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Abstract

It is common for performance studies of computer systems

to make the assumption—either explicitly or implicitly—that

results from each trial are independent. One place this assump-

tion manifests is in experiment design, specifically in the order

in which trials are run: if trials do not affect each other, the

order in which they are run is unimportant. If, however, the

execution of one trial does affect system state in ways that

alter the results of future trials, this assumption does not hold,

and ordering must be taken into account in experiment design.

In the simplest example, if all trials with system setting A are

run before all trials with setting B, this can systematically bias

experiment results leading to the incorrect conclusion that “A

is better than B” or vice versa.

In this paper, we: (a) explore, via a literature and artifact

survey, whether experiment ordering is taken in to consid-

eration at top computer systems conferences; (b) devise a

methodology for studying the effects of ordering on perfor-

mance experiments, including statistical tests for order de-

pendence; and (c) conduct the largest-scale empirical study

to date on experiment ordering, using a dataset we collected

over 9 months comprising nearly 2.3M measurements from

over 1,700 servers. Our analysis shows that ordering effects

are a hidden but dangerous trap that published performance

experiments are not typically designed to avoid. We describe

OrderSage, a tool that we have built to help detect and mit-

igate these effects, and use it on a number of case studies,

including finding previously unknown ordering effects in an

artifact from a published paper.

1 Introduction

Systems performance analysis typically involves running a

series of trials and then calculating statistical measures (such

as mean or median) from the performance data collected.

These measures are used to conclude that one system is, on

average X% faster than another, that the addition of a new fea-

ture does not have a statistically-significant impact on perfor-

mance [12, 16], or that software scales well to large problem

sizes. One of the most fundamental assumptions of this kind

of analysis [36] is that trials are independent; in particular,

that each trial is unaffected by prior trials in the series. If this

assumption does not hold, it can systematically bias results

and alter or even invalidate conclusions drawn from them.

Typical systems research work does not take ordering into

consideration as part of experiment design. This can lead to

violations of the independence assumption.

The problem is especially pernicious because there is not

one, or even a few, root causes behind performance-affecting

state that carries over between trials. In the highly complex

environment of a modern computer system, there are a large

number of hardware and software components whose state

can be carried over from one trial to another [26]. These

include caches [8], data layout in RAM and on disk [22],

application and operating system tuning parameters [20, 41],

and even temperature (with consequences such as thermal

throttling [3, 13]). The systems under test themselves can,

intentionally or unintentionally, make changes that persist

between trials, such as changes to software packages, global

system configuration, environment variables [26], or files.

Thus, while the question of why order matters is important,

it is highly specific to the software being tested, the hardware

it is run on, and the design of the experiment. Before “why”

can be considered, there is the more fundamental question

of whether the order matters for a specific experiment. In

many cases, knowing that order-dependent performance exists

can itself be an interesting result because it indicates some

unexpected property of the software or system under test.

Therefore, eliminating it entirely through experiment design

is not always even desirable.

In this paper, we formulate a systematic approach to ana-

lyzing whether the order of trials within an experiment affects

results. We use this method to collect and analyze a large new

performance dataset that we collected on over 1,700 servers

over a period of 9 months and show that experiment order is

a factor that cannot be neglected. We find that for the selected

benchmarks the order can bias performance by 50% or more

and potentially alters conclusions in 72% of cases.

Order is acknowledged to have some level of impact in the

literature [1, 26]. However, we show this acknowledgment

has not translated into experiment design in practice. We con-

ducted a survey of three major systems conferences and found

that it is exceedingly uncommon to discuss experiment order-

ing in these papers. Furthermore, we examined the artifacts

for the papers and find that they are not designed to detect or

avoid ordering effects. To help relieve this situation, we con-

tribute OrderSage, a tool that helps experimenters with both





Table 1: Results of studying 56 papers and the corresponding artifacts.
Attribute being tested 1st pass 2nd pass Match b/w passes

Paper explicitly describes an order of experiment execution 4 (7%) 4 (7%) 93%

Paper describes a reset procedure to be run between experiments 4 (7%) 10 (18%) 82%

Artifact’s primary experiment execution order: 63%

fixed 36 (64%) 37 (66%)

undefined 17 (30%) 17 (30%)

parallel 3 (5%) 2 (4%)

