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Abstract 25 

In liquid chromatography (LC), it is often very useful to have an accurate model of the retention 26 

factor, k, over a wide range of isocratic elution conditions. In principle, the parameters of a 27 

retention model can be obtained by fitting either isocratic or gradient retention factor data. 28 

However, in spite of many of our own attempts to accurately predict isocratic k values using 29 

retention models trained with gradient retention data, this has not worked in our hands. In the 30 

present study we have used synthetic isocratic and gradient retention data for small molecules 31 

under reversed-phase LC conditions. This allows us to discover challenges associated with 32 

predicting isocratic k’s without the confounding influences of experimental issues that are difficult 33 

to model or eliminate. The results indicate that it is not currently possible to consistently predict 34 

isocratic retention factors for small molecules with accuracies better than 10%, even when using 35 

synthetic gradient retention data. Two distinct challenges in fitting gradient retention data were 36 

identified: 1) a lack of ‘uniqueness’ in the parameters; and 2) an inability to find the global 37 

optimum fit in a complex fitting landscape. Working with experimental data where measurement 38 

noise is unavoidable will only make the accuracy worse.  39 

  40 



1. Introduction 41 

Several aspects of simulation and method development in reversed-phase (RP) liquid 42 

chromatography depend on isocratic retention data. For example, most models of RP selectivity 43 

that are used to guide column selection (i.e., either to identify columns with similar or dissimilar 44 

selectivities) for small molecule separations are built upon selectivity measurements made under 45 

isocratic conditions [1–5]. Also, the theories used to make predictions about the effect of injection 46 

volume and sample composition on peak shapes (i.e., volume overload and mobile phase / sample 47 

solvent mismatch) depend on the availability of isocratic retention data for analytes of interest in 48 

solvents corresponding to the sample and mobile phase compositions [6–10]. In contrast, retention 49 

models (e.g., DryLab and similar tools) are often built as a part of method development using 50 

training data obtained under gradient elution conditions [11–14]. In the course of predicting 51 

optimal separation conditions these tools may suggest gradient conditions with very shallow 52 

gradient slopes; as these slopes become more and more shallow, they approach isocratic 53 

conditions. It is understood that such predictions are error-prone if they involve extrapolation to 54 

gradient slopes outside of the scope of the training data [15]. 55 

Making isocratic retention measurements directly for the purposes listed above can be time-56 

consuming, because unless the retention behavior of the molecules of interest are already known, 57 

many initial experiments will fail due to conditions that produce retention factors that are too low 58 

or too high to be useful [16]. It would be incredibly useful in practice to be able to make retention 59 

measurements under gradient elution conditions, and from these measurements extract retention 60 

model parameters (i.e., fits of the data to retention models such as the Linear Solvent Strength 61 

(LSS) model [17], or the Neue-Kuss (NK) model [18]) that can be used to accurately predict 62 

retention under both isocratic and gradient conditions. This could potentially save a lot of time in 63 

the process of collecting the training data because gradient methods are better suited to mixtures 64 

of analytes, and because conditions can be chosen easily that will likely retain analytes that tend 65 

to be poorly retained, while also avoiding retention that is too high (i.e., with a gradient running 66 

from 5 to 90% ACN). In spite of many attempts to implement this type of scheme over the past 67 

decade, this has been largely unsuccessful in our hands. Our experience has been that isocratic 68 

predictions made using retention model parameters extracted from retention data collected under 69 

gradient elution conditions are always too inaccurate to be useful for practical application (e.g., 70 

errors always larger than 1%, and usually much larger than 1%). We have considered a long list 71 



of experimental complications that are difficult to capture in retention models that might be 72 

compromising our efforts. For example, it is understood that even modern UHPLC pumps do not 73 

produce solvent gradients with perfect accuracy and linearity [19,20]. In our experiments, we have 74 

chosen conditions that should mitigate these complications (e.g., using 50 mm x 4.6 mm i.d. 75 

columns with 5 micron particles to minimize extra-column effects, viscous heating, pressure 76 

effects on retention, and gradient non-linearity at low flow rates). However, even under these well 77 

controlled conditions, we and others have not been able to regularly obtain accurate isocratic 78 

retention predictions (errors < 1%) from training data collected under gradient conditions [21–23]. 79 

These experiences have led us to the present work, which aims to understand the factors that lead 80 

to inaccurate predictions for isocratic retention factors calculated using retention parameters 81 

obtained from fitting gradient retention data. In this work, we use synthetic data so that the study 82 

is not affected by experimental complications that are difficult to eliminate, such as gradient delays 83 

and distortions. 84 

In this study we first determined isocratic retention factors experimentally for a variety of small 85 

molecules under RP conditions using 61 different analyte/stationary phase pairs. Retention 86 

parameters were then extracted from these data by fitting them to the NK model. The resulting 87 

parameters were treated as “reference retention parameters”, and were used to calculate a set of 88 

“reference retention factors”, kref. Using the reference retention parameters, different sets of 89 

synthetic isocratic or gradient retention data were produced, with or without simulated 90 

measurement noise added. Each set of synthetic data was then fit to the NK model to obtain 91 

retention parameters using different fitting approaches. In this work, we have focused our attention 92 

on the NK model, because in our experience it provides good isocratic predictions for a broad 93 

range of molecules and experimental conditions. Finally the retention parameters were used to 94 

predict isocratic retention factors, which were then compared to the kref values and evaluated for 95 

their accuracy.  96 

 97 

2. Experimental 98 

2.1 Collection of experimental isocratic retention data 99 

2.1.1 – Chemicals 100 



Milli-Q water (18.2 MΩ) was obtained from a Millipore purification system (Burlington, MA). 101 

All analyte compounds, ammonium hydroxide (28-30%), formic acid (> 95%), and acetonitrile 102 

(ACN) were purchased from Sigma-Aldrich (St. Louis, MO) and used as-is. The cis- isomer of 103 

chalcone was obtained by exposing a solution of the trans- isomer in ACN to sunlight at room 104 

temperature for one day. Stock solutions for each analyte were prepared at 10 mg/mL in either 105 

neat ACN or 50/50 ACN/water. Analytical samples were prepared by diluting the stock solutions 106 

to either 0.2 or 5.0 mg/mL using 50/50 ACN/water as needed to give a peak height greater than 10 107 

mAU at 254 nm. The analytes used in this study are listed in the Supplemental Information, Table 108 

