

1 Running Head: ABILITY AND STRATEGY

2

3 Attentional strategy choice is not predicted by cognitive ability or academic performance

4 Molly R. McKinney, Heather A. Hansen, Jessica L. Irons, and Andrew B. Leber

5 The Ohio State University

6

7 Please address correspondence to:

8 Molly R. McKinney, Department of Psychology, The Ohio State University, 225 Psychology

9 Building, 1835 Neil Avenue, Columbus, OH 43210. Email:

10 mckinney.230@buckeyemail.osu.edu

11 And

12 Andrew B. Leber, Department of Psychology, The Ohio State University, 225 Psychology

13 Building, 1835 Neil Avenue, Columbus, OH, 43210. Email: leber.30@osu.edu

14

15 Word Count:

16

17

18

19

20
21**Abstract**

22 People exhibit vast individual variation in the degree to which they choose optimal attentional
23 control strategies during visual search, although it is not well understood what predicts such
24 variation. In the present study, we sought to determine whether markers of real-world
25 achievement (assessed via undergraduate GPA) and cognitive ability (e.g., general fluid
26 intelligence) could predict attentional strategy optimization (assessed via the Adaptive Choice
27 Visual Search task; Irons & Leber, 2018). Results showed that, while general cognitive ability
28 predicted visual search response time and accuracy, neither achievement nor cognitive ability
29 metrics could predict attentional strategy optimization. Thus, the determinants of attentional
30 strategy remain elusive, and we discuss potential steps to shed light on this important research
31 topic.

32 *Keywords:* visual search, attentional strategy, cognitive ability, personality, individual
33 differences, attention

34
35
36
37
38
39
40
41
42
43
44

45

46

47 Attentional strategy choice is not predicted by cognitive ability or academic performance

48

49 Collective wisdom tells us that abilities alone seldom predict performance in life; it is
50 essential that one apply their abilities strategically to achieve desirable behavioral outcomes.51 How universal is the use of strategy? If a person is strategic in one facet of life, will they also be
52 strategic in others? For present purposes, we seek to understand how individuals control
53 attention; when searching the visual world for targets of interest, why do some people use
54 optimal strategies while others use suboptimal ones (Irons & Leber, 2020)? By a *unitary*
55 account, strategic performance is similar across many tasks, such that the degree to which one
56 uses attention to optimize performance can be predicted by how much they optimize
57 performance at other tasks. By the broadest version of a unitary account, certain trait variables
58 linked to optimizing behavior in real-world achievement measures, such as academic
59 performance, might predict attentional strategy optimization. Alternatively, strategy may be
60 *non-unitary*, whereby its use varies across different tasks. In this case, high achievement in real-
61 world measures will not predict attentional strategy usage.

62 In this paper, we investigate several possible predictors of search strategy optimization.

63 First, we evaluate the degree to which college-level academic performance – a real-world
64 achievement metric – predicts attentional control strategy. Previous research has highlighted the
65 importance of strategy – particularly learning and cognitive regulation strategies – to academic
66 performance (Alexander & Judy, 1988; Broadbent, 2017, Donker, Kostons, Van Ewijk, & van
67 der Werf, 2014). A unitary strategy would therefore predict that those who strategize optimally
68 in attentional control will do the same in their academic studies, and attentional control strategy

Running Head: ABILITY AND STRATEGY

69 will correlate with academic outcomes. This association should be even stronger after accounting
70 for other variables that also contribute to academic achievement, such as general intelligence
71 (Laidra et al., 2007) or socioeconomic status (Rodriguez-Hernandez, Cascallar & Kyndt, 2020).

72 Second, we evaluate how metrics of cognitive ability – relating to general fluid
73 intelligence – might predict strategy. We pursue this latter question for two reasons. First,
74 individuals with greater cognitive ability may find it easier to implement better strategies
75 (Schunn & Reder, 2001). Our recent work has failed to find a relationship between other ability
76 metrics (e.g., visual working memory capacity, visual search response time) and attentional
77 strategy (Irons & Leber, 2016; 2018; 2020), so we tested a more domain general metric relating
78 to general fluid intelligence. Second, as mentioned above, real-world achievement metrics like
79 cumulative grade point average (GPA) can be partly explained by cognitive ability (Laidra et al.,
80 2007). Therefore, should we find academic achievement to predict attentional strategy, we can
81 assess the degree to which such a relationship is due to cognitive ability.

82 To assess attentional control strategy, we used a procedure designed expressly for this
83 purpose: the Adaptive Choice Visual Search (ACVS; Figure 1; Irons & Leber, 2016; 2018). In
84 the ACVS, participants are presented with displays containing two colored subsets of squares
85 (e.g., red and blue), each of which contains one target. Additional color distractors (e.g., green)
86 serve to encourage color-based search but never contain targets. Participants only have to find
87 one target and can freely choose which one to search for on each trial. Critically, the subsets of
88 colored squares in the display differ in numerosity, such that the optimal way to find a target is to
89 search through the smaller color subset. Note that some task factors could work against
90 performance benefits in choosing the optimal target, such as task switching costs and the relative
91 differences in inter-item spacing within color subsets. However, we have consistently verified

Running Head: ABILITY AND STRATEGY

92 that searching the smaller color subset is indeed the better strategy, as optimality rate is reliably
93 negatively correlated with overall RT (Irons & Leber, 2016; 2018; Li et al., 2022). Because the
94 choice of target is unconstrained, individual choice behavior can reveal a variety of strategies.

