **Keywords:** gradient retention factor, Linear Solvent Strength theory, Neue-Kuss, retention
24 model

25 **Abstract**

26 In liquid chromatography (LC), it is often very useful to have an accurate model of the retention
27 factor, k , over a wide range of isocratic elution conditions. In principle, the parameters of a
28 retention model can be obtained by fitting either isocratic or gradient retention factor data.
29 However, in spite of many of our own attempts to accurately predict isocratic k values using
30 retention models trained with gradient retention data, this has not worked in our hands. In the
31 present study we have used synthetic isocratic and gradient retention data for small molecules
32 under reversed-phase LC conditions. This allows us to discover challenges associated with
33 predicting isocratic k 's without the confounding influences of experimental issues that are difficult
34 to model or eliminate. The results indicate that it is not currently possible to consistently predict
35 isocratic retention factors for small molecules with accuracies better than 10%, even when using
36 synthetic gradient retention data. Two distinct challenges in fitting gradient retention data were
37 identified: 1) a lack of 'uniqueness' in the parameters; and 2) an inability to find the global
38 optimum fit in a complex fitting landscape. Working with experimental data where measurement
39 noise is unavoidable will only make the accuracy worse.

40

41 **1. Introduction**

42 Several aspects of simulation and method development in reversed-phase (RP) liquid
43 chromatography depend on isocratic retention data. For example, most models of RP selectivity
44 that are used to guide column selection (i.e., either to identify columns with similar or dissimilar
45 selectivities) for small molecule separations are built upon selectivity measurements made under
46 isocratic conditions [1–5]. Also, the theories used to make predictions about the effect of injection
47 volume and sample composition on peak shapes (i.e., volume overload and mobile phase / sample
48 solvent mismatch) depend on the availability of isocratic retention data for analytes of interest in
49 solvents corresponding to the sample and mobile phase compositions [6–10]. In contrast, retention
50 models (e.g., DryLab and similar tools) are often built as a part of method development using
51 training data obtained under gradient elution conditions [11–14]. In the course of predicting
52 optimal separation conditions these tools may suggest gradient conditions with very shallow
53 gradient slopes; as these slopes become more and more shallow, they approach isocratic
54 conditions. It is understood that such predictions are error-prone if they involve extrapolation to
55 gradient slopes outside of the scope of the training data [15].

56 Making isocratic retention measurements directly for the purposes listed above can be time-
57 consuming, because unless the retention behavior of the molecules of interest are already known,
58 many initial experiments will fail due to conditions that produce retention factors that are too low
59 or too high to be useful [16]. It would be incredibly useful in practice to be able to make retention
60 measurements under gradient elution conditions, and from these measurements extract retention
61 model parameters (i.e., fits of the data to retention models such as the Linear Solvent Strength
62 (LSS) model [17], or the Neue-Kuss (NK) model [18]) that can be used to accurately predict
63 retention under both isocratic and gradient conditions. This could potentially save a lot of time in
64 the process of collecting the training data because gradient methods are better suited to mixtures
65 of analytes, and because conditions can be chosen easily that will likely retain analytes that tend
66 to be poorly retained, while also avoiding retention that is too high (i.e., with a gradient running
67 from 5 to 90% ACN). In spite of many attempts to implement this type of scheme over the past
68 decade, this has been largely unsuccessful in our hands. Our experience has been that isocratic
69 predictions made using retention model parameters extracted from retention data collected under
70 gradient elution conditions are always too inaccurate to be useful for practical application (e.g.,
71 errors always larger than 1%, and usually much larger than 1%). We have considered a long list

72 of experimental complications that are difficult to capture in retention models that might be
73 compromising our efforts. For example, it is understood that even modern UHPLC pumps do not
74 produce solvent gradients with perfect accuracy and linearity [19,20]. In our experiments, we have
75 chosen conditions that should mitigate these complications (e.g., using 50 mm x 4.6 mm i.d.
76 columns with 5 micron particles to minimize extra-column effects, viscous heating, pressure
77 effects on retention, and gradient non-linearity at low flow rates). However, even under these well
78 controlled conditions, we and others have not been able to regularly obtain accurate isocratic
79 retention predictions (errors < 1%) from training data collected under gradient conditions [21–23].
80 These experiences have led us to the present work, which aims to understand the factors that lead
81 to inaccurate predictions for isocratic retention factors calculated using retention parameters
82 obtained from fitting gradient retention data. In this work, we use synthetic data so that the study
83 is not affected by experimental complications that are difficult to eliminate, such as gradient delays
84 and distortions.

85 In this study we first determined isocratic retention factors experimentally for a variety of small
86 molecules under RP conditions using 61 different analyte/stationary phase pairs. Retention
87 parameters were then extracted from these data by fitting them to the NK model. The resulting
88 parameters were treated as “reference retention parameters”, and were used to calculate a set of
89 “reference retention factors”, k_{ref} . Using the reference retention parameters, different sets of
90 synthetic isocratic or gradient retention data were produced, with or without simulated
91 measurement noise added. Each set of synthetic data was then fit to the NK model to obtain
92 retention parameters using different fitting approaches. In this work, we have focused our attention
93 on the NK model, because in our experience it provides good isocratic predictions for a broad
94 range of molecules and experimental conditions. Finally the retention parameters were used to
95 predict isocratic retention factors, which were then compared to the k_{ref} values and evaluated for
96 their accuracy.

97

98 **2. Experimental**

99 *2.1 Collection of experimental isocratic retention data*

100 **2.1.1 – Chemicals**

101 Milli-Q water (18.2 MΩ) was obtained from a Millipore purification system (Burlington, MA).
102 All analyte compounds, ammonium hydroxide (28-30%), formic acid (> 95%), and acetonitrile
103 (ACN) were purchased from Sigma-Aldrich (St. Louis, MO) and used as-is. The cis- isomer of
104 chalcone was obtained by exposing a solution of the trans- isomer in ACN to sunlight at room
105 temperature for one day. Stock solutions for each analyte were prepared at 10 mg/mL in either
106 neat ACN or 50/50 ACN/water. Analytical samples were prepared by diluting the stock solutions
107 to either 0.2 or 5.0 mg/mL using 50/50 ACN/water as needed to give a peak height greater than 10
108 mAU at 254 nm. The analytes used in this study are listed in the Supplemental Information, Table
109 S1.

110

111 **2.1.2 – Mobile phase preparation**

112 The aqueous component of the mobile phase, which we refer to as 25 mM ammonium formate,
113 pH 3.2, was prepared gravimetrically in 2-L batches, according to the following recipe. To a 2-L
114 solvent bottle were added 1986.2 g of water, 2.92 g of ammonium hydroxide (29.1%), and 9.92 g
115 of formic acid (97.4%). The solution was used after mixing thoroughly without any further pH
116 adjustment.

117

118 **2.1.3 – Instrumentation, columns, and conditions**

119 Retention measurements were made using an Agilent HPLC system (Waldbronn, Germany). The
120 system included a binary pump (G4220A) with Jet Weaver V35 Mixer (G4220-68135),
121 autosampler (G7167A), thermostatted column compartment (G1316C), and diode-array detector
122 (DAD) (G4212A) equipped with a Max-Light Cartridge Cell (G4212-60038, 10 mm path length).
123 The system was controlled using Agilent OpenLAB CDS Chemstation Edition (Rev. C.01.10).
124 The injection volume for each analysis was 0.15 µL. Two columns were used in this work: 1)
125 Agilent Zorbax SB-C18 (5 mm x 2.1 mm i.d., 1.8 µm); 2) Agilent Zorbax Bonus RP (5 mm x 2.1
126 mm i.d., 1.8 µm) (see Table S1).