Artifact runs a reset procedure between experiments 27 (48%) 16 (29%) 73%

that iterates through the studied algorithms or configuration

options in sequence with no randomization. In other cases, a

specific order was documented in the repository’s README

files. Many other artifacts (17, or 30%) provided instructions

on how to run individual groups of tests (e.g., for specific

figures and sections in the papers) but did not specify any

sequence between them—we categorized their orderings as

undefined. Another small class of studies (2–3 artifacts) used

parallel execution, where tests were run concurrently on mul-

tiple worker machines or cloud instances and therefore can be

considered to run each test in its own clean environment. We

have not identified any artifacts that implemented a random-

ized ordering, or which clearly showed explicit attention to

ordering concerns. To summarize, 53–54 artifacts out of 56

(94–96%) used undefined or fixed orderings, both of which

can be questioned from the presentation and experiment de-

sign perspectives. Expanding on the latter case, we show in

this study that fixed-order experiment designs have potential

to introduce adverse bias in performance analysis.

Do artifacts use inter-experiment reset procedures? Be-

tween 16 and 27 artifacts (29–48%) ran identifiable proce-

dures to reset the system to a known state between experi-

ments. Finding these procedures in the code is a non-trivial

and time-consuming process, which explains the spread be-

tween the results in the two survey passes. While we did find

reset procedures in up to half of the artifacts, it is concerning

that the other half of the artifacts did not manifest any reset

procedures. While it may not matter for some of the studies

because of the nature of their performance analysis, there is

a chance that for a subset of them it may be an oversight

causing undesirable effects on their conclusions.

From the survey, we learn that the literature does not make

order an explicit part of experiment design, and we do not see

evidence that ordering issues are explicitly addressed. In the

remainder of this paper, we show how this can constitute a

trap for experimenters and discuss how to avoid this trap.

3 Analyzing Order Dependence

In this section, we detail the procedure we have designed to

find order dependence in performance experiments. There

are two primary outputs from this procedure: first, it reports

whether the statistical distribution of performance results dif-

fers when run using fixed-order and random-order experiment

designs—that is, whether the order has an effect on the ex-

periment results. Second, it reports whether these differences

are potentially large enough to change inferences—that is,

whether it is possible for ordering effects to be large enough

that the conclusions drawn from an experiment could change

based on the execution order.

For consistency, we use the following terminology in this

section and throughout the remainder of the paper:

Test: A test is an individual unit of the system under evalua-

tion. A test typically represents an individual benchmark or

an application with a specific configuration or input.

Trial: A trial is an execution of a test. The outcome of a trial

is a single-metric performance assessment, such as runtime,

throughput, latency, etc. Multiple trials of the same test typ-

ically exhibit variations in performance stemming from the

nondeterminism intrinsic to the test itself or the system used

for benchmarking.

Run: A run is a set of trials, in a particular order, of all tests

in series. Conceptually, one could (and often does) report the

results from a single run in a single order.

Experiment: An experiment is a collection of one or more

runs done for the purpose of reaching a conclusion about

the system(s) under evaluation; typically, such a conclusion

will be reached by comparing results of the trials associated

with different tests. The order of trials within the runs of an

experiment is part of the experiment design and is referred to

as the experiment order.

An outline of the method is shown in Algorithm 1; below,

we go through each step in detail.

¶ Select a “Baseline” Order Select an ordering of trials

that will be used for “fixed order” runs. The order itself is not

important; the order in which trials have been run in the past,

or a “natural” order (such as by increasing parameter value)

is sufficient. This does not need to be a “correct” order: it will

act as the control against which we test random orderings.

· Define a “Reset to Clean State” Procedure Each run

(series of trials) should start from a clean state, such that



Algorithm 1 Order-Dependence Test

Input T : List of trials in baseline order . ¶

Input R: Reset procedure . ·

Input N: Number of repetitions

Input α: Desired family-wise error rate (commonly 0.05)

1: for n = 1, . . . ,N do . ¸

2: Execute R

3: for all t ∈ T do . Run trials in baseline order

4: fixedOrderResults[t][n]← Execute t

5: end for

6: Execute R

7: for all t ∈ RandomlyPermute(T ) do . Run trials in random order

8: randomOrderResults[t][n]← Execute t

9: end for

10: end for

. ¹

11: for all t ∈ T do . Calculate p-values for distribution comparison

12: pKW[t]←KruskalWallis(fixedOrderResults[t], randomOrderResults[t])
13: end for

14: αBC ← α/length|T | . Use Bonferroni corr. for multiple comparisons

15: if ∃t ∈ T | pKW[t]< αBC then

16: return true . Order matters for 1 test→ it matters for the experiment

17: else

18: return false

19: end if

state left over from earlier runs will not affect performance

results of the next run. In many cases, this will be much more

expensive than running the benchmarks themselves: for the

purposes of the experiments in this paper, this procedure is a

reboot of the server on which the benchmarks are executed.