95 Although the optimal strategy is fastest, it requires that participants take on additional
96 cognitive demands such as appraising the display, enumerating the subsets, and updating
97 attentional settings when needed (see Hansen, Irons & Leber, 2019). Suboptimal strategies,
98 which produce slower reaction times, include searching for the same target color every time or
99 randomly choosing a color subset to search on each trial.

100 Previous work with this paradigm has revealed vast individual differences in the
101 optimality of target choice (Irons & Leber, 2016; 2018). Moreover, test-retest reliability of
102 strategy choice has been shown to be stable across sessions spaced 1-10 days apart (Irons &
103 Leber 2018), suggesting that strategy use is trait-like (see also Li, McKinney, Irons, & Leber,
104 2021). This reliability thus makes the ACVS suitable for comparison to other trait measures of
105 academic performance and ability.

106 To assess domain-general cognitive ability, we included a general fluid intelligence
107 measurement (International Cognitive Ability Resource, or ICAR; Condon & Revelle, 2014). To
108 assess academic achievement, we collected Introductory Psychology grades and cumulative
109 grade point average (GPA). We also collected a college admissions test score (American
110 College Test, or ACT; ACT, Inc.), which has been shown to independently predict both general
111 fluid intelligence and college academic performance (Coyle & Pillow, 2008). Finally, while not
112 central to the present aims, we also assessed whether a pencil-and-paper mindfulness assessment,
113 the Mindful Attention Awareness Scale (MAAS; Brown & Ryan, 2003) could predict strategy.

Running Head: ABILITY AND STRATEGY

114 If strategy optimization is unitary, real-world measures of academic achievement (e.g.,
115 cumulative GPA) should predict the optimality of target choice in the ACVS. However, if
116 strategy is non-unitary, then these two variables will not correlate significantly. Additionally, if
117 cognitive ability predicts attentional strategy optimization, then general fluid intelligence should
118 predict ACVS optimality; alternatively, if ability does not predict strategy optimization, then
119 general fluid intelligence will not relate to ACVS optimality.

120

Method

122 Open Practices Statement

123 The rationale, method, and analysis plan for this study were preregistered at the Open
124 Science Framework (OSF), after data collection began but before any results were examined
125 (https://osf.io/qcn3p/?view_only=65d01d1752d34ff089b6b96ffed0a00e).

126 **Participants.** Data collection occurred during the Autumn semester of 2018, via the
127 undergraduate Research Experience Program at The Ohio State University. All participants were
128 enrolled in Introductory Psychology and participated for course credit. We planned to collect data
129 from a total sample of 100 individuals comprising a single cohort of students taking Introductory
130 Psychology. The planned sample size was based on the expectation of obtaining 85% power to
131 detect a small effect ($r = 0.3$) and >99% power to detect a medium effect ($r = 0.5$) (using an alpha
132 criterion of 0.05). We ultimately obtained data from 98 volunteers before the semester ended (43
133 male, 54 female, 1 non-binary). Rather than resume in the subsequent semester from a different
134 cohort, we chose to stop data collection at this point. Participants were required to be aged 18-40
135 years old (obtained $M_{age} = 18.85$; range: 18-38) and have self-reported normal or corrected-to-
136 normal visual acuity and normal color vision.

Running Head: ABILITY AND STRATEGY

137

138 **Procedure.** All methods were approved by The Ohio State Institutional Review Board.
139 Participants consented (1) to participate in in-lab data collection, and (2) for the researchers to
140 obtain the participants' academic metrics (GPA, SAT score, ACT score, final grades for each class,
141 and/or major) from the university registrar. They completed the following tasks/surveys, in the
142 order described.

143

144 ACVS

145 **Apparatus.** All participants completed the task in a sound-attenuated and light-controlled
146 testing room, on a Mac Mini computer with a 24" Acer LCD monitor. Participants were
147 seated approximately 62 centimeters away from the monitor. Head position was not
148 fixed; reported visual angles of stimuli are based on the typical viewing distance. Stimuli
149 were presented using MATLAB (MathWorks, Natick, MA, USA) with Psychophysics
150 Toolbox extensions (Brainard, 1997; Kleiner et al., 2007).