127 The flow rate for all measurements was 1.0 mL/min., and the temperature was 40 °C. Mobile
128 phases were “machine-mixed” by the binary pump. A minimum of five mobile phases were used

129 for each compound, where the compositions were chosen such that all retention factors were
130 between 1 and 50, but roughly evenly spaced in that range. Five replicate retention measurements
131 were made at each composition, and the means of these values were used as described in Section
132 3.1.

133

134 **2.1.4 – Retention factor calculations**

135 Isocratic retention factors were calculated using Eq. 1, where the column dead time (t_m) and the
136 extra-column time (t_{ex}) were determined using uracil (0.1 mg/mL) in a mobile phase of 50/50
137 ACN/buffer. We are well aware that these conditions do not provide the most accurate measure of
138 the column dead time [24], however a small inaccuracy in this value will have no effect on the
139 conclusions we draw from the study described in this paper. Based on other work in our laboratory
140 we have made a correction to these k values to compensate for the volume of the column frits that
141 is normally unaccounted for in the measurements of t_{ex} , and important when working with columns
142 as small as those used here. This correction amounts to an increase all k values of about 20%;
143 details the provide the basis for this correction will be published separately elsewhere, but should
144 have no influence on the conclusions that follow from this study.

145
$$k = \frac{t_r - t_m}{t_m - t_{ex}} \quad (1)$$

146

147 **3. Calculations**

148 *3.1 Initial fitting of experimental isocratic data*

149 The experimental k vs. ϕ data were fit to the NK model [18], described by the equation

150
$$\ln(k) = \ln(k_w) + 2 \ln(1 + S_2\phi) - \frac{S_1\phi}{1 + S_2\phi} \quad (2)$$

151 where k_w is the retention factor in pure weak solvent, S_1 is analogous to the slope of $\ln(k)$ vs. ϕ in
152 LSS theory [17], and S_2 accounts for any curvature in the $\ln(k)$ vs. ϕ plot. Fitting was performed
153 with the *lsqnonlin* function in MATLAB using the trust-region reflective algorithm, which
154 required an initial guess for each parameter. This initial guess for *lsqnonlin* was generated by

155 setting $S_2 = 0$ and computing the closest straight-line approximation of $\ln(k)$ vs. ϕ to give
 156 approximate values for S_1 and k_w . These approximate values were then used with $S_2 = 0$ as the
 157 initial guess for *lsqnonlin*, with the algorithm set to run for a maximum of 1×10^6 iterations, 1×10^6
 158 function evaluations, and to minimize to a function tolerance of 1×10^{-10} . If this procedure did not
 159 result in a reasonable fit to the data as measured by correlation coefficients ($R^2 > 0.999$), the initial
 160 guess was manually tuned and *lsqnonlin* was run again until a reasonable fit was obtained. In total,
 161 61 sets of parameters were obtained and used as described below. The three-dimensional space
 162 occupied by the parameters is shown in Fig. S1. In Fig. 1 (box 2) these parameters are referred to
 163 as the “reference” values of S_1 , S_2 , and k_w . We note that all fitting results reported throughout this
 164 paper refer to fits of synthetic data generated using these “reference” values.

165 *3.2 Generation and fitting of synthetic retention data*

166 *3.2.1 Isocratic elution*

167 To generate synthetic isocratic retention data for fitting, the reference values of k_w , S_1 , and S_2
 168 were used in combination with Eq. 2 to calculate the ϕ values that correspond to k values of 1
 169 (ϕ_{upper}) and 50 (ϕ_{lower}). Ten evenly spaced data points (with respect to ϕ) were then selected
 170 between ϕ_{upper} and ϕ_{lower} . Retention factors were calculated using these ϕ values; these are
 171 referred to hereafter as k_{ref} (Fig. 1 (box 3)). In cases where noisy synthetic data were used, five
 172 replicates at each ϕ value were generated with normally distributed noise with a specified standard
 173 deviation, σ . The synthetic $\ln(k)$ vs. ϕ data were then fit to a straight line to give approximate
 174 values of $\ln(k_w)$ and S_1 (Fig. 1 (box 5)). These approximate values were then used with $S_2 = 0$
 175 to provide an initial guess for *lsqnonlin*, which then fit the $\ln(k)$ vs. ϕ data to Eq. 2 (Fig. 1 (box
 176 6)). Errors were calculated as mean residual percent errors (MRPE) using Eq. 3 (Fig. 1 (box 7))

$$177 \quad MRPE = \frac{\sum_{i=1}^n \frac{k_{fit} - k_{ref}}{k_{ref}} \times 100}{n} \quad (3)$$

178 where n is the number of datapoints, k_{fit} is the retention factor predicted by the fit model (Fig. 1
 179 (box 6)), and k_{ref} is the ‘reference’ retention factor predicted by the ‘reference’ parameters obtained
 180 from the initial fitting of the experimental isocratic data (Fig. 1 (boxes 2,3)). For each fit, k_{fit} and
 181 k_{ref} were calculated for ten points in the range of $\phi_{lower} < \phi < \phi_{upper}$.

182 3.2.2 Gradient elution

183 In Fig. 1, the step in box 2 was followed by determination of gradient times (t_g) that would give
 184 effective retention factors (k_{eff}) between 1 and 50, where k_{eff} was calculated using Eqs. 4a and 4b
 185 [23,25]

$$186 k_{eff} = \frac{\frac{t_D}{t_0} + \frac{\frac{\phi_i + \frac{(1+S_2\phi_i)ln}{S_1}}{1+\beta k_w S_1 \left(t_0 - \frac{t_D}{k_w(1+S_2\phi_i)^2 e^{-\frac{S_1\phi_i}{1+S_2\phi_i}}} \right) e^{-\frac{S_1\phi_i}{1+S_2\phi_i}}} - \phi_i}{\frac{1 - \frac{S_2(1+S_2\phi_i)ln}{S_1}}{1+\beta k_w S_1 \left(t_0 - \frac{t_D}{k_w(1+S_2\phi_i)^2 e^{-\frac{S_1\phi_i}{1+S_2\phi_i}}} \right) e^{-\frac{S_1\phi_i}{1+S_2\phi_i}}} - \phi_i}}}{\beta t_0} \quad (4a)$$

187

$$188 \beta = \frac{\phi_f - \phi_i}{t_g} \quad (4b)$$

189 where t_D is the gradient delay time, t_0 is the column dead time (0.1 min), ϕ_i is the solvent
 190 composition used at the starting point in the gradient ($\phi_i = 0.05$ was used here), ϕ_f is the solvent
 191 composition used at the endpoint in the gradient ($\phi_f = 0.70$ was used here), and t_g is the duration
 192 of the gradient. Equation 4a was solved for the gradient times corresponding to $k_{eff} = 1$ ($t_{g,lower}$)
 193 and $k_{eff} = 50$ ($t_{g,upper}$) for each set of parameters. If the lower bound on k_{eff} could not be reached
 194 for a given analyte, then $t_{g,lower}$ was set to be equal to 0.1 min greater than $t_{g,min}$, where $t_{g,min}$
 195 was defined as the shortest gradient time providing elution of the analyte within the gradient time
 196 (i.e., $t_r < t_g$), and calculated as

$$197 t_{g,min} = \frac{(\phi_f - \phi_i) k_w S_1 \left(t_0 - \frac{t_D}{k_w(1+S_2)^2 e^{-\frac{S_1\phi_i}{1+S_2\phi_i}}} \right) e^{-\frac{S_1\phi_i}{1+S_2\phi_i}}}{\frac{k_w(1+S_2)^2 e^{-\frac{S_1\phi_i}{1+S_2\phi_i}}}{(\phi_f - \phi_i) S_1} - \frac{e^{1+S_2(\phi_i + \phi_f) + S_2^2 \phi_i \phi_f} - 1}{e^{1+S_2(\phi_i + \phi_f) + S_2^2 \phi_i \phi_f} - 1}} \quad (4c)$$

