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Abstract
We present two results on multiqubit Werner states, defined to be those states
that are invariant under the collective action of any given single-qubit unitary
that acts simultaneously on all the qubits. Motivated by the desire to charac-
terize entanglement properties of Werner states, we construct a basis for the
real linear vector space of Werner invariant Hermitian operators on the Hilbert
space of pure states; it follows that any mixed Werner state can be written as a
mixture of these basis operators with unique coefficients. Continuing a study
of ‘polygon diagram’ Werner states constructed in earlier work, with a goal
to connect diagrams to entanglement properties, we consider a family of mul-
tiqubit states that generalize the singlet, and show that their 2-qubit reduced
density matrices are separable.

Keywords: Werner, states, diagraming, quantum information, Werner states,
entanglement

1. Introduction

Motivated by practical applications in computation, cryptography, and metrology, quantum
information theory has been instrumental in shedding light on fundamental theoretical ques-
tions in physics and computer science. This includes violation of Bell inequalities and local
hidden variable theories [1–3], new proofs of classical information theorems [4], and new
physical principles such as information causality [5].

Certain classes of states have played significant roles in theoretical and applied develop-
ments in quantum information. This paper focuses on multiqubit Werner states, defined by
their invariance under the action of local unitaries of the form U⊗n, for all 1-qubit unitaries U,
and n is the number of qubits. Originally introduced in 1989 for two particles to distinguish
between classical correlation and Bell inequality satisfaction [2], Werner states have been used
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in the description of noisy quantum channels [6], as examples in nonadditivity claims [7], for
hiding classical data in quantum states [8], in the study of deterministic purification [9], and
for coding in a way that protects against the loss of a qubit [10].

Significant results on the properties of Werner states include detailed understanding of
structure and entanglement properties for bipartite and tripartite systems of arbitrary local
dimension [2, 11] and general results on entanglement witnesses [12, 13]. In this paper, we
extend our own previous work on pure and mixed Werner states of arbitrarily many qubits.
In [14], we construct linear bases for the Hilbert spaces of pure Werner states, parameterized
by combinatorial objects called chord diagrams. In [15], we construct mixed Werner states
from another type of diagram called polygon diagrams that are directly related to properties
of separability and cyclic permutational symmetry.

This paper builds on our diagram-based analyses towards further structural understanding
of mixed Werner states. In section 4, we use our chord diagram basis for 2n-qubit pure Werner
states to construct a basis for the real vector space of Werner invariant Hermitian operators on
the Hilbert space for n qubits; it follows that any n-qubit mixed Werner state can be written
as a mixture of these basis operators with unique coefficients. Motivation for this construction
comes from the success of Werner and Eggeling’s precise mapping of separability regions
in the space of coefficients with respect to a specific basis for tripartite Werner states [11].
Towards the goal of further connecting polygon diagrams to entanglement properties of states
constructed from them, we consider a family of polygon diagram states that generalize the
singlet to many qubits, and show that their 2-qubit reduced density matrices are separable
in section 5. This result can be viewed as a case study related to recent work of Bernards
and Gühne [16] where they show, in their study of absolutely maximally entangled states,
that 2-party reduced density matrices of pure Werner states are never maximally mixed. In a
distributed quantum computation scenario, these polygon Werner states provide a multipartite
entanglement resource that does not allow 2-party shared entanglement, thus affording some
protection against dishonest pairs of parties.

We begin with preliminary facts and notation in section 2. We give a self-contained account
of our construction of pure Werner states from chord diagrams, and another construction of
a family of mixed Werner states that generalize the singlet state, in section 3. Some proofs
involving longer or more technical derivations are given in the appendix.

2. Preliminaries

An m-qubit pure state |ψ ⟩ is Werner invariant if U⊗m |ψ ⟩ ∝ |ψ ⟩ for all 1-qubit unitary oper-
ators U. An m-qubit mixed state ρ is Werner invariant if U⊗mρ(U†)⊗m = ρ for all 1-qubit
unitary operators U. More generally, an operator A on m-qubit states is Werner invariant if
U⊗mA(U†)⊗m = A for all 1-qubit unitary operators U.

Wewill writeHm,L(Hm),Herm(Hm) to denote the Hilbert space of pure states, the space of
operators on Hilbert space, and the space of Hermitian operators on Hilbert space, respectively.
We will write Hm

W ,L(Hm)
W ,Herm(Hm)

W to denote the corresponding Werner invariant
subspaces. In these notations, the set of mixed states ofm qubits is a subset of Herm(Hm), and
the m-qubit Werner invariant mixed states are a subset of Herm(Hm)

W .

