

An Approach to High Throughput Measurement of Accurate Retention Data in Liquid Chromatography

Dwight R. Stoll^{a,*}, Gudrun Kainz^a, Tina A. Dahlseid^a, Trevor Kempen^a, Tyler Brau^a, and Bob Pirok^{a,b}

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24 **Abstract**

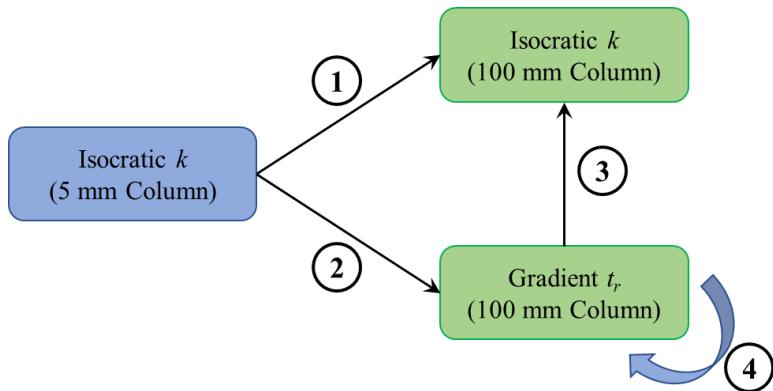
25 Efforts to model and simulate various aspects of liquid chromatography (LC) separations (e.g.,
26 retention, selectivity, peak capacity, injection breakthrough) depend on experimental retention
27 measurements to use as the basis for the models and simulations. Often these modeling and
28 simulation efforts are limited by datasets that are too small because of the cost (time and money)
29 associated with making the measurements. Other groups have demonstrated improvements in
30 throughput of LC separations by focusing on “overhead” associated with the instrument itself –
31 for example, between-analysis software processing time, and autosampler motions. In this paper
32 we explore the possibility of using columns with small volumes (i.e., 5 mm x 2.1 mm i.d.)
33 compared to conventional columns (e.g., 100 mm x 2.1 mm i.d.) that are typically used for
34 retention measurements. We find that isocratic retention factors calculated for columns with these
35 dimensions are different by about 20%; we attribute this difference – which we interpret as an
36 error in measurements based on data from the 5 mm column – to extra-column volume associated
37 with inlet and outlet frits. Since retention factor is a thermodynamic property of the
38 mobile/stationary phase system under study, it should be independent of the dimensions of the
39 column that is used for the measurement. We propose using ratios of retention factors (i.e.,
40 selectivities) to translate retention measurements between columns of different dimensions, so that
41 measurements made using small columns can be used to make predictions for separations that
42 involve conventional columns. We find that this approach reduces the difference in retention
43 factors (5 mm compared to 100 mm columns) from an average of 18% to an average absolute
44 difference of 1.7% (all errors less than 8%). This approach will significantly increase the rate at
45 which high quality retention data can be collected to thousands of measurements per instrument
46 per day, which in turn will likely have a profound impact on the quality of models and simulations
47 that can be developed for many aspects of LC separations.

48

49 Keywords: high throughput, retention, selectivity, isocratic, gradient, liquid chromatography,
50 modeling, database

51 **1. Introduction**

52 Increasing complexity of challenges faced by separation scientists along with the ever-increasing
53 drive for more efficient method development is fueling continuing interest in modeling and
54 simulation of a variety of aspects of liquid phase separations [1–7]. For example, recent studies by
55 different research groups have focused on aspects including the effect of the volume and
56 composition of the injected sample on separation quality [2,4,5,8], the effect of temperature on
57 analyte retention in reversed-phase liquid chromatography (RPLC) [9], the effect of pump non-
58 idealities on the prediction of retention time when using gradient elution conditions [10], and
59 resolution of difficult-to-separate mixtures by serially coupling columns with different selectivities
60 [11,12]. Currently, these efforts depend on experimental data to build models that are accurate
61 enough to be useful in method development. In our own work we are very interested in increasing
62 the throughput of high quality measurements, both for the purpose of improving the accuracy of
63 existing retention/selectivity models (e.g., HSM2 for RPLC [13]), and for opening new lines of
64 investigation that would allow modeling aspects of LC separations that thus far have been
65 relatively untouched, such as optimization of second dimension elution conditions in two-
66 dimensional liquid chromatography [3].


67 There have been some substantial efforts at building retention databases for RPLC. However, to
68 the best of our knowledge these efforts have been highly asymmetric in nature, focusing either on
69 a single stationary phase chemistry, for example as in the work of Boswell et al. [14] and Weber
70 et al. [9], or many stationary phases, but a small number of test analytes (e.g., www.hplccolumns.org, [15]). Clearly, a public retention database that covered multiple stationary phase chemistries,
71 and many test analytes, as well as other important variables such as temperature, mobile phase pH,
72 and organic modifier would be highly useful to a wide range of users, but this would be a highly
73 resource- and time-intensive effort using conventional approaches to retention time measurement.
74 Other groups have demonstrated improvements in throughput of LC separations by focusing on
75 “overhead” associated with the instrument itself. For example, the MISER approach introduced by
76 Welch et al. eliminates between-analysis software processing time by making multiple injections
77 during the course of data acquisition stored in a single datafile [16–18], however to the best of our
78 knowledge this approach has not been used for building retention databases. Our view is that a
80 primary reason that extensive, open retention databases do not currently exist is that acquiring

81 these data is very resource intensive (both in terms of instrument and person time). In principle,
82 retention times acquired under gradient elution conditions can be used to extract retention model
83 parameters that can then be used to predict retention under any isocratic or gradient elution
84 conditions. This type of workflow is attractive because a generic set of broad gradient elution
85 conditions can be used that are likely to work for most compounds, and gradient elution is
86 generally good for dealing with mixtures of compounds spanning a range of properties. However,
87 we have been unable to demonstrate that this can be done accurately in practice, and recently our
88 own theoretical work has shown that at least part of the problem has to do with challenges
89 encountered in fitting the data (i.e., lack of uniqueness of model solutions, and complex fitting
90 landscapes) that are mathematical in nature and have nothing to do with the experiments, *per se*
91 [19]. Thus, recently we have turned our attention mainly to using isocratic elution conditions to
92 acquire retention information for modeling purposes.

93 In the current study described in this paper we focus on the fact that analyte retention is a
94 thermodynamic property of the mobile and stationary phase conditions under study, and thus
95 retention measurement should – in principle – be independent of the geometry of the columns and
96 systems used to make the measurement. In turn, this suggests that accurate retention measurements
97 should be possible with very short columns and correspondingly short retention times. We would
98 like to be able to make the retention measurements needed to establish the dependence of retention
99 on conditions (e.g., temperature and mobile phase pH, but especially mobile phase composition
100 (organic/water) in RPLC) using an approach that is efficient (e.g., many compounds per day) and
101 robust (so that non-experts can reliably compile large databases).

102 To this end, in this paper we describe an approach to determine isocratic retention factors of
103 relatively small molecules (< 1000 Da) under reversed-phase conditions using small columns,
104 recognizing that retention factor is a thermodynamic property of the mobile phase/stationary
105 phase/analyte system that should be independent of column length. Using columns with dead times
106 that are small (e.g., < 1 s) when using flow rates typical of analytical scale instruments (e.g., 1
107 mL/min) facilitates high throughput measurements. With this approach our aim is not to obtain the
108 most accurate (i.e., thermodynamically correct) and precise determinations of retention factors for
109 specific systems; rather, our primary aim is to enable compilation of large datasets (e.g., tens of
110 thousands of measurements) of retention factors (i.e., over a large range in k for each system

111 studied, with values applicable to prediction of both isocratic and gradient elution separations –
112 see Paths #1 and 2 in Fig. 1) with reasonable accuracy and precision, at low cost (i.e., with UV
113 detection and minimal supervision of the measurement process by expert users).

114

115 **Figure 1.** Schematic illustrating the different paths relating retention data collected or predicted under
116 different conditions: 1) retention measurements made under isocratic conditions with a short column are
117 used to predict retention that will be observed under isocratic conditions with a longer column; 2) retention
118 measurements made under isocratic conditions with a short column are used to predict retention that will
119 be observed under gradient elution conditions with a longer column; 3) retention measurements made under
120 gradient elution conditions with a long column are used to predict retention that will be observed under
121 isocratic elution conditions with a longer column; and 4) retention measurements made under gradient
122 elution conditions with a long column are used to predict retention that will be observed under different
123 gradient elution conditions with the same column.