198

199 Similarly, if the upper bound on k_{eff} could not be reached (i.e., $k_{eff,max} < 50$, given $\phi_i = 0.05$),
 200 $t_{g,upper}$ was set to be 15 min. Then, ten evenly spaced gradient times were then selected between
 201 $t_{g,lower}$ and $t_{g,upper}$, and k_{eff} was calculated using Eq. 4a for each value of t_g . In the case where
 202 noise was added to synthetic retention data (Fig. 1 (box 9)), the same procedure was used as
 203 described in Section 3.2.1.

204 Three different strategies were used to fit the synthetic gradient retention data (Fig. 1 (boxes 10a-
205 c/11a-c)), with each yielding a set of S_1 , S_2 , and k_w values. A summary of the approaches used for
206 fitting both isocratic and gradient data, and the corresponding results, is given in Table 1.

207

208 3.2.2.1 - Basic Fitting Procedure (Fig. 1 (box 10a/11a))

209 The k_{eff} vs. t_g data were fit to Eq. 4a using the *lsqnonlin* algorithm with small positive, non-zero
210 initial guesses for each parameter (i.e., S_1 , S_2 , k_w all equal to 1 (Fig. 1 (box 10a)).

211

212 3.2.2.2 - Global Search Fitting Procedure (Fig. 1 (box 10b/11b))

213 The k_{eff} vs. t_g data were fit to Eq. 4a using the *GlobalSearch* algorithm in MATLAB, rather than
214 *lsqnonlin*, with bounds for each parameter set at k_w = 1.0 to 1.0×10^9 , S_1 = 5.0 to 400, and
215 S_2 = 0.05 to 15. *GlobalSearch* generates a large number of initial guesses within these bounds
216 and evaluates them using the *fmincon* fitting algorithm (a constrained function minimizer using
217 the interior-point approach and 100,000 start points) before returning the best set of fit parameters.
218 This best set was then further refined using the *lsqnonlin* algorithm.

219

220 3.2.2.3 – Fitting Procedure with Parameter Scanning (Fig. 1 (box 10c/11c))

221 The k_{eff} vs. t_g data were fit to Eq. 4a using *lsqnonlin* with S_2 fixed at 0 in order to provide
222 approximate values for k_w and S_1 . Multiple fits were then performed using *lsqnonlin* along with
223 the estimates of k_w and S_1 , along with multiple values of S_2 in the range of 0-15 at 0.01 unit
224 increments, with the best fit parameters reported at the end.

225 Following each fitting procedure, errors were evaluated in the same way as described in Section
226 3.2.1. The S_1 , S_2 , and k_w values obtained from a fit of gradient retention data were used to calculate
227 isocratic retention factors (k_{fit} ; Fig. 1 (box 12)) and compared to the k_{ref} values calculated from
228 the ‘reference’ parameters (Fig. 1 (box 2)).

229 **4. Results and Discussion**

230 *4.1 Fitting noise-free isocratic data*

231 In order to ensure that *lsqnonlin* was an appropriate choice of algorithm for determining parameters
232 for the NK model, the procedure for isocratic fitting described in Fig. 1 (boxes 5, 6) was applied
233 to synthetic isocratic data generated (Fig. 1 (box 3); no noise added) using the 61 parameter sets
234 (Fig. 1 (box 2)). In the Supporting Information we provide several figures that illustrate the
235 characteristics of these fits. Figure S2A shows the fit for 2,2'-dipyridyl, and Fig. S2B shows the
236 fit for benzonitrile. Figures S2C and S2D show the k_{fit} values and the error in the k_{fit} values for all
237 61 parameter sets. In one case (berberine, SB-C18, see Fig. S2D), errors of about 0.1% in k were
238 observed due to slow progress toward the correct parameters near the minimum of the objective
239 function, rather than convergence to an incorrect set of parameters. Otherwise, given a sufficiently
240 good initial guess (based on a linear approximation of $\ln(k)$ vs. ϕ ; see Section 3.2.1) and noise-free
241 data, the *lsqnonlin* algorithm consistently converged on correct NK parameters, producing
242 isocratic k_{fit} values (Fig. 1 (box 7)) that were within 0.01% of the k_{ref} values (Fig. 1 (box 3)). In
243 other words, the algorithm works well in the case of fitting noise-free isocratic data. The numerical
244 values of the parameters from each fit are provided as Supporting Information in Table S1.

245

246 *4.2 Fitting noisy isocratic retention data*

247 Figure S3 shows the impact of adding noise to synthetic isocratic retention data (Fig. 1 (box 4))
248 on the errors (Fig. 1 (box 7)) obtained from fitting using the basic approach illustrated described
249 in Section 3.2.1 (Fig. 1 (box 6)). As discussed in Section 4.1, Fig. S3A shows that in the absence
250 of noise, an initial guess calculated by simply fitting a straight line to a plot of $\ln(k)$ vs. ϕ (Fig. 1
251 (box 5)) is sufficient for the *lsqnonlin* algorithm to find parameters that enable accurate predictions
252 of isocratic k values with average errors below 0.001%. This is the same type of result shown in
253 Fig. S2, but now for all 61 parameter sets, and the errors plotted in a histogram. This was not a
254 surprising result, as the lack of noise combined with the good initial guess meant that the fitting
255 algorithm was able to reach a high level of accuracy in the fit parameters given enough iterations.
256 This result also provides a baseline against which we can compare results obtained after fitting
257 retention with noise added to synthetic data. Figure S3B shows the effect of adding noise at 0.05%

258 (see Section 3.2.1; $100\sigma/k = 0.05$) to the synthetic retention data. While all but one fit resulted in
259 less than 1% average prediction error, the distribution of errors shifted towards larger errors,
260 indicating that adding noise imposes a limit on the accuracy of the predictions. Figure S3C shows
261 that the distribution of errors shifts even further to the right when the added noise is increased to
262 0.5%. The fraction of fits with >1% average error in predicting isocratic k values rose to 26.2%,
263 indicating that even isocratic fits with a good initial guess are not immune to the effects of
264 increasing levels of measurement noise.