S1. 109 

 110 

2.1.2 – Mobile phase preparation 111 

The aqueous component of the mobile phase, which we refer to as 25 mM ammonium formate, 112 

pH 3.2, was prepared gravimetrically in 2-L batches, according to the following recipe. To a 2-L 113 

solvent bottle were added 1986.2 g of water, 2.92 g of ammonium hydroxide (29.1%), and 9.92 g 114 

of formic acid (97.4%). The solution was used after mixing thoroughly without any further pH 115 

adjustment. 116 

 117 

2.1.3 – Instrumentation, columns, and conditions 118 

Retention measurements were made using an Agilent HPLC system (Waldbronn, Germany). The 119 

system included a binary pump (G4220A) with Jet Weaver V35 Mixer (G4220-68135), 120 

autosampler (G7167A), thermostatted column compartment (G1316C), and diode-array detector 121 

(DAD) (G4212A) equipped with a Max-Light Cartridge Cell (G4212-60038, 10 mm path length). 122 

The system was controlled using Agilent OpenLAB CDS Chemstation Edition (Rev. C.01.10). 123 

The injection volume for each analysis was 0.15 µL. Two columns were used in this work: 1) 124 

Agilent Zorbax SB-C18 (5 mm x 2.1 mm i.d., 1.8 µm); 2) Agilent Zorbax Bonus RP (5 mm x 2.1 125 

mm i.d., 1.8 µm) (see Table S1). 126 

The flow rate for all measurements was 1.0 mL/min., and the temperature was 40 °C. Mobile 127 

phases were “machine-mixed” by the binary pump. A minimum of five mobile phases were used 128 



for each compound, where the compositions were chosen such that all retention factors were 129 

between 1 and 50, but roughly evenly spaced in that range. Five replicate retention measurements 130 

were made at each composition, and the means of these values were used as described in Section 131 

3.1. 132 

 133 

2.1.4 – Retention factor calculations 134 

Isocratic retention factors were calculated using Eq. 1, where the column dead time (tm) and the 135 

extra-column time (tex) were determined using uracil (0.1 mg/mL) in a mobile phase of 50/50 136 

ACN/buffer. We are well aware that these conditions do not provide the most accurate measure of 137 

the column dead time [24], however a small inaccuracy in this value will have no effect on the 138 

conclusions we draw from the study described in this paper. Based on other work in our laboratory 139 

we have made a correction to these k values to compensate for the volume of the column frits that 140 

is normally unaccounted for in the measurements of tex, and important when working with columns 141 

as small as those used here. This correction amounts to an increase all k values of about 20%; 142 

details the provide the basis for this correction will be published separately elsewhere, but should 143 

have no influence on the conclusions that follow from this study. 144 
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 146 

3. Calculations 147 

3.1 Initial fitting of experimental isocratic data 148 

The experimental 𝑘 vs. 𝜙 data were fit to the NK model [18], described by the equation 149 

ln(𝑘) = ln(𝑘𝑤) + 2 ln(1 + 𝑆2𝜙) − 
𝑆1𝜙

1+ 𝑆2𝜙
    (2) 150 

where 𝑘𝑤 is the retention factor in pure weak solvent, 𝑆1 is analogous to the slope of ln(k) vs. 𝜙 in 151 

LSS theory [17], and 𝑆2 accounts for any curvature in the ln(k) vs. 𝜙 plot. Fitting was performed 152 

with the lsqnonlin function in MATLAB using the trust-region reflective algorithm, which 153 

required an initial guess for each parameter. This initial guess for lsqnonlin was generated by 154 



setting 𝑆2 = 0 and computing the closest straight-line approximation of ln (𝑘) vs. 𝜙 to give 155 

approximate values for 𝑆1 and 𝑘𝑤. These approximate values were then used with 𝑆2 = 0 as the 156 

initial guess for lsqnonlin, with the algorithm set to run for a maximum of 1×106 iterations, 1×106 157 

function evaluations, and to minimize to a function tolerance of 1×10-10. If this procedure did not 158 

result in a reasonable fit to the data as measured by correlation coefficients (R2 > 0.999), the initial 159 

guess was manually tuned and lsqnonlin was run again until a reasonable fit was obtained. In total, 160 

61 sets of parameters were obtained and used as described below. The three-dimensional space 161 

occupied by the parameters is shown in Fig. S1. In Fig. 1 (box 2) these parameters are referred to 162 

as the “reference” values of S1, S2, and kw. We note that all fitting results reported throughout this 163 

paper refer to fits of synthetic data generated using these “reference” values. 164 

3.2 Generation and fitting of synthetic retention data 165 

3.2.1 Isocratic elution 166 

To generate synthetic isocratic retention data for fitting, the reference values of 𝑘𝑤, 𝑆1, and 𝑆2 167 

were used in combination with Eq. 2 to calculate the 𝜙 values that correspond to 𝑘 values of 1 168 

(𝜙𝑢𝑝𝑝𝑒𝑟) and 50 (𝜙𝑙𝑜𝑤𝑒𝑟). Ten evenly spaced data points (with respect to 𝜙) were then selected 169 

between 𝜙𝑢𝑝𝑝𝑒𝑟 and 𝜙𝑙𝑜𝑤𝑒𝑟. Retention factors were calculated using these 𝜙 values; these are 170 

referred to hereafter as kref (Fig. 1 (box 3)).  In cases where noisy synthetic data were used, five 171 

replicates at each 𝜙 value were generated with normally distributed noise with a specified standard 172 

deviation, . The synthetic ln(𝑘) vs. 𝜙 data were then fit to a straight line to give approximate 173 

values of ln (𝑘𝑤) and 𝑆1 (Fig. 1 (box 5)). These approximate values were then used with 𝑆2  = 0 174 

to provide an initial guess for lsqnonlin, which then fit the ln(𝑘) vs. 𝜙 data to Eq. 2 (Fig. 1 (box 175 

6)). Errors were calculated as mean residual percent errors (MRPE) using Eq. 3 (Fig. 1 (box 7)) 176 

𝑀𝑅𝑃𝐸 = 
∑

𝑘𝑓𝑖𝑡−𝑘𝑟𝑒𝑓

𝑘𝑟𝑒𝑓
×100𝑛

𝑖=1

𝑛
     (3) 177 

where 𝑛 is the number of datapoints, kfit is the retention factor predicted by the fit model (Fig. 1 178 

(box 6)), and kref  is the ‘reference’ retention factor predicted by the ‘reference’ parameters obtained 179 

from the initial fitting of the experimental isocratic data (Fig. 1 (boxes 2,3)). For each fit, kfit and 180 

kref were calculated for ten points in the range of 
lower upper    . 181 



3.2.2 Gradient elution 182 

In Fig. 1, the step in box 2 was followed by determination of gradient times (tg) that would give 183 

effective retention factors (keff) between 1 and 50, where keff was calculated using Eqs. 4a and 4b 184 

