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Abstract 20 

 21 

People exhibit vast individual variation in the degree to which they choose optimal attentional 22 

control strategies during visual search, although it is not well understood what predicts such 23 

variation.  In the present study, we sought to determine whether markers of real-world 24 

achievement (assessed via undergraduate GPA) and cognitive ability (e.g., general fluid 25 

intelligence) could predict attentional strategy optimization (assessed via the Adaptive Choice 26 

Visual Search task; Irons & Leber, 2018).  Results showed that, while general cognitive ability 27 

predicted visual search response time and accuracy, neither achievement nor cognitive ability 28 

metrics could predict attentional strategy optimization.  Thus, the determinants of attentional 29 

strategy remain elusive, and we discuss potential steps to shed light on this important research 30 

topic.   31 

Keywords: visual search, attentional strategy, cognitive ability, personality, individual 32 

differences, attention 33 
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 46 

Attentional strategy choice is not predicted by cognitive ability or academic performance 47 

 48 

 Collective wisdom tells us that abilities alone seldom predict performance in life; it is 49 

essential that one apply their abilities strategically to achieve desirable behavioral outcomes.  50 

How universal is the use of strategy?  If a person is strategic in one facet of life, will they also be 51 

strategic in others?  For present purposes, we seek to understand how individuals control 52 

attention; when searching the visual world for targets of interest, why do some people use 53 

optimal strategies while others use suboptimal ones (Irons & Leber, 2020)?  By a unitary 54 

account, strategic performance is similar across many tasks, such that the degree to which one 55 

uses attention to optimize performance can be predicted by how much they optimize 56 

performance at other tasks.  By the broadest version of a unitary account, certain trait variables 57 

linked to optimizing behavior in real-world achievement measures, such as academic 58 

performance, might predict attentional strategy optimization.  Alternatively, strategy may be 59 

non-unitary, whereby its use varies across different tasks.  In this case, high achievement in real-60 

world measures will not predict attentional strategy usage. 61 

 In this paper, we investigate several possible predictors of search strategy optimization. 62 

First, we evaluate the degree to which college-level academic performance – a real-world 63 

achievement metric – predicts attentional control strategy. Previous research has highlighted the 64 

importance of strategy – particularly learning and cognitive regulation strategies – to academic 65 

performance (Alexander & Judy, 1988; Broadbent, 2017, Donker, Kostons, Van Ewijk, & van 66 

der Werf, 2014). A unitary strategy would therefore predict that those who strategize optimally 67 

in attentional control will do the same in their academic studies, and attentional control strategy 68 
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will correlate with academic outcomes. This association should be even stronger after accounting 69 

for other variables that also contribute to academic achievement, such as general intelligence 70 

(Laidra et al., 2007) or socioeconomic status (Rodriguez-Hernandez, Cascallar & Kyndt, 2020).  71 

Second, we evaluate how metrics of cognitive ability – relating to general fluid 72 

intelligence – might predict strategy.  We pursue this latter question for two reasons.  First, 73 

individuals with greater cognitive ability may find it easier to implement better strategies 74 

(Schunn & Reder, 2001). Our recent work has failed to find a relationship between other ability 75 

metrics (e.g., visual working memory capacity, visual search response time) and attentional 76 

strategy (Irons & Leber, 2016; 2018; 2020), so we tested a more domain general metric relating 77 

to general fluid intelligence. Second, as mentioned above, real-world achievement metrics like 78 

cumulative grade point average (GPA) can be partly explained by cognitive ability (Laidra et al., 79 

2007). Therefore, should we find academic achievement to predict attentional strategy, we can 80 

assess the degree to which such a relationship is due to cognitive ability. 81 

To assess attentional control strategy, we used a procedure designed expressly for this 82 

purpose: the Adaptive Choice Visual Search (ACVS; Figure 1; Irons & Leber, 2016; 2018).  In 83 

the ACVS, participants are presented with displays containing two colored subsets of squares 84 