265

266 4.3 Fitting noise-free gradient data

267 Using the same underlying parameters (Fig. 1 (box 2)), a similar investigation was conducted using
268 synthetic gradient retention data instead of synthetic isocratic retention data. Figure 2 shows
269 representative fits for two specific compounds (A - 2,2'-dipyridyl, and B - benzonitrile), and a
270 summary of errors obtained for all 61 fits (Panels C and D). A significant difference between fitting
271 the isocratic (Section 4.1) and gradient (Section 4.3) data is related to the initial guess used to
272 initiate the *lsqnonlin* algorithm. Whereas in the isocratic case (Section 4.1) we were able to
273 compute an initial guess for each fit by first approximating Eq. 2 with a linear relationship, this is
274 not the case when fitting to Eq. 4, as there is no obvious analogous approximation that can be
275 made. Therefore, for each fit leading to the results shown in Fig. 2, the initial guess was chosen to
276 be $k_w = 1.0$, $S_1 = 1.0$, and $S_2 = 1.0$. While Fig. 2B shows that starting with this simple guess
277 led to a fit that resulted in accurate predictions of isocratic k values for some compounds such as
278 benzonitrile (SB-C18), Fig. 2A shows that the same procedure fails significantly in other cases
279 (2,2'-dipyridyl; SB-C18). Figures 2C/D show how extensive the disagreement between k_{fit} and
280 k_{ref} was in general, as the percent error in k ranged anywhere from about 0 to 10,000%. The
281 numerical values of the parameters from each fit are provided as Supporting Information in Table
282 S2. Specifically, for the 61 cases investigated, 27 cases yielded parameters within 0.1 % of the
283 'reference' parameters; the remaining cases resulted in parameters that showed dramatic deviations
284 from the 'reference' values. This is a very important result. Even though we have started with the
285 same parameter sets (Fig. 1 (box 2)) for fitting the isocratic (Section 4.1) and gradient (Section
286 4.3) data, fitting noise-free isocratic retention data consistently yields highly accurate retention
287 parameters, whereas fitting noise-free gradient retention data does not, at least when a simple initial

288 guess is used. In the case of the gradient data, the resulting fits are so bad they cannot be trusted at
289 all.

290

291 4.3.1 Effect of Initial Guess on Fitting Gradient Retention Data

292 Figure 3 shows the impact of using different initial guesses on the quality of fitting noise-free
293 synthetic gradient retention data using the *lsqnonlin* algorithm (Fig. 1 (box 11a). Each panel in
294 Fig. 3 is a histogram of the errors (i.e., average difference between k_{ref} (Fig. 1 (box 8)) and k_{fit} (Fig.
295 1 (box 12)); logarithmic x-axis) obtained for all 61 parameter sets (Fig. 1 (box 2)) using initial
296 guesses that were different from the reference parameters by a multiplier α . Panels A and B show
297 the most and least challenging cases, with α equal to 1×10^{-8} or unity, respectively. In other words,
298 Panel A shows the errors obtained when the initial guess is $k_w = 1 \times 10^{-8} \times k_{w,ref}$, $S_I = 1 \times 10^{-8} \times S_{I,ref}$,
299 and $S_2 = 1 \times 10^{-8} \times S_{2,ref}$, and Panel B shows the errors obtained when the fitting procedure is
300 initiated with the same parameters (Fig. 1 (box 2)) used to produce the synthetic retention data.
301 The results in Panel B show that the fitting procedure works correctly when the initial guess is
302 very close to the correct solution. On the other hand, starting with guesses near zero for all three
303 parameters yields poor results (i.e., errors $\gg 1\%$) for 50% of the observations. Figure 3C, shows
304 that increasing the values of the initial guess just 10% beyond the reference values (i.e., $\alpha = 1.1$)
305 resulted in errors larger than 1% about 9% of the time. Scaling the initial guess even farther from
306 the reference parameters resulted in larger errors, as one might expect. Figure 3D shows results
307 for guesses with $\alpha = 2$, where we see that 18% of the fits produced average errors larger than 1%.
308 These results make it clear that the initial guess provided to the fitting algorithm plays a critical
309 role in determining whether or not the *lsqnonlin* algorithm converges on the correct NK
310 parameters.

311 In attempt to understand why the initial guess influenced the accuracy of fitting gradient retention
312 data using the *lsqnonlin* algorithm so strongly, visualizations of the fitting space were constructed.
313 Figure 4 shows three-dimensional plots (one for amitriptyline, and one for 2,2'-dipyridyl) of the
314 value of the sum of squared differences (SSD) between the gradient k_{eff} values calculated (Eq. 4)
315 using the ‘reference’ fitting parameters (Fig. 1 (box 2)) and the k_{eff} values calculated using the
316 parameters indicated by a point in the space (i.e., each point in the space represents a possible

317 combination of k_w , S_1 , S_2 the algorithm may encounter in fitting the data). Each data point is colored
318 to indicate the value of the SSD at that point, with the color applied on a logarithmic scale given
319 the many orders magnitude spanned by the objective function. In both Fig. 4A and Fig. 4B we
320 observe multiple, broad regions populated by relatively low SSD values separated by “sheets” of
321 large SSD values, which we refer to as “barriers” that fitting algorithms must get over or through
322 on the way to finding the global minimum. For Fig. 4A, the maxima in the SSD values populate
323 a curved surface (yellow/orange band), which cut the fitting space into two regions where the
324 correct parameters for amitriptyline were located on one side of the surface and the other side is
325 quite “flat” with no major barriers populated by large SSD values. A band of low SSD values (dark
326 blue) was also present in the plot, which includes the values of the ‘reference’ parameters (Fig. 1
327 (box 2)). The maxima acted as a barrier to the fitting algorithm, as any initial guess placed in the
328 region opposite to the one that contained the ‘reference’ parameters always resulted in a fit that
329 moved away from the correct minimum, as the algorithm will always move in a direction that
330 decreases the value of the sum of squared differences. Likewise, an initial guess placed in a region
331 of uniform color was not likely to converge on the correct set of parameters as the objective
332 function was flat in that space – while it was not flat in a three-dimensional sense, it was flat in a
333 four-dimensional one, as moving to any point nearby in the fitting space did not cause a significant
334 change in the value of the sum of squared differences. For Fig. 4B, the fine structure of the maxima
335 are more obvious due to the scaling of the plot. The maxima formed shells that split the fitting
336 space into multiple regions, with the ‘reference’ parameters for 2,2’-dipyridyl only located within
337 one of the shells. For this parameter set, any initial guess that was made would have converged on
338 the minimum of the SSD in the corresponding shell and returned the location of this local minimum
339 as the fit parameters. In this case, finding the correct, ‘true’ parameters is highly unlikely, as this
340 would require the algorithm to get over/through multiple barriers, whereas in the case of Fig. 4A
341 there is only one major barrier involved.

342 Figure 5 shows the mean percent difference between isocratic retention factors k_{ref} and k_{fit}
343 obtained by fitting noise-free synthetic gradient retention data using *lsqnonlin* with the indicated
344 point in the three-dimensional space as the initial guess. For Fig. 5A, three distinct regions are
345 observed: 1) initial guesses that result in fits with negligible error in k_{fit} (dark blue points); 2)
346 initial guesses that result in a large amount of error (red points); and 3) initial guesses that result
347 in a (relatively) moderate amount of error (light blue points). The boundary separating the regions