[23,25] 185 

𝑘𝑒𝑓𝑓 =  
𝑡𝐷
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 187 

𝛽 = 
𝜙𝑓− 𝜙𝑖

𝑡𝑔
      (4b) 188 

where 𝑡𝐷 is the gradient delay time, 𝑡0 is the column dead time (0.1 min), 𝜙𝑖 is the solvent 189 

composition used at the starting point in the gradient (𝜙𝑖 = 0.05 was used here), 𝜙𝑓 is the solvent 190 

composition used at the endpoint in the gradient (𝜙𝑓 = 0.70 was used here), and 𝑡𝑔 is the duration 191 

of the gradient. Equation 4a was solved for the gradient times corresponding to 𝑘𝑒𝑓𝑓 = 1 (𝑡𝑔,𝑙𝑜𝑤𝑒𝑟) 192 

and 𝑘𝑒𝑓𝑓 = 50 (𝑡𝑔,𝑢𝑝𝑝𝑒𝑟) for each set of parameters. If the lower bound on 𝑘𝑒𝑓𝑓 could not be reached 193 

for a given analyte, then 𝑡𝑔,𝑙𝑜𝑤𝑒𝑟 was set to be equal to 0.1 min greater than 𝑡𝑔,𝑚𝑖𝑛, where 𝑡𝑔,𝑚𝑖𝑛 194 

was defined as the shortest gradient time providing elution of the analyte within the gradient time 195 

(i.e., tr < tg), and calculated as  196 

𝑡𝑔,𝑚𝑖𝑛 =

(𝜙𝑓− 𝜙𝑖) 𝑘𝑤 𝑆1( 𝑡0−
𝑡𝐷

𝑘𝑤(1+𝑆2)
2
𝑒
− 

𝑆1𝜙𝑖
1+ 𝑆2𝜙𝑖

) 𝑒
− 

𝑆1𝜙𝑖
1+ 𝑆2∗𝜙𝑖

𝑒

(𝜙𝑓− 𝜙𝑖)𝑆1

1 + 𝑆2(𝜙𝑖 + 𝜙𝑓)+ 𝑆2
2𝜙𝑖 𝜙𝑓−1

                    (4c) 197 

 198 

Similarly, if the upper bound on 𝑘𝑒𝑓𝑓 could not be reached (i.e., keff,max < 50, given 𝜙𝑖 = 0.05), 199 

𝑡𝑔,𝑢𝑝𝑝𝑒𝑟 was set to be 15 min. Then, ten evenly spaced gradient times were then selected between 200 

𝑡𝑔,𝑙𝑜𝑤𝑒𝑟 and 𝑡𝑔,𝑢𝑝𝑝𝑒𝑟, and 𝑘𝑒𝑓𝑓 was calculated using Eq. 4a for each value of tg. In the case where 201 

noise was added to synthetic retention data (Fig. 1 (box 9)), the same procedure was used as 202 

described in Section 3.2.1. 203 



Three different strategies were used to fit the synthetic gradient retention data (Fig. 1 (boxes 10a-204 

c/11a-c)), with each yielding a set of S1, S2, and kw values. A summary of the approaches used for 205 

fitting both isocratic and gradient data, and the corresponding results, is given in Table 1. 206 

 207 

3.2.2.1 - Basic Fitting Procedure (Fig. 1 (box 10a/11a)) 208 

The 𝑘𝑒𝑓𝑓 vs. 𝑡𝑔 data were fit to Eq. 4a using the lsqnonlin algorithm with small positive, non-zero 209 

initial guesses for each parameter (i.e., S1, S2, kw all equal to 1 (Fig. 1 (box 10a)). 210 

 211 

3.2.2.2 - Global Search Fitting Procedure (Fig. 1 (box 10b/11b)) 212 

The 𝑘𝑒𝑓𝑓 vs. 𝑡𝑔 data were fit to Eq. 4a using the GlobalSearch algorithm in MATLAB, rather than 213 

lsqnonlin, with bounds for each parameter set at 𝑘𝑤 =  1.0 to 1.0×109, 𝑆1 =  5.0 to 400, and 214 

𝑆2 =  0.05 to 15. GlobalSearch generates a large number of initial guesses within these bounds 215 

and evaluates them using the fmincon fitting algorithm (a constrained function minimizer using 216 

the interior-point approach and 100,000 start points) before returning the best set of fit parameters. 217 

This best set was then further refined using the lsqnonlin algorithm. 218 

 219 

3.2.2.3 – Fitting Procedure with Parameter Scanning (Fig. 1 (box 10c/11c)) 220 

The 𝑘𝑒𝑓𝑓 vs. 𝑡𝑔 data were fit to Eq. 4a using lsqnonlin with 𝑆2 fixed at 0 in order to provide 221 

approximate values for 𝑘𝑤 and 𝑆1. Multiple fits were then performed using lsqnonlin along with 222 

the estimates of 𝑘𝑤 and 𝑆1, along with multiple values of 𝑆2 in the range of 0-15 at 0.01 unit 223 

increments, with the best fit parameters reported at the end. 224 

Following each fitting procedure, errors were evaluated in the same way as described in Section 225 

3.2.1. The S1, S2, and kw values obtained from a fit of gradient retention data were used to calculate 226 

isocratic retention factors (kfit; Fig. 1 (box 12)) and compared to the 𝑘𝑟𝑒𝑓 values calculated from 227 

the ‘reference’ parameters (Fig. 1 (box 2)). 228 



4. Results and Discussion 229 

4.1 Fitting noise-free isocratic data 230 

In order to ensure that lsqnonlin was an appropriate choice of algorithm for determining parameters 231 

for the NK model, the procedure for isocratic fitting described in Fig. 1 (boxes 5, 6) was applied 232 

to synthetic isocratic data generated (Fig. 1 (box 3); no noise added) using the 61 parameter sets 233 

(Fig. 1 (box 2)). In the Supporting Information we provide several figures that illustrate the 234 

characteristics of these fits. Figure S2A shows the fit for 2,2’-dipyridyl, and Fig. S2B shows the 235 

fit for benzonitrile. Figures S2C and S2D show the kfit values and the error in the kfit values for all 236 

61 parameter sets. In one case (berberine, SB-C18, see Fig. S2D), errors of about 0.1% in k were 237 

observed due to slow progress toward the correct parameters near the minimum of the objective 238 

function, rather than convergence to an incorrect set of parameters. Otherwise, given a sufficiently 239 

good initial guess (based on a linear approximation of ln(k) vs. ϕ; see Section 3.2.1) and noise-free 240 

data, the lsqnonlin algorithm consistently converged on correct NK parameters, producing 241 

isocratic kfit values (Fig. 1 (box 7)) that were within 0.01% of the kref values (Fig. 1 (box 3)). In 242 

other words, the algorithm works well in the case of fitting noise-free isocratic data. The numerical 243 

values of the parameters from each fit are provided as Supporting Information in Table S1.   244 