This might instead consist of restarting a server process, pro-

visioning fresh VMs, clearing storage devices, etc.

¸ Run in Both Fixed and Random Orders We execute a

series of runs. Each run consists of the same set of trials, and

each trial may comprise of multiple invocations of the system

under evaluation in order to increase statistical significance.

For half of our runs, trials are run in the fixed baseline order; in

the other half, the order is randomly permuted (separately for

each run). Between runs, the environment is reset to a clean

state using ·. Since the evaluation might take long enough

that time-varying effects (such as hardware degradation) could

be observed, fixed (Lines 3–5) and random order (Lines 7–9)

runs are interleaved to avoid bias. The outcome of each run

is a set of performance results, one from each trial, with the

units being the “natural” units for the tests, e.g., seconds for

runtime, MB/s for bandwidth, etc. The experimenter should

complete a sufficiently sized set of runs (Line 1) to provide

the desired statistical significance in the subsequent steps.

¹ Compare Distributions The next step is to compare the

samples obtained from the fixed- and random-order runs. The

intuition behind this step is that if the two sets of samples

come from the same statistical distribution, it can be said

that the order does not change the distribution, and thus does

not matter. If they come from different distributions, then the

order does indeed matter.

Algorithm 2 CI Overlap Test

Input fixedOrderResults, randomOrderResults from Algorithm 1

Input t: test to check

1: (fLow, fMedian, fHigh)← RankBasedCI(fixedOrderResults[t]) . º

2: (rLow, rMedian, rHigh)← RankBasedCI(randomOrderResults[t])
3: if (fLow > rHigh)∨ (fHigh < rLow) then

4: return Case 1 . Inference does change

5: else if (fLow < rMedian < fHigh)∧ (rLow < fMedian < rHigh) then

6: return Case 2 . Inference likely does not change

7: else

8: return Case 3 . Inference may or may not change

9: end if

To avoid assumptions of normality (which have been shown

to rarely hold for computer systems performance results [22]),

we use the non-parametric Kruskal-Wallis test (Lines 11–13).

This distribution-comparison test produces a p-value indicat-

ing the likelihood of observation assuming the null hypothesis

(i.e., that both samples come from the same distribution). This

should be performed for each test, longitudinally across all

runs: the two populations are (a) the outcomes for all trials

(executions) of the test from fixed-order runs, and (b) the

outcomes of all trials for the same test from random-order

runs. Thus, we are looking at whether a particular test’s per-

formance differs based on where its trials occur in the runs

that are differently ordered.

For each test, compare the p-value produced by Kruskal-

Wallis with a threshold chosen to provide the confidence level

desired; we aim for a family-wise error rate of α = 0.05 (95%

confidence) as is common in such tests. Because we perform

a potentially large number of comparisons, the problem of

multiple comparisons [25] arises; we apply the Bonferroni

correction [9] (Line 14) to obtain the per-test thresholds (αBC)

required for multiple comparisons to reach the target family-

wise confidence level. This correction scales the thresholds

down (making them stricter) in proportion to the number of

comparisons made.

If the p-value is above the threshold, we cannot reject the

null hypothesis, and therefore conclude that both samples

could have come from the same distribution—the order likely

does not matter. If the p-value is below the threshold, we re-

ject the null hypothesis and conclude that a single distribution

would be highly unlikely to yield the observed samples—the

order of the tests does matter.

We note that it is possible, and in our experience common,

that different tests within an experiment produce different

results at this step. This could indicate that some tests are

affected by what runs before them and others are more robust

in this respect. Overall, however, as long as any test shows

order-dependence, this indicates that the experiment design

as a whole needs to be aware of ordering (Lines 15–19).

º Compare Confidence Intervals A typical experiment

setup in performance analysis is to ask whether there is a

difference in performance between two systems. A situation



particularly important to avoid is one in which inferences

from the experiment could change depending on the ordering,

in turn leading to a change in the conclusions drawn. We look

for such situations by comparing confidence intervals [12]

(CIs) as shown in Algorithm 2. CIs can be compared within

tests (e.g., comparing fixed and random orders, to determine

whether order changes the median computed), or across tests

(e.g., comparing two or more tests and checking whether

different performance is observed.)