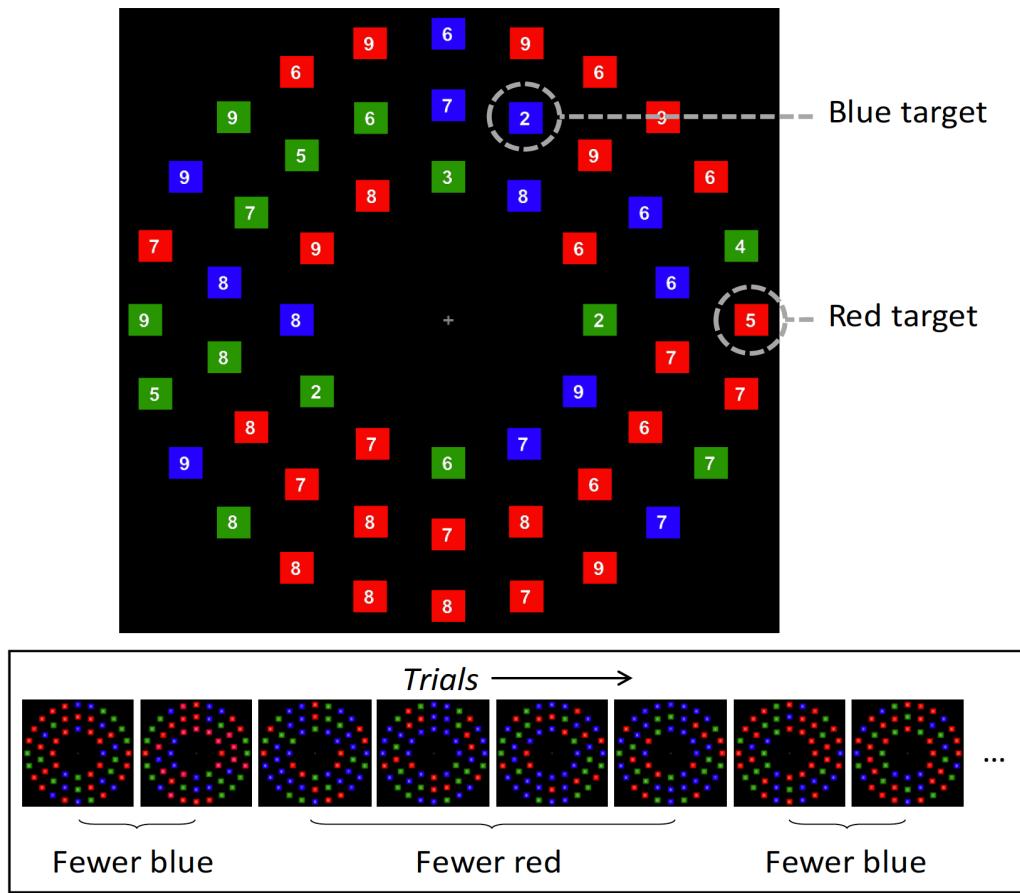
151

152 **Stimuli and Procedure.** Participants completed 3 blocks of 84 trials of the ACVS
153 task (Irons & Leber 2018, Experiment 2). For every trial, participants saw an array of 54
154 squares, each sized $1^\circ \times 1^\circ$ (13 red, 13 blue, 14 green and 14 "variable"). The color of
155 the variable squares was either red or blue on each trial (explained further below). The
156 squares were evenly spaced in three concentric circles around a fixation cross. The inner
157 circle contained 12 squares centered at 6.3° eccentricity, the middle circle contained 18
158 squares at 9.4° eccentricity, and the outer circle contained 24 squares at 12.4°

Running Head: ABILITY AND STRATEGY

159 eccentricity. The color of each square was selected randomly without replacement from
160 the combined four color sets defined above.

161 A white digit was superimposed on the center of each square, with numbers
162 between 2 and 9 (0.48° ; font: Arial). This digit size ensured that participants' gaze had to
163 be fixated on or near the square to determine the digit identity. In every array, there were
164 two targets: one red square and one blue square. Each target contained a randomly
165 chosen digit among the set of 2, 3, 4, and 5, with the constraint that the red target digit
166 was never the same as the blue one. All other red and blue squares contained a number
167 between 6 and 9. Green squares each contained a digit between 2 and 9, ensuring that
168 participants had to confine their search to red and blue squares, rather than searching
169 solely for digits while ignoring color. Digits were pseudo-randomly assigned to squares,
170 with constraints that each colored subset contained approximately the same frequency of
171 each digit (see Figure 1).



172

173 **Figure 1.** Depiction of the Adaptive Choice Visual Search (ACVS) task

174 (Irons & Leber, 2018, Experiment 2). *Top*: stimulus from a sample trial, in which
 175 the subset of blue squares contains fewer items than the subset of red squares.

176 Searching the smaller subset -- blue, in this example -- is considered the “optimal”
 177 choice, as it yields substantially faster performance. *Bottom*: Sequence of
 178 successive trials, showing that the color of the smaller subset varies
 179 unpredictably, in randomized run lengths of 1-6. Figure reproduced from Irons &
 180 Leber (2020).

181

Running Head: ABILITY AND STRATEGY

182 Participants were informed that both the red and blue targets would always be
183 present but were not instructed of the optimal strategy, rather that they were free to search
184 for and report either target on each trial. They were instructed to report the digit inside
185 either the red or blue target using the V, B, N, and M keys on the keyboard,
186 corresponding to target digits 2, 3, 4, and 5, respectively.

187 Half of the time the variable distractors were red, meaning there were
188 approximately twice as many red squares as blue squares (27 vs. 13). The other half of
189 the time, the variable distractors were blue, meaning there were approximately twice as
190 many blue squares as red. Finding the target in the smaller colored-subset is the optimal
191 strategy for this task, since the subset contains the fewest squares through which to
192 search, yielding the fastest performance on the task (Irons & Leber, 2016; 2018; 2020).
193 The color of the optimal subset changed across successive trials, switching between red
194 and blue every 1-6 trials. The length of each run was randomly chosen (and therefore
195 unpredictable by the participant), but each run length was presented equally often.

196 At the beginning of each trial, a fixation cross was presented for 1.5s, followed by
197 the search array, which was presented until response. If participants were incorrect,
198 meaning they made a response that did not match either target digit, a 400Hz auditory
199 tone was played for 150ms. Next, a 1.5s inter-trial interval was presented. Ten practice
200 trials were completed while the experimenter was present to ensure understanding of the
201 task, followed by three experimental blocks of 84 trials (252 total trials).

202 Following completion of the main task, participants completed a brief strategy
203 questionnaire that was similar to the one used by Irons & Leber (2018, Experiment 2).