 245 

4.2 Fitting noisy isocratic retention data 246 

Figure S3 shows the impact of adding noise to synthetic isocratic retention data (Fig. 1 (box 4)) 247 

on the errors (Fig. 1 (box 7)) obtained from fitting using the basic approach illustrated described 248 

in Section 3.2.1 (Fig. 1 (box 6)). As discussed in Section 4.1, Fig. S3A shows that in the absence 249 

of noise, an initial guess calculated by simply fitting a straight line to a plot of ln(k) vs. ϕ (Fig. 1 250 

(box 5)) is sufficient for the lsqnonlin algorithm to find parameters that enable accurate predictions 251 

of isocratic 𝑘 values with average errors below 0.001%. This is the same type of result shown in 252 

Fig. S2, but now for all 61 parameter sets, and the errors plotted in a histogram. This was not a 253 

surprising result, as the lack of noise combined with the good initial guess meant that the fitting 254 

algorithm was able to reach a high level of accuracy in the fit parameters given enough iterations. 255 

This result also provides a baseline against which we can compare results obtained after fitting 256 

retention with noise added to synthetic data. Figure S3B shows the effect of adding noise at 0.05% 257 



(see Section 3.2.1; 100*σ/k = 0.05) to the synthetic retention data. While all but one fit resulted in 258 

less than 1% average prediction error, the distribution of errors shifted towards larger errors, 259 

indicating that adding noise imposes a limit on the accuracy of the predictions. Figure S3C shows 260 

that the distribution of errors shifts even further to the right when the added noise is increased to 261 

0.5%. The fraction of fits with >1% average error in predicting isocratic 𝑘 values rose to 26.2%, 262 

indicating that even isocratic fits with a good initial guess are not immune to the effects of 263 

increasing levels of measurement noise. 264 

 265 

4.3 Fitting noise-free gradient data 266 

Using the same underlying parameters (Fig. 1 (box 2)), a similar investigation was conducted using 267 

synthetic gradient retention data instead of synthetic isocratic retention data. Figure 2 shows 268 

representative fits for two specific compounds (A - 2,2’-dipyridyl, and B - benzonitrile), and a 269 

summary of errors obtained for all 61 fits (Panels C and D). A significant difference between fitting 270 

the isocratic (Section 4.1) and gradient (Section 4.3) data is related to the initial guess used to 271 

initiate the lsqnonlin algorithm. Whereas in the isocratic case (Section 4.1) we were able to 272 

compute an initial guess for each fit by first approximating Eq. 2 with a linear relationship, this is 273 

not the case when fitting to Eq. 4, as there is no obvious analogous approximation that can be 274 

made. Therefore, for each fit leading to the results shown in Fig. 2, the initial guess was chosen to 275 

be 𝑘𝑤 =  1.0, 𝑆1 =  1.0, and 𝑆2 =  1.0. While Fig. 2B shows that starting with this simple guess 276 

led to a fit that resulted in accurate predictions of isocratic 𝑘 values for some compounds such as 277 

benzonitrile (SB-C18), Fig. 2A shows that the same procedure fails significantly in other cases 278 

(2,2’-dipyridyl; SB-C18). Figures 2C/D show how extensive the disagreement between 𝑘𝑓𝑖𝑡 and 279 

𝑘𝑟𝑒𝑓 was in general, as the percent error in 𝑘 ranged anywhere from about 0 to 10,000%. The 280 

numerical values of the parameters from each fit are provided as Supporting Information in Table 281 

S2.  Specifically, for the 61 cases investigated, 27 cases yielded parameters within 0.1 % of the 282 

‘reference’ parameters; the remaining cases resulted in parameters that showed dramatic deviations 283 

from the ‘reference’ values. This is a very important result. Even though we have started with the 284 

same parameter sets (Fig. 1 (box 2)) for fitting the isocratic (Section 4.1) and gradient (Section 285 

4.3) data, fitting noise-free isocratic retention data consistently yields highly accurate retention 286 

parameters, whereas fitting noise-free gradient retention data does not, at least when a simple initial 287 



guess is used. In the case of the gradient data, the resulting fits are so bad they cannot be trusted at 288 

all. 289 

 290 

4.3.1 Effect of Initial Guess on Fitting Gradient Retention Data 291 

Figure 3 shows the impact of using different initial guesses on the quality of fitting noise-free 292 

synthetic gradient retention data using the lsqnonlin algorithm (Fig. 1 (box 11a). Each panel in 293 

Fig. 3 is a histogram of the errors (i.e., average difference between kref (Fig. 1 (box 8)) and kfit (Fig. 294 

1 (box 12)); logarithmic x-axis) obtained for all 61 parameter sets (Fig. 1 (box 2)) using initial 295 

guesses that were different from the reference parameters by a multiplier 𝛼. Panels A and B show 296 

the most and least challenging cases, with α equal to 1 x 10-8 or unity, respectively. In other words, 297 

Panel A shows the errors obtained when the initial guess is kw = 1 x 10-8×kw,ref, S1 = 1 x 10-8×S1,ref, 298 

and S2 = 1 x 10-8×S2,ref , and Panel B shows the errors obtained when the fitting procedure is 299 

initiated with the same parameters (Fig. 1 (box 2)) used to produce the synthetic retention data. 300 

The results in Panel B show that the fitting procedure works correctly when the initial guess is 301 

very close to the correct solution. On the other hand, starting with guesses near zero for all three 302 

parameters yields poor results (i.e., errors >> 1%) for 50% of the observations. Figure 3C, shows 303 

that increasing the values of the initial guess just 10% beyond the reference values (i.e., 𝛼 = 1.1) 304 

resulted in errors larger than 1% about 9% of the time. Scaling the initial guess even farther from 305 

the reference parameters resulted in larger errors, as one might expect. Figure 3D shows results 306 

for guesses with α = 2, where we see that 18% of the fits produced average errors larger than 1%. 307 

These results make it clear that the initial guess provided to the fitting algorithm plays a critical 308 

role in determining whether or not the lsqnonlin algorithm converges on the correct NK 309 

parameters. 310 

In attempt to understand why the initial guess influenced the accuracy of fitting gradient retention 311 

data using the lsqnonlin algorithm so strongly, visualizations of the fitting space were constructed. 312 