We write Z,X denote the 1-qubit Pauli operators Z=

[

1 0
0 −1

]

, X=

[

0 1
1 0

]

with

respect to a given computational basis, and we use the notation A(k), where A is either Z or X,
to denote the 1-qubit operator A acting on the kth qubit of a multiqubit state, i.e. A(k) is the
operator I⊗(k−1) ⊗A⊗ I(m−k) in L(Hm).
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We will use the following formulas for establishing Werner invariance in sections below.
An m-qubit pure state |ψ ⟩ is Werner invariant if the following two equations hold

(

∑

k

Z(k)
)

· |ψ ⟩ = 0 (1)

(

∑

k

X(k)

)

· |ψ ⟩ = 0 (2)

and an m-qubit mixed state ρ is Werner invariant if the following two equations hold.
[(

∑

k

Z(k)
)

,ρ

]

= 0 (3)

[(

∑

k

X(k)

)

,ρ

]

= 0. (4)

While these criteria for Werner invariance are well-known, we provide a proof in the appendix
for the sake of self-containedness.

We will use the following notation for bit strings. Given an m-bit string I= i1i2 . . . im, we
write wtI to denote the Hamming weight wtI=

∑

k ik. We write ick to denote the complement
ik+ 1 (mod 2) of the kth bit ik, and we write Iℓ to denote the string i1i2 . . . iℓ−1icℓiℓ+1 . . . im, that
is, the string I with only the ℓth bit complemented, and the other bits left unchanged. We write
Ic to denote the string ic1i

c
2 . . . i

c
m.

Given a bit string J= j1, j2, . . . , jd, we write Jk to denote the kd-bit string obtained by con-
catenating J with itself k times. For example,

(011)3 = 011011011.

A bit string I is called periodic if I= Jk for some k> 1, and is called aperiodic otherwise.

3. Pure and mixed Werner state constructions from diagrams

This background section provides details from previous work that is needed for the new results
in the sections that follow.

It is straightforward to check that the singlet state |s⟩= 1√
2
(|01⟩− |10⟩) isWerner invariant.

It follows that any product of singlet states is also Werner invariant. Not obvious, but true
nonetheless, is that any pure Werner invariant state must be a superposition of products of
singlets [14]. Thus, to describe pure Werner states, it is natural to make use of chord diagrams
to keep track of which pairs of qubits are entangled in a product of singlets. A chord diagram
with 2n nodes is a partition of the set {1,2, . . . ,2n} into two-element subsets, called chords.
The diagram is drawn with points labeled 1,2, . . . ,2n consecutively around a circle, with a line
segment connecting each pair {a,b} in the chosen partition. The figures in the left column of
table 1 show examples.

For our basis construction in the next section, it will be convenient to consider oriented
chord diagrams, where ordered pairs are used to denote chords, instead of two-element sets.
We will write (a, b) do denote the directed chord starting at vertex a and ending at vertex b,
and we write |s⟩a,b to denote the singlet

|s⟩a,b =
1√
2

(

|0⟩a |1⟩b− |1⟩a |0⟩b
)

3
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Table 1. Bases for Werner invariant spaces for n= 3. The far left column shows the five
6-vertex noncrossing chord diagrams. The diagrams in the first three rows have half-turn
rotational symmetry, and the diagrams in the last two rows do not (they are half-turn rota-
tions of one another). The column with the heading ‘|D⟩’ is the NCC basis for the com-
plex 5-dimensional space of Werner invariant vectors in the Hilbert space for 6 qubits,
omitting the normalizing factor 1/

√
8. For space efficiency and readability, matrices

in the column with the heading ‘AD’ are typeset without brackets or parentheses, and
the symbols ‘+’, ‘−’ are used to denote the entries 1/

√
8, −1/

√
8, respectively. The

column on the far right is a basis for the real 5-dimensional space of Werner invariant
Hermitian operators on the Hilbert space for 3 qubits. The set R consists of the single
diagram D = {(1,2),(3,4),(5,6)}.

