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Abstract—In Federated Learning (FL), clients independently
train local models and share them with a central aggregator to
build a global model. Impermissibility to access clients’ data and
collaborative training make FL appealing for applications with
data-privacy concerns, such as medical imaging. However, these
FL characteristics pose unprecedented challenges for debugging.
When a global model’s performance deteriorates, identifying the
responsible rounds and clients is a major pain point. Developers
resort to trial-and-error debugging with subsets of clients, hoping
to increase the global model’s accuracy or let future FL rounds
retune the model, which are time-consuming and costly.

We design a systematic fault localization framework, FEDDE-
BUG, that advances the FL debugging on two novel fronts. First,
FEDDEBUG enables interactive debugging of realtime collabora-
tive training in FL by leveraging record and replay techniques
to construct a simulation that mirrors live FL. FEDDEBUG’s
breakpoint can help inspect an FL state (round, client, and global
model) and move between rounds and clients’ models seam-
lessly, enabling a fine-grained step-by-step inspection. Second,
FEDDEBUG automatically identifies the client(s) responsible for
lowering the global model’s performance without any testing data
and labels—both are essential for existing debugging techniques.
FEDDEBUG’s strengths come from adapting differential testing
in conjunction with neuron activations to determine the client(s)
deviating from normal behavior. FEDDEBUG achieves 100%
accuracy in finding a single faulty client and 90.3% accuracy
in finding multiple faulty clients. FEDDEBUG’s interactive de-
bugging incurs 1.2% overhead during training, while it localizes
a faulty client in only 2.1% of a round’s training time. With
FEDDEBUG, we bring effective debugging practices to federated
learning, improving the quality and productivity of FL applica-
tion developers.

Index Terms—software debugging, federated learning, testing,
client, fault localization, neural networks, CNN

I. INTRODUCTION

Many machine learning models today require private user
information for high-quality training. However, users are nat-
urally reluctant to share such data to minimize the risk of pri-
vacy violation. To address the above needs, Federated Learning
(FL) [37] enables individual participating clients (e.g., smart-
home edge devices) to train a machine learning (ML) model
on their local data in a privacy-preserving environment and
then send the trained model (e.g., the weights of the neural
network) to a central aggregator to build a global model. FL
trains highly accurate models without ever accessing user data,
keeping clients’ data privacy intact [22]. With the advent of

frameworks like FedML [14] and IBMFL [33], FL is actively
used in solving real-world problems [19, 32, 41, 59].

Problems. The support for collaborative yet privacy-preserving
training in FL comes at the cost of transparency and com-
prehension, making debugging prohibitively complicated. For
instance, a faulty client can send an inaccurate model to the
aggregator either due to noisy labels [17, 27, 28] in the training
data or malicious intent to deteriorate the global model’s
performance [2]–[4, 39]. Finding such a faulty client is chal-
lenging due to a large number of unpredictable clients that may
not have participated in every round because of a poor network
connection or low battery power [45, 52]. The FL training
process also spans numerous rounds, significantly increasing
the search space for identifying the true culprit round. None
of the existing FL frameworks provide debugging and testing
support to developers when building FL applications [22].
These developers rely on guesswork and expensive trial-and-
error debugging to find a fault-inducing client.

Challenges. FL poses two fundamental challenges when de-
signing a debugging technique. First, in FL deployments,
training and testing data are kept private and strictly reside
with clients. Access to such data could allow developers to
evaluate individual clients’ models sent to the aggregator and
identify the lowest-performing model as the culprit, similar to
traditional ML model testing. Neither test data nor labels are
available to an FL application developer and, therefore, exist-
ing ML debugging approaches [38, 40, 49] are inapplicable.

Second, due to the unpredictability of clients’ participation
in a round and the ephemeral nature of their contributions
in the global model, reproducing a fault (i.e., faulty client)
and then debugging it is not feasible. Traditional breakpoint
debugging will pause the entire training process in FL across
all clients, causing severe side effects such as data loss as
clients may not have persistent storage to store data. Live
postmortem or trial-error debugging may lead to a new set of
clients for each round based on client availability and quorum,
thus making debugging even more ineffective. Considering the
above limitations and challenges, we must design a debugging
approach that does not rely on clients’ data, can debug a live
FL application without any interference, and can localize a
faulty client precisely.