Figure 4 shows three-dimensional plots (one for amitriptyline, and one for 2,2’-dipyridyl) of the 313 

value of the sum of squared differences (SSD) between the gradient 𝑘𝑒𝑓𝑓 values calculated (Eq. 4) 314 

using the ‘reference’ fitting parameters (Fig. 1 (box 2)) and the 𝑘𝑒𝑓𝑓 values calculated using the 315 

parameters indicated by a point in the space (i.e., each point in the space represents a possible 316 



combination of kw, S1, S2 the algorithm may encounter in fitting the data). Each data point is colored 317 

to indicate the value of the SSD at that point, with the color applied on a logarithmic scale given 318 

the many orders magnitude spanned by the objective function. In both Fig. 4A and Fig. 4B we 319 

observe multiple, broad regions populated by relatively low SSD values separated by “sheets” of 320 

large SSD values, which we refer to as “barriers” that fitting algorithms must get over or through 321 

on the way to finding the global minimum.  For Fig. 4A, the maxima in the SSD values populate 322 

a curved surface (yellow/orange band), which cut the fitting space into two regions where the 323 

correct parameters for amitriptyline were located on one side of the surface and the other side is 324 

quite “flat” with no major barriers populated by large SSD values. A band of low SSD values (dark 325 

blue) was also present in the plot, which includes the values of the ‘reference’ parameters (Fig. 1 326 

(box 2)). The maxima acted as a barrier to the fitting algorithm, as any initial guess placed in the 327 

region opposite to the one that contained the ‘reference’ parameters always resulted in a fit that 328 

moved away from the correct minimum, as the algorithm will always move in a direction that 329 

decreases the value of the sum of squared differences. Likewise, an initial guess placed in a region 330 

of uniform color was not likely to converge on the correct set of parameters as the objective 331 

function was flat in that space – while it was not flat in a three-dimensional sense, it was flat in a 332 

four-dimensional one, as moving to any point nearby in the fitting space did not cause a significant 333 

change in the value of the sum of squared differences. For Fig. 4B, the fine structure of the maxima 334 

are more obvious due to the scaling of the plot. The maxima formed shells that split the fitting 335 

space into multiple regions, with the ‘reference’ parameters for 2,2’-dipyridyl only located within 336 

one of the shells. For this parameter set, any initial guess that was made would have converged on 337 

the minimum of the SSD in the corresponding shell and returned the location of this local minimum 338 

as the fit parameters. In this case, finding the correct, ‘true’ parameters is highly unlikely, as this 339 

would require the algorithm to get over/through multiple barriers, whereas in the case of Fig. 4A 340 

there is only one major barrier involved.  341 

Figure 5 shows the mean percent difference between isocratic retention factors 𝑘𝑟𝑒𝑓 and 𝑘𝑓𝑖𝑡 342 

obtained by fitting noise-free synthetic gradient retention data using lsqnonlin with the indicated 343 

point in the three-dimensional space as the initial guess. For Fig. 5A, three distinct regions are 344 

observed: 1) initial guesses that result in fits with negligible error in 𝑘𝑓𝑖𝑡 (dark blue points); 2) 345 

initial guesses that result in a large amount of error (red points); and 3) initial guesses that result 346 

in a (relatively) moderate amount of error (light blue points). The boundary separating the regions 347 



of high and low errors mirrors the location of the maxima in the SSD plot in Fig. 4A, confirming 348 

that the fitting algorithm could not penetrate the barrier in the objective function that separates the 349 

parameter space into two main parts. It is also clear that on each side of the barrier there are 350 

multiple local minima in the objective function, and that these minima lead to very different levels 351 

of prediction error (105% and 1020%). However, Fig. 5A also shows that being on the same side 352 

of the barrier as the ‘true’ parameters was not sufficient to guarantee convergence to the ‘true’ 353 

parameters, as starting with an initial guess located too far from the ‘true’ parameters sometimes 354 

yielded prediction errors greater than 105%. This was likely due to the SSD surface being flat in 355 

this region, as indicated by Fig. 4A, which prevented the fitting algorithm from making significant 356 

progress toward the correct parameters. Note that in the presence of noise, the effective ‘flatness’ 357 

of the SSD surfaces will be enhanced, causing even more difficulties in converging to the kref 358 

values. Figure 5B shows the same type of mean isocratic retention factor error plot, but for 2,2-359 

pydridyl. Comparing Figs. 4B and 4B we see a similar mirroring of the characteristics in these 360 

plots that we observed with Figs. 4A and 5A. Whereas the boundary between the regions of low 361 

and high error in Fig. 8A closely resembled a plane, in Fig. 5B we see a shell-like structures similar 362 

to those in Fig. 4A where the magnitude of the prediction error depended on which shell the initial 363 

guess was located. The region that produced the lowest prediction error was again the shell that 364 

contained the ‘reference’ parameters, while initial guesses located in any other shell resulted in 365 

prediction errors that ranged from 105 to 1015%. The largest errors corresponded to the initial 366 

guesses located close to the 𝑘𝑤 axis (where the initial guess for 𝑆1 approaches 0). Note that the 367 

basins of convergence for both Fig. 5A and Fig. 5B (regions where the prediction error is 368 

negligible) did not conform to a simple geometric shape, making a useful mathematical description 369 

of the shape of these regions difficult. Manual inspections of the parameter landscapes in Figs. 4 370 

and 5 showed that the regions corresponding to very large errors often involve combinations of S1, 371 

S2, and kw that lead to chromatographically unrealistic outcomes. In principle the apparent barriers 372 

in the fitting landscape could be avoided by preventing the fitting algorithm from evaluating 373 

combinations of parameters that lead to chromatographically unrealistic outcomes, but this would 374 

eliminate the possibility of unsupervised fitting, and at this point it time we do not know how 375 

transferrable the behavior illustrated in Figs. 4 and 5 are to other compounds, columns, and 376 

conditions. This is an area of ongoing study. Readers interested in the fine structure of the cubes 377 



in Fig. 5 are referred to movies provided as Supplemental Information that have been constructed 378 

by viewing one slice of the cube at a time (see Section S3). 379 

Figure 6 gives some insight as to what the barriers in Fig. 4 and the various regions of error in Fig 380 

5 corresponded to in terms of fit quality. Figure 6A shows the final fit (black line) to the synthetic 381 

gradient retention data (red points) for 2,2’-dipyridyl, while Fig. 6D shows the corresponding 382 

comparison of isocratic predictions (𝑘𝑓𝑖𝑡) to 𝑘𝑟𝑒𝑓. The initial guesses used in these cases were 𝑘𝑤 383 

= 1.0, 𝑆1 = 1.0, and 𝑆2 = 1.0, which fell into a region with approximately 106% error. Figures 6B/E 384 

show the results obtained when the initial guess was shifted to 𝑘𝑤 = 7.0, 𝑆1 = 7.0, and 𝑆2 = 0.0. 385 

Although this initial guess was only 9% closer to the ‘reference’ parameters, the average error in 386 

isocratic predictions decreased by 15 orders of magnitude to 10-9%. 387 

Given these results, it is clear that other algorithms that are designed to more comprehensively 388 

sample the parameter space are worth exploring. Among several algorithms we have tried for this 389 

purpose, the Matlab GlobalSearch algorithm has performed the best in our hands; the results of 390 

this work are described below in Section 4.4. Finally, in Figures 9C/F, we show the case for initial 391 

guesses of  kw = 115, S1 = 7.8, and S2 = 15, Here, the fit to keff is particularly bad throughout the 392 

range.  While a fit quality metric would lead to rejecting this result,  cases with a large number of 393 

experiments could result in many poor fits. This would lead to much lower data analysis throughput 394 

and more manual intervention to obtain adequate fits (with results that still may not be unique). 395 