D |D⟩ AD

Contribution
to basis B

+|010011⟩− |101100⟩
−|010101⟩+ |101010⟩
−|011010⟩+ |100101⟩
+|011100⟩− |100011⟩

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 − 0 + 0 0 0
0 0 0 − 0 + 0 0
0 0 + 0 − 0 0 0
0 0 0 + 0 − 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

AD

+|001101⟩− |110010⟩
−|001110⟩+ |110001⟩
−|010101⟩+ |101010⟩
+|010110⟩− |101001⟩

0 0 0 0 0 0 0 0
0 − + 0 0 0 0 0
0 + − 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 − + 0
0 0 0 0 0 + − 0
0 0 0 0 0 0 0 0

AD

+|001111⟩− |111000⟩
−|001011⟩+ |110100⟩
−|010101⟩+ |101010⟩
+|011001⟩− |100110⟩

− 0 0 0 0 0 0 0
0 0 0 0 − 0 0 0
0 0 − 0 0 0 0 0
0 0 0 0 0 0 − 0
0 − 0 0 0 0 0 0
0 0 0 0 0 − 0 0
0 0 0 − 0 0 0 0
0 0 0 0 0 0 0 −

AD

(Continued.)
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Table 1. (Continued.)

+|010101⟩− |101010⟩
−|010110⟩+ |101001⟩
−|011001⟩+ |100110⟩
+|011010⟩− |100101⟩

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 − + 0 0 0 0 0
0 0 0 0 0 − + 0
0 + − 0 0 0 0 0
0 0 0 0 0 + − 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

AD+AT
D

2
,

AD−AT
D

2i

+|001011⟩− |110100⟩
−|001101⟩+ |110010⟩
−|010011⟩+ |101100⟩
+|010101⟩− |101010⟩

0 0 0 0 0 0 0 0
0 0 − 0 + 0 0 0
0 0 + 0 − 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 − 0 + 0 0
0 0 0 + 0 − 0 0
0 0 0 0 0 0 0 0

(None)

associated to the directed chord (a, b). Given an oriented chord diagram D = {(ak,bk)}1⩽k⩽n,
we define the state |D⟩ to be the product of singlets

|D⟩=
⊗

1⩽k⩽n

|s⟩ak,bk .

In the Hilbert space (C2)⊗2n of the composite system of 2n qubits in order {1,2, . . . ,2n}, the
orientation reversal of a chord flips the sign of a diagram state. That is, if D,D ′ share all
but one of the same oriented chords, but (a, b) is a chord in D and (b, a) is a chord in D ′,
we have |D⟩=−|D⟩ ′. The coefficients cK in the expression |D⟩=

∑

K cK |K⟩ for |D⟩ in the
computational basis parameterized by 2n-bit strings K= k1k2 . . .k2n are given by

cK =

{

∏n
ℓ=1(−1)kaℓ if kaℓ = kcbl for1⩽ ℓ⩽ n

0 otherwise
. (5)

A chord diagram is said to be noncrossing if there are no intersections of chords in the
geometric picture. We will write NCC to denote the set of all 2n-node noncrossing chord
diagrams, where n will be understood from context, where each chord {a,b} with a< b has
the orientation (a, b). It is a remarkable fact [14] the set of singlet products corresponding to
NCC form a C-linear basis for pure Werner states. Table 1 shows the five noncrossing chord
diagrams for 6 qubits.

We will use the following singlet product state in our constructions for mixed Werner
states in the next section. We define the ‘pizza diagram’ P0 to be the chord diagram P0 =
{(i, i+ n) : 1⩽ i⩽ n}. See figure 1. For convenience, we rescale the state |P0⟩ to define the

5
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Figure 1. The ‘pizza’ diagram P0 for 2n= 6 qubits. The unnormalized pizza
state is |P⟩= |000111⟩− |111000⟩− |001110⟩+ |110001⟩− |010101⟩+ |101010⟩+
|011100⟩− |100011⟩.

(unnormalized) 2n-qubit, Werner invariant ‘pizza state’ |P⟩= 2n/2 |P0⟩. Using notation from
section 2 above, the pizza state can be expressed as follows.

|P⟩=
∑

I

(−1)wtI |I⟩ |Ic⟩= 2n/2 |P0⟩ . (6)

Next, we construct a family of mixed Werner states ρm that generalize the density matrix
ρ2 = |s⟩⟨s| of the singlet1. The first step is to construct a pure state C(I) for every aperiodic
m-bit string I= i1i2 · · · im, given by

C(I) =
1√
m

m−1
∑

k=0

ωk
∣

∣πkI
〉

(7)

whereω = e2π i/m and π is the cyclic permutation of {1,2, . . . ,m} given by j→ j− 1 (mod m).
For example, we have

C(001) =
1√
3
(|001⟩+ e

2π i
3 |010⟩+ e

4π i
3 |100⟩).