Running Head: ABILITY AND STRATEGY

These were collected as part of our preregistration plan for the purposes of later exploratory analysis beyond the scope of the present study.

206

207 Socioeconomic Status (SES). Participants were asked to report, if applicable, their mother's
208 and/or father's educational attainment and approximate combined household income. As
209 mentioned in the introduction, our rationale for including this measure was to assess the
210 relationship between academic achievement and visual search strategy, while controlling for
211 SES.

212

213 General Fluid Intelligence Assessment. Participants completed the International Cognitive
214 Ability Resource (ICAR; Condon & Revelle, 2014; Curran et al., 2011). This 16-item assessment
215 included four questions each of three-dimensional rotation, letter and number series, matrix
216 reasoning, and verbal reasoning.

217

218 Mindfulness. Participants completed the Mindfulness Attention Awareness Scale (MAAS;
219 Brown & Ryan, 2003).

220

221 Academic Measures. Several measures of academic performance and aptitude – if available –
222 were retrieved from the University Registrar during the Autumn 2019 academic semester, one
223 year following completion of the main experiment. These included participants' Cumulative
224 Grade Point Average (GPA), Introduction to Psychology final grade, American College Test
225 (ACT) score, and Scholastic Aptitude Test (SAT) score. While not intended for inclusion in our
226 analysis, the registrar provided additional transcript information, such as students' undergraduate

227 Running Head: ABILITY AND STRATEGY

227 majors. Additionally, while we only preregistered one wave of collecting registrar data, we were
228 able to obtain a second cumulative GPA measurement one year after initial collection of
229 academic data, following the Autumn 2020 semester.

230

231 **Results**

232

233 We excluded two measurements from our analysis, as follows: First, based on academic
234 records, 69 participants had ACT scores and 33 had SAT scores. Given the similarity between
235 tests and that so few took the latter, we opted to analyze only the ACT. Second, only 32
236 participants completed the SES questions. Therefore, despite our preregistered plan, we felt it
237 necessary to exclude SES from all analyses, as it would have severely limited statistical power.

238 Participants were excluded for withdrawing before completing any survey measures
239 (n=1), computer malfunctioning (n=1), being non-naïve to the task (n=1), and accuracy greater
240 than three standard deviations below the sample mean (n=2). Of the 98 participants from whom
241 data was collected, this resulted in an analyzed sample of 93 participants (40 male, 52 female, 1
242 non-binary).

243 For each measure, individuals were classified as univariate outliers and their respective
244 measures were excluded if the absolute value of the z-score exceeded 3.29, $p < .001$ (n=1, for the
245 GPA measure).

246 All statistical tests were two-tailed and compared against an alpha criterion of 0.05. The
247 Holm-Bonferroni method was used to correct for multiple comparisons (denoted as p_{HB}) (Holm,
248 1979).

249

Running Head: ABILITY AND STRATEGY

250

251 **ACVS Performance.**

252 For each participant, trials with incorrect responses and trials with response times (RTs)
253 that were less than 300ms or more than three standard deviations above the individual's mean
254 were excluded from RT analysis (3.52% of trials).

255 All main descriptive statistics were similar to what has previously been reported (Irons & Leber,
256 2018, Experiment 2): accuracy ($M = 98.3\%$; range: 93.3-100.0%), RT ($M = 3328\text{ms}$; range:
257 2192-5313ms), proportion of optimal choices ($M = 64.5\%$; range: 30.0-98.8%) and rate of
258 switching ($M = 28.6\%$; range: 0.0-50.2%). We also estimated internal consistency for proportion
259 of optimal choices; we used the method of Susilo et al. (2010), by calculating and averaging 50
260 random splits of the data and applying a Spearman-Bowman correction. This yielded a mean
261 split-half reliability of $r = .974$.

262 **Other measures.**

263 Total observations, mean, and SD for all other included dependent measures are reported
264 in the first four columns of Table 1. Note that total observations for some variables were less
265 than the overall sample size, as follows: *Intro Psych Grade*: several participants were enrolled in
266 an honors section, and we chose to exclude these data points due to inherent differences in the
267 course rigor, resulting in a sample of 88 individuals. *ACT*: the registrar reported this test score
268 for 69 individuals. *Cumulative GPA (2nd collection)*: we obtained the second wave of GPA data
269 for 77 participants, as some were no longer enrolled (i.e., they graduated or withdrew).
270 Additionally, for each correlation, multivariate outliers were defined by a Mahalanobis distance
271 that exceeded 13.82, $p < .001$ ($n = 0$). Pairwise deletion was used for any missing data or
272 incomplete surveys.