124

125

126 **2. Principles**

127 *2.1. Translation of measurements made using short columns to longer columns*

128 In the experiments described below we have measured retention times for 13 test analytes using 5
129 mm or 100 mm long columns (both 2.1 mm i.d.). In this section we will refer to these generically
130 as short (S) and long (L) columns. Ultimately our aim is to use retention data collected using the
131 short columns to predict practical outcomes using longer columns typically used for analytical
132 work (e.g., isocratic separations, gradient elution separations, selectivity comparisons, analyte

133 focusing, and breakthrough). The physical volumes outside of the stationary phase bed (e.g., frits,
134 flow distributors, and endfitting channels) that contribute to measured column dead volumes, but
135 do not contribute to retention, can lead to errors in calculated retention factors. This problem
136 becomes more serious as columns become short and the relative contribution of these unaccounted-
137 for volumes becomes a larger fraction of the measured column dead volume. Our approach is to
138 calculate selectivities – that is, ratios of retention factors measured using the small column - and
139 use these to predict retention factors for long columns. This approach has the following steps:

140 **Short Column (S)**

- 141 1) Measure extra-column time ($t_{ex,S}$), column dead time ($t_{m,S}$), retention time for a reference
142 compound (toluene in this work; $t_{r,ref,S}$), and retention time for analyte i ($t_{r,i,S}$).
- 143 2) Calculate retention factors for the reference compound ($k_{ref,S}$) and analyte i using Eq. 1.
144 Note that the extra-column time t_{ex} must be subtracted from all instances of t_r and t_m to
145 accurately calculate k :

$$146 k = \frac{(t_r - t_{ex}) - (t_m - t_{ex})}{(t_m - t_{ex})} = \frac{(t_r - t_m)}{t_m - t_{ex}} \quad (1)$$

- 147 3) Calculate selectivities using Eq. 2. Note that we define α_i here without regard to the relative
148 magnitudes of k_i and k_{ref} (i.e., k_i is always in the numerator, even if it is smaller than k_{ref}).
149 Although this is different from some uses of α that require $\alpha \geq 1$, we prefer the formulation
150 defined here and shown in Eq. 2 for simplicity and efficiency:

$$151 \alpha_{i,S} = \frac{k_{i,S}}{k_{ref,S}} = \frac{t_{r,i,S} - t_{m,S}}{t_{r,ref,S} - t_{m,S}} \quad (2)$$

- 152 4) Assume $\alpha_{i,L} = \alpha_{i,S}$. Note that since each retention factor in the ratio of alpha is
153 proportional to the product of the phase ratio and mobile-to-stationary phase transfer
154 equilibrium constant, the phase ratio drops out of the expression because there can only be
155 one phase ratio for a given column. Thus, while it is likely that the phase ratios are different
156 for short and long columns, this does not matter to our approach because it drops out of the
157 equation.

158 **Long Column (L)**

159 5) Measure extra-column time ($t_{ex,L}$), column dead time (t_m,L), retention time for a reference
160 compound (toluene in this work; $t_{r,ref,L}$).

161 6) Calculate retention factor for the reference compound ($k_{ref,L}$) using Eq. 1.

162 7) Calculate retention factor for analyte i on the long column using Eq. 3:

163
$$k_{i,L} = \alpha_{i,L} \cdot k_{ref,L} = \alpha_{i,S} \cdot k_{ref,L} = \frac{k_{i,S}}{k_{ref,S}} \cdot k_{ref,L} \quad (3)$$

164 We emphasize here that this approach only requires the measurement of t_{ex} , t_m , and $t_{r,ref}$ for the
165 long column to predict isocratic retention factors for any compound on the long column using
166 retention measurements made using the short column.

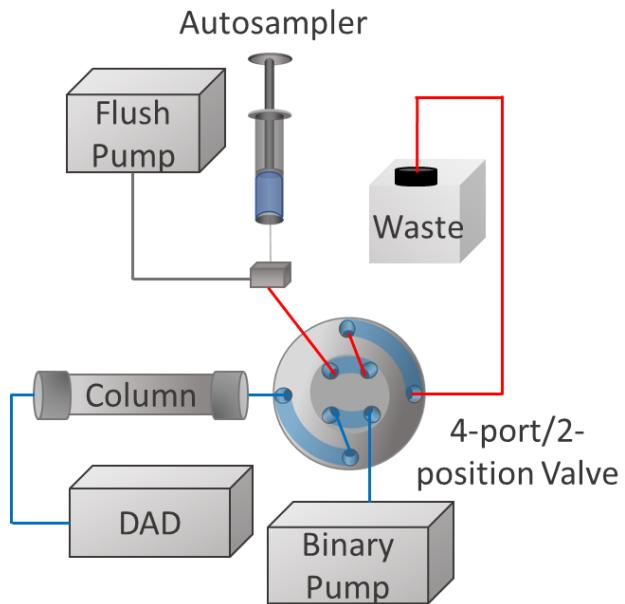
167

168 *2.2. Instrumental approach to high throughput measurements*

169 When working with short columns like those used in this study, the actual separation times needed
170 to acquire retention data over a large range in k are quite short. For example, the dead volume of
171 5 mm x 2.1 mm i.d. column packed with totally porous particles is about 10 μ L (assuming a total
172 porosity of 0.55, and neglecting frit volume). When used at a flow rate of 1.0 mL/min., the dead
173 time is about 0.6 s. Even for a retention factor of 50, an analysis time of just 30 s is needed. When
174 considering thousands of separations and such short analysis times, other factors associated with
175 the measurement become significant, such as the time needed to draw a sample into an autosampler
176 syringe for each analysis [20]. Faced with this reality, we developed the following instrumental
177 approach for making high throughput retention measurements. The system, illustrated in Fig. 2,
178 involves several conventional components: a binary UHPLC pump, autosampler, column
179 thermostat compartment, and UV detector. Unique aspects of the configuration are: 1) the use of
180 a four-port, two-position valve (this valve is normally used for 2D-LC applications) with two fixed
181 volume internal loops for delivering small sample aliquots (about 150 nL) to the column; and 2) a
182 low-pressure, single channel pump to push a sample stream from the autosampler to the injection
183 valve. To acquire retention data across a range of mobile phase compositions, and thus retention
184 factors, the following steps are followed. Figure 3 illustrates these steps and shows what the data
185 string looks like at the detector for a complete data collection for one compound.

186 1) An aliquot of a sample containing the compound(s) of interest is drawn from a sample vial
187 into the sampler needle and sample loop using the autosampler; in the work described here,
188 this volume was 20 μ L.

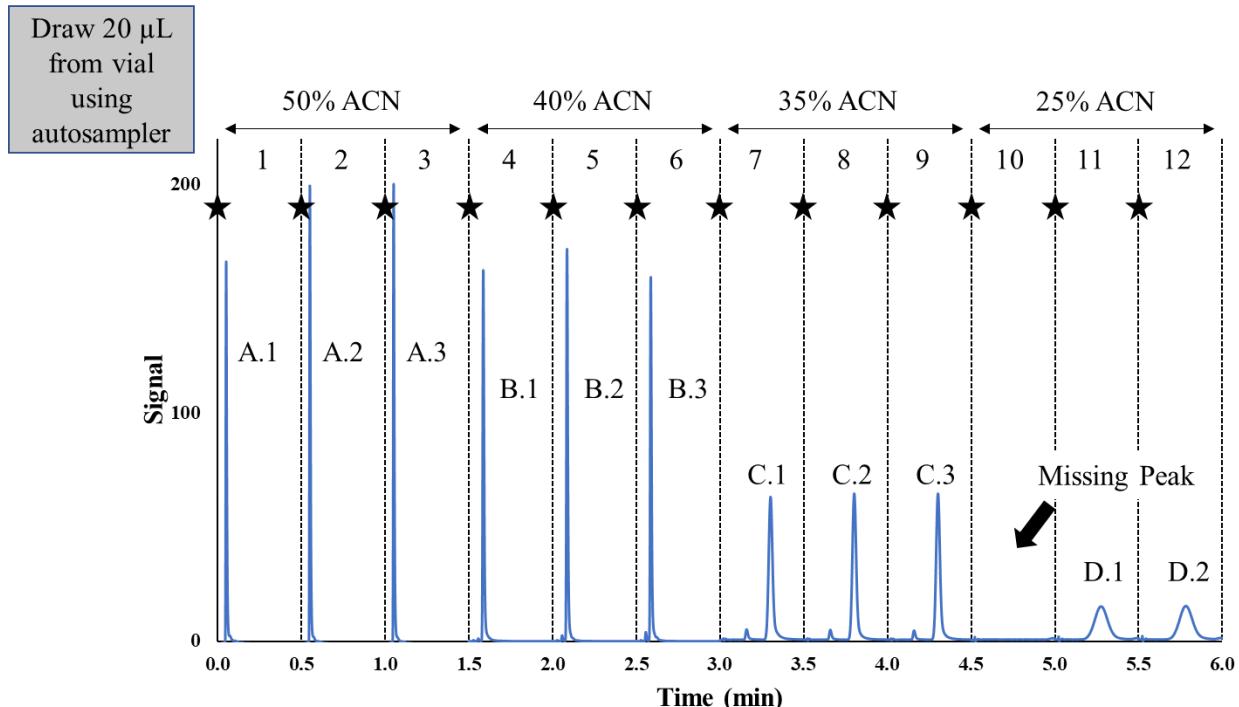
189 2) The sample is slowly displaced from the sample loop of the autosampler into the internal
190 loop of the 4-port/2-position valve by the isocratic “flush pump”. In this work the flow rate
191 was typically about 1 μ L/min.