(Note that if I is periodic, then C(I) = 0, and is therefore not a state.) Now we define ρm by

ρm =
1

A(m)

∑

aperiodic I

C(I)C(I)† (8)

where A(m) is the number of aperiodic m-bit strings [17]. It is easy to check that ρ2 = |s⟩⟨s| is
the density matrix for the singlet state, and it is a fact [15] that ρm is Werner invariant for all
m⩾ 1.

4. A mixed Werner basis construction

In this section we construct a basis for the real vector space Herm(Hn)
W . It follows that any

n-qubit mixed Werner state can be written uniquely as an R-linear combination of matrices
in this set. The overall strategy is to map a known basis for 2n-qubit pure Werner states (the
noncrossing chord diagram states) to a basis of operators on the Werner invariant subspace of
Hermitian operators n-qubit state space.

1 The states ρm appear as tensor factors in a diagrammatic construction for mixed Werner states that generalizes the
chord diagram construction for pure Werner states. The results of section 5 do not require the full polygon state
construction, so we limit our discussion to only the necessary details for ρm.

6
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To begin, letH=H2n = (C2)⊗n⊗ (C2)⊗n denote the Hilbert space of 2n-qubit states with
computational basis {|I⟩ |J⟩}, where I,J each range over the set of all n-bit strings. Let (H2n)R
denote the subspace of states with real coefficients in the computational basis,

(H2n)R =

{

∑

IJ

cIJ |I⟩ |J⟩ : cIJ ∈ R

}

.

Let m denote the R-linear map m : (H2n)R →L(Hn) that takes the computational basis vector
|I⟩ |J⟩ to |I⟩⟨J| (note that m is not C-linear). Observe that |D⟩ lies in (H2n)R for any chord
diagram (crossing or noncrossing), so that m(|D⟩) is defined.

Next, we establish useful properties of the ‘pizza operator’m(|P⟩) obtained by applyingm to

the (unnormalized) pizza state |P⟩. The symbol Y denotes the Pauli operator Y=

[

0 −i
i 0

]

.

Proposition 1 (Properties of the pizza operator). The following hold.

(i) m(|P⟩) =
∑

I(−1)wtI |I⟩⟨Ic|
(ii) m(|P⟩)T = (−1)nm(|P⟩)
(iii) m(|P⟩) = (iY)⊗n = 2n/2m(|s⟩)⊗n

(iv) m(|P⟩)2 = (−1)nId.

Proof. For (i), apply the definition of m to the expression (6) for the pizza state. For (ii), use
wtI+wtIc = n, so (−1)wtI

c
= (−1)n(−1)wtI. Checking (iii) is a straightforward computation,

and (iv) follows from (iY)2 =−Id.

The next proposition establishes key properties of products m(|P⟩)m(|D⟩).
Proposition 2. Let D be any chord diagram, crossing or noncrossing. The following hold.

(i) m(|P⟩)m(|D⟩) = m(|D⟩)m(|P⟩)
(ii) m(|P⟩)m(|D⟩) is Werner invariant.

Proof. The proof of (i) requires only simple observations about products of singlets. The proof
of (ii) uses Werner invariance criteria (1)–(4) to verify that m(|P⟩)m(|D⟩) is Werner invariant.
Details are given in the appendix.

In the remainder of this section, we describe how to construct a basis for Herm(Hn)
W

from the Werner invariant matrices in part (ii) of proposition 2 above. For compactness and
readability, let

AD := m(|P⟩)m(|D⟩).
We will show that there are two possibilities for AD, depending on whether D has half-turn
rotational symmetry. For D = {(ak,bk) : 1⩽ k⩽ n}, we define R180D by

R180D = {(ak+ n,bk+ n) : 1⩽ k⩽ n}
where addition in the last expression is taken mod 2n. To say that a diagram D has half-turn
rotational symmetry means thatD,R180D are equal as unoriented chord diagrams, which is the
same as |D⟩=±|R180D⟩. We will show that

• AD is symmetric if D has half-turn symmetry, and
• AD,AR180D are distinct and are transposes of one other (up to a sign) if D does not have

half-turn symmetry.

7
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We then construct a set of Hermitian matrices from linear combinations of the AD, and
finally, we argue why this set forms a basis. We begin with a proposition that relates half-turn
rotation and matrix transpose.

Proposition 3. Let D be an oriented 2n-vertex chord diagram, crossing or noncrossing. We
have the following.

m(|R180D⟩) = m(|D⟩)T. (9)

Proof. Let D = {(ak,bk)}k so that R180D = {(ak+ n,bk+ n)}k.
Given a 2n-bit stringK= k1k2 . . .k2n, letR180K denote the stringR180K= k1+nk2+n . . .k2n+n,

where addition in the subscripts is taken mod 2n. Thus if K= IJ is the concatenation of n-bit
strings I,J, then R180K= JI.