Running Head: ABILITY AND STRATEGY

273

274 **Table 1.**275 *ACVS Descriptive Statistics*

Variable	N	M	SD	Accuracy	Response Time	Proportion of optimal choices	Proportion of switches
Intro Psychology Grade	88	3.52	0.66	$r(87)=0.03$, $p=0.76$, $p_{HB}=1.0$	$r(87)=0.04$, $p=0.71$, $p_{HB}=1.0$	$r(87)=0.05$, $p=0.62$, $p_{HB}=1.0$	$r(87)=0.14$, $p=0.19$, $p_{HB}=0.97$
GPA (AU19)	92	3.45	0.43	$r(91)=0.15$, $p=0.14$, $p_{HB}=0.56$	$r(91)=0.02$, $p=0.86$, $p_{HB}=0.86$	$r(91)=-0.09$, $p=0.39$, $p_{HB}=1.0$	$r(91)=0.07$, $p=0.48$, $p_{HB}=1.0$
GPA (AU20)	77	3.51	0.35	$r(76)=0.2$, $p=0.08$, $p_{HB}=0.4$	$r(76)=0.06$, $p=0.58$, $p_{HB}=1.0$	$r(76)=-0.04$, $p=0.73$, $p_{HB}=1.0$	$r(76)=0.1$, $p=0.38$, $p_{HB}=1.0$
ACT	69	29.0	3.25	$r(68)=0.43$, $p=0.0002$, $p_{HB}=0.001$	$r(68)=-0.35$, $p=0.003$, $p_{HB}=0.02$	$r(68)=0.15$, $p=0.23$, $p_{HB}=1.0$	$r(68)=0.04$, $p=0.72$, $p_{HB}=1.0$
ICAR	93	0.56	0.18	$r(92)=0.06$, $p=0.59$, $p_{HB}=1.0$	$r(92)=-0.36$, $p=0.0004$, $p_{HB}=0.002$	$r(92)=0.14$, $p=0.2$, $p_{HB}=1.0$	$r(92)=-0.06$, $p=0.56$, $p_{HB}=1.0$
MAAS	93	3.67	0.79	$r(92)=0.01$, $p=0.91$, $p_{HB}=0.91$	$r(92)=-0.15$, $p=0.14$, $p_{HB}=0.56$	$r(92)=0.02$, $p=0.84$, $p_{HB}=0.84$	$r(92)=0.01$, $p=0.89$, $p_{HB}=0.89$

276

277 *Note.* N = sample size; M = mean; SD = standard deviation. p = uncorrected p-value;278 p_{HB} = Holm-Bonferroni corrected p-value.

279

280 **Predicting ACVS Performance.**

Running Head: ABILITY AND STRATEGY

281 As described above, our main measure of attentional strategy was the proportion of
282 optimal choices, or optimality. Thus, the critical analyses were to assess whether optimality was
283 predicted by academic performance and cognitive ability scores. We also explored whether
284 these measures could predict the other ACVS metrics, including accuracy, RT, and frequency of
285 switches. Pearson's correlation coefficients were computed to assess pairwise associations
286 between these measures, followed by t-tests to determine if the correlations were significantly
287 different from zero. Correlation coefficients (Pearson's r), and uncorrected and corrected (Holm,
288 1979) p -values are reported in the last four columns of Table 1.

289

290 Note that in our preregistration, we initially planned hierarchical regressions to analyze
291 the individual contributions of academic performance, SES, and intelligence metrics, in
292 predicting optimality and frequency of switching. However, as results show below, the lack of
293 significant correlations – as well as insufficient SES data – obviated the utility of these
294 regressions, so we omitted them.

295

296 **Academic Performance.** For Cumulative GPA (both AU19 and AU20) and Intro to
297 Psychology grade, we found no significant relationship with any of the ACVS measures
298 (Table 1).

299

300 **General Fluid Intelligence.** ICAR score did not predict the ACVS strategy metrics of
301 optimality or frequency of switching; however, ICAR was significantly correlated with
302 ACVS RT (Table 1).

303

Running Head: ABILITY AND STRATEGY

College Entrance Exam. ACT score did not predict the ACVS strategy metrics of optimality or frequency of switching. However, it did significantly predict ACVS Accuracy and RT (Table 1).

307

308 **Mindfulness.** MAAS scores did not correlate significantly with any ACVS performance
309 metrics of interest (see Table 1).

310

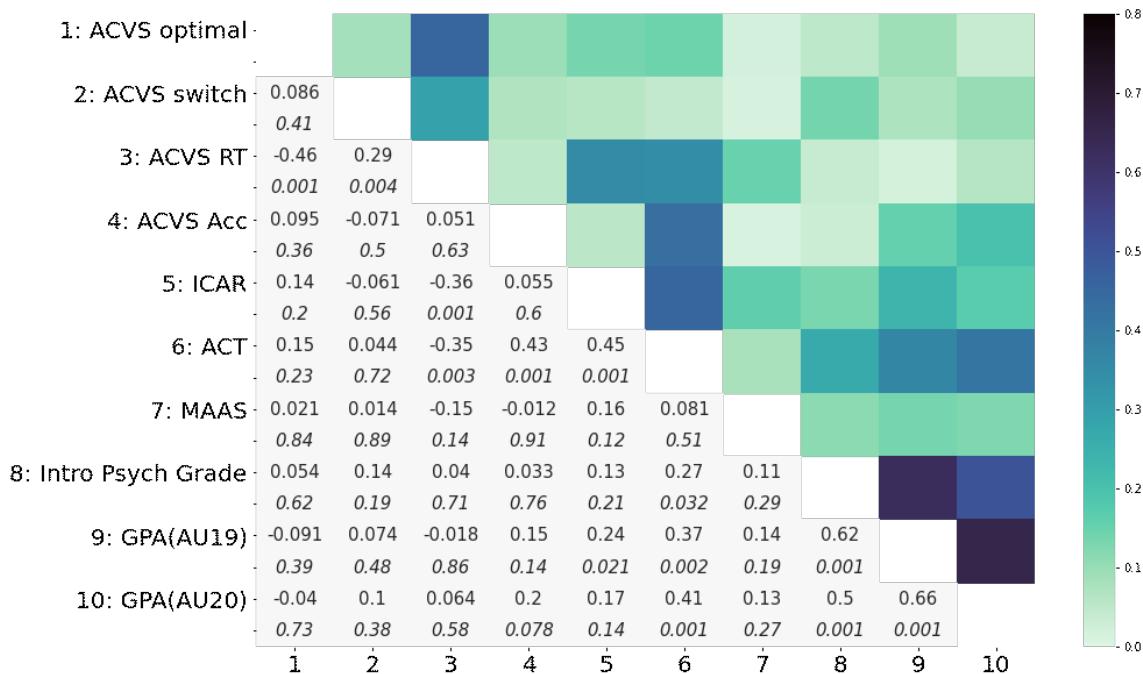
311 **Complete Reporting of Pairwise Correlations.** Beyond the planned pairwise correlations
312 analyzed, we present, for completeness, all pairwise correlation coefficients, with uncorrected p-
313 values, in Figure 2.

