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Abstract

People exhibit vast individual variation in the degree to which they choose optimal attentional
control strategies during visual search, although it is not well understood what predicts such
variation. In the present study, we sought to determine whether markers of real-world
achievement (assessed via undergraduate GPA) and cognitive ability (e.g., general fluid
intelligence) could predict attentional strategy optimization (assessed via the Adaptive Choice
Visual Search task; Irons & Leber, 2018). Results showed that, while general cognitive ability
predicted visual search response time and accuracy, neither achievement nor cognitive ability
metrics could predict attentional strategy optimization. Thus, the determinants of attentional
strategy remain elusive, and we discuss potential steps to shed light on this important research

topic.

Keywords: visual search, attentional strategy, cognitive ability, personality, individual

differences, attention
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Attentional strategy choice is not predicted by cognitive ability or academic performance

Collective wisdom tells us that abilities alone seldom predict performance in life; it is
essential that one apply their abilities strategically to achieve desirable behavioral outcomes.
How universal is the use of strategy? If a person is strategic in one facet of life, will they also be
strategic in others? For present purposes, we seek to understand how individuals control
attention; when searching the visual world for targets of interest, why do some people use
optimal strategies while others use suboptimal ones (Irons & Leber, 2020)? By a unitary
account, strategic performance is similar across many tasks, such that the degree to which one
uses attention to optimize performance can be predicted by how much they optimize
performance at other tasks. By the broadest version of a unitary account, certain trait variables
linked to optimizing behavior in real-world achievement measures, such as academic
performance, might predict attentional strategy optimization. Alternatively, strategy may be
non-unitary, whereby its use varies across different tasks. In this case, high achievement in real-
world measures will not predict attentional strategy usage.

In this paper, we investigate several possible predictors of search strategy optimization.
First, we evaluate the degree to which college-level academic performance — a real-world
achievement metric — predicts attentional control strategy. Previous research has highlighted the
importance of strategy — particularly learning and cognitive regulation strategies — to academic
performance (Alexander & Judy, 1988; Broadbent, 2017, Donker, Kostons, Van Ewijk, & van
der Werf, 2014). A unitary strategy would therefore predict that those who strategize optimally

in attentional control will do the same in their academic studies, and attentional control strategy
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will correlate with academic outcomes. This association should be even stronger after accounting
for other variables that also contribute to academic achievement, such as general intelligence
(Laidra et al., 2007) or socioeconomic status (Rodriguez-Hernandez, Cascallar & Kyndt, 2020).

Second, we evaluate how metrics of cognitive ability — relating to general fluid
intelligence — might predict strategy. We pursue this latter question for two reasons. First,
individuals with greater cognitive ability may find it easier to implement better strategies
(Schunn & Reder, 2001). Our recent work has failed to find a relationship between other ability
metrics (e.g., visual working memory capacity, visual search response time) and attentional
strategy (Irons & Leber, 2016; 2018; 2020), so we tested a more domain general metric relating
to general fluid intelligence. Second, as mentioned above, real-world achievement metrics like
cumulative grade point average (GPA) can be partly explained by cognitive ability (Laidra et al.,
2007). Therefore, should we find academic achievement to predict attentional strategy, we can
assess the degree to which such a relationship is due to cognitive ability.

To assess attentional control strategy, we used a procedure designed expressly for this
purpose: the Adaptive Choice Visual Search (ACVS; Figure 1; Irons & Leber, 2016; 2018). In
the ACVS, participants are presented with displays containing two colored subsets of squares
(e.g., red and blue), each of which contains one target. Additional color distractors (e.g., green)
serve to encourage color-based search but never contain targets. Participants only have to find
one target and can freely choose which one to search for on each trial. Critically, the subsets of
colored squares in the display differ in numerosity, such that the optimal way to find a target is to
search through the smaller color subset. Note that some task factors could work against

performance benefits in choosing the optimal target, such as task switching costs and the relative

differences in inter-item spacing within color subsets. However, we have consistently verified
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that searching the smaller color subset is indeed the better strategy, as optimality rate is reliably

negatively correlated with overall RT (Irons & Leber, 2016; 2018; Li et al., 2022). Because the
choice of target is unconstrained, individual choice behavior can reveal a variety of strategies.