(e.g., red and blue), each of which contains one target.  Additional color distractors (e.g., green) 85 

serve to encourage color-based search but never contain targets.  Participants only have to find 86 

one target and can freely choose which one to search for on each trial.  Critically, the subsets of 87 

colored squares in the display differ in numerosity, such that the optimal way to find a target is to 88 

search through the smaller color subset.  Note that some task factors could work against 89 

performance benefits in choosing the optimal target, such as task switching costs and the relative 90 

differences in inter-item spacing within color subsets.  However, we have consistently verified 91 
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that searching the smaller color subset is indeed the better strategy, as optimality rate is reliably 92 

negatively correlated with overall RT (Irons & Leber, 2016; 2018; Li et al., 2022).  Because the 93 

choice of target is unconstrained, individual choice behavior can reveal a variety of strategies. 94 

Although the optimal strategy is fastest, it requires that participants take on additional 95 

cognitive demands such as appraising the display, enumerating the subsets, and updating 96 

attentional settings when needed (see Hansen, Irons & Leber, 2019).   Suboptimal strategies, 97 

which produce slower reaction times, include searching for the same target color every time or 98 

randomly choosing a color subset to search on each trial.   99 

 Previous work with this paradigm has revealed vast individual differences in the 100 

optimality of target choice (Irons & Leber, 2016; 2018). Moreover, test-retest reliability of 101 

strategy choice has been shown to be stable across sessions spaced 1-10 days apart (Irons & 102 

Leber 2018), suggesting that strategy use is trait-like (see also Li, McKinney, Irons, & Leber, 103 

2021).  This reliability thus makes the ACVS suitable for comparison to other trait measures of 104 

academic performance and ability. 105 

To assess domain-general cognitive ability, we included a general fluid intelligence 106 

measurement (International Cognitive Ability Resource, or ICAR; Condon & Revelle, 2014).  To 107 

assess academic achievement, we collected Introductory Psychology grades and cumulative 108 

grade point average (GPA).  We also collected a college admissions test score (American 109 

College Test, or ACT; ACT, Inc.), which has been shown to independently predict both general 110 

fluid intelligence and college academic performance (Coyle & Pillow, 2008).  Finally, while not 111 

central to the present aims, we also assessed whether a pencil-and-paper mindfulness assessment, 112 

the Mindful Attention Awareness Scale (MAAS; Brown & Ryan, 2003) could predict strategy.   113 
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If strategy optimization is unitary, real-world measures of academic achievement (e.g., 114 

cumulative GPA) should predict the optimality of target choice in the ACVS.  However, if 115 

strategy is non-unitary, then these two variables will not correlate significantly.  Additionally, if 116 

cognitive ability predicts attentional strategy optimization, then general fluid intelligence should 117 

predict ACVS optimality; alternatively, if ability does not predict strategy optimization, then 118 

general fluid intelligence will not relate to ACVS optimality. 119 

 120 

Method 121 

Open Practices Statement 122 

 The rationale, method, and analysis plan for this study were preregistered at the Open 123 

Science Framework (OSF), after data collection began but before any results were examined 124 

(https://osf.io/qcn3p/?view_only=65d01d1752d34ff089b6b96ffed0a00e). 125 

Participants.  Data collection occurred during the Autumn semester of 2018, via the 126 

undergraduate Research Experience Program at The Ohio State University. All participants were 127 

enrolled in Introductory Psychology and participated for course credit.  We planned to collect data 128 

from a total sample of 100 individuals comprising a single cohort of students taking Introductory 129 

Psychology.  The planned sample size was based on the expectation of obtaining 85% power to 130 

detect a small effect (r = 0.3) and >99% power to detect a medium effect (r = 0.5) (using an alpha 131 

criterion of 0.05).  We ultimately obtained data from 98 volunteers before the semester ended (43 132 

male, 54 female, 1 non-binary). Rather than resume in the subsequent semester from a different 133 

cohort, we chose to stop data collection at this point.  Participants were required to be aged 18-40 134 

years old (obtained Mage = 18.85; range: 18-38) and have self-reported normal or corrected-to-135 

normal visual acuity and normal color vision. 136 
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 137 

Procedure.  All methods were approved by The Ohio State Institutional Review Board. 138 