192 3) After the internal loop of the 4-port/2-position valve has been filled with sample, the valve
193 is switched, and data acquisition is initiated. The valve is switched an additional m times
194 at time intervals that correspond to the desired analysis time. This provides m replicate
195 injections of the sample at a given mobile phase composition.

196 4) The binary pump is then instructed to change to the next mobile phase composition, while
197 continuing to switch the 4-port/2-position valve at regular intervals, all within the same
198 data acquisition session. Data from the first injection after a change in mobile phase
199 composition is ultimately discarded, and the time during this particular analysis is treated
200 as an equilibration period. This leaves data $m-1$ replicate injections at each mobile phase
201 composition. In the work described here $m-1=5$.

202 5) Step 4 is then repeated n times to acquire retention data for n different mobile phase
203 compositions. This ultimately yields a datafile that contains $m \times n$ chromatograms that are
204 parsed by simply dividing the entire data string into $m \times n$ equally-sized parts.

205 Figure 3 shows experimental data acquired using this process for the case where one compound is
206 injected, thus we expect one peak per chromatogram. In this case $m = 3$ and $n = 4$, so we expect a
207 total of $m \times n = 12$ peaks in the datafile. Starting from the left where the mobile phase is 50% ACN
208 we see one peak that elutes early in the analysis interval. Moving to the right, as the % ACN is
209 decreased, we see that the peak moves to the right (higher retention), as expected, with one peak
210 per injection. When we get to 25% ACN, however, no peak is observed following the first
211 injection. This is because the retention is too high for the peak to elute in the fixed analysis window
212 of 30 s, and the peak actually elutes in the second analysis window after changing the mobile
213 phase. During data processing we incorporate logic that checks to be sure we have exactly one
214 peak per injection in the case where we have one compound per sample. If too few or too many
215 peaks are observed, the datafile is inspected manually to make sure peak detection has worked


properly. In cases where multiple mobile phase compositions are used, a plot of $\ln(k)$ vs. % ACN is also constructed and visually inspected for discontinuities, which usually result from retention that is too high (i.e., like that shown in Fig. 3), and these data are then discarded.

219

220 **Figure 2.** Illustration of the instrument setup used in this work.

221

222

Figure 3. Illustration of the key steps in data acquisition and representative data for the case where retention data are acquired for a single compound in multiple mobile phases, but within a single datafile.

225

226 2.3. Effect of the measurement of "retention time" on apparent selectivity

One of the challenges encountered when working with low volume columns (e.g., the 5 mm x 2.1 mm i.d. columns used here) and conventional UHPLC instrumentation is that some degree of peak tailing due to extra-column flow paths is unavoidable. Peak tailing can also occur in short columns operated at high mobile phase velocities due to slow trans-column dispersion, and thus incomplete equilibration of the analyte zone across the column diameter [21]. In practice this means that the peaks observed with short columns tend to be more tailed than peaks observed for longer columns. This in turn can affect the apparent retention factors calculated from retention time as measured by the time corresponding to the peak apex. To quantify the magnitude of this effect, we carried out a simulation informed by realistic measures of the degree of peak tailing induced by extra-column flow paths between the point of sample injection and the point of detection (and the injector and detector elements themselves). The details associated with these simulations are described in detail and provided as Supplementary Information in Section S1. The important outcome from

239 these calculations is that the contribution to peak tailing from the instrument has a very small effect
240 on the determination of alpha (k_i/k_{ref}) for long columns (e.g., 100 mm x 2.1 mm i.d.), but a
241 practically significant effect on the determination of alpha for short columns (e.g., 5 mm x 2.1 mm
242 i.d.). The largest error in alpha introduced by using the time corresponding to the peak apex for the
243 “retention time” over $0.1 < k < 50$ is less than 0.1% for the long column (see Fig. S3). However,
244 errors on the order of 0.5% are possible for the short columns, and therefore we have chosen to
245 use the first moment as the measure of “retention time” in all subsequent calculations of k and α
246 going forward.

247

248 *2.4. Determination of the first moment from raw data*

249 To obtain accurate first moments to use as retention measurements for the calculation of retention
250 factors, a curve-fitting strategy was applied to the raw chromatogram, and then the first moment
251 of the resulting noise-free, fitted peak profile was calculated. The curve-fitting process was applied
252 to a section of the chromatogram containing a peak. The time domain of this section was defined
253 by $3.3 \cdot W_{0.5}$, where $W_{0.5}$ is the peak width at half-height, centered around the apex of the detected
254 peak. This section is first baseline adjusted (i.e., to zero) and normalized such that the signal at the
255 peak apex is 1. For curve fitting, a modified Pearson VII distribution [22], $f(t)$, was fit to the
256 baseline-adjusted, normalized chromatographic peak:

$$257 \quad f(t) = \left(1 + \frac{(t - \mu)^2}{M \cdot [\sigma + E \cdot (t - \mu)]^2} \right)^{-M} \quad (4)$$

258 where μ is the mean, σ the standard deviation, and E represents the asymmetry of the peak. M is
259 correlated with the peak shape on a continuum from Chaucy ($M = 1$), to a modified Lorentzian, to
260 a Gaussian as M approaches infinity (i.e., in practice $M > 10$) [23]. For the regression, the location
261 of the apex of the peak (typically called the retention time), $W_{0.5}/2.35$, 0.15, and 5 were used as
262 starting parameters for μ , σ , E and M , respectively. The latter two were determined earlier to be
263 good estimates for most chromatographic peaks observed in practice [22]. While the algorithm
264 was generally allowed to proceed for ten iterations, in most cases the residuals improved only
265 marginally after four to five iterations.

266 Finally, the normalized first moment (m_1) of the peak (i.e., its center of gravity) was obtained by
267 computing the first raw moment (M_1) and dividing it by the area of the peak (i.e., the zeroth
268 moment, M_0), and used hereafter as the “retention time”:

269

$$t_r = m_1 = \frac{M_1}{M_0} = \frac{\int_{-\infty}^{\infty} t \cdot f(t) \cdot dt}{\int_{-\infty}^{\infty} f(t) \cdot dt} \quad (5)$$

270

271 **3. Experimental**

272 *3.1. Chemicals and columns*

273 Acetonitrile, ammonium hydroxide (28-30%), formic acid, uracil, 5,5-diphenylhydantoin,
274 acetophenone, benzonitrile, nortriptyline hydrochloride, amitriptyline hydrochloride, anisole,
275 butyrophenone, n-butylbenzoic acid, toluene, ethylbenzene, mefenamic acid were obtained from
276 Sigma-Aldrich and used as received. Alfa Aesar (Tewksbury, MA) was the supplier of trans-
277 chalcone, p-nitrophenol was obtained from Eastman Kodak (Rochester, NY). Cis-chalcone was
278 prepared by exposing a solution of trans-chalcone to sunlight, resulting in a solution enriched with
279 the cis isomer. The cis isomer was purified by collecting the cis isomer fraction after separation
280 on a C18 column. HPLC grade water was obtained from an in-house Milli-Q system (Burlington,
281 MA). Stock solutions were prepared for each compound at 10 mg/mL stock using ACN as the
282 diluent; in cases where the compound was not soluble in neat ACN, 50/50 ACN/water was used
283 as the diluent. Analytical samples were prepared in 50/50 ACN/buffer, with analyte concentrations
284 ranging from 0.1 to 2.5 mg/mL as needed to provide a peak height above 10 mAU at 254 nm. All
285 measurements for short (5 mm) columns were made with one analyte per sample. Measurements
286 with the long column (100 mm) were made with mixtures of analytes per sample (typically five
287 analytes per mixture), except for the data shown in Fig. S7, where analytes were injected separately
288 (i.e., one analyte per sample).