Let |D⟩=
∑

K cK |K⟩ be the expansion of |D⟩ in the computational basis. If a 2n-bit string
K= k1k2 . . .k2n meets the criterion

kaℓ = kcbℓ ,1⩽ ℓ⩽ n

then the bit string K ′ = R180K satisfies

k′aℓ = kaℓ−n = kcbℓ−n = (k′bℓ)
c,1⩽ ℓ⩽ n.

Using equation (5), we have

|R180D⟩=
∑

K

cK |R180K⟩=
∑

IJ

cIJ |J⟩⟨I|= m(|D⟩)T.

The next proposition establishes a detail about the sign in the equation |D⟩=±|R180D⟩ for
diagrams D with half-turn symmetry. We begin with a lemma.

Lemma 1. LetD be a 2n-vertex chord diagram, crossing or noncrossing. The number of chords
that cross the ‘midline’, that is, the chords that have one vertex in the set {1,2, . . . ,n} and the
other vertex in the set {n+ 1,n+ 2, . . . ,2n}, has the same parity as n.
Proof. Let c be the number of chords that have one vertex in the first half {1,2, . . . ,n} of the
vertices and one vertex in the second half {n+ 1,n+ 2, . . . ,2n} of the vertices. The number of
chords that have both vertices in the first half must be equal to the number of chords that have
both vertices in the second half, so n− c is even.

Proposition 4. Suppose that D has half-turn symmetry, so that |D⟩=±|R180D⟩. Then the
sign is determined by n, and we have

|D⟩= (−1)n |R180D⟩ . (10)

Proof. Let c be the number of chords in D that join vertices in the first half {1,2, . . . ,n} with
vertices in the second half {n+ 1,n+ 2, . . . ,2n}. By lemma 1, c has the same parity as n, so
we have (−1)c = (−1)n. Each oriented chord (a, b) inD is mapped to (a+ n,b+ n) in R180D.
The number of orientation reversals accounts for the global sign (−1)c = (−1)n.

Applying m to both sides of (10), and then multiplying both sides by m(|P⟩), we have the
following corollary.

Corollary 1. If D has half-turn symmetry, then we have the following.

m(|D⟩) = (−1)nm(|R180D⟩) (11)

8
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AD = (−1)nAR180D. (12)

Proposition 5. Let D be an oriented 2n-vertex chord diagram, crossing or noncrossing. We
have the following.

AR180D = (−1)nATD (13)

Proof. Multiplying both sides of (9) on the left by m(|P⟩), we have

m(|P⟩)m(|R180D⟩) = m(|P⟩)m(|D⟩)T.

Using proposition 1, part (ii), the right side becomes

(−1)nm(|P⟩)Tm(|D⟩)T = (−1)n [m(|D⟩)m(|P⟩)]T

= (−1)n [m(|P⟩)m(|D⟩)]T (by proposition 2, part (i)).

We conclude that (13) holds.

The following corollary follows immediately from corollary 1 and proposition 5.

Corollary 2. If D has half-turn symmetry, then AD = ATD.

Now we construct a set of Hermitian matrices. For every D in NCC, let SD denote the set

SD =

{

AD +ATD
2

,
AD −ATD

2i

}

.

Because the AD have real entries, the matrices in SD are Hermitian. To extract a basis from the
collection

⋃

D∈NCC SD, we need to weed out linear dependencies that arise from the fact that
ATD = AR180D (proposition 5). We categorize diagrams in NCC into two types, corresponding
to when the underlying unoriented chord diagram either does have or does not have half-turn
rotational symmetry,

NCCsymm = {D ∈ NCC : |D⟩=±|R180D⟩}
NCCnonrot = {D ∈ NCC : |D⟩ ̸=±|R180D⟩} .

The figures in the left column of table 1 show examples of each of these types.
If D ∈ NCCsymm, then AD is real symmetric by corollary 2, so SD = {AD,0}. If D ∈

NCCnonrot, then SD is a set of two nonzero Hermitian matrices. But we have redundancies:
let E be the unoriented noncrossing chord diagram with the same diagram as R180D, and give
E the standard orientation (so that the chord {a,b} is oriented (a, b) with a< b) so that E is in
NCC. Then the vectors in the set SE are the same, up to sign, as the vectors in SD, so that the
sets SD,SE have the same linear span. To eliminate these redundancies, let R be a set consisting
of a choice of one of the two NCCnonrot diagrams D,E for each pair of the type just described.
The choice can be arbitrary, but here is one way to construct R explicitly. Write D in NCC as
a string of indices a1,b1,a2,b2, . . . ,an,bn, where {ak,bk} are the unoriented chords in D with
ak < bk for all k, and a1 < a2 < · · ·< an. Then write D <D ′ to indicate that D comes before
D ′ in lexicographical order. Now we can define the set R by