The outcome of this test tells us something related to, but

distinct from, the Kruskal-Wallis test. Kruskal-Wallis tells

us whether the distributions differ, but not directly whether

they differ enough to change conclusions in a significant way.

Looking at the effect size (detailed in Section 5.1.1) gives us

a sense of the latter, but the CI test answers it directly. Recall

that a CI is an estimated interval we expect to include the

true value of a population measure [12]. For instance, for the

95% CI of the median (the interval we use), we expect that

in a collection of many such intervals, 95% of our estimates

would contain the true population median.

We use rank-based CIs estimating the population me-

dian [17] to avoid assumptions of normality. This comparison

results in three possible cases (visualized in Figure 5):

Case 1: The CIs for the fixed- and random-order runs do not

overlap. In this case, we can have high confidence that we

would expect to compute different medians depending on the

order. This is a red flag, and indicates that we could come to

different conclusions based on the order.

Case 2: The median for at least one of the two samples lies

within the CI for the other population. If this is the case, given

one population, we could have potentially arrived at the other

observed median, and we conclude that our conclusions likely

would not change based on order.

Case 3: In the final case, the CIs overlap, but both medians

are outside the other group’s interval. This case is inconclu-

sive, and requires more careful analysis to determine if it

could change conclusions. Still, it is a potential sign that more

careful experiment design is needed.

4 Dataset and Data Collection

To study performance effects at a large scale, we have col-

lected a dataset covering nearly 2.3 million executions (trials)

of 25 benchmarks on 1,700 machines over a period of nine

months. Many benchmarks were run in multiple configura-

tions, such as on different sockets or with different CPU fre-

quency settings, resulting in multiple tests per benchmark ap-

plication. This data was collected across more than 9,000 runs.

We released this dataset as part of this paper’s artifact: https:

//github.com/ordersage/paper-artifact. Collection

of the dataset covers the first three steps of the method de-

scribed in Section 3; we cover the rest of the steps in the this

section.

This dataset focuses on low-level measurements of CPU

and memory performance through the use of standard bench-

marks, in particular STREAM [23], the NASA Parallel Bench-

marks [27] (NPB), and Reece’s memory benchmarks [30, 31].

We have additional benchmarks of disk and network perfor-

mance, but leave analysis of them to future work. Our case

studies in Section 7 have examples of our methodology ap-

plied to higher-level applications.

4.1 Environment

We collected our data by running experiments in Cloud-

Lab [5], a public testbed for research use. CloudLab has a

variety of different types of server hardware [37], and we ran

our experiment across 13 different server types. We consid-

ered each configuration of each benchmark on each node type

as constituting its own test for the purposes of this analysis:

thus, we have 1,880 different collections of corresponding

trials to compare. CloudLab is an attractive platform for this

work, as it has previously undergone study to quantify and

calibrate the level of variability across different hardware in

the platform [22].

Servers in CloudLab are allocated at a bare-metal level

to one user at a time. Disks used are all local to the server,

and for this paper, we do not consider the network or other

shared resources. Thus, our benchmarks were not affected by

any other simultaneous users of the servers in question or the

CloudLab system as a whole, and did not have any artifacts

due to virtualization. We believe our dataset to be robust with

respect to time-varying, location-dependent (e.g., environmen-

tal/temperature), and micro-architectural factors: we gathered

this data over a period of months; CloudLab nodes are in

three different geographically distant data centers; and they

encompass a variety of processor and memory technologies.

4.2 Baseline Order ¶

The baseline order that we use is a “natural” one that groups

benchmarks from the same suite (e.g., NPB [27]) together,

and reflects the order in which we added the suites to our

experiment setup. This reflects the type of order that a systems

experimenter would be likely to arrive at in the process of

developing scripts to run their experiments.

4.3 Reset Procedure ·

The reset procedure we use is a fresh load of the operating

system and clean boot of the host on which the experiments

are run. This means that each run sees, as much as possible,

the “pristine” state of a just-booted machine, not affected by

any software or configuration changes made by prior users.



It is important to note that we do not claim this clean state to

be correct: we do not claim that the results of a trial gathered

under these conditions are more “valid” than results after

the machine has been running for some time. It is possible

for boot-time effects to alter results, and for some tests, a

scenario in which a machine has been booted and active for a

long period of time may be more realistic. What we do claim

about this procedure is that we can be confident that all runs

started from the same state. Therefore, it can tell us if the

order of trials within the run affected results.