348 of high and low errors mirrors the location of the maxima in the SSD plot in Fig. 4A, confirming
349 that the fitting algorithm could not penetrate the barrier in the objective function that separates the
350 parameter space into two main parts. It is also clear that on each side of the barrier there are
351 multiple local minima in the objective function, and that these minima lead to very different levels
352 of prediction error ($10^5\%$ and $10^{20}\%$). However, Fig. 5A also shows that being on the same side
353 of the barrier as the ‘true’ parameters was not sufficient to guarantee convergence to the ‘true’
354 parameters, as starting with an initial guess located too far from the ‘true’ parameters sometimes
355 yielded prediction errors greater than $10^5\%$. This was likely due to the SSD surface being flat in
356 this region, as indicated by Fig. 4A, which prevented the fitting algorithm from making significant
357 progress toward the correct parameters. Note that in the presence of noise, the effective ‘flatness’
358 of the SSD surfaces will be enhanced, causing even more difficulties in converging to the k_{ref}
359 values. Figure 5B shows the same type of mean isocratic retention factor error plot, but for 2,2-
360 pyridyl. Comparing Figs. 4B and 4B we see a similar mirroring of the characteristics in these
361 plots that we observed with Figs. 4A and 5A. Whereas the boundary between the regions of low
362 and high error in Fig. 8A closely resembled a plane, in Fig. 5B we see a shell-like structures similar
363 to those in Fig. 4A where the magnitude of the prediction error depended on which shell the initial
364 guess was located. The region that produced the lowest prediction error was again the shell that
365 contained the ‘reference’ parameters, while initial guesses located in any other shell resulted in
366 prediction errors that ranged from 10^5 to $10^{15}\%$. The largest errors corresponded to the initial
367 guesses located close to the k_w axis (where the initial guess for S_1 approaches 0). Note that the
368 basins of convergence for both Fig. 5A and Fig. 5B (regions where the prediction error is
369 negligible) did not conform to a simple geometric shape, making a useful mathematical description
370 of the shape of these regions difficult. Manual inspections of the parameter landscapes in Figs. 4
371 and 5 showed that the regions corresponding to very large errors often involve combinations of S_1 ,
372 S_2 , and k_w that lead to chromatographically unrealistic outcomes. In principle the apparent barriers
373 in the fitting landscape could be avoided by preventing the fitting algorithm from evaluating
374 combinations of parameters that lead to chromatographically unrealistic outcomes, but this would
375 eliminate the possibility of unsupervised fitting, and at this point it time we do not know how
376 transferrable the behavior illustrated in Figs. 4 and 5 are to other compounds, columns, and
377 conditions. This is an area of ongoing study. Readers interested in the fine structure of the cubes

378 in Fig. 5 are referred to movies provided as Supplemental Information that have been constructed
379 by viewing one slice of the cube at a time (see Section S3).

380 Figure 6 gives some insight as to what the barriers in Fig. 4 and the various regions of error in Fig
381 5 corresponded to in terms of fit quality. Figure 6A shows the final fit (black line) to the synthetic
382 gradient retention data (red points) for 2,2'-dipyridyl, while Fig. 6D shows the corresponding
383 comparison of isocratic predictions (k_{fit}) to k_{ref} . The initial guesses used in these cases were k_w
384 = 1.0, S_1 = 1.0, and S_2 = 1.0, which fell into a region with approximately 10⁶% error. Figures 6B/E
385 show the results obtained when the initial guess was shifted to k_w = 7.0, S_1 = 7.0, and S_2 = 0.0.
386 Although this initial guess was only 9% closer to the ‘reference’ parameters, the average error in
387 isocratic predictions decreased by 15 orders of magnitude to 10⁻⁹%.

388 Given these results, it is clear that other algorithms that are designed to more comprehensively
389 sample the parameter space are worth exploring. Among several algorithms we have tried for this
390 purpose, the Matlab *GlobalSearch* algorithm has performed the best in our hands; the results of
391 this work are described below in Section 4.4. Finally, in Figures 9C/F, we show the case for initial
392 guesses of k_w = 115, S_1 = 7.8, and S_2 = 15. Here, the fit to k_{eff} is particularly bad throughout the
393 range. While a fit quality metric would lead to rejecting this result, cases with a large number of
394 experiments could result in many poor fits. This would lead to much lower data analysis throughput
395 and more manual intervention to obtain adequate fits (with results that still may not be unique).

396

397 4.4 Fitting noisy gradient retention data

398 After establishing a baseline for the performance of the basic approach for fitting synthetic
399 retention data as shown in Fig. 6, the performance of the basic approach for fitting synthetic
400 gradient retention data with noise added was assessed using an initial guess of k_w = 1.0, S_1 = 1.0,
401 and S_2 = 1.0; these results are shown in Fig. 7. Figure 7A confirms the results discussed earlier in
402 Section 4.2 for noise-free synthetic gradient retention data; 47.5% of fits resulted in average errors
403 larger than 10% for prediction of isocratic retention. This compares to 100% of fits yielding
404 prediction errors less than 1% when predictions are made based on fits of isocratic data (i.e., Fig.
405 S3A). As was the case in Fig. S3, adding noise to synthetic gradient retention data shifts the
406 distributions of errors to the right (Figs. 7B/C), making a bad situation even worse. Again, the

407 higher the noise level, the further the shift of the error distribution to larger errors. At a relative
408 noise level of 0.5% (Fig. 7C), 95.1% of fits produced average isocratic prediction errors larger
409 than 1%. When compared to the basic approach for fitting isocratic retention data, the basic
410 approach to fitting gradient retention data performs much worse at any level of noise. This is partly
411 due to the fact that a reasonable initial guess can be estimated when fitting isocratic data using Eq.
412 2, while no such option is available for Eq. 4 due to its complexity. Another challenge is that
413 gradient retention data are oftentimes not as ‘unique’ as isocratic retention data. While an
414 individual gradient retention measurement may span a range of ϕ values compared to a single
415 isocratic measurement, the effective retention factor is fundamentally an integrated quantity
416 dependent on the mobile phase history experienced by the analyte up to the point in time that it
417 exits the column. This can result in a situation where two compounds with very different retention
418 histories (i.e., different mobile phase experiences) can wind up eluting with exactly the same k_{eff}
419 value. As a result, it becomes necessary to thoroughly search the NK parameter space in order to
420 get consistently accurate results.

421 One approach to address this challenge is to use a different fitting algorithm. Figure 8 shows the
422 performance of the *GlobalSearch* algorithm for fitting synthetic gradient retention data with the
423 same levels of noise as in Fig. S3. For noise-free retention data (Fig. 8A), *GlobalSearch* returned
424 parameter sets that yield isocratic predictions with less than 1% average error, which represents a
425 significant improvement over the basic fitting approach (i.e. compare Fig. 8A to Fig. 7A).
426 However, when noise is added to the synthetic retention data at the level of 0.05%, the percentage
427 of fits yielding average isocratic predictions errors below 1% error falls to just 41%, with 53% of
428 fits producing errors between 1 and 10%. At a relative noise amplitude of 0.5%, only 4.9% of fits
429 produced parameters that yielded isocratic predictions better than 1% on average.

430 While the *GlobalSearch* algorithm approach to fitting noise-free gradient retention data did not
431 perform as well as the basic approach to fitting noise-free isocratic retention data, it did offer a
432 significant improvement over the basic approach to fitting noise-free gradient retention data,
433 providing parameters that yielded isocratic predictions with better than 1% average error in an
434 additional 43% of cases. However, this improvement was diminished as the level of noise added
435 to the synthetic retention data was increased. Relative to the basic approach to fitting isocratic
436 retention data, the *GlobalSearch* algorithm was much more susceptible to the influence of noise.

437 We again attribute this to the lack of ‘uniqueness’ in the gradient retention data – while thoroughly
438 searching the fitting space could result in the correct answer in most cases where noise is absent,
439 adding noise at even the 0.05% level significantly obscured real gradients the SSD surfaces to the
440 point that finding accurate parameters became impossible. Mathematically, this lack of uniqueness
441 is due to the fact that the slope of k_{eff} as a function of the parameters is very small for some solutes
442 and experimental conditions. This is not as much of a problem for fitting the isocratic retention
443 data, such that fitting isocratic data is more robust against the influence of measurement noise
444 when compared to both the basic and *GlobalSearch* approaches to fitting gradient retention data.