289 The columns were both from Agilent, packed with Zorbax SB-C18 particles (1.8 μ m): 5 mm x 2.1
290 mm i.d. (p/n: 821725-902); 100 mm x 2.1 mm i.d. (p/n: 858700-902). Note that these two columns

291 were not prepared from the same batch of stationary phase particles, thus at least some differences
292 in the selectivities of the two columns is to be expected (i.e., lot-to-lot variability) [24]. In a brief
293 follow-up study, we did obtain a “matched pair” of short and long columns prepared from the same
294 batch of stationary phase; the results from these measurements are discussed in Section S2.

295

296 *3.2. Buffer preparation*

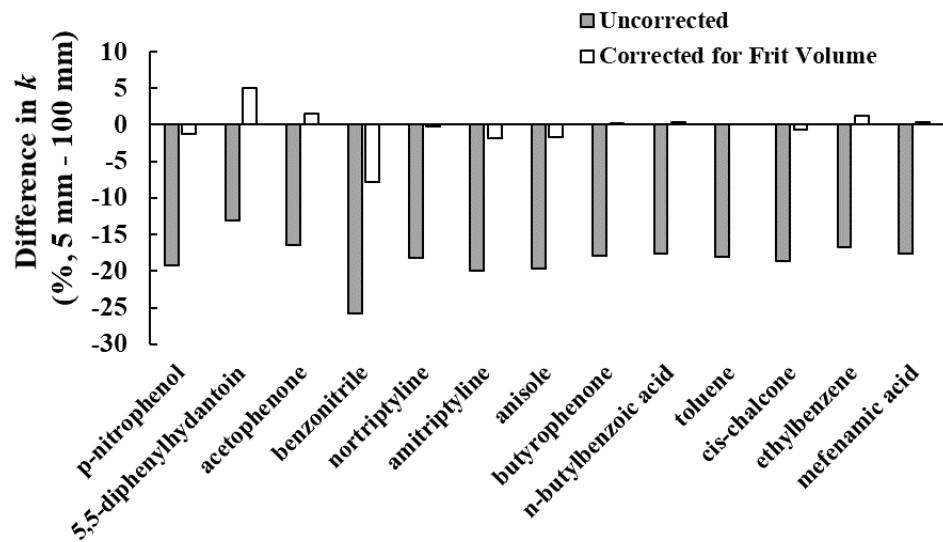
297 Batches of 25 mM ammonium formate buffer pH 3.2 (105 mM with respect to formic acid) were
298 prepared in two-liter portions using water, formic acid, and ammonia. To improve batch-to-batch
299 repeatability of the buffer when using different lots of concentrated formic acid and ammonia, the
300 weight percent of formic acid or ammonia as reported in the Certificate of Analysis (COA) for that
301 material was used to calculate the mass of solution needed to achieve the desired concentration of
302 the buffer components in the buffer solution. Each batch of buffer was prepared gravimetrically
303 using a balance with a capacity of 4 kg, a 2-L glass bottle, and 1982.6 g of HPLC grade water. The
304 mass of formic acid required to obtain a formal concentration of 105 mM was added, followed by
305 the mass of ammonia required to obtain a formal concentration of 25 mM. Before and after the
306 addition of ammonia, the bottle was shaken briefly by hand, and the solution was used for analysis
307 without any further treatment.

308

309 *3.3. Instrumentation and methods*

310 The components of the system used for all retention measurements (short and long columns,
311 isocratic and gradient elution) are illustrated in Fig. 2. All components were from Agilent
312 Technologies with model numbers as follows: Flush pump, G5611A; Binary pump, G4220A; 4-
313 port/2-position prototype valve, G5067-4236A; Thermostated column compartment, G1316C;
314 Diode-array UV absorbance detector, G4212A (flow cell part number 4212-60008). The gradient
315 delay volume between the mixing point of the binary pump and the inlet of the column was
316 determined by installing a union in place of the analytical column and running a gradient from
317 5/95 to 95/5 B/A where A was 50/50 ACN/water and B was A spiked with 10 µg/mL uracil. Using
318 this approach the delay volume was determined to be 46 µL. Column dead times ($t_{m,meas}$) and extra-
319 column times (t_{ex}) were determined by injecting a 10 µg/mL sample of uracil in 50/50 ACN/water

320 into a mobile phase of 50/50 ACN/water at either 0.1 (long column) or 1.0 (short column) mL/min.
321 We are well aware that this method does not produce the most accurate measure of the column
322 dead time [25]; we use this approach in the interest of measurement throughput because it is
323 straightforward to incorporate as part of the measurement workflow for other compounds.
324 However, the magnitude of the error is about the same for the short and long columns, and thus
325 much of the error cancels out in any comparison of selectivities for the two columns; *when $k_{ref} \sim$*
326 *5, as in this work, the absolute error in α is about 1/5 of the error in t_m for $k > 1$.* The system was
327 controlled using Agilent OpenLAB CDS Chemstation Edition (Rev. C.01.07 [465]).
328 Chromatographic conditions are given in the figure captions. Note that we deliberately chose flow
329 rates of 0.1 and 1.0 mL/min for the long and short columns, respectively, to avoid significant
330 effects of viscous heating and pressure on retention and selectivity (i.e., the column midpoint
331 pressure is about 50 bar for both columns under these conditions).


332

333 **4. Results and Discussion**

334 *4.1. Initial comparison of retention factors obtained from short and long columns*

335 The magnitude of variation in typical sets of measurements (as measured by relative standard
336 deviation, with $n = 6$) of t_{ex} and t_m were on the order of 0.25 and 0.05% for the 100 mm column
337 (0.1 mL/min), and 0.45 and 0.30% for the 5 mm column (1.0 mL/min). The grey bars of Fig. 4
338 show the percent difference between retention factors calculated for short (5 mm) and long (100
339 mm) columns as described in Section 2.1 using Eq. 1. These differences are on the order of 18%.
340 Given the excellent lot-to-lot reproducibility of modern stationary phases from main-line
341 manufacturers it is highly unlikely that a difference of this magnitude can be explained by lot-to-
342 lot variability, especially for the relatively simple molecules studied here. A likely explanation for
343 the major differences in the retention factors determined for the two columns is that the volume of
344 the inlet and outlet frits contributes to the measured column dead times to different extents, but
345 cannot contribute to the actual retention time because there is no stationary phase in the frit. We
346 note that several groups have studied the impact of analyte dispersion in the column endfittings
347 and frits on peak width [26–30], however we are not aware of any thorough discussion of the
348 volume associated with the endfittings and frits on apparent retention factors. Although it is

349 certainly true that these volumes must affect apparent retention factors, we initially were unsure if
350 the magnitude of the effect could explain most of the differences observed in Fig. 4. The following
351 theoretical calculations were used to produce the trend in Fig. 5, which ultimately shows that the
352 effect of the frit volume on the apparent retention factor is indeed large enough to explain most of
353 the differences shown in Fig. 4.

354

355 **Figure 4.** Percent differences in retention factors (k) calculated for short (5 mm) and long (100 mm)
356 columns using retention measurements based in first moments and Eq. 1 (grey bars) or Eq. 8 (white bars)
357 assuming a total frit volume of 2.4 μL . Chromatographic conditions: Flow rate, 1.0 (short) or 0.1 (long)
358 $\text{mL}/\text{min.}$; Mobile phase, 50/50 ACN/25 mM ammonium formate in water, pH 3.2; Temperature, 40 $^{\circ}\text{C}$.