Although the optimal strategy is fastest, it requires that participants take on additional
cognitive demands such as appraising the display, enumerating the subsets, and updating
attentional settings when needed (see Hansen, Irons & Leber, 2019). Suboptimal strategies,
which produce slower reaction times, include searching for the same target color every time or
randomly choosing a color subset to search on each trial.

Previous work with this paradigm has revealed vast individual differences in the
optimality of target choice (Irons & Leber, 2016; 2018). Moreover, test-retest reliability of
strategy choice has been shown to be stable across sessions spaced 1-10 days apart (Irons &
Leber 2018), suggesting that strategy use is trait-like (see also Li, McKinney, Irons, & Leber,
2021). This reliability thus makes the ACVS suitable for comparison to other trait measures of
academic performance and ability.

To assess domain-general cognitive ability, we included a general fluid intelligence
measurement (International Cognitive Ability Resource, or ICAR; Condon & Revelle, 2014). To
assess academic achievement, we collected Introductory Psychology grades and cumulative
grade point average (GPA). We also collected a college admissions test score (American
College Test, or ACT; ACT, Inc.), which has been shown to independently predict both general
fluid intelligence and college academic performance (Coyle & Pillow, 2008). Finally, while not
central to the present aims, we also assessed whether a pencil-and-paper mindfulness assessment,

the Mindful Attention Awareness Scale (MAAS; Brown & Ryan, 2003) could predict strategy.
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If strategy optimization is unitary, real-world measures of academic achievement (e.g.,

cumulative GPA) should predict the optimality of target choice in the ACVS. However, if
strategy is non-unitary, then these two variables will not correlate significantly. Additionally, if
cognitive ability predicts attentional strategy optimization, then general fluid intelligence should
predict ACVS optimality; alternatively, if ability does not predict strategy optimization, then

general fluid intelligence will not relate to ACVS optimality.

Method
Open Practices Statement
The rationale, method, and analysis plan for this study were preregistered at the Open

Science Framework (OSF), after data collection began but before any results were examined

(https://osf.io/qen3p/?view_only=65d01d1752d34ff089b6b96ffed0a00e).

Participants. Data collection occurred during the Autumn semester of 2018, via the
undergraduate Research Experience Program at The Ohio State University. All participants were
enrolled in Introductory Psychology and participated for course credit. We planned to collect data
from a total sample of 100 individuals comprising a single cohort of students taking Introductory
Psychology. The planned sample size was based on the expectation of obtaining 85% power to
detect a small effect (» = 0.3) and >99% power to detect a medium effect (» = 0.5) (using an alpha
criterion of 0.05). We ultimately obtained data from 98 volunteers before the semester ended (43
male, 54 female, 1 non-binary). Rather than resume in the subsequent semester from a different
cohort, we chose to stop data collection at this point. Participants were required to be aged 18-40
years old (obtained Mage = 18.85; range: 18-38) and have self-reported normal or corrected-to-

normal visual acuity and normal color vision.
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Procedure. All methods were approved by The Ohio State Institutional Review Board.
Participants consented (1) to participate in in-lab data collection, and (2) for the researchers to
obtain the participants’ academic metrics (GPA, SAT score, ACT score, final grades for each class,
and/or major) from the university registrar. They completed the following tasks/surveys, in the

order described.

ACVS
Apparatus. All participants completed the task in a sound-attenuated and light-controlled
testing room, on a Mac Mini computer with a 24” Acer LCD monitor. Participants were
seated approximately 62 centimeters away from the monitor. Head position was not
fixed; reported visual angles of stimuli are based on the typical viewing distance. Stimuli
were presented using MATLAB (MathWorks, Natick, MA, USA) with Psychophysics

Toolbox extensions (Brainard, 1997; Kleiner et al., 2007).