Contributions. We take inspiration from traditional debuggers,
such as gdb, and redesign traditional debugging constructs
that are tailored to the needs of an FL application developer.
Our approach, FEDDEBUG, selectively records an FL applica-
tion’s telemetry data to enable realtime interactive debugging
on a simulation that mirrors a live FL application. With
FEDDEBUG’s breakpoint, a developer can spawn a simulation
of a live FL application and inspect the current state con-
taining information such as clients’ models and their reported
metrics (e.g., their training loss or hyperparameters). It also
allows a seamless transition between the rounds and clients
at a given breakpoint, enabling a fine-grained step-by-step
inspection of the application’s state. When a developer finds a
suspicious state (e.g., multiple clients report high training loss),
FEDDEBUG’s automated fault localization approach precisely
identifies the faulty client(s) without any test data or labels.
Once a faulty client is identified, FEDDEBUG’s fix and replay
repairs the global training by retroactively removing the faulty
client and resuming the live FL training.
Key Insights. FEDDEBUG leverages several insights to enable
systematic FL debugging while preserving clients’ privacy. We
observe that instead of debugging a live FL application, we
can record a set of runtime metrics essential to regenerate a
given state in an FL application. Thus, FEDDEBUG performs
debugging on a regenerated simulated state equivalent to a
live state. To have a measurable impact on the global model,
a faulty client’s model must behave differently than the regular
clients. Every client in an FL application has the same model
architecture, so their internal behaviors are comparable. Based
on this insight, FEDDEBUG proposes an inference-guided
test selection method to select high-quality and diverse test
data from a pool of randomly generated input images using
Kaiming Initialization [15]. However, an auto-generated data
does not include the class label i.e., an oracle. To address the
oracle problem with such data, FEDDEBUG adapts differential
testing to FL domain. It captures differences in the models’
execution via neuron activations instead of output labels to
identify diverging behavior of faulty clients.
Evaluations. We perform large-scale, extensive evaluation of
FEDDEBUG on popular models, two large-scale datasets, two
well-established FL data distributions, and a real-world fault-
injection technique in a total of 68 different FL configura-
tions. We measure FEDDEBUG’s fault localizability, debug-
ging time, performance overhead over a vanilla FL frame-
work (IBMFL), and scalability. FEDDEBUG shows remarkable
success in identifying faulty clients. It can localize the real-
world faulty client with 100% accuracy within 2.1% of a
round’s training time. When faced with multiple faulty clients,
FEDDEBUG retains the high fault localization accuracy of
90.3%. FEDDEBUG’s debugging constructs incur an overhead
of 48% of the aggregation time to record telemetry data for
state regeneration. Surprisingly, this time is only 1.2% of
a single round’s training time in our experiments. Through
our evaluation, we demonstrate that FEDDEBUG effectively
conducts interactive debugging and efficiently automates fault
localization without incurring high runtime costs. FEDDEBUG
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Fig. 1: In a centralized FL architecture, an aggregator sends a
global model to clients (step 1). Each client trains the model
on local data (step 2) and sends the locally trained model back
to the server (step 3). The server aggregates all models to form
a new global model (step 4).

augments the IBMFL framework, but its underlying insights
can be adapted for other FL frameworks.

We summarize FEDDEBUG’s contributions below:
• Originality: To the best of our knowledge, FEDDEBUG

is the first general-purpose debugging framework for fed-
erated learning applications that is not limited by access
to clients’ data. It addresses open debugging challenges
in FL [22].

• Approach: Traditional ML trains a single model, whereas
FL involves distributed training across hundreds of clients
over multiple rounds. Thus, existing ML debugging ap-
proaches are inapplicable on FL. FEDDEBUG’s novelty
lies in observations about FL and the exploitation of in-
sights on reproducibility, inference guided test generation,
and differential testing that do not impede performance
or violate FL privacy principles.

• Benchmark: We evaluate FEDDEBUG in 68 FL config-
urations derived from well-established datasets, models,
varying clients, data distribution, and fault-injections.
We package our experiment environment into a public
benchmark for future research use.

• Usefulness: Our extensive experiments demonstrate that
FEDDEBUG successfully locates faulty client(s) with-
out impeding the FL workflow. On a wide range of
experiments, FEDDEBUG exhibits robust results against
multiple faulty clients, challenging data distributions, and
a large number of clients. FEDDEBUG’s artifact and the
benchmarks used in this work are publicly available at
https://doi.org/10.5281/zenodo.7578656.