R= {D ∈ NCCnonrot : D < R180D}.
Now we assemble carefully chosen elements from the sets SD. Let B be the set

B= {AD : D ∈ NCCsymm}∪
{

AD +ATD
2

,
AD −ATD

2i
: D ∈ R

}

. (14)

9
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To complete the argument that B satisfies the requirements for our basis construction, we
count dimensions. The dimension of H2n

W is the Catalan number Cn = 1
n+1

(2n
n

)

[14]. The
set {|D⟩ : D ∈ NCC} is a C-basis for H2n

W , so the cardinality of the set NCC is Cn. The
dimension of the space Herm(Hn)

W is also the Catalan number Cn [15]. The real linear
transformation H2n

W → Herm(Hn)
W taking |D⟩ to AD is nonsingular. For D ∈ R, we have

ATD =±AR180D, and the transformation determined by

(

AD,A
T
D
)

→
(

AD +ATD
2

,
AD −ATD

2i

)

is invertible. Thus, the set B is a set of independent Hermitian operators with cardinality Cn.
We conclude that B is a basis for Herm(Hn)

W . This completes the basis construction. We
record the result with the following theorem. Table 1 shows details for the example n= 3.

Theorem 1 (A basis for n-qubit Werner mixed states). The set B (given by (14) above) is a
basis for the real vector space Herm(Hn)

W . Any n-qubit Werner invariant density matrix is a
unique R-linear combination of elements in this basis.

5. Polygon states: 2-party reduced density matrices

In this section we show that any 2-party reduced density matrix of the Werner state ρm
(equation (8)) is separable for m⩾ 3.

Because partial trace commutes with the local unitary action, Werner invariance of a mixed
state is inherited by all of its reduced density matrices. In particular, any 2-qubit reduced dens-
ity matrix of a Werner state is also a Werner state, which can be written in the form

ρ= λ
Id
4
+(1−λ) |s⟩⟨s|

for some 0⩽ λ⩽ 4/3. The state ρ is entangled if ρ00,00 < 1/6 and ρ is separable if ρ00,00 ⩾
1/6 [2, 18].

Choose two qubits a,b, 1⩽ a< b⩽ m, and let ρ be the 2-qubit Werner state

ρ= ρa,bm = tr(all buta,b)ρm.

It will be convenient to use the following labels (see section 2 for the definition of aperiodic
m-bit string),

A(m) = number of aperiodic m-bit strings

P(m) = number of periodic m-bit strings

A00(m) = number of aperiodic m-bit strings with 00 ina,b

P00(n) = number of periodic m-bit strings with 00 ina,b.

We shall make use of the following elementary relationships.

2m = A(m)+P(m) (15)

2m−2 = A00(m)+P00(m) (16)

P00(m)⩽ P(m) (17)

P(m) =
∑

d|m,d<m

A(d) (18)

10
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P(m)⩽
⌊m/2⌋
∑

i=1

A(i)⩽
⌊m/2⌋
∑

i=0

2i = 2⌊m/2⌋+1 − 1. (19)

The left-most inequality in (19) comes from the fact that the number of divisors of m is upper-
bounded by ⌊m/2⌋.

We begin by obtaining an expression for ρ00,00. Suppose an m-bit string I is aperiodic, with
ia = ib = 0. From the definition (7) for C(I), we have

C(I)C(I)† =
1
m

m−1
∑

k,ℓ=0

ωk−ℓ
∣

∣πkI
〉〈

πℓI
∣

∣ . (20)

The only term in the sum on the right side that gives a nonzero contribution to the partial trace
over all qubits but a,b is for k= ℓ= 0, so we have

⟨0a0b| tr(all buta,b)C(I)C(I)† |0a0b⟩=
1
m
. (21)

From (20), it is easy to see thatC(I)C(I)† = C(πkI)C(πkI)† for 0⩽ k⩽ m− 1, so (21) becomes

⟨0a0b| tr(all buta,b)
m−1
∑

k=0

C(πkI)C(πkI)† |0a0b⟩= 1. (22)

From definition (8), it follows that

ρ00,00 =
A00(m)
A(m)

. (23)