Stimuli and Procedure. Participants completed 3 blocks of 84 trials of the ACVS
task (Irons & Leber 2018, Experiment 2). For every trial, participants saw an array of 54
squares, each sized 1° x 1° (13 red, 13 blue, 14 green and 14 “variable”). The color of
the variable squares was either red or blue on each trial (explained further below). The
squares were evenly spaced in three concentric circles around a fixation cross. The inner
circle contained 12 squares centered at 6.3° eccentricity, the middle circle contained 18

squares at 9.4° eccentricity, and the outer circle contained 24 squares at 12.4°
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159 eccentricity. The color of each square was selected randomly without replacement from
160 the combined four color sets defined above.

161 A white digit was superimposed on the center of each square, with numbers

162 between 2 and 9 (0.48°; font: Arial). This digit size ensured that participants’ gaze had to
163 be fixated on or near the square to determine the digit identity. In every array, there were
164 two targets: one red square and one blue square. Each target contained a randomly

165 chosen digit among the set of 2, 3, 4, and 5, with the constraint that the red target digit
166 was never the same as the blue one. All other red and blue squares contained a number
167 between 6 and 9. Green squares each contained a digit between 2 and 9, ensuring that
168 participants had to confine their search to red and blue squares, rather than searching

169 solely for digits while ignoring color. Digits were pseudo-randomly assigned to squares,
170 with constraints that each colored subset contained approximately the same frequency of

171 each digit (see Figure 1).
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Blue target

Red target

Trigls ————>

[ —

Fewer blue Fewer red Fewer blue
172
173 Figure 1. Depiction of the Adaptive Choice Visual Search (ACVS) task
174 (Irons & Leber, 2018, Experiment 2). 7op: stimulus from a sample trial, in which
175 the subset of blue squares contains fewer items than the subset of red squares.
176 Searching the smaller subset -- blue, in this example -- is considered the “optimal”
177 choice, as it yields substantially faster performance. Bottom: Sequence of
178 successive trials, showing that the color of the smaller subset varies
179 unpredictably, in randomized run lengths of 1-6. Figure reproduced from Irons &
180 Leber (2020).

181
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182 Participants were informed that both the red and blue targets would always be
183 present but were not instructed of the optimal strategy, rather that they were free to search
184 for and report either target on each trial. They were instructed to report the digit inside
185 either the red or blue target using the V, B, N, and M keys on the keyboard,

186 corresponding to target digits 2, 3, 4, and 5, respectively.

187 Half of the time the variable distractors were red, meaning there were

188 approximately twice as many red squares as blue squares (27 vs. 13). The other half of
189 the time, the variable distractors were blue, meaning there were approximately twice as
190 many blue squares as red. Finding the target in the smaller colored-subset is the optimal
191 strategy for this task, since the subset contains the fewest squares through which to

192 search, yielding the fastest performance on the task (Irons & Leber, 2016; 2018; 2020).
193 The color of the optimal subset changed across successive trials, switching between red
194 and blue every 1-6 trials. The length of each run was randomly chosen (and therefore
195 unpredictable by the participant), but each run length was presented equally often.

196 At the beginning of each trial, a fixation cross was presented for 1.5s, followed by
197 the search array, which was presented until response. If participants were incorrect,

198 meaning they made a response that did not match either target digit, a 400Hz auditory
199 tone was played for 150ms. Next, a 1.5s inter-trial interval was presented. Ten practice
200 trials were completed while the experimenter was present to ensure understanding of the
201 task, followed by three experimental blocks of 84 trials (252 total trials).

202 Following completion of the main task, participants completed a brief strategy

203 questionnaire that was similar to the one used by Irons & Leber (2018, Experiment 2).
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These were collected as part of our preregistration plan for the purposes of later

exploratory analysis beyond the scope of the present study.