359

360 We start by assuming a known retention factor of 1.00 for a hypothetical solute, dead volumes of
361 0.010 and 0.200 mL ($V_{m,col}$) for two columns that only vary in length (these are the approximate
362 dead volumes of the 5 mm and 100 mm x 2.1 mm i.d. discussed in this paper), and a flow rate of
363 1.0 mL/min. We also assume that retention measurements are made on a system with an extra-
364 column volume (V_{ex}) of 0.020 mL. We then choose a total frit volume for each column (*i.e.*, the
365 sum of the volumes of the inlet and outlet frits; V_{frit}), calculate the retention factor that will be
366 measured under these conditions for each column, and finally the difference between them. If the
367 flow rate used for the two columns is the same, then we can convert all these volumes to times as
368 in Eq. 6:

369
$$t_{m,col} = \frac{V_{m,col}}{F}; t_{ex} = \frac{V_{ex}}{F}; t_{frit} = \frac{V_{frit}}{F} \quad (6)$$

370 The measured dead time of the column ($t_{m,meas}$) will be the sum of all these times:

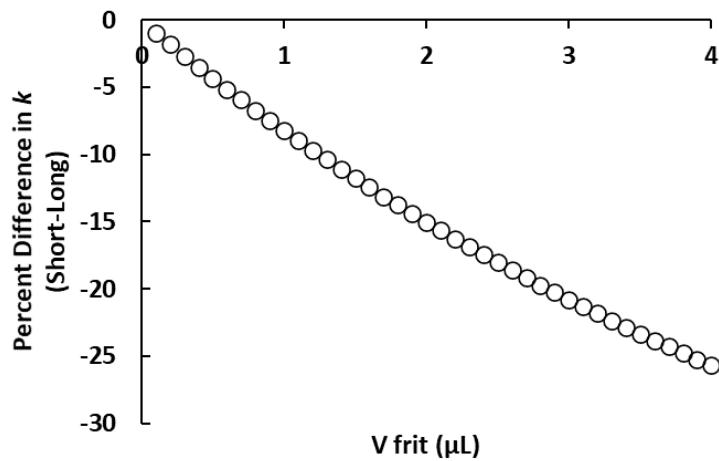
371
$$t_{m,meas} = t_{m,col} + t_{ex} + t_{frit} \quad (7)$$

372 The measured retention time can be calculated in a similar way, using the usual relationship
373 between the retention factor, retention time, and dead time:

374
$$k_{col} = \frac{(t_{r,col} - t_{m,col})}{t_{m,col}}; t_{r,col} = t_{m,col}(1 + k_{col}) \quad (8)$$

375
$$t_{r,meas} = t_{r,col} + t_{ex} + t_{frit} \quad (9)$$

376 The retention factor determined from the measured retention, dead, and extra-column times (k_{exp})
377 can be calculated as usual (Eq. 1), but repeated here in explicit terms:


378
$$k_{exp} = \frac{(t_{r,meas} - t_{ex}) - (t_{m,meas} - t_{ex})}{(t_{m,meas} - t_{ex})} \quad (10)$$

379 Substituting Eqs. 7 and 9 into Eq. 10 we find that all the experimental non-idealities (t_{ex}) cancel
380 except for t_{frit} :

381
$$k_{exp} = \frac{(t_{r,col}) - (t_{m,col})}{(t_{m,col} + t_{frit})} \quad (11)$$

382 Whenever t_{frit} and t_{ex} are both fixed and non-zero, but $t_{m,col}$ varies – as in the comparison of 5 and
383 100 mm columns in Fig. 4 – the calculated retention factors (k_{exp}) for the two columns will not be
384 the same, and the apparent k value for the shorter column will always be smaller than that for the
385 longer column. While there may be other reasons for differences in experimentally determined
386 retention factors for columns of different lengths, the issue described here is purely physical in
387 nature. The resulting differences in k_{exp} for the 5 and 100 mm columns as a function of frit volume
388 for the conditions described here are shown in Fig. 5. If we assume for a moment that all the
389 difference shown in the grey bars of Fig. 4 can be attributed to the unaccounted-for frit volume,
390 then this relationship suggests that the total frit volume in these two columns is about 2.4 μL . This

391 value is entirely consistent with estimates of the interstitial volume of the frits provided by the
392 vendor in this case (*i.e.*, the estimated volume of each inlet and outlet frit is about 1.2 μL).

393

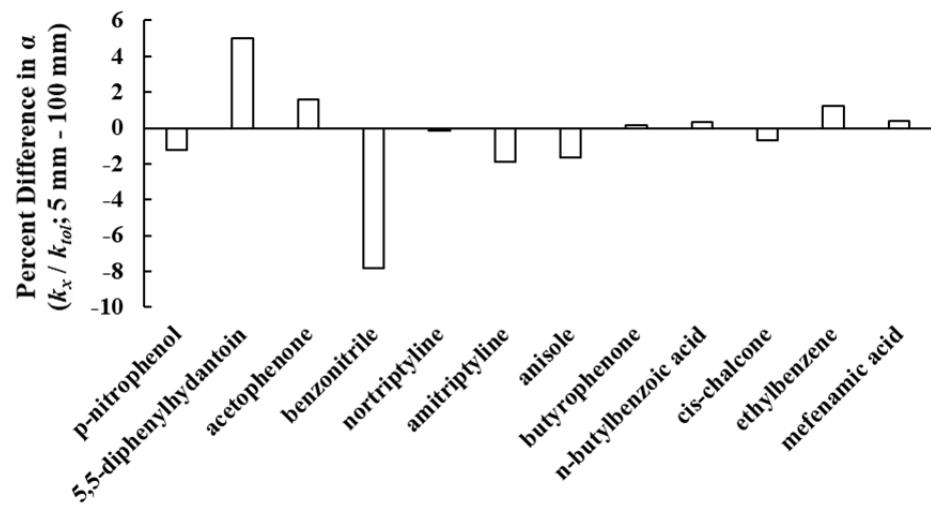
394 **Figure 5.** Theoretical percent difference in retention factors that arise from values calculated from
395 experimental measurements where the column frit volume (V_{frit}) is a significantly different fraction of the
396 measured dead volumes ($V_{m,\text{meas}}$) of columns of different lengths (S=short; L=long). It is assumed that the
397 columns are otherwise identical in terms of stationary phase chemistry and particle size. Other parameters:
398 Column volumes, 0.010 (short) and 0.200 (long) mL; Column diameters, 2.1 mm; Flow rate, 1.0 mL/min.;
399 Extra-column volume (V_{ex}), 0.020 mL.

400

401 One approach to deal with the major effect of the frit volume on the retention factors calculate for
402 short columns from experimental data is to add t_{frit} to t_{ex} when calculating k as in Eq. 10. Doing so
403 with our data yields the white bars in Fig. 4. Here we see that this removes most of the apparent
404 difference between the k values for the short and long columns, with the average difference close
405 to zero (-0.4%), rather than the average difference of -18% prior to the correction (grey bars). In
406 principle such a correction would be straightforward if the frit volumes were known, however
407 these numbers are not typically provided by column manufacturers, and are difficult to measure
408 accurately without dedicated equipment for doing so. Having first observed the major differences
409 in k_{exp} as in Fig. 4, and then realizing that most of this difference could be attributed to frit volumes
410 that are impractical to measure in practice, motivated us to pursue the use of experimentally
411 determined selectivities to translate retention measurements made with small columns to predict
412 retention in separations involving larger columns as outlined in Section 2.1.

413

414


415 *4.2. Comparison of selectivities determined using short and long columns*

416 Figure 6 shows the percent differences in α values ($\alpha = k_x/k_{toluene}$) calculated for the 5 and 100 mm
417 columns using retention measurements based on first moments determined as described in Section
418 2.4. This particular plot is organized with the compounds listed from left to right in order of
419 increasing retention. Although some of the differences are clearly different in magnitude from the
420 others, there is no obvious dependence of the differences on analyte type (*i.e.*, acid, base, neutral).
421 The average absolute difference in α is 1.7%. Although there is no clear pattern in the differences
422 shown in Fig. 6 related to analyte chemistry, one might reasonably ask if the differences are
423 retention dependent. Figure S4 shows the same differences as in Fig. 6, but plotted against retention
424 factor. Here we see the overall trend that the absolute magnitude of the difference decreases with
425 increasing retention factor, however the sign of the difference is not consistent at low retention.
426 This is not unexpected considering that the relative variation in retention measurements increases
427 as absolute retention decreases (*i.e.*, when the absolute variation in retention measurement is
428 nominally independent of k), however it suggests that it is important when using the measurement
429 scheme proposed here that we focus primarily on retention factors above about 2. The percent
430 relative standard deviations in retention factors used in the calculation of alpha values shown in
431 Fig. 6 are shown as Supplemental Information in Fig. S5. The primary takeaway from Fig. 6 is
432 that similar alpha values are obtained from the two columns that vary in volume by a factor of 20,
433 despite the 18% differences in apparent retention factor values shown in Fig. 4. However, the α
434 values for 5,5-diphenylhydantoin and benzonitrile differed by more than 2%. To check if small
435 variations in mobile phase composition as a result of mobile phase preparation by the pump (*i.e.*,
436 mixing ACN/buffer mobile phase from neat ACN and buffer) influenced this comparison, we
437 compared the α values obtained from retention measurements while letting the pump prepare the
438 mobile phase (referred to here as ‘machine-mixed’) to those obtained with a pre-mixed mobile
439 phase (both 50/50 v/v); this comparison is shown in Fig. S6. In the case of 5,5-diphenylhydantoin
440 and benzonitrile we see that the errors are similar in magnitude, and have the same sign, which
441 means that errors cannot be explained by small differences in mobile phase variation over the
442 timescale of a retention measurement (*i.e.*, a tens of seconds).