 396 

4.4 Fitting noisy gradient retention data 397 

After establishing a baseline for the performance of the basic approach for fitting synthetic 398 

retention data as shown in Fig. 6, the performance of the basic approach for fitting synthetic 399 

gradient retention data with noise added was assessed using an initial guess of 𝑘𝑤 = 1.0, 𝑆1 = 1.0, 400 

and 𝑆2 = 1.0; these results are shown in Fig. 7. Figure 7A confirms the results discussed earlier in 401 

Section 4.2 for noise-free synthetic gradient retention data; 47.5% of fits resulted in average errors 402 

larger than 10% for prediction of isocratic retention. This compares to 100% of fits yielding 403 

prediction errors less than 1% when predictions are made based on fits of isocratic data (i.e., Fig. 404 

S3A). As was the case in Fig. S3, adding noise to synthetic gradient retention data shifts the 405 

distributions of errors to the right (Figs. 7B/C), making a bad situation even worse. Again, the 406 



higher the noise level, the further the shift of the error distribution to larger errors. At a relative 407 

noise level of 0.5% (Fig. 7C), 95.1% of fits produced average isocratic prediction errors larger 408 

than 1%. When compared to the basic approach for fitting isocratic retention data, the basic 409 

approach to fitting gradient retention data performs much worse at any level of noise. This is partly 410 

due to the fact that a reasonable initial guess can be estimated when fitting isocratic data using Eq. 411 

2, while no such option is available for Eq. 4 due to its complexity. Another challenge is that 412 

gradient retention data are oftentimes not as ‘unique’ as isocratic retention data. While an 413 

individual gradient retention measurement may span a range of 𝜙 values compared to a single 414 

isocratic measurement, the effective retention factor is fundamentally an integrated quantity 415 

dependent on the mobile phase history experienced by the analyte up to the point in time that it 416 

exits the column. This can result in a situation where two compounds with very different retention 417 

histories (i.e., different mobile phase experiences) can wind up eluting with exactly the same keff 418 

value. As a result, it becomes necessary to thoroughly search the NK parameter space in order to 419 

get consistently accurate results. 420 

One approach to address this challenge is to use a different fitting algorithm. Figure 8 shows the 421 

performance of the GlobalSearch algorithm for fitting synthetic gradient retention data with the 422 

same levels of noise as in Fig. S3. For noise-free retention data (Fig. 8A), GlobalSearch returned 423 

parameter sets that yield isocratic predictions with less than 1% average error, which represents a 424 

significant improvement over the basic fitting approach (i.e. compare Fig. 8A to Fig. 7A). 425 

However, when noise is added to the synthetic retention data at the level of 0.05%, the percentage 426 

of fits yielding average isocratic predictions errors below 1% error falls to just 41%, with 53% of 427 

fits producing errors between 1 and 10%. At a relative noise amplitude of 0.5%, only 4.9% of fits 428 

produced parameters that yielded isocratic predictions better than 1% on average. 429 

While the GlobalSearch algorithm approach to fitting noise-free gradient retention data did not 430 

perform as well as the basic approach to fitting noise-free isocratic retention data, it did offer a 431 

significant improvement over the basic approach to fitting noise-free gradient retention data, 432 

providing parameters that yielded isocratic predictions with better than 1% average error in an 433 

additional 43% of cases. However, this improvement was diminished as the level of noise added 434 

to the synthetic retention data was increased. Relative to the basic approach to fitting isocratic 435 

retention data, the GlobalSearch algorithm was much more susceptible to the influence of noise. 436 



We again attribute this to the lack of ‘uniqueness’ in the gradient retention data – while thoroughly 437 

searching the fitting space could result in the correct answer in most cases where noise is absent, 438 

adding noise at even the 0.05% level significantly obscured real gradients the SSD surfaces to the 439 

point that finding accurate parameters became impossible. Mathematically, this lack of uniqueness 440 

is due to the fact that the slope of keff as a function of the parameters is very small for some solutes 441 

and experimental conditions. This is not as much of a problem for fitting the isocratic retention 442 

data, such that fitting isocratic data is more robust against the influence of measurement noise 443 

when compared to both the basic and GlobalSearch approaches to fitting gradient retention data. 444 

Our view is that there are two distinct challenges we face in fitting gradient retention data; 1) lack 445 

of “uniqueness’; and 2) inability to simply find the global minimum in a complex fitting landscape. 446 

Figure 9 shows several representative fits selected from the results shown in Fig. 11C. Pictured in 447 

Fig. 9A-D are the synthetic gradient data (red points) with noise added at 𝜎 = 0.5% along with the 448 

corresponding fits produced by GlobalSearch (black line) for 2,2’-dipyridyl (A), benzonitrile (B), 449 

4-n-butylbenzoic acid (C), and trans-stilbene (D). Additionally, Figs. 9E-H show the 450 

corresponding predictions of isocratic 𝑘 using the parameters obtained from fitting the gradient 451 

data (black line) across the range of 𝜙=0.0-1.0 compared to the kref values (red points). In all four 452 

examples, the fit of the NK model produced by GlobalSearch to the synthetic gradient data resulted 453 

in a standard error of the fit that was comparable to or less than the standard error in the gradient 454 

retention data introduced by the noise itself, as determined by a comparison via F-test. However, 455 

even though the standard errors for each fit were comparable to the standard errors of the data, the 456 

MRPE for each fit spanned several orders of magnitude, ranging from 3.92×10-1% to 1.16 × 103%. 457 

We recognize that such a comparison requires extrapolation of the model to 𝜙 values outside of 458 

the range of conditions experienced by the molecules in the simulated gradient experiments (i.e., 459 