Participants consented (1) to participate in in-lab data collection, and (2) for the researchers to 139 

obtain the participants’ academic metrics (GPA, SAT score, ACT score, final grades for each class, 140 

and/or major) from the university registrar. They completed the following tasks/surveys, in the 141 

order described. 142 

 143 

ACVS  144 

Apparatus.  All participants completed the task in a sound-attenuated and light-controlled 145 

testing room, on a Mac Mini computer with a 24” Acer LCD monitor. Participants were 146 

seated approximately 62 centimeters away from the monitor.  Head position was not 147 

fixed; reported visual angles of stimuli are based on the typical viewing distance. Stimuli 148 

were presented using MATLAB (MathWorks, Natick, MA, USA) with Psychophysics 149 

Toolbox extensions (Brainard, 1997; Kleiner et al., 2007).  150 

 151 

Stimuli and Procedure. Participants completed 3 blocks of 84 trials of the ACVS 152 

task (Irons & Leber 2018, Experiment 2). For every trial, participants saw an array of 54 153 

squares, each sized 1° x 1° (13 red, 13 blue, 14 green and 14 “variable”).  The color of 154 

the variable squares was either red or blue on each trial (explained further below).  The 155 

squares were evenly spaced in three concentric circles around a fixation cross. The inner 156 

circle contained 12 squares centered at 6.3° eccentricity, the middle circle contained 18 157 

squares at 9.4° eccentricity, and the outer circle contained 24 squares at 12.4° 158 
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eccentricity.  The color of each square was selected randomly without replacement from 159 

the combined four color sets defined above. 160 

A white digit was superimposed on the center of each square, with numbers 161 

between 2 and 9 (0.48°; font: Arial). This digit size ensured that participants’ gaze had to 162 

be fixated on or near the square to determine the digit identity. In every array, there were 163 

two targets: one red square and one blue square.  Each target contained a randomly 164 

chosen digit among the set of 2, 3, 4, and 5, with the constraint that the red target digit 165 

was never the same as the blue one. All other red and blue squares contained a number 166 

between 6 and 9. Green squares each contained a digit between 2 and 9, ensuring that 167 

participants had to confine their search to red and blue squares, rather than searching 168 

solely for digits while ignoring color. Digits were pseudo-randomly assigned to squares, 169 

with constraints that each colored subset contained approximately the same frequency of 170 

each digit (see Figure 1). 171 
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 172 

Figure 1. Depiction of the Adaptive Choice Visual Search (ACVS) task 173 

(Irons & Leber, 2018, Experiment 2).  Top: stimulus from a sample trial, in which 174 

the subset of blue squares contains fewer items than the subset of red squares. 175 

Searching the smaller subset -- blue, in this example -- is considered the “optimal” 176 

choice, as it yields substantially faster performance. Bottom:  Sequence of 177 

successive trials, showing that the color of the smaller subset varies 178 

unpredictably, in randomized run lengths of 1-6. Figure reproduced from Irons & 179 

Leber (2020). 180 

 181 
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Participants were informed that both the red and blue targets would always be 182 

present but were not instructed of the optimal strategy, rather that they were free to search 183 

for and report either target on each trial. They were instructed to report the digit inside 184 

either the red or blue target using the V, B, N, and M keys on the keyboard, 185 

corresponding to target digits 2, 3, 4, and 5, respectively.   186 

Half of the time the variable distractors were red, meaning there were 187 

approximately twice as many red squares as blue squares (27 vs. 13). The other half of 188 

the time, the variable distractors were blue, meaning there were approximately twice as 189 

many blue squares as red. Finding the target in the smaller colored-subset is the optimal 190 

strategy for this task, since the subset contains the fewest squares through which to 191 

search, yielding the fastest performance on the task (Irons & Leber, 2016; 2018; 2020). 192 

The color of the optimal subset changed across successive trials, switching between red 193 

and blue every 1-6 trials. The length of each run was randomly chosen (and therefore 194 

unpredictable by the participant), but each run length was presented equally often. 195 

At the beginning of each trial, a fixation cross was presented for 1.5s, followed by 196 

the search array, which was presented until response.  If participants were incorrect, 197 

meaning they made a response that did not match either target digit, a 400Hz auditory 198 

tone was played for 150ms. Next, a 1.5s inter-trial interval was presented. Ten practice 199 

trials were completed while the experimenter was present to ensure understanding of the 200 

task, followed by three experimental blocks of 84 trials (252 total trials). 201 

Following completion of the main task, participants completed a brief strategy 202 

questionnaire that was similar to the one used by Irons & Leber (2018, Experiment 2).  203 
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These were collected as part of our preregistration plan for the purposes of later 204 

exploratory analysis beyond the scope of the present study. 205 

 206 

Socioeconomic Status (SES).  Participants were asked to report, if applicable, their mother’s 207 

and/or father’s educational attainment and approximate combined household income.  As 208 

mentioned in the introduction, our rationale for including this measure was to assess the 209 

relationship between academic achievement and visual search strategy, while controlling for 210 