445 Our view is that there are two distinct challenges we face in fitting gradient retention data; 1) lack
446 of “uniqueness”; and 2) inability to simply find the global minimum in a complex fitting landscape.
447 Figure 9 shows several representative fits selected from the results shown in Fig. 11C. Pictured in
448 Fig. 9A-D are the synthetic gradient data (red points) with noise added at $\sigma = 0.5\%$ along with the
449 corresponding fits produced by *GlobalSearch* (black line) for 2,2'-dipyridyl (A), benzonitrile (B),
450 4-n-butylbenzoic acid (C), and trans-stilbene (D). Additionally, Figs. 9E-H show the
451 corresponding predictions of isocratic k using the parameters obtained from fitting the gradient
452 data (black line) across the range of $\phi=0.0-1.0$ compared to the k_{ref} values (red points). In all four
453 examples, the fit of the NK model produced by *GlobalSearch* to the synthetic gradient data resulted
454 in a standard error of the fit that was comparable to or less than the standard error in the gradient
455 retention data introduced by the noise itself, as determined by a comparison via F-test. However,
456 even though the standard errors for each fit were comparable to the standard errors of the data, the
457 MRPE for each fit spanned several orders of magnitude, ranging from $3.92 \times 10^{-1}\%$ to $1.16 \times 10^3\%$.
458 We recognize that such a comparison requires extrapolation of the model to ϕ values outside of
459 the range of conditions experienced by the molecules in the simulated gradient experiments (i.e.,
460 $0.05 < \phi < 0.7$; and, some weakly retained analytes will not even experience a large fraction of
461 this range). Reducing the scope of the error calculation to $0.05 < \phi < 0.7$ does reduce the errors
462 substantially (0.2, 2.0, 148, and 36% for 2,2'-dipyridyl, benzonitrile, 4-n-butylbenzoic acid, and
463 trans-stilbene, respectively), but two of them are still much higher than 1%. For some compounds,
464 such as 2,2'-dipyridyl, the fit parameters yielded accurate predictions of isocratic k values across
465 the entire range of ϕ . For other compounds, such as benzonitrile, significant errors in the prediction
466 of isocratic k values were only observed at only one end of the isocratic range. For the others - 4-
467 n-butylbenzoic acid and trans-stilbene – significant prediction errors were observed at both ends

468 of the range of ϕ . These plots demonstrate a distinction between fits where the main problem is
469 that the global minimum has not been found (such as those shown in Fig. 6A/C) and fits where the
470 main problem is a lack of ‘uniqueness’ in the parameter landscape. *GlobalSearch* is better able to
471 locate the global minimum in the fitting landscape as evidenced by similarity of the standard error
472 of the fit to the standard error of the data. However, even when this algorithm was able to converge
473 upon parameters where the standard error of the fit was comparable to the standard error of the
474 noise in the data, this did not guarantee accurate predictions of isocratic k . Even worse, in practice
475 it is not obvious how one would distinguish between fits that will result in accurate vs. inaccurate
476 isocratic predictions given that the standard errors in both cases are comparable to (or better than)
477 the standard errors of the noisy data itself. For 60 out of the 61 fits in Fig. 8C, the standard errors
478 of the fit were comparable to or better than the standard errors of the data. This suggests that the
479 correlation between gradient data and the underlying NK parameters is fundamentally weaker than
480 that for isocratic data – while it is possible to recover the underlying parameters from gradient data
481 given a sufficiently small level of noise, it is much easier to do so with isocratic data. While this
482 difference is not likely to affect the accuracy of predictions of gradient k_{eff} from gradient data,
483 the impact on the accuracy of predictions of isocratic k can be significant.

484

485

486 **5. Conclusions**

487 In this work we have studied factors that affect extraction of retention model parameters from
488 isocratic and gradient and elution retention data. We have used synthetic retention data – modelled
489 after experimental data collected under isocratic reversed-phase conditions for 61
490 analyte/stationary phase pairs – to enable a detailed investigation of the factors affecting fitting of
491 data to the Neue-Kuss retention model without the complications invariably encountered with
492 experimental data. Following are the principal conclusions drawn from the study.

493

- 494 • Unsupervised fitting of synthetic, noise-free isocratic retention data using a basic trust-
495 reflective region algorithm yields fitting parameters that enable accurate recovery of the
original isocratic retention factors. When noise is added to the synthetic data to simulate

496 measurement noise, the accuracy of predictions of isocratic retention factors using the
497 fitting parameters degrades significantly, roughly in proportion to the noise level.

- 498 • Unsupervised fitting of synthetic, noise-free gradient elution retention data using the same
499 basic trust-reflective region algorithm yields fitting parameters that cannot consistently
500 accurately predict isocratic retention factors. Adding noise to the synthetic gradient
501 retention data to simulate measurement noise makes the prediction accuracy even worse.
- 502 • A good initial guess to initiate fitting using the basic trust-reflective region algorithm
503 improves the predictive accuracy of the resulting retention parameters substantially.
504 However, a significant improvement in performance demands a very high quality guess.
505 For example, starting with an initial guess only 10% different from the known model
506 parameters still produced some errors larger than 1% in isocratic retention factor, even
507 when starting with noise-free gradient retention data, and we are unaware of any current
508 approach that could provide such good initial guesses without considerable experimental
509 effort.
- 510 • Using a more sophisticated fitting algorithm that more systematically searches the
511 parameter space for the best solution – *GlobalSearch* in this case – significantly improves
512 the fitting performance for gradient retention data, compared to the use of the basic trust-
513 reflective region algorithm. However, again performance with this approach is not
514 consistent enough to be completely trusted for the purpose of extracting retention model
515 parameters to be used for predicting isocratic retention factors. Our results suggest that this
516 task is challenging for two distinct reasons: 1) the parameter space containing potential
517 model parameters is vast (particularly in the k_w parameter, which spans many orders of
518 magnitude), and in some cases populated by numerous barriers that the fitting algorithm
519 must get over to find the correct solution – this facet of the problem could be solved
520 using a *GlobalSearch* type of algorithm and a fine parameter grid, at considerable
521 computational expense (e.g., hours per fit on a typical desktop computer); and 2) there is
522 frequently a lack of ‘uniqueness’ in the parameters obtained from fitting gradient data –
523 that is, there are many combinations of model parameters that lead to fits of similar quality,
524 as measured by the standard error of the fit. This facet of the problem cannot be solved by
525 the search algorithm – it is fundamentally a challenge associated with the nature of the data
526 and the retention model. One possible strategy to alleviate this difficulty is to reparametrize

527 the model to predict the retention factor at a different mobile phase composition, i.e.,
528 instead of k_w (pure water), to a retention factor at a different organic phase composition, as
529 suggested recently by Peris-García et al. [26]. We are currently investigating the potential
530 utility of this approach to address the uniqueness problem.

531 These results suggest that with current knowledge and retention fitting algorithms it is not possible
532 to consistently obtain retention model parameters that can be used to accurately predict isocratic
533 retention factors from gradient elution retention times. This is the case even with noise-free,
534 synthetic data, where we know the correct answers. Working with experimental data will make the
535 situation worse. If one can tolerate a non-trivial error rate (e.g., more than 5% of results leading to
536 errors in isocratic $k \gg 1\%$), then using a thorough search algorithm such as *GlobalSearch* will
537 help improve the likelihood of obtaining useful results. Even so, it would be wise to somehow
538 validate the resulting parameters, perhaps using targeted isocratic experiments.

539

540 **5. Acknowledgements**

541 T.B. and D.S. acknowledge financial support from the National Science Foundation (CHE-
542 2003734) toward the completion of this study.