0.05 < 𝜙 < 0.7; and, some weakly retained analytes will not even experience a large fraction of 460 

this range). Reducing the scope of the error calculation to 0.05 < 𝜙 < 0.7 does reduce the errors 461 

substantially (0.2, 2.0, 148, and 36% for 2,2’-dipyridyl, benzonitrile, 4-n-butylbenzoic acid, and 462 

trans-stilbene, respectively), but two of them are still much higher than 1%.  For some compounds, 463 

such as 2,2’-dipyridyl, the fit parameters yielded accurate predictions of isocratic 𝑘 values across 464 

the entire range of 𝜙. For other compounds, such as benzonitrile, significant errors in the prediction 465 

of isocratic k values were only observed at only one end of the isocratic range. For the others - 4-466 

n-butylbenzoic acid and trans-stilbene – significant prediction errors were observed at both ends 467 



of the range of 𝜙. These plots demonstrate a distinction between fits where the main problem is 468 

that the global minimum has not been found (such as those shown in Fig. 6A/C) and fits where the 469 

main problem is a lack of ‘uniqueness’ in the parameter landscape. GlobalSearch is better able to 470 

locate the global minimum in the fitting landscape as evidenced by similarity of the standard error 471 

of the fit to the standard error of the data. However, even when this algorithm was able to converge 472 

upon parameters where the standard error of the fit was comparable to the standard error of the 473 

noise in the data, this did not guarantee accurate predictions of isocratic 𝑘. Even worse, in practice 474 

it is not obvious how one would distinguish between fits that will result in accurate vs. inaccurate 475 

isocratic predictions given that the standard errors in both cases are comparable to (or better than) 476 

the standard errors of the noisy data itself. For 60 out of the 61 fits in Fig. 8C, the standard errors 477 

of the fit were comparable to or better than the standard errors of the data. This suggests that the 478 

correlation between gradient data and the underlying NK parameters is fundamentally weaker than 479 

that for isocratic data – while it is possible to recover the underlying parameters from gradient data 480 

given a sufficiently small level of noise, it is much easier to do so with isocratic data. While this 481 

difference is not likely to affect the accuracy of predictions of gradient 𝑘𝑒𝑓𝑓 from gradient data, 482 

the impact on the accuracy of predictions of isocratic 𝑘 can be significant. 483 

 484 

 485 

5. Conclusions 486 

In this work we have studied factors that affect extraction of retention model parameters from 487 

isocratic and gradient and elution retention data. We have used synthetic retention data – modelled 488 

after experimental data collected under isocratic reversed-phase conditions for 61 489 

analyte/stationary phase pairs – to enable a detailed investigation of the factors affecting fitting of 490 

data to the Neue-Kuss retention model without the complications invariably encountered with 491 

experimental data. Following are the principal conclusions drawn from the study. 492 

• Unsupervised fitting of synthetic, noise-free isocratic retention data using a basic trust-493 

reflective region algorithm yields fitting parameters that enable accurate recovery of the 494 

original isocratic retention factors. When noise is added to the synthetic data to simulate 495 



measurement noise, the accuracy of predictions of isocratic retention factors using the 496 

fitting parameters degrades significantly, roughly in proportion to the noise level. 497 

•  Unsupervised fitting of synthetic, noise-free gradient elution retention data using the same 498 

basic trust-reflective region algorithm yields fitting parameters that cannot consistently 499 

accurately predict isocratic retention factors. Adding noise to the synthetic gradient 500 

retention data to simulate measurement noise makes the prediction accuracy even worse. 501 

• A good initial guess to initiate fitting using the basic trust-reflective region algorithm 502 

improves the predictive accuracy of the resulting retention parameters substantially. 503 

However, a significant improvement in performance demands a very high quality guess. 504 

For example, starting with an initial guess only 10% different from the known model 505 

parameters still produced some errors larger than 1% in isocratic retention factor, even 506 

when starting with noise-free gradient retention data, and we are unaware of any current 507 

approach that could provide such good initial guesses without considerable experimental 508 

effort. 509 

• Using a more sophisticated fitting algorithm that more systematically searches the 510 

parameter space for the best solution – GlobalSearch in this case – significantly improves 511 

the fitting performance for gradient retention data, compared to the use of the basic trust-512 

reflective region algorithm. However, again performance with this approach is not 513 

consistent enough to be completely trusted for the purpose of extracting retention model 514 

parameters to be used for predicting isocratic retention factors. Our results suggest that this 515 

task is challenging for two distinct reasons: 1) the parameter space containing potential 516 

model parameters is vast (particularly in the kw parameter, which spans many orders of 517 

magnitude), and in some cases populated by numerous barriers that the fitting algorithm 518 

must getting over to find the correct solution – this facet of the problem could be solved 519 

using a GlobalSearch type of algorithm and a fine parameter grid, at considerable 520 

computational expense (e.g., hours per fit on a typical desktop computer); and 2) there is 521 

frequently a lack of ‘uniqueness’ in the parameters obtained from fitting gradient data – 522 

that is, there are many combinations of model parameters that lead to fits of similar quality, 523 

as measured by the standard error of the fit. This facet of the problem cannot be solved by 524 

the search algorithm – it is fundamentally a challenge associated with the nature of the data 525 

and the retention model. One possible strategy to alleviate this difficulty is to reparametrize 526 



the model to predict the retention factor at a different mobile phase composition, i.e., 527 

instead of kw (pure water), to a retention factor at a different organic phase composition, as 528 

suggested recently by Peris-García et al. [26]. We are currently investigating the potential 529 

utility of this approach to address the uniqueness problem. 530 

These results suggest that with current knowledge and retention fitting algorithms it is not possible 531 

to consistently obtain retention model parameters that can be used to accurately predict isocratic 532 

retention factors from gradient elution retention times. This is the case even with noise-free, 533 

synthetic data, where we know the correct answers. Working with experimental data will make the 534 

situation worse. If one can tolerate a non-trivial error rate (e.g., more then 5% of results leading to 535 

errors in isocratic k >> 1%), then using a thorough search algorithm such as GlobalSearch will 536 

help improve the likelihood of obtaining useful results. Even so, it would be wise to somehow 537 

validate the resulting parameters, perhaps using targeted isocratic experiments. 538 
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Figure Captions 626 

Figure 1. Description of fitting process and error evaluation. The input data for box 1 was collected 627 

using 61 analyte/stationary phase pairs. All parameter sets output in box 2 had R2 values greater 628 

than 0.999 for the isocratic NK model. For the steps where lsqnonlin was used, the function 629 

tolerance was set to 1×10-10, the number of function evaluations was set to 100,000, and the 630 

number of function evaluations was set to 100,000. When GlobalSearch was used, the number of 631 

trial data points was set to 100,000 and the limits on each parameter were: 𝑘𝑤 =  1.0-1.0× 109, 632 

𝑆1 =  5.0-400, and 𝑆2 =  0.05-15. The numbers in parentheses are referred to as box 1, etc. in the 633 

text.  634 

Figure 2. Performance of unsupervised fitting algorithm on gradient data (Table 1, Row #5). 635 

Synthetic gradient retention data for fitting were generated as described in Fig. 1 (box 8) and fit as 636 

described in Fig. 1 (box 11a), while data shown for comparison was calculated as described in Fig. 637 

1 (box 12). The initial guess in Fig. 1 (box 10a) was chosen to be 𝑘𝑤 =  1.0, 𝑆1 =  1.0, and 638 