II. BACKGROUND AND MOTIVATION

A. Federated Learning

In Federated Learning, multiple clients independently train
local models on their data and share it with a central server
(also called an aggregator) to construct a global model. During
this collaborative training, clients’ training data never leaves
their premises [22]. Figure 1 shows an FL setting where
multiple hospitals collaboratively train a global model on their
local labeled medical imaging data.

https://doi.org/10.5281/zenodo.7578656


1) In the first step, the aggregator sends copies of the
current global model, i.e., the global model weights,
and hyperparameters (e.g., learning rate and epochs) to
participating clients (Step 1 of Figure 1).

2) Using the global model as initial parameters, each client
trains a model on its local data similar to traditional ML
training (Step 2 of Figure 1).

3) Once trained, each client sends its local model, in the
form of updated weights, back to the aggregator as
shown in Step 3 of Figure 1. Additionally, clients share
performance metrics such as training loss and qual-
ity/quantity of training data with the central aggregator.

4) After receiving model updates, the server aggregates
the updated weights from all clients using established
model aggregations (also called fusion) techniques such
as FedAvg [37] to form a new global model (Step 4).

The four steps are repeated for a fixed number of rounds
or until the global model meets some convergence criteria, for
example, when training loss is close to zero. Note that not
every client participates in every round. There are additional
variants of federated learning (FL) such as vertical FL [31],
FL with differential privacy [50], and personalized FL [44].
Our work mainly focuses on the standard FL [37].

B. Motivating Scenario

Suppose that an FL application developer trains a global
neural network model, ResNet [16], on chest X-ray images
from hospitals across the country to diagnose respiratory
diseases (e.g., Covid-19). The term developer refers to a
person who writes, deploys, and monitors the FL application
at the central server, as shown in Figure 1. Every participating
hospital collects X-rays of patients labeled by radiologists and
trains a local ResNet model on that data. Hospitals periodically
share their locally trained models with a central server. The
central server then aggregates these shared models into one
global model. After aggregation, the central server sends the
updated global model to each hospital to incorporate in local
training in the next round, as shown in Figure 1.

The developer observes that multiple hospitals are reporting
a high training loss from their preceding training rounds. One
plausible reason is that one of the hospitals performed training
on noisy data (mislabeled by inexperienced staff [8, 28]) and
continuously impacted the global model during aggregation.
Thus, when the global model is shared back with the other
hospitals, it influences their training.
Challenges of FL Debugging. After noticing an increase in
training loss, the developer must investigate the root cause, as
misdiagnosis from medical imaging can lead to ill treatment.
To debug the FL application at this scale, the developer
begins by manually inspecting various collected logs at the
central server, including the global model weights, shared
local models from hospitals, and the response and training
time of each hospital. Due to patient privacy, the hospitals
refrain from sharing their labeled training data, which is
critical for correctly evaluating the quality of a model and thus
essential for localizing the faulty round and model. Even if the

developer finds the problematic round, she cannot isolate the
hospital(s) responsible for affecting the global model without
test data. One option is cross-validating each client’s model by
requesting that the other clients test the model on their local
data. This is prohibited in practice, as it adds computational
burden on clients (e.g., edge devices) and can potentially cause
data privacy violation. Lastly, statically inspecting hospitals’
models does not provide any meaningful information. Without
any debugging techniques at her disposal, she resorts to using
guesswork to identify the hospital with noisy labels.
FEDDEBUG’s Contributions. The developer decides to use
FEDDEBUG to investigate the root cause behind high training
loss. When enabled, FEDDEBUG allows a developer to set a
breakpoint at any round or even in the first round to cap-
ture the end-to-end training logs. This breakpoint separately
invokes a debugging session, a simulation of the original FL
service, without stopping the live training. In the debugging
session, the developer uses FEDDEBUG’s step-back and step-
next constructs to move between rounds, inspecting the global
and local models of hospitals. Upon inspecting the training
rounds, she finds the specific round, e.g., round 8, where the
performance starts to deteriorate. This round can be different
from the breakpoint enabled round, as performance issues
can manifest in earlier rounds but surface later. During this
inspection, FEDDEBUG also reports the list of hospitals that
participated in that round. Next, she invokes FEDDEBUG’s
fault localization algorithm to precisely identify the hospital
responsible for deteriorating the global model performance.
After finding the hospital with noisy labels, the developer
removes it from the problematic round (i.e., round 8) and
onwards. FEDDEBUG’s fix and replay starts retraining from
round 8 to the current round and then replaces the impacted
global model with the retrained global model and switches
back to the original FL training.