443 One possible cause of the larger differences in the alphas observed for 5,5-diphenylhydantoin and
444 benzonitrile could be related to column-to-column variation in the stationary phase (*i.e.*, the 5 and
445 100 mm columns used for most of this work were packed with different manufacturing lots of
446 stationary phase). To test this possibility, we repeated the comparison of α values for 5,5-
447 diphenylhydantoin and benzonitrile using a 5 and 100 mm column pair that were packed from the
448 same lot of packing material, using one analyte per injected sample for both columns. The resulting
449 differences in alphas were -0.58 and 0.71%, respectively, as shown in Fig. S7, which are in line
450 with the other small differences shown in Fig. 6.

451 Finally, we emphasize once more that we do not expect the approach described here to yield
452 retention factors with the highest possible accuracy, in a thermodynamic sense. Determination of
453 thermodynamically meaningful retention factors requires careful consideration of how the column
454 dead time is measured [25,31], in addition to careful control of other parameters including the
455 column temperature and mobile phase composition.

456

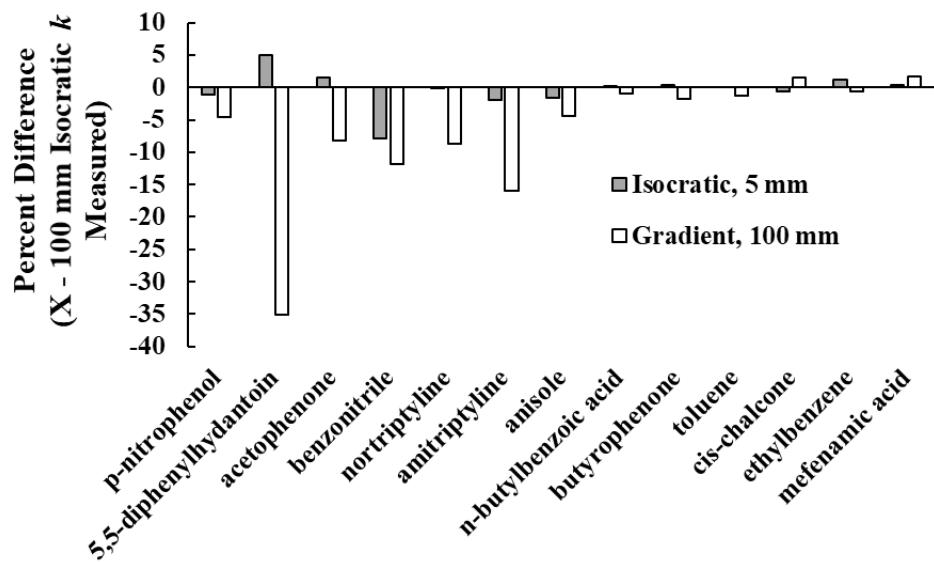
457

458 **Figure 6.** Percent differences in selectivities (α) calculated for 5 and 100 mm columns using retention
459 measurements based on first moments and Eq. 2. Chromatographic conditions were as described in Fig. 4.

460

461 *4.3. Prediction of isocratic retention factors using data from isocratic or gradient elution, and*
462 *short or long columns*

463 The preceding discussion has been focused on the prediction of isocratic retention factors for a
 464 long column using isocratic retention measurements made using a short column and the scheme
 465 outlined in Section 2.1. In principle, isocratic retention factors can also be predicted using retention
 466 measurements made under gradient elution conditions [19]. This would correspond to path #3 in
 467 Fig. 1. The white bars of Fig. 7 show the percent differences between isocratic retention factors
 468 predicted from retention measurements using gradient times of 10, 20, or 30 min with the 100 mm
 469 long column to isocratic retention factors calculated from isocratic retention measurements made
 470 using the same column. To make these predictions we first fit the gradient retention times to the
 471 non-linear Neue-Kuss model of the dependence of RP retention on volume fraction of organic
 472 modifier in the mobile phase (ϕ) [26]. The relationship between the effective gradient retention
 473 factor (k_{eff}) and ϕ for this model is shown in Eq. 12, where S_1 , S_2 , and k_w are the fitting parameters,
 474 and t_d and ϕ_i are the gradient delay time and the starting mobile phase composition used in the
 475 gradient, respectively. Before fitting the data k_{eff} was calculated using the first moment for the
 476 retention time (see Section 2.4), and Eq. 10. For the actual fitting of the retention data we used the
 477 *lsqnonlin* function in MATLAB as described in our recent publication on determination of
 478 retention model parameters [19].


$$479 \quad k_{eff} = \frac{t_d}{t_m} + \frac{\frac{\phi_i + \frac{1+S_2\phi_i}{S_1} \ln \left\{ \beta \cdot k_w \cdot S_1 \left(t_m - \frac{t_d}{k_i} \right) \exp \left(\frac{-S_1\phi_i}{1+S_2\phi_i} \right) + 1 \right\}}{1 - \frac{S_2(1+S_2\phi_i)}{S_1} \ln \left\{ \beta \cdot k_w \cdot S_1 \left(t_m - \frac{t_d}{k_i} \right) \exp \left(\frac{-S_1\phi_i}{1+S_2\phi_i} \right) + 1 \right\}} - \phi_i}{\beta \cdot t_m} \quad (12)$$

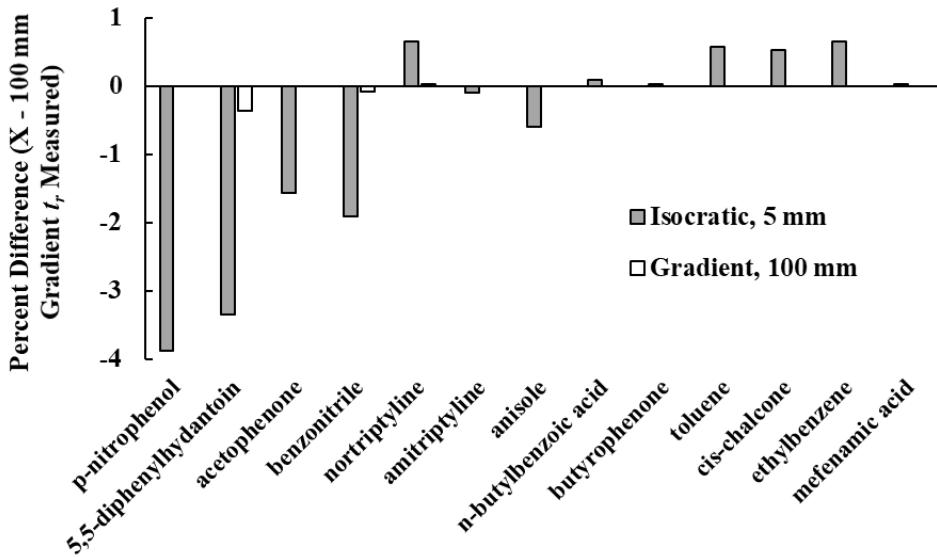
480 Once the model parameters (S_1 , S_2 , k_w) have been determined via Eq. 12 or Eq. 13, isocratic
 481 retention factors can then be calculated for any mobile phase composition using Eq. 13.

$$482 \quad \ln k = \ln k_w + 2 \ln(1+S_2\phi) - \left[\frac{S_1\phi}{1+S_2\phi} \right] \quad (13)$$

483 As shown by the white bars in Fig. 7, we see that the performance of these predictions (*i.e.*,
 484 prediction of isocratic k for the 100 mm column from gradient retention data obtained using the
 485 100 mm column) is not good, with a maximum error of -35% for 5,5-diphenylhydantoin, and a
 486 mean error of -6.3% for all 13 probe compounds. On the other hand, the isocratic retention factors

487 predicted for the long column using isocratic measurements made using the short column (grey
 488 bars) are much better. In this case the maximum error is -7.8%, and the mean error is -0.4%. The
 489 poor performance of predicting isocratic k values from gradient retention times (i.e., Path #3 in
 490 Fig. 1) is not surprising, since such predictions involve a major extrapolation to a gradient slope
 491 of zero [27]. Nevertheless, this result adds to the value of the use of α values to translate retention
 492 values between short and long columns as described in Section 2.1. If one must choose between
 493 these two approaches to predict isocratic retention factors for a long column, this result shows that
 494 predicting isocratic retention factors for long columns using isocratic retention times measured
 495 using short columns is far more accurate than predicting isocratic retention factors from retention
 496 times measured under gradient elution conditions.