Applying (15)–(19), we have

ρ00,00 =
A00(m)
A(m)

(24)

=
2m−2 −P00(m)
2m−P(m)

(25)

⩾
2m−2 −P(m)

2m
(26)

⩾
2m−2 − 2⌊m/2⌋+1 + 1

2m
(27)

⩾
2m−2 − 2⌊m/2⌋+1

2m
(28)

=
1
4
− 2⌊m/2⌋+1−m (29)

=

{

1
4 − 2(2−m)/2 meven
1
4 − 2(1−m)/2 modd

. (30)

It is clear that (30) increases asm increases. It is easy to check that (30) is equal to 3/16> 1/6
for m= 9,10, so therefore (30) is larger than 1/6 for m⩾ 9. Table 2 shows that ρa,b00,00 ⩾ 1/6
for all possibilities for a,b, for 3⩽ m⩽ 8. We record the result of this section as the following
theorem.

Theorem 2. Let ρm denote the m-qubit mixed Werner state (8) for some m⩾ 3. Let a,b be any
two qubits 1⩽ a,b⩽ m, and let ρ= ρa,bm be the 2-qubit reduced density matrix of ρm is the
subsystem consisting of qubits a,b. Then ρ is separable.

11
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Table 2. Values of ρ00,00 for 3⩽ m⩽ 8 showing separability (any value ⩾ 1/6 implies
ρ00,00 is separable). Table values depend only on the distance |a− b| because of the
cyclic symmetry of ρm.

m |a− b| ρ00,00

3 1 1/6≈ 0.1667
4 1 1/4≈ 0.2500
4 2 1/6≈ 0.1667
5 1 7/30≈ 0.2333
5 2 7/30≈ 0.2333
6 1 7/27≈ 0.2593
6 2 13/54≈ 0.2407
6 3 2/9≈ 0.2222
7 1 31/126≈ 0.2540
7 2 31/126≈ 0.2460
7 3 31/126≈ 0.2460
8 1 1/4≈ 0.2500
8 2 1/4≈ 0.2500
8 3 1/4≈ 0.2500
8 4 7/30≈ 0.2333

6. Outlook

The eventual goal for constructing a basis for mixed Werner states is to characterize entangle-
ment properties and identify resource states in terms of coefficients with respect to that basis.
A first step will be to determine constraints on coefficients that correspond to states, i.e. oper-
ators that are positive semidefinite and have trace 1. There will be two immediately interesting
questions: in what ways can we use the bases constructed in section 4 for n⩾ 3 qubits to gen-
eralize or extend Werner and Eggeling’s basis in [11]? Second, can we generalize and extend
the basis construction to qudits?

The separability result in section 5 for 2-qubit reduced density matrices of Werner states ρm
provides motivation to seek further results in characterizing separability properties for mix-
tures of polygon diagram states, constructed in [15]. We hope to identify distributed entangle-
ment protocols that will exploit these states.
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Appendix. Proofs of propositions

Proof Werner invariance criteria. Formulas (1)–(4) are special cases of more general for-
mulas for the action of the Lie algebra of the local unitary group on pure and mixed states.

12
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(For example, see [19]. See [20] for a connection with angular momentum.) For the sake of
self-containedness, here is a proof.

The Lie algebra L(SU(2)) of the special unitary group SU(2) is the real vector space of
2× 2 skew-Hermitian matrices with trace zero, and is generated (by real linear combinations
and the bracket operation) by the operators iZ, iX. Given a group action Φ: SU(2)×V→ V
on a vector space V, there is a Lie algebra action L(Φ): L(SU(2))×V→ V on V given by
by L(Φ)(M)v= d

dt

∣

∣

t=0
Φ(exp(tM))v, where M= i(aX+ bY+ cZ) for some real coefficients

a,b,c, and Y is the Pauli Y operator. If both generators iZ, iX annihilate a vector v in V, then
v is fixed by exp(it(aX+ bY+ cZ) for all real t. To obtain the results in the lemma, we apply
this basic observation to the actions of SU(2) on Hm and L(Hm) by the standard local unitary
actions

Φpure(U) |ψ ⟩ = U⊗m |ψ ⟩ (31)

Φmixed(U)ρ= U⊗mρ(U†)⊗m. (32)

The Werner invariance conditions in the lemma arise by taking derivatives on the right sides
of the following equations.