III. FEDDEBUG’S DEBUGGING CONSTRUCTS

The goal of FEDDEBUG is to facilitate an FL application
developer in isolating a faulty client responsible for deteriorat-
ing the global model performance. Recent studies emphasize
the need for debugging techniques in FL applications and
the challenges associated with providing debugging support
in FL frameworks [22]. To this end, we must overcome the
following major challenges in designing FEDDEBUG. First,
the privacy concerns of FL put restrictions on any client-side
interference. Second, the unpredictable and ephemeral nature
of clients in FL poses a threat to reproducibility, which is
critical for debugging a live system. Third, the distributed
nature of FL with hundreds of participating clients makes
traditional breakpoint debugging ineffective. Pausing the entire
FL application at this scale will be prohibitively expensive.
Therefore, traditional debugging approaches, such as gdb, are
not suitable for the scale and architecture of FL systems.

In FEDDEBUG, we address the above challenges and ad-
vance systematic FL application debugging. We enable real-
time, interactive debugging on a simulation of the live FL
application. To do so, FEDDEBUG continuously collects and
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Fig. 2: Using FEDDEBUG, a developer can set a breakpoint
at round 20. When the FL application finishes round 20,
FEDDEBUG launches a Debugging Interface, reflected on the
right. Step next (➋) takes the developer to the next step (round
or client). Step-in increases the granularity of computation,
e.g., round to client level. Resume (➌) rejoins the current
execution status of the FL application if no intrusive actions
are taken. At a given round, FEDDEBUG can automatically
localize the faulty client (➍) and then resume (➎) upon which
the global model will be recomputed without the faulty client.
This model will replace the corresponding round's model, and
FEDDEBUG will start retraining from that round, round 22,
in the FL interface.

stores concise telemetry data from a live FL application.
Whenever a debugging need arises, the developer can inter-
act with FEDDEBUG’s debugging interface, which uses the
telemetry data, to regenerate an FL application’s state.

A. Selective Telemetry

FEDDEBUG collects critical FL execution metrics to repro-
duce an FL application's state for the developer to interact with
it while investigating the root cause of a problem. Existing FL
frameworks are carefully architected to refrain from revealing
private data. As a result, most debugging data is private and
cannot be investigated.

FEDDEBUG’s debugging approach is inspired by replay
debugging. As with any other replay debugging approach,
it is essential that FEDDEBUG stores the necessary runtime
metrics to reproduce an FL application's state if requested
by the developer. We design a highly selective FL event
telemetry technique that records the concise execution data
available at the central aggregator that is vital for generating
any prior FL application state. FEDDEBUG is different from
traditional replay debugging as it only tracks the information
needed to recreate an observable event and does not log the
information unavailable to the developer in a live application.
This design reduces the size of continuously growing telemetry
data and minimizes the likelihood of information leakage.
FEDDEBUG mainly stores the information available after
step 3 of Figure 1 which is clients’ models, their reported
metrics such as response time, training loss, validation loss,
performance metric (e.g., F1 score), hyperparameters (e.g.,
learning rates, epochs, weight decay), and round ID. Note that
the FL application, including client-side training, will continue
uninterrupted in the background with FEDDEBUG’s telemetry
module continuously collecting execution traces.

B. Interactive Replay Debugging

To start the interactive debugging process, a developer can
invoke FEDDEBUG’s debugging constructs that let the devel-
oper leverage the telemetry data to investigate the root cause.
Breakpoint debugging is the de-facto method of debugging a
program. It pauses the program when the execution reaches
it. At that point, a developer can inspect the values assigned
to different variables, both local and global, and examine
the method stack. Such debugging features are not applicable
in FL. The traditional breakpoint will pause the distributed
training, resulting in unnecessary idling at the client side.
Additionally, since the state of a round is not saved, it is
currently impossible for the developer to inspect previous
rounds. For instance, a developer may want to debug a latent
issue that was introduced by a client five rounds ago but
surfaced in the current round when the same client participated
in training again.