SES. 211 

 212 

General Fluid Intelligence Assessment.  Participants completed the International Cognitive 213 

Ability Resource (ICAR; Condon & Revelle, 2014; Curran et al., 2011). This 16-item assessment 214 

included four questions each of three-dimensional rotation, letter and number series, matrix 215 

reasoning, and verbal reasoning.  216 

 217 

Mindfulness. Participants completed the Mindfulness Attention Awareness Scale (MAAS; 218 

Brown & Ryan, 2003).  219 

 220 

Academic Measures.  Several measures of academic performance and aptitude – if available – 221 

were retrieved from the University Registrar during the Autumn 2019 academic semester, one 222 

year following completion of the main experiment. These included participants’ Cumulative 223 

Grade Point Average (GPA), Introduction to Psychology final grade, American College Test 224 

(ACT) score, and Scholastic Aptitude Test (SAT) score.  While not intended for inclusion in our 225 

analysis, the registrar provided additional transcript information, such as students’ undergraduate 226 
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majors.  Additionally, while we only preregistered one wave of collecting registrar data, we were 227 

able to obtain a second cumulative GPA measurement one year after initial collection of 228 

academic data, following the Autumn 2020 semester.  229 

 230 

Results 231 

 232 

We excluded two measurements from our analysis, as follows:  First, based on academic 233 

records, 69 participants had ACT scores and 33 had SAT scores.  Given the similarity between 234 

tests and that so few took the latter, we opted to analyze only the ACT.  Second, only 32 235 

participants completed the SES questions.  Therefore, despite our preregistered plan, we felt it 236 

necessary to exclude SES from all analyses, as it would have severely limited statistical power.   237 

Participants were excluded for withdrawing before completing any survey measures 238 

(n=1), computer malfunctioning (n=1), being non-naïve to the task (n=1), and accuracy greater 239 

than three standard deviations below the sample mean (n=2). Of the 98 participants from whom 240 

data was collected, this resulted in an analyzed sample of 93 participants (40 male, 52 female, 1 241 

non-binary).   242 

For each measure, individuals were classified as univariate outliers and their respective 243 

measures were excluded if the absolute value of the z-score exceeded 3.29, p<.001 (n=1, for the 244 

GPA measure).  245 

All statistical tests were two-tailed and compared against an alpha criterion of 0.05. The 246 

Holm-Bonferroni method was used to correct for multiple comparisons (denoted as pHB) (Holm, 247 

1979).   248 

 249 
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 250 

ACVS Performance.   251 

For each participant, trials with incorrect responses and trials with response times (RTs) 252 

that were less than 300ms or more than three standard deviations above the individual’s mean 253 

were excluded from RT analysis (3.52% of trials).  254 

All main descriptive statistics were similar to what has previously been reported (Irons & Leber, 255 

2018, Experiment 2): accuracy (M = 98.3%; range: 93.3-100.0%), RT (M = 3328ms; range: 256 

2192-5313ms), proportion of optimal choices (M = 64.5%; range: 30.0-98.8%) and rate of 257 

switching (M = 28.6%; range: 0.0-50.2%). We also estimated internal consistency for proportion 258 

of optimal choices; we used the method of Susilo et al. (2010), by calculating and averaging 50 259 

random splits of the data and applying a Spearman-Bowman correction.  This yielded a mean 260 

split-half reliability of r = .974. 261 

Other measures.   262 

Total observations, mean, and SD for all other included dependent measures are reported 263 

in the first four columns of Table 1.  Note that total observations for some variables were less 264 

than the overall sample size, as follows:  Intro Psych Grade: several participants were enrolled in 265 

an honors section, and we chose to exclude these data points due to inherent differences in the 266 

course rigor, resulting in a sample of 88 individuals.  ACT: the registrar reported this test score 267 

for 69 individuals.  Cumulative GPA (2nd collection): we obtained the second wave of GPA data 268 

for 77 participants, as some were no longer enrolled (i.e., they graduated or withdrew).  269 