314

315 **Figure 2.**

316 Correlation Matrix: ACVS and Survey Metrics

317



318

319 *Note.* Complete correlation matrix of comparisons of the ACVS and survey metrics.

320 Pearson's r and uncorrected p -values (denoted in italics) are shown below the diagonal.

321 Graphical depiction of Pearson's r coefficients, in absolute values, above the diagonal.

322 Note that Intro Psych Grade, GPA(AU19), and GPA(AU20) are not independent, as they
323 are calculated based on some degree of shared data.

324

325

Discussion

327 Is a person's strategy optimization unitary, or similar, across multiple tasks and settings?

³²⁸ In particular, we questioned whether real world achievement, as assessed by academic

329 performance, could predict the optimization of strategy in the ACVS. We found no evidence to

³³⁰ support this unitary account, since neither cumulative GPA (measured over two years) nor Intro

Running Head: ABILITY AND STRATEGY

331 Psychology grade predicted strategy optimization on the ACVS. The failure to predict attentional
332 strategy from real-world achievement metrics is consistent with the non-unitary account of
333 strategy usage.

334 We also investigated whether cognitive ability predicts attentional strategy optimization,
335 and results found no relationship between ICAR and ACVS strategy measures. ACT, which has
336 been previously shown to relate to both general fluid intelligence and academic performance
337 (Coyle & Pillow, 2008), also failed to predict ACVS strategy metrics. However, we did find that
338 ACT and ICAR measures could predict RT, and ACT predicted task accuracy. These results are
339 consistent with previous work showing that visual search RT and accuracy are well-predicted by
340 multiple ability-related metrics (Cowan et al., 2005; Kane et al., 2001; Miyake et al., 2000).
341 These results also fit parsimoniously with our recent findings that working memory capacity and
342 visual search RT did not predict ACVS optimality (Irons & Leber, 2016; Irons & Leber, 2020).
343 Taken together, the present data are consistent with our recent proposal that cognitive ability and
344 attentional strategy are distinct from one another (Irons & Leber, 2020).

345 We had to abandon our plan to account for SES when assessing the relationship between
346 academic performance and search strategy. However, given that we did not observe a
347 relationship between GPA and ACVS metrics, the lack of SES data presents less of a problem
348 for interpreting the results.

349

350 *Non-unitary nature of attentional strategy optimization*

351 Overall, we reject a broad version of the unitary account of attentional strategy. That is, a
352 single trait variable does not span levels of a putative hierarchy to determine optimization for
353 both high-level life achievement and task-specific strategy. These results do not, however,

Running Head: ABILITY AND STRATEGY

354 address whether more limited versions of unitarity of strategy exist – for instance, across a set of
355 lower-level cognitive tasks. Recent work by Clarke et al. (2022), which was run at the same time
356 as the present study, produced evidence against this more limited form of unitarity. In that study,
357 the authors compared three attentional strategy measures: ACVS, Mouse Click Foraging
358 (Kristjansson et al., 2014), and the Split Half Line Segment task (Nowkowska et al., 2017).
359 While each of the tasks showed good test-retest reliability, none were reliably correlated with
360 one another. Specifically, strategy optimization in one attentional task need not predict
361 optimization in other tasks, supporting a non-unitary account of strategy. Had we known the
362 results of Clarke et al. when beginning the present study, we reasonably could have predicted
363 from the outset that academic performance was unlikely to relate to ACVS optimality.

364 Taking our work and the work of Clarke et al. together, we have scant evidence for a
365 unitary “optimality trait,” either across or within levels of a strategy hierarchy. We instead
366 presume that strategy use – which can be highly consistent and trait-like within individual tasks –
367 is largely task-specific, or non-unitary (see also Li et al., 2021; Irons & Leber, 2020).

368 Understanding the drive to optimize performance is a vital undertaking and is likely to
369 predict a great deal of variance in real-world attentional performance. It is thus essential to fully
370 characterize strategy optimization across a variety of task settings. However, the seemingly
371 heterogeneous nature of strategy use poses a great challenge to this enterprise. That is, rather
372 than obtaining a single trait variable measurement, we apparently need to measure a whole
373 assortment of variables to understand optimizing behavior across all strategy-related tasks.