We make the following observation about FL frameworks.
An FL application only reveals aggregator's events to a de-
veloper. In contrast, events on the client's side are entirely
hidden from the developer except the ones relayed to the
aggregator by the client. Building on this observation and the
telemetry data captured by FEDDEBUG, our insight is that
instead of debugging a system in real-time, we can recreate
its observable behavior in a simulated environment, giving
an illusion of debugging an FL application in real-time. By
doing so, inspections with FEDDEBUG are side-effect free,
i.e., FEDDEBUG will not interfere or interrupt the live FL
application. Thus, eliminating the need to pause client-side
training or halt FL aggregator execution.
Breakpoint. To this end, FEDDEBUG offers breakpoint that
can help a developer inspect intermediate states of an FL
application. FEDDEBUG’s breakpoint operates on computa-
tion units of rounds. Any abnormality in the client-reported
metrics, such as training loss, validation loss, response time,
and performance metrics (e.g., F1 score) can necessitate the
use of breakpoints. FEDDEBUG allows setting a breakpoint at
any arbitrary round during live FL. A developer can also set
a breakpoint from the start (i.e., round 0) to capture end-
to-end FL training traces or on a specific round (e.g., round
20 in Figure 2-➊) to inspect FL training at that round. When
the live FL application arrives at a breakpoint, FEDDEBUG
spawns a new debugging interface on the aggregator side, as
shown in ➊ in Figure 2, while continuing the live FL training
in the background.
Step in/Step out. While at a breakpoint in a debugging
session, a developer can use step-in and step-out actions to
switch between different granularities of computational units.
Traditionally, these two actions are used to go one-level deeper
in the stack (e.g., inside a function call) and move one level up
in the stack (e.g., outside the function call), respectively. Based
on this convention, we define a round as a coarse-grained
unit of computation that can be decomposed into a subset
of clients participating in that round. Suppose the current
breakpoint is at round 20. Step-in will take the developer



to the clients-level granularity (➋ in Figure 2) where trained
models from clients are being aggregated, using a fusion
algorithm (e.g., FedAvg [37]). Step-out will take the developer
back to the level of rounds, allowing them to inspect the global
trained model at a higher level of abstraction and understand
its performance across multiple rounds. Inspecting a state at
client-level granularity entails evaluating the performance of a
partially-aggregated global model. For example, in Figure 2,
step-in at ➋ will take the execution between C1 and C3, where
the global model has yet to incorporate the local models of
clients C5 and C8.
Step Next/Step Back. Similar to step-in/out, step next and step
back help a developer transition from one state to another. For
instance, if the breakpoint is at round 20, step next will take
the execution to round 21 in the debugging interface, show-
ing information corresponding to that round only. Similarly, if
the breakpoint is at client C5, step back will take the execution
state to a partial global model after aggregating models from
clients C1 and C3 only (Step back in Figure 2).
Resume. Unlike resume in gdb, FEDDEBUG’s resume does
not resume any paused execution. Instead, resume gives the
illusion to the developer that execution is being continued
from where it left off. FEDDEBUG creates this environment by
replaying the telemetry data that was captured while the FL
application was being inspected using breakpoints, in case the
developer does not find any faults in the round under inspec-
tion. Once the sequence of events in telemetry catches up with
the live execution of the FL application, FEDDEBUG switches
to the FL interface and shuts down the debugging interface.
This three-step process is nearly indistinguishable from an FL
application with FEDDEBUG disabled, giving the impression
of debugging a real-time FL application interactively. Resume
is also illustrated in Figure 2 - ➌.