Socioeconomic Status (SES). Participants were asked to report, if applicable, their mother’s

and/or father’s educational attainment and approximate combined household income. As
mentioned in the introduction, our rationale for including this measure was to assess the
relationship between academic achievement and visual search strategy, while controlling for

SES.

General Fluid Intelligence Assessment. Participants completed the International Cognitive

Ability Resource (ICAR; Condon & Revelle, 2014; Curran et al., 2011). This 16-item assessment
included four questions each of three-dimensional rotation, letter and number series, matrix

reasoning, and verbal reasoning.

Mindfulness. Participants completed the Mindfulness Attention Awareness Scale (MAAS;

Brown & Ryan, 2003).

Academic Measures. Several measures of academic performance and aptitude — if available —

were retrieved from the University Registrar during the Autumn 2019 academic semester, one
year following completion of the main experiment. These included participants’ Cumulative
Grade Point Average (GPA), Introduction to Psychology final grade, American College Test
(ACT) score, and Scholastic Aptitude Test (SAT) score. While not intended for inclusion in our

analysis, the registrar provided additional transcript information, such as students’ undergraduate



227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

12
Running Head: ABILITY AND STRATEGY
majors. Additionally, while we only preregistered one wave of collecting registrar data, we were

able to obtain a second cumulative GPA measurement one year after initial collection of

academic data, following the Autumn 2020 semester.

Results

We excluded two measurements from our analysis, as follows: First, based on academic
records, 69 participants had ACT scores and 33 had SAT scores. Given the similarity between
tests and that so few took the latter, we opted to analyze only the ACT. Second, only 32
participants completed the SES questions. Therefore, despite our preregistered plan, we felt it
necessary to exclude SES from all analyses, as it would have severely limited statistical power.

Participants were excluded for withdrawing before completing any survey measures
(n=1), computer malfunctioning (n=1), being non-naive to the task (n=1), and accuracy greater
than three standard deviations below the sample mean (n=2). Of the 98 participants from whom
data was collected, this resulted in an analyzed sample of 93 participants (40 male, 52 female, 1
non-binary).

For each measure, individuals were classified as univariate outliers and their respective
measures were excluded if the absolute value of the z-score exceeded 3.29, p<.001 (n=1, for the
GPA measure).

All statistical tests were two-tailed and compared against an alpha criterion of 0.05. The
Holm-Bonferroni method was used to correct for multiple comparisons (denoted as pug) (Holm,

1979).
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ACYVS Performance.

For each participant, trials with incorrect responses and trials with response times (RTs)
that were less than 300ms or more than three standard deviations above the individual’s mean
were excluded from RT analysis (3.52% of trials).

All main descriptive statistics were similar to what has previously been reported (Irons & Leber,
2018, Experiment 2): accuracy (M = 98.3%; range: 93.3-100.0%), RT (M = 3328ms; range:
2192-5313ms), proportion of optimal choices (M = 64.5%; range: 30.0-98.8%) and rate of
switching (M = 28.6%; range: 0.0-50.2%). We also estimated internal consistency for proportion
of optimal choices; we used the method of Susilo et al. (2010), by calculating and averaging 50
random splits of the data and applying a Spearman-Bowman correction. This yielded a mean
split-half reliability of » = .974.

Other measures.

Total observations, mean, and SD for all other included dependent measures are reported
in the first four columns of Table 1. Note that total observations for some variables were less

than the overall sample size, as follows: Intro Psych Grade: several participants were enrolled in

an honors section, and we chose to exclude these data points due to inherent differences in the
course rigor, resulting in a sample of 88 individuals. ACT: the registrar reported this test score

for 69 individuals. Cumulative GPA (2" collection): we obtained the second wave of GPA data

for 77 participants, as some were no longer enrolled (i.e., they graduated or withdrew).
Additionally, for each correlation, multivariate outliers were defined by a Mahalanobis distance
that exceeded 13.82, p<.001 (n=0). Pairwise deletion was used for any missing data or

incomplete surveys.
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Table 1.