4.4 Running in Fixed and Random Orders ¸

Our data collection framework allocates machines in Cloud-

Lab on which to perform runs. For each run, it randomly

chooses—with equal probability—to execute trials in our

fixed baseline order or a random order. This procedure en-

sures that we interleave baseline and random runs, running

them in approximately equal proportion throughout the entire

time period to avoid a systematic bias in one direction or the

other due to potential changes in the facility over time. If

the random order is chosen, the framework shuffles the list

of all trials for that run. The framework records this order

information for use in future analysis.

5 Analysis Applied to Our Dataset

We now describe how we analyze the order-dependence of

the performance results gathered in Section 4. This section

covers steps ¹ and º from the method described in Section 3.

The nature of our data collection adds another dimension to

our tests, and thus we adopt terminology used elsewhere in the

literature [22] for clarity. Because CloudLab contains servers

of many different types, each of the tests we define will be

executed on 13 different hardware types—each different hard-

ware type may have a different processor, different amount of

RAM, etc. We refer to a combination of {test, hardware type}

as a configuration, where the test itself is a combination of

{benchmark, settings}. For example, the STREAM benchmark

run in its COPY mode on a server of type m400 represents one

configuration; STREAM in COPY mode on a server of type

c6520 is another; and STREAM in SCALE mode on an m400

would be a third. In total, we have 1,880 such configurations.

Results from trials executed under a particular configuration

across all runs are grouped together: our primary compari-

son of interest is whether the same configuration produces

different results when run as part of differently-ordered runs.

It is worth noting that we do not expect results from different

configurations to be independent, and do not analyze them as

such: there is strong likelihood, for example, that STREAM

in COPY mode exhibits similar order-dependent performance

effects to STREAM in SCALE mode. The value derived from

running so many configurations is that it helps to make our re-

sults robust with respect to many different programs, settings

for those programs, and types of hardware.

We analyze data from our memory and CPU benchmarks

as separate experiments: this avoids mixing results from per-

formance tests with very different goals, and offers interesting

insight into how the effects of ordering can differ depending

on the main resource being exercised.

5.1 Comparing Distributions ¹

The next step in our method is to compare the distributions of

performance results for each configuration when run in fixed

vs. random orders.

5.1.1 Memory Benchmarks

The left side of Figure 2 plots the p-values for all 1,198 config-

urations of memory benchmarks. For this test, the Bonferroni-

corrected αBC (n = 1,198) is 4.2×10−5. Configurations are

sorted on the x-axis according to the effect size (discussed be-

low). As can be seen from the figure, most (1,042, or 87%) of

the configurations fall well below the αBC threshold, showing

clear evidence of performance effects due to ordering.

To strengthen our analysis, we calculated the effect size for

each pair of compared samples. This measure is not meant to

replace the p-values but rather should complement them [40].

While the statistical tests indicate that the probability of the

sampling error causing the observed performance difference

may be low, measuring the effect size helps us understand the

scale of the difference between the groups.

We calculate the effect size for each statistical test. The

larger the effect size, the larger the estimated difference be-

tween the populations being compared; a small effect size can

indicate that even when there is a statistically significant dif-

ference revealed by a p-value, it may be small enough not to

be of practical importance. To align with the Kruskal-Wallis

test, we use the non-parametric formulation of the effect size

η2 that is defined using the H-statistic [4]. In statistics terms,

η2, which yields values between 0 and 1, estimates the frac-

tion of variance in the dependent variable that can explained

by the independent variable. The review article [40] provides

additional context and includes the formula for η2 calculation.

η2 values are plotted in the right side of Figure 2. Past the

first few hundred configurations, η2 becomes larger indicating

that the difference between the fixed-order and random-order

results becomes larger. This is also the exact region in which

p < αBC, which indicates significance. It is worth noting that

we do not compare η2 with arbitrary thresholds but rather

observe its growth across the range of the tested configu-

rations for comparison purposes; from this standpoint, it is

assessed similarly to how we interpret percentage differences

in Section 5.1.3.









Table 3: Test results for the memcached experiment. We use

Bonferroni correction with n = 3 and αBC = 0.0167 (pro-

viding a family-wise error rate of 0.05). The Kruskal-Wallis

p-values are shown, as are their interpretation relative to αBC:

the column contains • if the null hypothesis can be dismissed

or ◦ if it cannot. ∆% is calculated as in Section 5.1.3 and the

CI cases are as defined in Section 3.