Additionally, for each correlation, multivariate outliers were defined by a Mahalanobis distance 270 

that exceeded 13.82, p<.001 (n=0).  Pairwise deletion was used for any missing data or 271 

incomplete surveys.  272 
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 273 

Table 1. 274 

ACVS Descriptive Statistics  275 

Variable N M SD Accuracy Response 
Time 

Proportion 
of optimal 

choices 

Proportion 
of switches 

Intro 
Psychology 
Grade 

88 3.52 0.66 r(87)=0.03, 
p=0.76, 
pHB=1.0 

r(87)=0.04, 
p=0.71, 
pHB=1.0 

r(87)=0.05, 
p=0.62,  
pHB=1.0 

r(87)=0.14, 
p=0.19, 
pHB=0.97 

GPA 
(AU19) 

92 3.45 0.43 r(91)=0.15, 
p=0.14, 
pHB=0.56 

r(91)=0.02, 
p=0.86,  
pHB=0.86 

r(91)=-
0.09, 
p=0.39,  
pHB=1.0 

r(91)=0.07, 
p=0.48,  
pHB=1.0 

GPA 
(AU20) 

77 3.51 0.35 r(76)=0.2, 
p=0.08, 
pHB=0.4 

r(76)=0.06, 
p=0.58, 
pHB=1.0 

r(76)=-
0.04, 
p=0.73,  
pHB=1.0 

r(76)=0.1, 
p=0.38,  
pHB=1.0 

ACT 69 29.0 3.25 r(68)=0.43, 
p=0.0002, 
pHB=0.001 

r(68)=-
0.35, 
p=0.003, 
pHB=0.02 

r(68)=0.15, 
p=0.23,  
pHB=1.0 

r(68)=0.04, 
p=0.72, 
pHB=1.0 

ICAR 93 0.56 0.18 r(92)=0.06, 
p=0.59, 
pHB=1.0 

r(92)=-
0.36, 
p=0.0004, 
pHB=0.002 

r(92)=0.14,  
p=0.2,  
pHB=1.0 

r(92)=-
0.06, 
p=0.56, 
pHB=1.0 

MAAS 93 3.67 0.79 r(92)=0.01, 
p=0.91, 
pHB=0.91 

r(92)=-
0.15, 
p=0.14, 
pHB=0.56 

r(92)=0.02, 
p=0.84,  
pHB=0.84 

r(92)=0.01, 
p=0.89,  
pHB=0.89 

 276 

Note. N = sample size; M = mean; SD = standard deviation.  p = uncorrected p-value; 277 

pHB = Holm-Bonferroni corrected p-value.   278 

 279 

Predicting ACVS Performance.   280 
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As described above, our main measure of attentional strategy was the proportion of 281 

optimal choices, or optimality. Thus, the critical analyses were to assess whether optimality was 282 

predicted by academic performance and cognitive ability scores.  We also explored whether 283 

these measures could predict the other ACVS metrics, including accuracy, RT, and frequency of 284 

switches. Pearson’s correlation coefficients were computed to assess pairwise associations 285 

between these measures, followed by t-tests to determine if the correlations were significantly 286 

different from zero.  Correlation coefficients (Pearson’s r), and uncorrected and corrected (Holm, 287 

1979) p-values are reported in the last four columns of Table 1. 288 

 289 

Note that in our preregistration, we initially planned hierarchical regressions to analyze 290 

the individual contributions of academic performance, SES, and intelligence metrics, in 291 

predicting optimality and frequency of switching. However, as results show below, the lack of 292 

significant correlations – as well as insufficient SES data – obviated the utility of these 293 

regressions, so we omitted them.  294 

 295 

Academic Performance. For Cumulative GPA (both AU19 and AU20) and Intro to 296 

Psychology grade, we found no significant relationship with any of the ACVS measures 297 

(Table 1). 298 

 299 

General Fluid Intelligence.  ICAR score did not predict the ACVS strategy metrics of 300 

optimality or frequency of switching; however, ICAR was significantly correlated with 301 