543

544 **References**

545 [1] Kimata, K., Iwaguchi, K., Onishi, S., Jinno, K., Eksteen, R., Hosoya, K., Araki, M.,
546 Tanaka, N., Chromatographic characterization of silica C18 packing materials. Correlation
547 between a preparation method and retention behavior of stationary phase. *J. Chromatogr.*
548 *Sci.* 1989, 27, 721–728.

549 [2] Cruz, E., Euerby, M. R., Johnson, C. M., Hackett, C. A., Chromatographic classification of
550 commercially available reverse-phase HPLC columns. *Chromatographia* 1997, 44, 151–
551 161.

552 [3] Snyder, L. R., Dolan, J. W., Carr, P. W., A new look at the selectivity of RPC columns.
553 *Anal. Chem.* 2007, 79, 3254–3262.

554 [4] Źuvela, P., Skoczylas, M., Jay Liu, J., Bączek, T., Kaliszan, R., Wong, M. W., Buszewski,
555 B., Column characterization and selection systems in reversed-phase high-performance
556 liquid chromatography. *Chem. Rev.* 2019, 119, 3674–3729.

557 [5] Grushka, E., Grinberg, N. (Eds), Advances in Chromatography. CRC Press, Boca Raton
558 2012, pp. 297–376.

559 [6] Groskreutz, S. R., Weber, S. G., Quantitative evaluation of models for solvent-based, on-
560 column focusing in liquid chromatography. *J. Chromatogr. A* 2015, 1409, 116–124.

561 [7] Moussa, A., Lauer, T., Stoll, D., Desmet, G., Broeckhoven, K., Numerical and experimental
562 investigation of analyte breakthrough from sampling loops used for multi-dimensional
563 liquid chromatography. *J. Chromatogr. A* DOI: 10.1016/j.chroma.2020.461283.

564 [8] Stoll, D. R., Sajulga, R. W., Voigt, B. N., Larson, E. J., Jeong, L. N., Rutan, S. C.,
565 Simulation of elution profiles in liquid chromatography – II: Investigation of injection

566 volume overload under gradient elution conditions applied to second dimension separations
567 in two-dimensional liquid chromatography. *J. Chromatogr. A* 2017, *1523*, 162–172.

568 [9] Rutan, S. C., Jeong, L. N., Carr, P. W., Stoll, D. R., Weber, S. G., Closed form
569 approximations to predict retention times and peak widths in gradient elution under
570 conditions of sample volume overload and sample solvent mismatch. *J. Chromatogr. A*
571 DOI: 10.1016/j.chroma.2021.462376.

572 [10] Gritti, F., Gilar, M., Hill, J., Mismatch between sample diluent and eluent: Maintaining
573 integrity of gradient peaks using *in silico* approaches. *J. Chromatogr. A* DOI:
574 10.1016/j.chroma.2019.460414.

575 [11] López-Ureña, S., Torres-Lapasió, J. R., García-Alvarez-Coque, M. C., Enhancement in the
576 computation of gradient retention times in liquid chromatography using root-finding
577 methods. *J. Chromatogr. A* 2019, *1600*, 137–147.

578 [12] Tyteca, E., Périat, A., Rudaz, S., Desmet, G., Guillarme, D., Retention modeling and
579 method development in hydrophilic interaction chromatography. *J. Chromatogr. A* 2014,
580 *1337*, 116–127.

581 [13] Dolan, J. W., Lommen, D., Snyder, L. R., DryLab computer simulation for high-
582 performance liquid chromatographic method development. II. Gradient elution. *J.*
583 *Chromatogr. A* 1989, *485*, 91–112.

584 [14] Pirok, B. W. J., Pous-Torres, S., Ortiz-Bolsico, C., Vivó-Truyols, G., Schoenmakers, P. J.,
585 Program for the interpretive optimization of two-dimensional resolution. *J. Chromatogr. A*
586 2016, *1450*, 29–37.

587 [15] den Uijl, M. J., Schoenmakers, P. J., Schulte, G. K., Stoll, D. R., van Bommel, M. R., Pirok,
588 B. W. J., Measuring and using scanning-gradient data for use in method optimization for
589 liquid chromatography. *J. Chromatogr. A* DOI: 10.1016/j.chroma.2020.461780.

590 [16] Kensert, A., Collaerts, G., Efthymiadis, K., Desmet, G., Cabooter, D., Deep Q-learning for
591 the selection of optimal isocratic scouting runs in liquid chromatography. *J. Chromatogr. A*
592 DOI: 10.1016/j.chroma.2021.461900.

593 [17] Snyder, L. R., Dolan, J. W., High-Performance Gradient Elution: The Practical Application
594 of the Linear-Solvent-Strength Model. John Wiley, Hoboken, NJ 2007.

595 [18] Neue, U. D., Kuss, H.-J., Improved reversed-phase gradient retention modeling. *J.*
596 *Chromatogr., A* 2010, 1217, 3794–3803.

597 [19] Kromidas, S. (Ed.), The HPLC Expert II: Find and Optimize the Benefits of Your
598 HPLC/UHPLC. Wiley-VCH, Weinheim 2017, pp. 101–170.

599 [20] Bos, T. S., Niezen, L. E., den Uijl, M. J., Molenaar, S. R. A., Lege, S., Schoenmakers, P. J.,
600 Somsen, G. W., Pirok, B. W. J., Reducing the influence of geometry-induced gradient
601 deformation in liquid chromatographic retention modelling. *J. Chromatogr. A* DOI:
602 10.1016/j.chroma.2020.461714.

603 [21] Tyteca, E., Guillarme, D., Desmet, G., Use of individual retention modeling for gradient
604 optimization in hydrophilic interaction chromatography: Separation of nucleobases and
605 nucleosides. *J. Chromatogr. A* 2014, 1368, 125–131.

606 [22] Navarro-Huerta, J. A., Gisbert-Alonso, A., Torres-Lapasió, J. R., García-Alvarez-Coque,
607 M. C., Testing experimental designs in liquid chromatography (I): Development and
608 validation of a method for the comprehensive inspection of experimental designs. *J.*
609 *Chromatogr. A* DOI: 10.1016/j.chroma.2020.461180.

610 [23] Vaast, A., Tyteca, E., Desmet, G., Schoenmakers, P. J., Eeltink, S., Gradient-elution
611 parameters in capillary liquid chromatography for high-speed separations of peptides and
612 intact proteins. *J. Chromatogr. A* 2014, 1355, 149–157.

613 [24] Cabooter, D., Song, H., Makey, D., Sadriaj, D., Dittmann, M., Stoll, D., Desmet, G.,
614 Measurement and modelling of the intra-particle diffusion and b-term in reversed-phase
615 liquid chromatography. *J. Chromatogr. A* DOI: 10.1016/j.chroma.2020.461852.

616 [25] Vaast, A., Tyteca, E., Desmet, G., Schoenmakers, P. J., Eeltink, S., Corrigendum to
617 “Gradient-elution parameters in capillary liquid chromatography for high-speed separations
618 of peptides and intact proteins” [J. Chromatogr. A 1355 (2014) 149–157]. *J. Chromatogr. A*
619 2014, 1366, 137.

620 [26] Peris-García, E., Ruiz-Angel, M. J., Baeza-Baeza, J. J., García-Alvarez-Coque, M. C.,
621 Comparison of the fitting performance of retention models and elution strength behaviour
622 in hydrophilic-interaction and reversed-phase liquid chromatography. *Separations* 2021, 8,
623 54.