Test KW p-value KW test ∆% CI case

cmd_set 0.49 ◦ 0.3 2

cmd_get 0.74 ◦ −0.2 2

get_hits 0.00009 • 5.3 3

mance numbers for this application. memcached [2] is an

efficient and widely used in-memory key-value store, and

its associated mc-crusher [24] benchmark suite includes a

variety of scripts designed to exercise a server instance and

measure its performance.

The mc-crusher documentation specifies “You should

start a fresh memcached”, and includes a series of three tests

(cmd_set, cmd_get, and get_hits) in its included sample

configuration file, executed serially in that order; accordingly,

we start memcached after the reboot in our standard Step ·

reset procedure, and perform those same three tests in each

of our runs. We follow the same ordering of trials in the fixed

case, with a single instance of memcached for all trials (fol-

lowing the mc-crusher distribution exactly). We increase

the sample duration to 60 seconds per test (to reduce the in-

fluence of noise on each sample) and permute the order of

the trials in our random runs to check our hypothesis that

ordering affects the observed results, but otherwise do not

modify the sample mc-crusher parameters. From inspection

of the mc-crusher source, we expect the three benchmarks

to operate on generally disjoint data, and therefore do not

anticipate any direct connection between the execution of

one and the output of the next. However, it is difficult to pre-

dict the presence or magnitude of indirect ordering artifacts,

where the side effects of previous computation might influ-

ence the efficiency of subsequent operations, which is what

our analysis aims to measure.

Table 3 presents the results we obtained by running Order-

Sage with memcached version 1.5.22, with 50 fixed and 50

random runs, each including the three tests described.

Overall, we conclude that the order of trials within a run

does affect the measurements obtained for the mc-crusher

environment under test, at the 95% significance level. This

coincides with the get_hits’s median performance changing

by over 5% based on whether a fixed-order or random-order

experiment design is used.

7.2 NPBench & NPB

NPBench is a “a set of NumPy code samples representing a

large variety of HPC applications” [43]. The authors use it to

Table 4: Test results for the NPBench & NPB experiment.

Columns are as described for Table 3.

Test KW p-value KW test ∆% CI case

IS 0.83 ◦ 0.00 2

SPMV 0.69 ◦ −0.60 2

softmax 0.03 • 0.46 3

test a variety of Python HPC frameworks and compilers that

aim to accelerate NumPy code; they also expect the results

to be useful to end-users of such frameworks. NAS Parallel

Benchmarks (NPB) is an open source benchmarking suite

which includes “a small set of programs designed to help

evaluate the performance of parallel supercomputers.” [27]

We select two tests from NPBench that exercise operations

used in data analytics and machine learning: sparse matrix-

vector multiplication (SPMV) and the normalized exponential

function (softmax) used in neural networks. In addition, we

select integer sort (IS) from NPB, which is used to benchmark

random access memory. SPMV and softmax are generally

CPU-bound, while IS generally has its performance limited by

memory speed. Using OrderSage, we did 100 runs in each of

fixed and random orders. We set problem sizes to large enough

values to get meaningful results on CloudLab machines: flag L

in NBbench is expected to take about 1000ms to run whereas

class D in NPB is the largest test problem for IS, and the

median runtime was 36 seconds.

The results from these experiments are in Table 4. IS and

SPMV show no order-dependence. While softmax does show

a statistically-significant change in distribution when run in a

random order, the effect size of 0.46% is small enough that

it is unlikely to make a difference in practice: these three

tests can be safely run in any order. This demonstrates the

need to look at effect sizes as well as statistical significance: a

positive result from the Kruskal-Wallis test does not, by itself,

guarantee that the effect is large enough to matter.

7.3 uFS Paper Artifact Reproduction

Our final case study looks at the uFS filesystem presented at

SOSP 2021 [19]. This paper submitted an artifact and was

awarded the Available, Functional, and Reproduced badges;

it was part of our survey in Section 2. uFS is a user-level

filesystem “semi-microkernel” [19] that claims good base

performance and better scalability than the ext4 filesystem in

the Linux kernel. This is demonstrated with benchmarks at

various scales and under various threading conditions. Using

OrderSage, we find that some experiments run for this paper

are order-dependent with large effects (up to 17%), though

not large enough to change the conclusions of the paper.