0= L(Φpure)(iZ) |ψ ⟩= d
dt

∣

∣

∣

∣

t=0

exp(itZ)⊗m |ψ ⟩

0= L(Φpure)(iX) |ψ ⟩= d
dt

∣

∣

∣

∣

t=0

exp(itX)⊗m |ψ ⟩

0= L(Φmixed)(iZ)ρ=
d
dt

∣

∣

∣

∣

t=0

exp(itZ)⊗mρexp(−itZ)⊗m

0= L(Φmixed)(iX)ρ=
d
dt

∣

∣

∣

∣

t=0

exp(itX)⊗mρexp(−itX)⊗m.

Finally, we observe that if a pure state |ψ ⟩ is fixed by everyU in SU(2) acting by (31), then |ψ ⟩
is fixed, up to a phase factor, by any V in U(2), since any particular V ∈ U(2) can be written
eiθU for some real θ and some U ∈ SU(2). (No such phase adjustment is necessary for (32).)
This concludes the proof.

The following lemma gives computationally useful forms for the Werner invariance cri-
teria (1)–(4). The proof is straightforward checking. For more general formulas for which
these are special cases, see [19].

Lemma 2 (Detailed forms of Werner invariance criteria). Let |ψ ⟩=
∑

I cI |I⟩ and let ρ=
∑

I,J ρI,J |I⟩⟨J| be a pure state and a mixed state, respectively, of m-qubits, with respect to the
computational basis. The following hold.

(

∑

k

Z(k)
)

· |ψ ⟩ =
∑

I

(

∑

k

(−1)k
)

cI |I⟩ (33)

(

∑

k

X(k)

)

· |ψ ⟩ =
∑

I

(

∑

k

cIk

)

|I⟩ (34)

[(

∑

k

Z(k)
)

,ρ

]

=
∑

IJ

ρIJ





∑

k : ik ̸=jk
(−1)ik



 |I⟩⟨J| (35)

13
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[(

∑

k

X(k)

)

,ρ

]

=
∑

IJ





n
∑

k,ℓ=1

(ρIk,J− ρI,Jℓ)



 |I⟩⟨J| . (36)

Proof of proposition 2. Let |D⟩=
∑

K,J cKJ |K⟩ |J⟩. Because |D⟩ is a product of singlets, we
have

n= wtK+wtJ and (37)

cKcJc = (−1)ncKJ (38)

for all K,J such that cKJ ̸= 0. From (37) we have

(−1)wtK = (−1)n(−1)wtJ (39)

for all K,J such that cKJ ̸= 0. As a special case of (37), we have

n= wtI+wtIc (40)

for all I in the expression m(|P⟩) =
∑

I(−1)wtI |I⟩⟨Ic| (part (i) of proposition 1).

(Proof of statement (i)) We have

m(|P⟩)m(|D⟩) =
(

∑

I

(−1)wtI |I⟩⟨Ic|
)(

∑

K,J

cKJ |K⟩⟨J|
)

(41)

=
∑

I,J

(−1)wtIcI cJ |I⟩⟨J| (42)

=
∑

K,J

(−1)wtKcKcJ |K⟩⟨J| (substituteI↔ K)

=
∑

K,J

(−1)n(−1)wtK(−1)ncKcJc |K⟩⟨Jc| (substituteJ↔ Jc)

=
∑

K,J

(−1)wtJcKJ |K⟩⟨Jc| (using (38) and (using (39)

=

(

∑

K,J

cKJ |K⟩⟨J|
)(

∑

I

(−1)wtI |I⟩⟨Ic|
)

= m(|D⟩)m(|P⟩).
(Proof of statement (ii)) To show Werner invariance of m(|P⟩)m(|D⟩), we check that con-

ditions (35), (36) hold for the expression (42). Because (37) and (40) are satisfied in (41), we
must have

n= wtI+wtJ

in (42) for every |I⟩⟨J| term with nonzero coefficient. From this it follows that
∑

k : ik ̸=jk
(−1)ik = 0 (43)

for all I,J such that |I⟩⟨J| appears with nonzero coefficient in (42), and therefore (35) is zero.

14



J. Phys. A: Math. Theor. 56 (2023) 225301 D W Lyons et al

For (36), we have

n
∑

k,ℓ=1

(ρIk,J− ρI,Jℓ) =
∑

k,ℓ

((−1)wtIkcIkcJ− (−1)wtIcI cJℓ) (44)

= (−1)(wtI+1)
∑

k,ℓ

(cIckJ+ cI cJℓ). (45)

The last expression is (a sign times) the coefficient of |IcJ⟩ in the expansion of
(

∑2n
k=1C

(k)
)

|D⟩), and so this quantity is zero (by (36)) because |D⟩ is a product of singlets.

We conclude that (36) is zero for all I,J.
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