ACVS Descriptive Statistics

14

Variable N SD Accuracy Response Proportion  Proportion
Time of optimal  of switches
choices
Intro 88 3.52 0.66 r(87)=0.03, r(87)=0.04, r(87)=0.05, r(87)=0.14,
Psychology p=0.76, p=0.71, p=0.62, p=0.19,
Grade pus=1.0 pus=1.0 pus=1.0 pus=0.97
GPA 92 3.45 0.43 r(91)=0.15, r(91)=0.02, r©91)= r(91)=0.07,
(AU19) p=0.14, p=0.86, 0.09, p=0.48,
pus=0.56 prs=0.86 p=0.39, pus=1.0
pus=1.0
GPA 77 3.51 0.35 r(76)=0.2, r(76)=0.06,  r(76)=- r(76)=0.1,
(AU20) p=0.08, p=0.58, 0.04, p=0.38,
pus=0.4 pus=1.0 p=0.73, pus=1.0
pus=1.0
ACT 69 29.0 3.25 r(68)=0.43, r(68)=- r(68)=0.15,  r(68)=0.04,
p=0.0002, 0.35, p=0.23, p=0.72,
pus=0.001  p=0.003, pus=1.0 pus=1.0
pus=0.02
ICAR 93 0.56 0.18 r(92)=0.06, r(92)=- r(92)=0.14, r(92)=-
p=0.59, 0.36, p=0.2, 0.06,
pus=1.0 p=0.0004, pus=1.0 p=0.56,
pup=0.002 pus=1.0
MAAS 93 3.67 0.79 r(92)=0.01, r(92)=- r(92)=0.02, r(92)=0.01,
p=0.91, 0.15, p=0.84, p=0.89,
pu=0.91 p=0.14, pus=0.84 pus=0.89
pus=0.56

Note. N = sample size; M = mean; SD = standard deviation. p = uncorrected p-value;

pus = Holm-Bonferroni corrected p-value.

Predicting ACVS Performance.
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As described above, our main measure of attentional strategy was the proportion of
optimal choices, or optimality. Thus, the critical analyses were to assess whether optimality was
predicted by academic performance and cognitive ability scores. We also explored whether
these measures could predict the other ACVS metrics, including accuracy, RT, and frequency of
switches. Pearson’s correlation coefficients were computed to assess pairwise associations
between these measures, followed by t-tests to determine if the correlations were significantly

different from zero. Correlation coefficients (Pearson’s ), and uncorrected and corrected (Holm,

1979) p-values are reported in the last four columns of Table 1.

Note that in our preregistration, we initially planned hierarchical regressions to analyze
the individual contributions of academic performance, SES, and intelligence metrics, in
predicting optimality and frequency of switching. However, as results show below, the lack of
significant correlations — as well as insufficient SES data — obviated the utility of these

regressions, so we omitted them.

Academic Performance. For Cumulative GPA (both AU19 and AU20) and Intro to
Psychology grade, we found no significant relationship with any of the ACVS measures

(Table 1).

General Fluid Intelligence. ICAR score did not predict the ACVS strategy metrics of
optimality or frequency of switching; however, ICAR was significantly correlated with

ACVS RT (Table 1).
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College Entrance Exam.  ACT score did not predict the ACVS strategy metrics of
optimality or frequency of switching. However, it did significantly predict ACVS

Accuracy and RT (Table 1).

Mindfulness. MAAS scores did not correlate significantly with any ACVS performance

metrics of interest (see Table 1).

Complete Reporting of Pairwise Correlations. Beyond the planned pairwise correlations

analyzed, we present, for completeness, all pairwise correlation coefficients, with uncorrected p-

values, in Figure 2.

Figure 2.