374 Additional work also needs to be carried out to explain what factors drive strategy
375 optimization in various tasks. For instance, people’s propensity to optimize could be linked to
376 both their metacognitive knowledge of what the possible strategies are, and which ones produce

Running Head: ABILITY AND STRATEGY

377 the best performance. In the ACVS, participants tend to have high metacognitive knowledge of
378 their chosen strategy (Irons & Leber, 2016; 2018), but we have yet to measure whether they
379 know whether they are using the optimal strategy. It is possible that the variation in optimization
380 across tasks reflects variation in knowledge of the optimal strategy. Alternatively, individuals
381 may know the optimal strategy but seek to avoid the subjective cognitive effort required to
382 implement this strategy (Irons & Leber, 2018; 2020). One possible way to disentangle these two
383 options would be to instruct participants about the optimal strategy for all tasks and measure
384 whether across-task correlations in strategy emerge.

385

386 *Relationship between Ability and Strategy*

387 We have previously drawn a distinction between cognitive abilities and attentional
388 strategies, offering evidence that no ability metric – of many that we have measured – can
389 predict ACVS optimality (Irons & Leber, 2020). Such results stand in contrast to adaptive
390 strategy optimization in more abstract cognitive tasks (e.g., arithmetic problems using the
391 Building Sticks Task; see Schunn & Reder, 1998). Yet, given that strategy optimization appears
392 to be so heterogeneous across multiple attentional tasks, it was perhaps predictable that the kinds
393 of ability metrics we have measured would not predict optimality. That is, measures of general
394 fluid intelligence, working memory capacity, and processing speed are all related to one another
395 and are thus to some degree task-general metrics (Cowan et al., 2005; Kane et al., 2001; Miyake
396 et al., 2000); thus, we may have predicted that a task-general measure should predict either
397 many/all attentional strategy tasks or few/none.

398 A potentially more fruitful approach might be to isolate ability metrics that can be linked
399 to individual tasks – or a subset of tasks. For instance, we have found the process of

400 Running Head: ABILITY AND STRATEGY

401 enumerating the color subsets to find the smaller set to be critical for optimal performance in the
402 ACVS (Hansen et al., 2019), although such a function is not essential to other strategy tasks (Li
403 et al., 2021). It stands to reason that one's ability to enumerate might predict ACVS optimality.
404 We have begun to investigate this hypothesis, although our results thus far have not supported it
(McKinney et al., 2021; Zhang et al., 2021).

405 Note that our investigation of the potential relationship – or lack thereof – between ability
406 and attentional strategy has been somewhat narrow in scope; we must acknowledge that
407 clinically significant limitations in cognitive or perceptual capacities (e.g., color deficiency)
408 could predict poor strategy optimization.

409

410 *Conclusions*

411 Overall, while our results were clear, we have unfortunately not uncovered any predictors
412 of attentional strategy optimization. If real world achievement and cognitive ability do not
413 predict attentional strategy (as found in the present study) – and, if strategy at one task does not
414 predict strategy at another (as found by Clarke et al., 2022) – then what does? We have
415 speculated that subjective cognitive effort plays a key role (Irons & Leber, 2018; 2020), and we
416 believe that further investigation in this vein may provide some answers. To conclude, we
417 emphasize that the pursuit toward understanding strategy optimization remains an intriguing
418 challenge and is essential for helping us to understand how and why individuals use their
419 attentional capacities in everyday settings.

420

421 **Acknowledgements**

422 **Running Head: ABILITY AND STRATEGY**

422 We thank Yoolim Hong, Paul Scotti, and Lisa Heisterberg for valuable comments and
423 suggestions, and we thank Kate Friess, Needa Toofany, Eric Reinhart, Dana Shaw, Elliot Ping,
424 Walden Li, Ben Dominguez, and Zoe Zhang for assistance with data collection.

425 **Funding**

426 This work was supported by the National Science Foundation, under grants BCS-1632296 and
427 BCS-2021038.

428

429 **Disclosure**

430 The authors report there are no competing interests to declare.

431

432 **References**

433

434 ACT, Inc. *American College Testing*. ACT. <https://www.act.org/content/act/en.html>.

435 Alexander, P. A., & Judy, J. E. (1988). The interaction of domain-specific and strategic
436 knowledge in academic performance. *Review of Educational research*, 58(4), 375-404

437 Brainard, D. H., & Vision, S. (1997). The psychophysics toolbox. *Spatial vision*, 10(4), 433-436.

438 Broadbent, J. (2017). Comparing online and blended learner's self-regulated learning strategies
439 and academic performance. *The Internet and Higher Education*, 33, 24-32.

440 Brown, K. W., & Ryan, R. M. (2003). The benefits of being present: Mindfulness and its role in
441 psychological well-being. *Journal of Personality and Social Psychology*, 84(4), 822–848.
442 <https://doi.org/10.1037/0022-3514.84.4.822>

Running Head: ABILITY AND STRATEGY

443 Clarke, A. D. F., Irons, J. L., James, W., Leber, A. B., & Hunt, A. R. (2022). Stable individual
444 differences in strategies within, but not between, visual search tasks. *Quarterly Journal of*
445 *Experimental Psychology*, 75(2). <https://doi.org/10.1177/1747021820929190>

446 Condon, D. M., & Revelle, W. (2014). The International Cognitive Ability Resource:
447 Development and initial validation of a public-domain measure. *Intelligence*, 43, 52–64.
448 <https://doi.org/10.1016/j.intell.2014.01.004>

449 Cowan, N., Elliott, E. M., Scott Saults, J., Morey, C. C., Mattox, S., Hismjatullina, A., &
450 Conway, A. R. A. (2005). On the capacity of attention: Its estimation and its role in
451 working memory and cognitive aptitudes. *Cognitive Psychology*, 51(1), 42–100.
452 <https://doi.org/10.1016/j.cogpsych.2004.12.001>

453 Coyle, T. R., & Pillow, D. R. (2008). SAT and ACT predict college GPA after removing
454 g. *Intelligence*, 36(6), 719-729.