ACVS RT (Table 1).   302 

  303 
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College Entrance Exam.    ACT score did not predict the ACVS strategy metrics of 304 

optimality or frequency of switching.  However, it did significantly predict ACVS 305 

Accuracy and RT (Table 1).    306 

 307 

Mindfulness. MAAS scores did not correlate significantly with any ACVS performance 308 

metrics of interest (see Table 1). 309 

 310 

Complete Reporting of Pairwise Correlations.  Beyond the planned pairwise correlations 311 

analyzed, we present, for completeness, all pairwise correlation coefficients, with uncorrected p-312 

values, in Figure 2.  313 

 314 

Figure 2. 315 

Correlation Matrix: ACVS and Survey Metrics 316 

 317 
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318 

Note. Complete correlation matrix of comparisons of the ACVS and survey metrics. 319 

Pearson’s r and uncorrected p-values (denoted in italics) are shown below the diagonal.  320 

Graphical depiction of Pearson’s r coefficients, in absolute values, above the diagonal. 321 

Note that Intro Psych Grade, GPA(AU19), and GPA(AU20) are not independent, as they 322 

are calculated based on some degree of shared data. 323 

 324 

 325 

Discussion 326 

Is a person’s strategy optimization unitary, or similar, across multiple tasks and settings? 327 

In particular, we questioned whether real world achievement, as assessed by academic 328 

performance, could predict the optimization of strategy in the ACVS.  We found no evidence to 329 

support this unitary account, since neither cumulative GPA (measured over two years) nor Intro 330 
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Psychology grade predicted strategy optimization on the ACVS. The failure to predict attentional 331 

strategy from real-world achievement metrics is consistent with the non-unitary account of 332 

strategy usage.   333 

We also investigated whether cognitive ability predicts attentional strategy optimization, 334 

and results found no relationship between ICAR and ACVS strategy measures.  ACT, which has 335 

been previously shown to relate to both general fluid intelligence and academic performance 336 

(Coyle & Pillow, 2008), also failed to predict ACVS strategy metrics.  However, we did find that 337 

ACT and ICAR measures could predict RT, and ACT predicted task accuracy.  These results are 338 

consistent with previous work showing that visual search RT and accuracy are well-predicted by 339 

multiple ability-related metrics (Cowan et al., 2005; Kane et al., 2001; Miyake et al., 2000).  340 

These results also fit parsimoniously with our recent findings that working memory capacity and 341 

visual search RT did not predict ACVS optimality (Irons & Leber, 2016; Irons & Leber, 2020). 342 

Taken together, the present data are consistent with our recent proposal that cognitive ability and 343 

attentional strategy are distinct from one another (Irons & Leber, 2020). 344 

We had to abandon our plan to account for SES when assessing the relationship between 345 

academic performance and search strategy.  However, given that we did not observe a 346 

relationship between GPA and ACVS metrics, the lack of SES data presents less of a problem 347 

for interpreting the results.  348 

 349 

Non-unitary nature of attentional strategy optimization 350 

Overall, we reject a broad version of the unitary account of attentional strategy.  That is, a 351 

single trait variable does not span levels of a putative hierarchy to determine optimization for 352 

both high-level life achievement and task-specific strategy.  These results do not, however, 353 



 
19 

Running Head: ABILITY AND STRATEGY 
address whether more limited versions of unitarity of strategy exist – for instance, across a set of 354 

lower-level cognitive tasks.  Recent work by Clarke et al. (2022), which was run at the same time 355 

as the present study, produced evidence against this more limited form of unitarity.  In that study, 356 

the authors compared three attentional strategy measures: ACVS, Mouse Click Foraging 357 

(Kristjansson et al., 2014), and the Split Half Line Segment task (Nowkowska et al., 2017).  358 

While each of the tasks showed good test-retest reliability, none were reliably correlated with 359 

one another.  Specifically, strategy optimization in one attentional task need not predict 360 

optimization in other tasks, supporting a non-unitary account of strategy.  Had we known the 361 

results of Clarke et al. when beginning the present study, we reasonably could have predicted 362 

from the outset that academic performance was unlikely to relate to ACVS optimality.   363 