The evaluation scripts supplied with the artifact run multi-

ple benchmarks, of which we selected the Microbenchmarks

with single-threaded uFS and ext4 (both without journaling.)

Their scripts run all 32 workloads in sequence; we modified



Table 5: Test results for the uFS experiment. In the original

paper, ufs results are compared with corresponding ext4nj

experiments. Columns are as described for Table 3.

Test KW p-value KW test ∆% CI case

ufs.ADSS 0.028 • 16.8% 2

ext4nj.ADSS 0.364 ◦ -4.0% 2

ufs.ADPS 0.013 • 6.7% 2

ext4nj.ADPS 0.406 ◦ 4.7% 2

ufs.RDSR 0.112 ◦ 0.2% 2

ext4nj.RDSR 0.406 ◦ -0.8% 2

ufs.RMS 0.940 ◦ 0.8% 2

ext4nj.RMS 0.650 ◦ 0.1% 2

ufs.LsMS 0.650 ◦ -0.6% 2

ext4nj.LsMS 0.940 ◦ 0.0% 2

ufs.RMP 0.545 ◦ 0.0% 2

ext4nj.RMP 0.545 ◦ 0.3% 2

ufs.CMP 0.496 ◦ -0.2% 2

ext4nj.CMP 0.256 ◦ -0.1% 2

ufs.LsMP 0.151 ◦ 3.6% 2

ext4nj.LsMP 0.406 ◦ 0.1% 2

ufs.CMS 0.019 • -1.3% 2

ext4nj.CMS 0.705 ◦ 0.3% 2

ufs.RDPR 0.112 ◦ 0.2% 2

ext4nj.RDPR 0.226 ◦ 1.9% 2

them to run one workload at a time as individual tests. We

use the leftmost data point for evaluation as described in the

paper’s Section 4.2 and Figure 5a—these are used to evaluate

the claim that uFS performs as well as or better than ext4 un-

der baseline, single-threaded conditions. We used OrderSage

and a c6525-100g node in CloudLab (which has a dedicated

NVMe drive as does the original authors’ machine) to run

these tests in fixed and random orders (10 times each).

Our results (Table 5) show that order does not mat-

ter to most tests, but it does matter to three: ufs.ADSS,

ext4nj.ADPS, and ufs.CMS, with the ufs.ADSS test chang-

ing the most: in the fixed order, its median is 119K with a tight

CI of [117K,120K]. In random order, its median drops by

16.8% with a much wider CI of [74K,121K]. The conclusion

from the uFS paper still holds: the random-order ufs.ADSS

median of 98K is still greater than the 41K random-order re-

sult for baseline system it is compared to, ext4nj.ADSS, and

the CIs do not overlap. This effect may be due to hardware dif-

ferences: the original uFS paper was evaluated on an NMVe

drive using Intel Optane memory, while the drive we used on

CloudLab has traditional flash memory. As a result, latencies

and flush strategies differ between the environments. How-

ever, this demonstrates the necessity of avoiding the ordering

trap, as such order-dependent results are probably “hidden”

in many published results, and likely indicate system effects

that the authors may not be fully aware of.

8 Related Work

There is much scientific literature focused on experimental

design and analysis of computer systems performance experi-

ments [12, 16,18,32,34]. Among recent work in related areas

are studies of presentation flaws specific to performance re-

sults [11] and analysis of performance variability in computer

systems [22]. In a separate but relevant context, some research

and development efforts are focused on testbeds, i.e. computer

infrastructure, designed for reproducible experiments [28,42],

and how they can facilitate trustworthy experimental evalu-

ations. Studies of computer benchmarking [10, 15] consider

both the nuances of benchmark design and interpretation of

results. However, the aforementioned sources do not help con-

clusively answer the question: “Does the order of tests matter,

and if so, how much?” Our study aims to bridge this gap.

One recent study related to our work focuses on repeatable

experiments in highly variable cloud environments [1]. The

authors study the following designs: 1) Single Trial, 2) Multi-

ple Consecutive Trials, 3) Multiple Interleaved Trials (MIT),

and 4) Randomized Multiple Interleaved Trials (RMIT). An-

other study of the RMIT execution plan led to the develop-

ment of WPBench, a web serving benchmark suite that bun-

dles a set of micro and application benchmarks [35]. The fixed

and random orders we study correspond to MIT and RMIT,

respectively. While those studies argue for using RMIT, our

investigation extends previous work with a large-scale eval-

uation of both approaches and shows where the differences

between the two are most significant. We also consider envi-

ronments without “background noise” from other tenants.