497


498 **Figure 7.** Percent differences between predicted and measured retention factors (k) for the 100 mm column.
 499 Grey bars show the difference between measured values (100 mm column) and values calculated from
 500 measurements using the 5 mm column but corrected using Eqs. 1-3. White bars show the differences
 501 between measured values (100 mm column) and values calculated by fitting gradient elution retention times
 502 to the Neue-Kuss model of reversed-phase retention as described in ref. 21. Chromatographic conditions
 503 for the isocratic measurements are the same as in Fig. 4. For the gradient measurements, gradient times of
 504 10, 20, and 30 min. were used, with a gradient running from 5 to 60% ACN; other conditions were the same
 505 as in the isocratic experiments.

506

507 4.4. *Prediction of gradient elution retention times using isocratic or gradient elution retention data,*
508 *and short or long columns*

509 In a final comparison we evaluated the ability to predict gradient elution retention times for a long
510 column from either isocratic retention measurements made using the short column (Path #2 in Fig.
511 1), or retention measurements made under gradient elution conditions using the long column (Path
512 #4 in Fig. 1). Path #2 requires that Neue-Kuss model parameters are first obtained by fitting
513 isocratic k values determined for several different isocratic mobile phase compositions using Eq.
514 13. In this work we used k values (after translating measurements made using the 5 mm column to
515 the 100 mm column as in Eq. 3) for five or six mobile phases (covering a range in k of about 1 to
516 10) to obtain retention model parameters for each compound. Then, the resulting model parameters
517 can be used to predict a gradient elution retention time using Eq. 12.

518 Figure 8 shows the percent differences between gradient elution retention times predicted from
519 Paths #1 and 4, and gradient elution retention times measured using the long column and a gradient
520 time of 20 min. As shown by the white bars, the accuracy of prediction using the gradient elution
521 retention times (Path #4 in Fig. 1) is incredibly good, with a maximum difference of -0.36% for
522 5,5-diphenylhydantoin, and a mean error of -0.03%. This is consistent with an extensive body or
523 prior work showing similarly good results for this approach (e.g., see [27]). The grey bars in Fig.
524 8 show that the prediction of gradient elution retention times using isocratic measurements made
525 with the short column (Path #2 in Fig. 1) is not nearly as good, but not terrible. Here the maximum
526 error is -3.9%, with a mean error of -0.65%. Given that the errors for this approach increase with
527 decreasing gradient elution retention time, it is conceivable that small errors that effectively cancel
528 out in Path #4 (e.g., error in the determination of gradient delay volume, deviation of the solvent
529 composition arriving at the column inlet from a simple linear gradient [10,28]) are exposed in Path
530 #2.

531

532 **Figure 8.** Percent differences between predicted and measured gradient elution retention times (t_r) for the
 533 100 mm column. Grey bars show the difference between measured values (100 mm column) and values
 534 calculated from measurements using the 5 mm column but corrected using Eqs. 1-3. White bars show the
 535 differences between measured values (100 mm column) and values calculated by fitting gradient elution
 536 retention times to the Neue-Kuss model of reversed-phase retention as described in ref. 21.
 537 Chromatographic conditions for the isocratic measurements are the same as in Fig. 4. For the gradient
 538 measurements, gradient times of 10, 20, and 30 min. were used, with a gradient running from 5 to 60%
 539 ACN; other conditions were the same as in the isocratic experiments.

540

541 **5. Conclusions**

542 Accurate isocratic retention data are needed for a variety of applications of liquid chromatography
 543 ranging from fundamental research to practical method development. In this work we have
 544 explored an approach using low volume columns that minimizes the time needed for each retention
 545 measurement, thereby increasing the throughput of data collection for a single instrument. As the
 546 volume of the column used to make retention measurements is decreased, factors that are normally
 547 relatively inconsequential, such as inlet and outlet frit volumes, become more important and can
 548 compromise the accuracy of retention measurement. Fundamentally, retention is a thermodynamic
 549 property of the mobile and stationary phase combination under study, and should be nominally
 550 independent of column dimensions. We propose using measured selectivities (i.e., ratios of

551 retention factors) as column geometry-independent measures of retention that can be used to
552 mitigate the effects of non-idealities such as frit volumes on retention measurements. After
553 comparing measured retention data from short (5 mm) and long (100 mm) 2.1 mm i.d. reversed-
554 phase columns, we have come to the following primary conclusions about difficulties associated
555 with retention measurements from low volume columns and the benefits of our approach proposed
556 here:

- 557 1) Errors in retention factors measured using the short (5 mm) column are on the order of 20%
558 when compared to a long (100 mm) column packed with the same stationary phase. We
559 attribute most of this difference to the volume of the inlet and outlet frits that contributes
560 disproportionately to measured dead times and retention times.
- 561 2) Using the correction scheme based on selectivities, the apparent difference between the
562 retention factors of 13 test analytes on the short and long columns can be reduced to an
563 average absolute difference of 1.7% (all errors less than 8%).
- 564 3) The correction scheme described here should facilitate more rapid method development by
565 collecting data needed to build retention models that can then be used to predict optimal
566 separation conditions. The scheme should also enable building of large retention databases
567 that can be used to deepen our understanding of retention in different separation modes
568 (e.g., reversed-phase, ion-exchange, etc.), and support other aspects of method
569 development, such as the effect of mobile phase mismatch in two-dimensional LC
570 separations.

571 The approach demonstrated here has so far relied on single-channel UV detection, and one analyte
572 per sample to facilitate data processing. With these parameters the approach can yield about 2,000
573 isocratic retention measurements per instrument per day (assuming an overhead of 25% of time
574 dedicated to quality control and instrument overhead). Any effort to multiplex measurements by
575 working with multiple analytes per sample – for example by using mass spectrometric detection
576 or multi-channel UV detection – may further increase the throughput of retention measurement.

577

578 **6. Acknowledgements**

579 D.S., T.K., and T.D. have been supported by a grant from the National Science Foundation
580 (CHE2003734). G.K.'s exchange semester at Gustavus Adolphus College was made possible by a
581 scholarship from the Vienna-based Austrian Marshall Plan Foundation. All instrumentation and
582 columns used in this work were provided by Agilent Technologies.

583

584 **7. References**

585 [1] M.J. den Uijl, P.J. Schoenmakers, B.W.J. Pirok, M.R. Bommel, Recent applications of
586 retention modelling in liquid chromatography, *J. Sep. Sci.* 44 (2021) 88–114.
587 <https://doi.org/10.1002/jssc.202000905>.

588 [2] D.R. Stoll, R.W. Sajulga, B.N. Voigt, E.J. Larson, L.N. Jeong, S.C. Rutan, Simulation of
589 elution profiles in liquid chromatography – II: Investigation of injection volume overload
590 under gradient elution conditions applied to second dimension separations in two-
591 dimensional liquid chromatography, *J. Chromatogr. A.* 1523 (2017) 162–172.
592 <https://doi.org/10.1016/j.chroma.2017.07.041>.

593 [3] D. Stoll R., B.W.J. Pirok, Perspectives on the use of retention modeling to streamline 2D-LC
594 method development: Current state and future prospects, *LC GC N. Am.* 40 (2022) 30–34.

595 [4] S. Chapel, F. Rouvière, V. Peppermans, G. Desmet, S. Heinisch, A comprehensive study on
596 the phenomenon of total breakthrough in liquid chromatography, *J. Chromatogr. A.* 1653
597 (2021) 462399. <https://doi.org/10.1016/j.chroma.2021.462399>.

598 [5] F. Gritti, M. Gilar, J. Hill, Mismatch between sample diluent and eluent: Maintaining
599 integrity of gradient peaks using in silico approaches, *J. Chromatogr. A.* 1608 (2019) 460414.
600 <https://doi.org/10.1016/j.chroma.2019.460414>.