Taking our work and the work of Clarke et al. together, we have scant evidence for a 364 

unitary “optimality trait,” either across or within levels of a strategy hierarchy.  We instead 365 

presume that strategy use – which can be highly consistent and trait-like within individual tasks – 366 

is largely task-specific, or non-unitary (see also Li et al., 2021; Irons & Leber, 2020).   367 

Understanding the drive to optimize performance is a vital undertaking and is likely to 368 

predict a great deal of variance in real-world attentional performance.  It is thus essential to fully 369 

characterize strategy optimization across a variety of task settings.  However, the seemingly 370 

heterogeneous nature of strategy use poses a great challenge to this enterprise.  That is, rather 371 

than obtaining a single trait variable measurement, we apparently need to measure a whole 372 

assortment of variables to understand optimizing behavior across all strategy-related tasks.   373 

Additional work also needs to be carried out to explain what factors drive strategy 374 

optimization in various tasks.  For instance, people’s propensity to optimize could be linked to 375 

both their metacognitive knowledge of what the possible strategies are, and which ones produce 376 
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the best performance.  In the ACVS, participants tend to have high metacognitive knowledge of 377 

their chosen strategy (Irons & Leber, 2016; 2018), but we have yet to measure whether they 378 

know whether they are using the optimal strategy.  It is possible that the variation in optimization 379 

across tasks reflects variation in knowledge of the optimal strategy. Alternatively, individuals 380 

may know the optimal strategy but seek to avoid the subjective cognitive effort required to 381 

implement this strategy (Irons & Leber, 2018; 2020).  One possible way to disentangle these two 382 

options would be to instruct participants about the optimal strategy for all tasks and measure 383 

whether across-task correlations in strategy emerge. 384 

 385 

Relationship between Ability and Strategy 386 

We have previously drawn a distinction between cognitive abilities and attentional 387 

strategies, offering evidence that no ability metric – of many that we have measured – can 388 

predict ACVS optimality (Irons & Leber, 2020).  Such results stand in contrast to adaptive 389 

strategy optimization in more abstract cognitive tasks (e.g., arithmetic problems using the 390 

Building Sticks Task; see Schunn & Reder, 1998).  Yet, given that strategy optimization appears 391 

to be so heterogeneous across multiple attentional tasks, it was perhaps predictable that the kinds 392 

of ability metrics we have measured would not predict optimality.  That is, measures of general 393 

fluid intelligence, working memory capacity, and processing speed are all related to one another 394 

and are thus to some degree task-general metrics (Cowan et al., 2005; Kane et al., 2001; Miyake 395 

et al., 2000); thus, we may have predicted that a task-general measure should predict either 396 

many/all attentional strategy tasks or few/none.   397 

A potentially more fruitful approach might be to isolate ability metrics that can be linked 398 

to individual tasks – or a subset of tasks.  For instance, we have found the process of 399 
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enumerating the color subsets to find the smaller set to be critical for optimal performance in the 400 

ACVS (Hansen et al., 2019), although such a function is not essential to other strategy tasks (Li 401 

et al., 2021).  It stands to reason that one’s ability to enumerate might predict ACVS optimality.  402 

We have begun to investigate this hypothesis, although our results thus far have not supported it 403 

(McKinney et al., 2021; Zhang et al., 2021).   404 

Note that our investigation of the potential relationship – or lack thereof – between ability 405 

and attentional strategy has been somewhat narrow in scope; we must acknowledge that 406 

clinically significant limitations in cognitive or perceptual capacities (e.g., color deficiency) 407 

could predict poor strategy optimization. 408 

 409 

Conclusions 410 

 Overall, while our results were clear, we have unfortunately not uncovered any predictors 411 

of attentional strategy optimization.  If real world achievement and cognitive ability do not 412 

predict attentional strategy (as found in the present study) – and, if strategy at one task does not 413 

predict strategy at another (as found by Clarke et al., 2022) – then what does?  We have 414 

speculated that subjective cognitive effort plays a key role (Irons & Leber, 2018; 2020), and we 415 

believe that further investigation in this vein may provide some answers.  To conclude, we 416 

emphasize that the pursuit toward understanding strategy optimization remains an intriguing 417 

challenge and is essential for helping us to understand how and why individuals use their 418 

attentional capacities in everyday settings. 419 
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