𝑆2 =  1.0. Example plots of ln (𝑘) vs. 𝜙 are shown for 2,2’-dipyridyl (A) and benzonitrile (B), 639 

where the isocratic kref values are displayed as the red points, and the kfit values calculated from 640 

the fit of the synthetic gradient data are shown as the black line. The percent difference between 641 

𝑘𝑟𝑒𝑓 and 𝑘𝑓𝑖𝑡 (D) are shown for all 61 compounds, as well as a plot of 𝑘𝑓𝑖𝑡 vs. 𝑘𝑟𝑒𝑓 (C). 642 

Figure 3. Distribution of average of the absolute value of the percent errors between isocratic 𝑘𝑟𝑒𝑓 643 

and isocratic 𝑘𝑓𝑖𝑡 after fitting noise-free gradient data with an unsupervised algorithm using several 644 

initial guesses. The histograms shown contain errors for all 61 sets of parameters. Fitting data were 645 

generated as described in boxes 8 and 11a of Fig. 1, with percent errors calculated as described in 646 

box 12. The initial guess in box 10a was chosen using the equation 𝑥0 =  𝛼 ×  𝑥𝑟𝑒𝑓, where 𝑥𝑟𝑒𝑓 647 

is the parameter set obtained in box 2 and 𝛼 is a multiplier. 𝛼 values for each plot were: 1x10-8 (a), 648 

1 (b), 1.1 (c), and 2 (d). 649 

Figure 4. Plot of sum of squared differences (SSD) between gradient keff values calculated using 650 

either ‘reference’ NK parameters (Fig. 1, box 2)), or a set of parameters indicated by a point in the 651 

three-dimensional space, for ten different gradient times. Reference parameters were: A) 652 

𝑘𝑤 =  2.077 × 108, 𝑆1 =  199.5, and 𝑆2 =  7.297 for amitriptyline (a) on SB-C18; and B) 653 

𝑘𝑤 =  63.89, 𝑆1 =  63.98, and 𝑆2 =  7.344 for 2,2’-dipyridyl. Gradient parameters were 654 



𝜙0 =  0.05, Δ𝜙 =  0.65, 𝑡𝑑 =  0 min, and 𝑡0 =  0.1 min. Effective retention factors were 655 

calculated using Eq. 3. 656 

Figure 5. Plot of average of the absolute values of the percent difference between isocratic 𝑘 657 

values calculated using either ‘reference’ NK parameters (Fig. 1, box 2)) (kref), or a set of 658 

parameters obtained by fitting gradient 𝑘𝑒𝑓𝑓 values using a point in the three-dimensional space 659 

as an initial guess, for ten different 𝜙 values between ϕlower and ϕupper (kfit). Reference parameters 660 

were 𝑘𝑤 =  2.077 × 108, 𝑆1 =  199.5, and 𝑆2 =  7.297 for amitriptyline (A) on SB-C18 and 661 

𝑘𝑤 =  63.89, 𝑆1 =  63.98, and 𝑆2 =  7.344 for 2,2’-dipyridyl (B). Gradient conditions were the 662 

same as those used in Fig. 5. Noise-free synthetic gradient retention data were fit with lsqnonlin 663 

in MATLAB using the trust-region-reflective algorithm with the number of iterations set to 664 

100,000, the number of function evaluations set to 100,000, and the function tolerance set to 1×10-665 

10. 666 

Figure 6. Fits obtained after applying the basic unsupervised fitting algorithm (Fig. 1 (box 11a)) 667 

to synthetic gradient retention data (Fig. 1 (box 8)) for 2,2’-dipyridyl using several different initial 668 

guesses as the starting point. Plots A-C show the final fit (solid line) to the gradient retention data 669 

(red points) for each starting point, while plots D-F show comparisons of the corresponding 670 

isocratic predictions (kfit; black line) to 𝑘𝑟𝑒𝑓 (red points) (Fig. 1 (box 12)). The reference 671 

parameters (and those converged to in plot (B)) were 𝑘𝑤 =  63.89, 𝑆1 =  63.98, and 𝑆2 =  7.344; 672 

the parameters converged to in plot (A) were 𝑘𝑤 =  1.116 × 109, 𝑆1 =  2.318× 103, and 673 

𝑆2 =  87.38; the parameters converged to in plot (C) were 𝑘𝑤 =  1.132 × 109, 𝑆1 =  2.321× 103, 674 

and 𝑆2 =  87.43.  675 

Figure 7. Distributions of average of the absolute value of the percent differences (Fig. 1 (box 7)) 676 

between 𝑘𝑟𝑒𝑓 and 𝑘𝑓𝑖𝑡 after fitting noisy gradient retention data (Fig. 1 (box 8/9)) using an 677 

unsupervised algorithm (Fig. 1 (box 10a/11a)) for all 61 sets of NK parameters and different noise 678 

levels: A) σ = 0%; B) σ = 0.05%; C) σ = 0.5%. The initial guess in Fig. 1 (box 10a) was chosen to 679 

be 𝑘𝑤 =  1.0, 𝑆1 =  1.0, and 𝑆2 =  1.0.  680 

Figure 8. Distributions of average of the absolute value of the percent differences (Fig. 1 (box 7)) 681 

between 𝑘𝑟𝑒𝑓 and 𝑘𝑓𝑖𝑡 after fitting noisy gradient retention data (Fig. 1 (box 8/9)) using a the 682 



GlobalSearch algorithm (Fig. 1 (box 10b/11b)) for all 61 sets of NK parameters and different noise 683 

levels: A) σ = 0%; B) σ = 0.05%; C) σ = 0.5%. 684 

Figure 9. Fits obtained after applying the GlobalSearch fitting algorithm (Section 3.2.2.2, and Fig. 685 

1 (box 11b)) to synthetic gradient retention data with 0.5% relative noise added (Fig. 1 (box 8)) 686 

for several compounds. Plots A-D show the fit produced by GlobalSearch (solid line) to the 687 

synthetic gradient data (red points), while plots E-H show comparisons of the corresponding 688 

isocratic predictions (kfit; black line) to 𝑘𝑟𝑒𝑓 (red points) (Fig. 1 (box 12)). Panels A and E 689 

correspond to 2-2’dipyridyl; B and F correspond to benzonitrile; C and G correspond to 4-n-690 

butylbenzoic acid; and D and H correspond to trans-stilbene. For each fit shown in A-D, the 691 

standard error of the fit was either equivalent to the standard error of the noise (determined by F-692 

test) or was lower. The mean residual percent errors for plots E-H were 0.392, 3.49, 1.16×103, and 693 

39.1%, respectively when calculated over the range 0 < ϕ < 1.0. Reducing the range to 0.05 < ϕ < 694 

0.7 reduces the errors to 0.2, 2.0, 148, and 36%, respectively. 695 

 696 