601 [6] A.G. Usman, S. Işık, S.I. Abba, A Novel Multi-model Data-Driven Ensemble Technique for
602 the Prediction of Retention Factor in HPLC Method Development, *Chromatographia.* 83
603 (2020) 933–945. <https://doi.org/10.1007/s10337-020-03912-0>.

604 [7] Z. Liu, J.P. Foley, Are two liquid chromatography columns in tandem better than one?:
605 Answers from the hydrophobic subtraction model, *Journal of Chromatography A.* 1668
606 (2022) 462890. <https://doi.org/10.1016/j.chroma.2022.462890>.

607 [8] L.N. Jeong, R. Sajulga, S.G. Forte, D.R. Stoll, S.C. Rutan, Simulation of elution profiles in
608 liquid chromatography—I: Gradient elution conditions, and with mismatched injection and
609 mobile phase solvents, *J. Chromatogr. A.* 1457 (2016) 41–49.
610 <https://doi.org/10.1016/j.chroma.2016.06.016>.

611 [9] A.R. Horner, R.E. Wilson, S.R. Groskreutz, B.E. Murray, S.G. Weber, Evaluation of three
612 temperature- and mobile phase-dependent retention models for reversed-phase liquid
613 chromatographic retention and apparent retention enthalpy, *J. Chromatogr. A.* 1589 (2019)
614 73–82. <https://doi.org/10.1016/j.chroma.2018.12.055>.

615 [10] T.S. Bos, L.E. Niezen, M.J. den Uijl, S.R.A. Molenaar, S. Lege, P.J. Schoenmakers, G.W.
616 Somsen, B.W.J. Pirok, Reducing the influence of geometry-induced gradient deformation in
617 liquid chromatographic retention modelling, *J. Chromatogr. A.* 1635 (2021) 461714.
618 <https://doi.org/10.1016/j.chroma.2020.461714>.

619 [11] I.A. Haidar Ahmad, A. Kiffer, R.C. Barrientos, G.L. Losacco, A. Singh, V. Shchurik, H.
620 Wang, I. Mangion, E.L. Regalado, *In Silico* Method Development of Achiral and Chiral
621 Tandem Column Reversed-phase Liquid Chromatography for Multicomponent
622 Pharmaceutical Mixtures, *Anal. Chem.* (2022) [acs.analchem.1c05551](https://doi.org/10.1021/acs.analchem.1c05551).
623 <https://doi.org/10.1021/acs.analchem.1c05551>.

624 [12] Y. Mao, P.W. Carr, Adjusting Selectivity in Liquid Chromatography by Use of the Thermally
625 Tuned Tandem Column Concept, *Anal. Chem.* 72 (2000) 110–118.
626 <https://doi.org/10.1021/ac990638x>.

627 [13] D.R. Stoll, T.A. Dahlseid, S.C. Rutan, T. Taylor, J.M. Serret, Improvements in the predictive
628 accuracy of the hydrophobic subtraction model of reversed-phase selectivity, *J. Chromatogr.*
629 *A.* (2020) 461682. <https://doi.org/10.1016/j.chroma.2020.461682>.

630 [14] D. Abate-Pella, D.M. Freund, Y. Ma, Y. Simón-Manso, J. Hollender, C.D. Broeckling, D.V.
631 Huhman, O.V. Krokhin, D.R. Stoll, A.D. Hegeman, T. Kind, O. Fiehn, E.L. Schymanski, J.E.
632 Prenni, L.W. Sumner, P.G. Boswell, Retention projection enables accurate calculation of
633 liquid chromatographic retention times across labs and methods, *J. Chromatogr. A.* 1412
634 (2015) 43–51. <https://doi.org/10.1016/j.chroma.2015.07.108>.

635 [15] J.W. Dolan, L.R. Snyder, The Hydrophobic-Subtraction Model for Reversed-Phase Liquid
636 Chromatography: A Reprise, *LCGC North America.* 34 (2016) 730–741.

637 [16] C.J. Welch, X. Gong, W. Schafer, E.C. Pratt, T. Brkovic, Z. Pirzada, J.F. Cuff, B. Kosjek,
638 MISER chromatography (multiple injections in a single experimental run): the chromatogram
639 is the graph, *Tetrahedron: Asymmetry.* 21 (2010) 1674–1681.
640 <https://doi.org/10.1016/j.tetasy.2010.05.029>.

641 [17] K.D. Berthelette, T.H. Walter, M. Gilar, F. Gritti, T.S. MacDonald, M. Soares, Evaluating
642 MISER chromatography as a tool for characterizing HILIC column equilibration, *J.*
643 *Chromatogr. A.* 1619 (2020) 460931. <https://doi.org/10.1016/j.chroma.2020.460931>.

644 [18] C.J. Welch, Are We Approaching a Speed Limit for the Chromatographic Separation of
645 Enantiomers?, *ACS Cent. Sci.* 3 (2017) 823–829.
646 <https://doi.org/10.1021/acscentsci.7b00250>.

647 [19] T. Brau, B. Pirok, S. Rutan, D. Stoll, Accuracy of retention model parameters obtained from
648 retention data in liquid chromatography, *J. Sep. Sci.* (2022) jssc.202100911.
649 <https://doi.org/10.1002/jssc.202100911>.

650 [20] M. Gilar, T.S. McDonald, F. Gritti, Impact of instrument and column parameters on high-
651 throughput liquid chromatography performance, *J. Chromatogr. A.* 1523 (2017) 215–223.
652 <https://doi.org/10.1016/j.chroma.2017.07.035>.

653 [21] A. Daneyko, D. Hlushkou, S. Khirevich, U. Tallarek, From random sphere packings to
654 regular pillar arrays: Analysis of transverse dispersion, *J. Chromatogr. A.* 1257 (2012) 98–
655 115. <https://doi.org/10.1016/j.chroma.2012.08.024>.

656 [22] B.W.J. Pirok, N. Abdulhussain, T. Brooijmans, T. Nabuurs, J. de Bont, M.A.J. Schellekens,
657 R.A.H. Peters, P.J. Schoenmakers, Analysis of charged acrylic particles by on-line
658 comprehensive two-dimensional liquid chromatography and automated data-processing,
659 *Anal. Chim. Acta.* 1054 (2019) 184–192. <https://doi.org/10.1016/j.aca.2018.12.059>.

660 [23] B.W.J. Pirok, Westerhuis, J. A., Challenges in obtaining relevant information from one- and
661 two-dimensional LC experiments, *LC GC N. Am.* (2020) 8–14.

662 [24] U.D. Neue, E. Serowik, P. Iraneta, B.A. Alden, T.H. Walter, Universal procedure for the
663 assessment of the reproducibility and the classification of silica-based reversed-phase
664 packings, *Journal of Chromatography A.* 849 (1999) 87–100. [https://doi.org/10.1016/S0021-9673\(99\)00435-5](https://doi.org/10.1016/S0021-9673(99)00435-5).

666 [25] D. Cabooter, H. Song, D. Makey, D. Sadriaj, M. Dittmann, D. Stoll, G. Desmet, Measurement
667 and modelling of the intra-particle diffusion and b-term in reversed-phase liquid
668 chromatography, *Journal of Chromatography A.* 1637 (2021) 461852.
669 <https://doi.org/10.1016/j.chroma.2020.461852>.

670 [26] U.D. Neue, H.-J. Kuss, Improved reversed-phase gradient retention modeling, *J.*
671 *Chromatogr., A.* 1217 (2010) 3794–3803. <https://doi.org/10.1016/j.chroma.2010.04.023>.

672 [27] M.J. den Uijl, P.J. Schoenmakers, G.K. Schulte, D.R. Stoll, M.R. van Bommel, B.W.J. Pirok,
673 Measuring and using scanning-gradient data for use in method optimization for liquid
674 chromatography, *Journal of Chromatography A.* 1636 (2021) 461780.
675 <https://doi.org/10.1016/j.chroma.2020.461780>.

676 [28] P.G. Boswell, J.R. Schellenberg, P.W. Carr, J.D. Cohen, A.D. Hegeman, A study on retention
677 “projection” as a supplementary means for compound identification by liquid
678 chromatography–mass spectrometry capable of predicting retention with different gradients,
679 flow rates, and instruments, *J. Chromatogr. A.* 1218 (2011) 6732–6741.
680 <https://doi.org/10.1016/j.chroma.2011.07.105>.

681

682