624

625

626 **Figure Captions**

627 **Figure 1.** Description of fitting process and error evaluation. The input data for box 1 was collected
628 using 61 analyte/stationary phase pairs. All parameter sets output in box 2 had R^2 values greater
629 than 0.999 for the isocratic NK model. For the steps where *lsqnonlin* was used, the function
630 tolerance was set to 1×10^{-10} , the number of function evaluations was set to 100,000, and the
631 number of function evaluations was set to 100,000. When *GlobalSearch* was used, the number of
632 trial data points was set to 100,000 and the limits on each parameter were: $k_w = 1.0-1.0 \times 10^9$,
633 $S_1 = 5.0-400$, and $S_2 = 0.05-15$. The numbers in parentheses are referred to as box 1, etc. in the
634 text.

635 **Figure 2.** Performance of unsupervised fitting algorithm on gradient data (Table 1, Row #5).
636 Synthetic gradient retention data for fitting were generated as described in Fig. 1 (box 8) and fit as
637 described in Fig. 1 (box 11a), while data shown for comparison was calculated as described in Fig.
638 1 (box 12). The initial guess in Fig. 1 (box 10a) was chosen to be $k_w = 1.0$, $S_1 = 1.0$, and
639 $S_2 = 1.0$. Example plots of $\ln(k)$ vs. ϕ are shown for 2,2'-dipyridyl (A) and benzonitrile (B),
640 where the isocratic k_{ref} values are displayed as the red points, and the k_{fit} values calculated from
641 the fit of the synthetic gradient data are shown as the black line. The percent difference between
642 k_{ref} and k_{fit} (D) are shown for all 61 compounds, as well as a plot of k_{fit} vs. k_{ref} (C).

643 **Figure 3.** Distribution of average of the absolute value of the percent errors between isocratic k_{ref}
644 and isocratic k_{fit} after fitting noise-free gradient data with an unsupervised algorithm using several
645 initial guesses. The histograms shown contain errors for all 61 sets of parameters. Fitting data were
646 generated as described in boxes 8 and 11a of Fig. 1, with percent errors calculated as described in
647 box 12. The initial guess in box 10a was chosen using the equation $x_0 = \alpha \times x_{ref}$, where x_{ref}
648 is the parameter set obtained in box 2 and α is a multiplier. α values for each plot were: 1×10^{-8} (a),
649 1 (b), 1.1 (c), and 2 (d).

650 **Figure 4.** Plot of sum of squared differences (SSD) between gradient k_{eff} values calculated using
651 either 'reference' NK parameters (Fig. 1, box 2)), or a set of parameters indicated by a point in the
652 three-dimensional space, for ten different gradient times. Reference parameters were: A)
653 $k_w = 2.077 \times 10^8$, $S_1 = 199.5$, and $S_2 = 7.297$ for amitriptyline (a) on SB-C18; and B)
654 $k_w = 63.89$, $S_1 = 63.98$, and $S_2 = 7.344$ for 2,2'-dipyridyl. Gradient parameters were

655 $\phi_0 = 0.05$, $\Delta\phi = 0.65$, $t_d = 0$ min, and $t_0 = 0.1$ min. Effective retention factors were
656 calculated using Eq. 3.

657 **Figure 5.** Plot of average of the absolute values of the percent difference between isocratic k
658 values calculated using either ‘reference’ NK parameters (Fig. 1, box 2)) (k_{ref}), or a set of
659 parameters obtained by fitting gradient k_{eff} values using a point in the three-dimensional space
660 as an initial guess, for ten different ϕ values between ϕ_{lower} and ϕ_{upper} (k_{fit}). Reference parameters
661 were $k_w = 2.077 \times 10^8$, $S_1 = 199.5$, and $S_2 = 7.297$ for amitriptyline (A) on SB-C18 and
662 $k_w = 63.89$, $S_1 = 63.98$, and $S_2 = 7.344$ for 2,2'-dipyridyl (B). Gradient conditions were the
663 same as those used in Fig. 5. Noise-free synthetic gradient retention data were fit with *lsqnonlin*
664 in MATLAB using the trust-region-reflective algorithm with the number of iterations set to
665 100,000, the number of function evaluations set to 100,000, and the function tolerance set to 1×10^{-10} .
666

667 **Figure 6.** Fits obtained after applying the basic unsupervised fitting algorithm (Fig. 1 (box 11a))
668 to synthetic gradient retention data (Fig. 1 (box 8)) for 2,2'-dipyridyl using several different initial
669 guesses as the starting point. Plots A-C show the final fit (solid line) to the gradient retention data
670 (red points) for each starting point, while plots D-F show comparisons of the corresponding
671 isocratic predictions (k_{fit} ; black line) to k_{ref} (red points) (Fig. 1 (box 12)). The reference
672 parameters (and those converged to in plot (B)) were $k_w = 63.89$, $S_1 = 63.98$, and $S_2 = 7.344$;
673 the parameters converged to in plot (A) were $k_w = 1.116 \times 10^9$, $S_1 = 2.318 \times 10^3$, and
674 $S_2 = 87.38$; the parameters converged to in plot (C) were $k_w = 1.132 \times 10^9$, $S_1 = 2.321 \times 10^3$,
675 and $S_2 = 87.43$.

676 **Figure 7.** Distributions of average of the absolute value of the percent differences (Fig. 1 (box 7))
677 between k_{ref} and k_{fit} after fitting noisy gradient retention data (Fig. 1 (box 8/9)) using an
678 unsupervised algorithm (Fig. 1 (box 10a/11a)) for all 61 sets of NK parameters and different noise
679 levels: A) $\sigma = 0\%$; B) $\sigma = 0.05\%$; C) $\sigma = 0.5\%$. The initial guess in Fig. 1 (box 10a) was chosen to
680 be $k_w = 1.0$, $S_1 = 1.0$, and $S_2 = 1.0$.

681 **Figure 8.** Distributions of average of the absolute value of the percent differences (Fig. 1 (box 7))
682 between k_{ref} and k_{fit} after fitting noisy gradient retention data (Fig. 1 (box 8/9)) using a the

683 *GlobalSearch* algorithm (Fig. 1 (box 10b/11b)) for all 61 sets of NK parameters and different noise
684 levels: A) $\sigma = 0\%$; B) $\sigma = 0.05\%$; C) $\sigma = 0.5\%$.

685 **Figure 9.** Fits obtained after applying the *GlobalSearch* fitting algorithm (Section 3.2.2.2, and Fig.
686 1 (box 11b)) to synthetic gradient retention data with 0.5% relative noise added (Fig. 1 (box 8))
687 for several compounds. Plots A-D show the fit produced by *GlobalSearch* (solid line) to the
688 synthetic gradient data (red points), while plots E-H show comparisons of the corresponding
689 isocratic predictions (k_{fit} ; black line) to k_{ref} (red points) (Fig. 1 (box 12)). Panels A and E
690 correspond to 2,2'-dipyridyl; B and F correspond to benzonitrile; C and G correspond to 4-n-
691 butylbenzoic acid; and D and H correspond to trans-stilbene. For each fit shown in A-D, the
692 standard error of the fit was either equivalent to the standard error of the noise (determined by F-
693 test) or was lower. The mean residual percent errors for plots E-H were 0.392, 3.49, 1.16×10^3 , and
694 39.1%, respectively when calculated over the range $0 < \phi < 1.0$. Reducing the range to $0.05 < \phi <$
695 0.7 reduces the errors to 0.2, 2.0, 148, and 36%, respectively.

696