Correlation Matrix: ACVS and Survey Metrics
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1: ACVS optimal - l
2: ACVS switch - 0.086 -
- 041
3: ACVS RT- 046 029 i
- 0.001 0.004
4&: ACVS Acc- 0.095 -0.071 0.051
- 0.36 0.5 0.63 -
5. ICAR- 014 -0.061 -0.36 0.055
0.2 0.56 0.001 0.6
é: ACT- 015 0.044 -0.35 0.43 0.45 -
- 023 0.72 0.003 0.001 0.001
7: MAAS- 0021 0.014 -0.15 -0.012 0.16 0.081 -
- 0.84 0.89 0.14 0.91 0.12 0.51
8: Intro Psych Grade - 0.054 0.14 0.04 0.033 013 0.27 0.11
- 0.62 0.19 0.71 0.76 0.21 0.032 0.29
9: GPA{AU19)- 0.091 0074 -0.018 015 024 037 014 062
- 0.39 0.48 0.86 0.14 0.021 0.002 0.19 0.001
10: GPA{AUZ0D)- 0.04 0.1 0.064 0.2 0.17 0.41 0.13 0.5 0.66
- 073 0.38 0.58 0.078 0.14 0.001 027 0001 0.001
i 2 3 4 5 6 7 8 9 10
318
319 Note. Complete correlation matrix of comparisons of the ACVS and survey metrics.
320 Pearson’s r and uncorrected p-values (denoted in italics) are shown below the diagonal.
321 Graphical depiction of Pearson’s r coefficients, in absolute values, above the diagonal.
322 Note that Intro Psych Grade, GPA(AU19), and GPA(AU20) are not independent, as they
323 are calculated based on some degree of shared data.
324
325
326 Discussion
327 Is a person’s strategy optimization unitary, or similar, across multiple tasks and settings?

328 In particular, we questioned whether real world achievement, as assessed by academic
329  performance, could predict the optimization of strategy in the ACVS. We found no evidence to

330 support this unitary account, since neither cumulative GPA (measured over two years) nor Intro
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Psychology grade predicted strategy optimization on the ACVS. The failure to predict attentional
strategy from real-world achievement metrics is consistent with the non-unitary account of
strategy usage.

We also investigated whether cognitive ability predicts attentional strategy optimization,
and results found no relationship between ICAR and ACVS strategy measures. ACT, which has
been previously shown to relate to both general fluid intelligence and academic performance
(Coyle & Pillow, 2008), also failed to predict ACVS strategy metrics. However, we did find that
ACT and ICAR measures could predict RT, and ACT predicted task accuracy. These results are
consistent with previous work showing that visual search RT and accuracy are well-predicted by
multiple ability-related metrics (Cowan et al., 2005; Kane et al., 2001; Miyake et al., 2000).
These results also fit parsimoniously with our recent findings that working memory capacity and
visual search RT did not predict ACVS optimality (Irons & Leber, 2016; Irons & Leber, 2020).
Taken together, the present data are consistent with our recent proposal that cognitive ability and
attentional strategy are distinct from one another (Irons & Leber, 2020).

We had to abandon our plan to account for SES when assessing the relationship between
academic performance and search strategy. However, given that we did not observe a

relationship between GPA and ACVS metrics, the lack of SES data presents less of a problem

for interpreting the results.

Non-unitary nature of attentional strategy optimization
Overall, we reject a broad version of the unitary account of attentional strategy. That is, a
single trait variable does not span levels of a putative hierarchy to determine optimization for

both high-level life achievement and task-specific strategy. These results do not, however,
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address whether more limited versions of unitarity of strategy exist — for instance, across a set of
lower-level cognitive tasks. Recent work by Clarke et al. (2022), which was run at the same time
as the present study, produced evidence against this more limited form of unitarity. In that study,
the authors compared three attentional strategy measures: ACVS, Mouse Click Foraging
(Kristjansson et al., 2014), and the Split Half Line Segment task (Nowkowska et al., 2017).
While each of the tasks showed good test-retest reliability, none were reliably correlated with
one another. Specifically, strategy optimization in one attentional task need not predict
optimization in other tasks, supporting a non-unitary account of strategy. Had we known the
results of Clarke et al. when beginning the present study, we reasonably could have predicted
from the outset that academic performance was unlikely to relate to ACVS optimality.