The idea of turning a proposed methodology into a reusable

tool was inspired by the recent work on Lancet, a self-

correcting tool for latency analysis [14]. TraceSplitter [33]

applies an analogous statistical approach to traffic traces. Sim-

ilarly, Hyperfine [29] facilitates many tasks involved in the

benchmarking process and common subsequent analyses. In

turn, experimenters can focus more on creating interesting

experiments with increased confidence that their conclusions

are unbiased by factors such as test ordering. We implement

OrderSage with this vision in mind and describe in this paper

the results it collects in several use cases.

Another related study considers performance change-

points [6]. The data collection in our work is similar to the

process described in that paper. However, rather than char-

acterizing temporal patterns broadly, we focus on the order-

related effects and the methodology for studying them.

9 Conclusion and Future Work

The order in which tests are run is a significant, but often

neglected, part of experiment design—as shown in our survey,

it is rarely mentioned in papers, and the artifacts that support

them show little sign of being designed with ordering in mind.

Our findings show that order can indeed make a difference:

sometimes quite a large one. Systems experimenters should

take this into account in their experiment designs, and test for

order dependence when feasible. The response to discovered

order-dependence will vary depending on the system, the

experiment, and its goals. In some cases, there may be aspects



of the system under test, test environment, or test procedure

that need to be “fixed” to make runs more consistent and less

dependent on order. In other cases, some amount of variability

is simply to be expected, and experiments should be run in

several randomized orders to avoid systematically biasing

results with a single order. Finally, in some cases, it may be

that a “clean” environment is not the most realistic one in

which to run the experiment, and more effort needs to be

taken to get the environment into a suitably realistic state.

Our work thus far has left out of scope a deep analysis of

why order matters. This would be an interesting subject for

follow-up research, and we expect that the reasons will be

as varied as the tests that are run and the environments they

are run in. One way to do such an investigation would be

to analyze which tests cause changes in the following trials,

and which ones see the largest effects. We hope that our open

dataset and tool will help to enable such explorations.
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Appendix A Using OrderSage

Using OrderSage is straightforward, and requires little beyond

that used in a typical experiment.

• Experiment Environment: Users must have a controller

node and at least one worker node that has remote-access

capabilities. The controller is separate from the worker so

that the latter can be rebooted as part of the reset procedure.

• Experiment Repository: The tests to run and their as-

sociated scripts are stored in a git repository created by

the user, which makes them natively version-controlled. In

addition to the system(s) under evaluation, the repository

contains the following:

– Test Configuration Script: Called during the initial-

ization phase by the controller, this script prints a list

of commands to stdout. The commands will be exe-

cuted in-order for the fixed runs and shuffled for the

random runs. Each command represents a single test

and all commands must be unique. It is up to users

to implement this script as they wish as long as these

requirements are met. In the simplest case, it can be a

series of print statements of varying test commands

or it can be more complex and include methods to

iterate through complex sets of parameters, producing

a command for each one.

– Initialization Script: The controller calls an initial-

ization script to ready all workers for experimentation

as defined by the user. This script can install packages,

set machine states, etc. Its only requirement is that

it creates a “results” directory in a location on the

worker.

• Configuration File: To run OrderSage, the user creates a

configuration file. This configuration contains the URL of

the experiment repository, the location of the configuration

and initialization scripts within the repository, and other

parameters. These parameters include paths to results files,

the number of runs, etc. If the set of worker node(s) is pre-

allocated, the workers parameter of this file must contain

a list of all worker node hostnames.

• Define Reset Protocol: Our default implementation of

OrderSage calls reset(), which is implemented to reboot

the worker node(s) and reconnect between runs. However,

if users prefer a different reset procedure, they can override

this method.

• Results: Results are collected in a single text file on each

worker node. Each test run (trial) must provide a single,

floating-point number on a new line of the file. It is impor-

tant that this results file is presented in-order (i.e., the first

trial produces the first number and the nth trial produces the

nth number). In total, the number of lines in the result file

must equal the number of tests × the number of runs × 2

(for fixed and random runs).

Once the aforementioned configuration is complete, a user

can run OrderSage by executing the following command:

# python controller.py

The artifact with the code and data we released, https://

github.com/ordersage/paper-artifact, has more in-

formation on running OrderSage and reproducing the results

presented in this paper.
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