455 Curran, V., Hollett, A., Casimiro, L. M., Mccarthy, P., Banfield, V., Hall, P., Lackie, K.,
456 Oandasan, I., Simmons, B., & Wagner, S. (2011). Development and validation of the
457 Interprofessional Collaborator Assessment Rubric ((ICAR)). *Journal of Interprofessional
458 Care*, 25(5), 339–344. <https://doi.org/10.3109/13561820.2011.589542>

459 Donker, A. S., De Boer, H., Kostons, D., Van Ewijk, C. D., & van der Werf, M. P. (2014).
460 Effectiveness of learning strategy instruction on academic performance: A meta
461 analysis. *Educational Research Review*, 11, 1-26.

Running Head: ABILITY AND STRATEGY

462 Hansen, H. A., Irons, J. L., & Leber, A. B. (2019). Taking stock: The role of environmental
463 appraisal in the strategic use of attentional control. *Attention, Perception, & Psychophysics*,
464 81(8), 2673–2684. <https://doi.org/10.3758/s13414-019-01769-6>

465 Holm, S. (1979). A simple sequentially rejective multiple test procedure. *Scandinavian journal*
466 *of statistics*, 65-70.

467 Irons, J. L., & Leber, A. B. (2016). Choosing attentional control settings in a dynamically
468 changing environment. *Attention, Perception, & Psychophysics*, 78(7), 2031–2048.
469 <https://doi.org/10.3758/s13414-016-1125-4>

470 Irons, J. L., & Leber, A. B. (2018). Characterizing individual variation in the strategic use of
471 attentional control. *Journal of Experimental Psychology: Human Perception and*
472 *Performance*, 44(10), 1637–1654. <https://doi.org/10.1037/xhp0000560>

473 Irons, J. L., & Leber, A. B. (2020). Developing an individual profile of attentional control
474 strategy. *Current Directions in Psychological Science*, 29(4), 364–371.
475 <https://doi.org/10.1177/0963721420924018>

476 Kane, M. J., Bleckley, M. K., Conway, A. R., & Engle, R. W. (2001). A controlled-attention
477 view of working-memory capacity. *Journal of Experimental Psychology: General*, 130(2),
478 169–183. <https://doi.org/10.1037/0096-3445.130.2.169>

479 Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What's new
480 in Psychtoolbox-3? *Perception*, 36 (ECVP Abstract Suppl.).

Running Head: ABILITY AND STRATEGY

481 Kristjánsson, Á., Jóhannesson, Ó. I., & Thornton, I. M. (2014). Common attentional constraints
482 in visual foraging. *PLoS ONE*, 9(6). <https://doi.org/10.1371/journal.pone.0100752>

483 Laidra, K., Pullmann, H., & Allik, J. (2007). Personality and intelligence as predictors of
484 academic achievement: A cross-sectional study from elementary to secondary
485 school. *Personality and individual differences*, 42(3), 441-451.

486 Li, W. Y., McKinney, M. R., Irons, J., & Leber, A. B. (2022). Generalization of attentional
487 control strategies across distinct tasks. *Experimental Psychology: Human Perception and*
488 *Performance*. <https://doi.org/10.31234/osf.io/jvube>

489 McKinney, M. R., Zhang, T., Leber, A. B. (2021, November). Further evidence of a divergence
490 between cognitive ability and attentional control strategy. *Poster presented at the Annual*
491 *Object Perception, Attention, & Memory Conference*. <http://www.opam.net/>.

492 Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D.
493 (2000). The unity and diversity of executive functions and their contributions to complex
494 “frontal lobe” tasks: A latent variable analysis. *Cognitive Psychology*, 41(1), 49–100.
495 <https://doi.org/10.1006/cogp.1999.0734>

496 Nowakowska, A., Clarke, A. D., & Hunt, A. R. (2017). Human visual search behaviour is far
497 from ideal. *Proceedings of the Royal Society B: Biological Sciences*, 284(1849), 20162767.
498 <https://doi.org/10.1098/rspb.2016.2767>

Running Head: ABILITY AND STRATEGY

499 Rodriguez-Hernandez, C. F., Cascallar, E., & Kyndt, E. (2020). Socio-economic status and
500 academic performance in higher education: A systematic review. *Educational Research
501 Review*, 29, 100305.

502 Schunn, C. D., & Reder, L. M. (1998). Strategy adaptivity and individual
503 differences. *Psychology of Learning and Motivation*, 38, 115-154.

504 Schunn, C. D., & Reder, L. M. (2001). Another source of individual differences: Strategy
505 adaptivity to changing rates of success. *Journal of Experimental Psychology: General*,
506 130(1), 59–76. <https://doi.org/10.1037/0096-3445.130.1.59>

507 Susilo, T., McKone, E., Dennett, H., Darke, H., Palermo, R., Hall, A., ... & Rhodes, G. (2010).
508 Face recognition impairments despite normal holistic processing and face space coding:
509 Evidence from a case of developmental prosopagnosia. *Cognitive neuropsychology*, 27(8),
510 636-664.

511 Zhang, T. McKinney, M. R., Leber, A. B. (2021, November). Attentional strategy and effort
512 avoidance: the role of display enumeration. *Poster presented at the Annual Object
513 Perception, Attention, & Memory Conference*. <http://www.opam.net/>.

514