Taking our work and the work of Clarke et al. together, we have scant evidence for a
unitary “optimality trait,” either across or within levels of a strategy hierarchy. We instead
presume that strategy use — which can be highly consistent and trait-like within individual tasks —
is largely task-specific, or non-unitary (see also Li et al., 2021; Irons & Leber, 2020).

Understanding the drive to optimize performance is a vital undertaking and is likely to
predict a great deal of variance in real-world attentional performance. It is thus essential to fully
characterize strategy optimization across a variety of task settings. However, the seemingly
heterogeneous nature of strategy use poses a great challenge to this enterprise. That is, rather
than obtaining a single trait variable measurement, we apparently need to measure a whole
assortment of variables to understand optimizing behavior across all strategy-related tasks.

Additional work also needs to be carried out to explain what factors drive strategy
optimization in various tasks. For instance, people’s propensity to optimize could be linked to

both their metacognitive knowledge of what the possible strategies are, and which ones produce
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the best performance. In the ACVS, participants tend to have high metacognitive knowledge of
their chosen strategy (Irons & Leber, 2016; 2018), but we have yet to measure whether they
know whether they are using the optimal strategy. It is possible that the variation in optimization
across tasks reflects variation in knowledge of the optimal strategy. Alternatively, individuals
may know the optimal strategy but seek to avoid the subjective cognitive effort required to
implement this strategy (Irons & Leber, 2018; 2020). One possible way to disentangle these two

options would be to instruct participants about the optimal strategy for all tasks and measure

whether across-task correlations in strategy emerge.

Relationship between Ability and Strategy

We have previously drawn a distinction between cognitive abilities and attentional
strategies, offering evidence that no ability metric — of many that we have measured — can
predict ACVS optimality (Irons & Leber, 2020). Such results stand in contrast to adaptive
strategy optimization in more abstract cognitive tasks (e.g., arithmetic problems using the
Building Sticks Task; see Schunn & Reder, 1998). Yet, given that strategy optimization appears
to be so heterogeneous across multiple attentional tasks, it was perhaps predictable that the kinds
of ability metrics we have measured would not predict optimality. That is, measures of general
fluid intelligence, working memory capacity, and processing speed are all related to one another
and are thus to some degree task-general metrics (Cowan et al., 2005; Kane et al., 2001; Miyake
et al., 2000); thus, we may have predicted that a task-general measure should predict either
many/all attentional strategy tasks or few/none.

A potentially more fruitful approach might be to isolate ability metrics that can be linked

to individual tasks — or a subset of tasks. For instance, we have found the process of
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enumerating the color subsets to find the smaller set to be critical for optimal performance in the
ACVS (Hansen et al., 2019), although such a function is not essential to other strategy tasks (Li
et al., 2021). It stands to reason that one’s ability to enumerate might predict ACVS optimality.
We have begun to investigate this hypothesis, although our results thus far have not supported it
(McKinney et al., 2021; Zhang et al., 2021).

Note that our investigation of the potential relationship — or lack thereof — between ability
and attentional strategy has been somewhat narrow in scope; we must acknowledge that

clinically significant limitations in cognitive or perceptual capacities (e.g., color deficiency)

could predict poor strategy optimization.

Conclusions

Overall, while our results were clear, we have unfortunately not uncovered any predictors
of attentional strategy optimization. If real world achievement and cognitive ability do not
predict attentional strategy (as found in the present study) — and, if strategy at one task does not
predict strategy at another (as found by Clarke et al., 2022) — then what does? We have
speculated that subjective cognitive effort plays a key role (Irons & Leber, 2018; 2020), and we
believe that further investigation in this vein may provide some answers. To conclude, we
emphasize that the pursuit toward understanding strategy optimization remains an intriguing
challenge and is essential for helping us to understand how and why individuals use their

attentional capacities in everyday settings.
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