C. Fix and Replay

When the developer successfully identifies a faulty client
in any round, FEDDEBUG offers Fix and Replay to allow a
developer to roll back the training and provide a retrained
global model (the one without a faulty client). We describe
the technique to identify a faulty client in Section IV. A faulty
client may have a compound effect on the global model, as
it may have begun to share its noisy model updates latently
several rounds ago, which only later becomes noticeable. In
such cases, it is important to rectify the impact of a faulty
client's inclusion in prior training rounds by removing its
contributions. This requires retraining over multiple rounds,
which is not possible as clients may not store the data used in
training in the prior rounds. Figure 2-➍ shows the removal of a
faulty client (C5) in round 21. FEDDEBUG recomputes the
global model in the debugging interface and then replaces the
actual global model in round 22 with the newly recomputed
global model after fix and replay (Figure 2-➎). By default,
FEDDEBUG forbids the faulty client from participating in the
FL training. However, it is up to the developer to weigh the
benefits of including the faulty client in future rounds.
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IV. FAULTY CLIENT LOCALIZATION

Faults in a client’s model can arise due to measurement
errors, human labeling errors, data poisoning, communication
problems, or subjective biases of labellers. For a high-quality
global model, it is critical to correctly identify a faulty client
and potentially restrict its participation. Manually identifying
faulty clients is neither scalable nor effective due to a large
number of participating clients in FL and their uninterpretable
models. Furthermore, the model parameters (i.e., weights)
do not provide any meaningful debugging information. To
automate faulty client localization, we must define a feedback
mechanism to guide our search for faulty clients efficiently.
Automated debugging tools [26, 55] for regular software
address this problem by relying on multiple test inputs and a
test oracle. For example, unit tests can guide the search toward
concise input leading to incorrect program output [55]. In FL,
the inputs and oracle translate into diverse test data and the
corresponding accurate labels, both of which are unavailable
to the developer at the central server.

FEDDEBUG addresses the challenges of automated fault
localization with a two-pronged approach. First, it generates
a pool of random test inputs and applies a novel inference-
guided test input selection to construct a suite of test inputs,
as shown in Figure 3-A. Since the test inputs are generated
autonomously and are not accompanied by ground truth labels,
metrics such as F1 score or accuracy cannot be used as
oracle feedback to identify a faulty client. Instead, FEDDEBUG
performs differential testing of clients’ models to measure
similarities and differences among models’ behaviors on se-
lected inputs (Figure 3-B). FEDDEBUG fingerprints a neural
network behavior on an input by profiling the internal neu-
rons’ contributions towards a model prediction. Subsequently,
FEDDEBUG accurately recognizes a client as faulty if its
behavior deviates from the norm, which is the majority of the
clients’ behavior. Our insight is that a faulty client’s model



Algorithm 1: Inference-Guided Test Input Selection
Input: shape: dimension of the random input to be generated.
Input: κ: number of inputs to be generated.
Input: η: minimum number of clients for the same prediction.
Output: X: a list containing auto-generated test inputs.

1 rand inputs = lazilyGenerateRandInputs(shape)
2 X = list() // a list for inference guided test inputs
3 seen clients sequences = list()
4 while length(X) < κ do
5 r input = pop(rand inputs)
6 clients preds = getPredictions(clients, r input)
7 for label ∈ class labels do
8 clients seq = samePredClients(clients preds, label)

9 if clients seq ̸∈ seen clients sequences and
length(clients seq) ≥ η then

10 seen sequences.append(clients seq)
11 X.append(r input) // valid test input
12 break

13 if length(rand inputs) < 1 then
14 rand inputs = lazilyGenerateRandInputs(shape)

15 return X

will show a noticeable difference in its internal neuron values
compared to benign clients’ models, based on the principle
that faulty executions are intrinsically different from correct
ones. The same principle is behind popular fault localization
techniques, such as spectra-based fault localization [21] and
delta debugging [55].
Inference-Guided Test Input Selection. As shown in Figure 3-
A, FEDDEBUG first lazily generates a pool of random test
inputs using Kaiming Initialization [15]. For example, if the
clients’ models are trained on 32x32 images within the RGB
scale, then FEDDEBUG randomly creates a pool of synthetic
inputs with the same size and format (i.e., random images of
size 32x32 in RGB scale). It then automatically selects only
those inputs that lead to a consensus on predictions among a
unique subset of clients. FEDDEBUG selects up to κ test inputs
(default is κ = 10) among the pool of 1000 random inputs.
The goal is to minimize any overlapping behavior between
clients while inferring unique class labels on selected test
inputs. This is similar to achieving maximum code coverage
in regular software with minimum tests. Algorithm 1 selects
a test input (line 5) if at least (η ≥ 5) clients predict the
same label and that subset of clients has not been seen in
a previously selected input (lines 6-11). On the next ran-
dom input, if the previously observed subset of clients (i.e.,
clients seq ∈ seen clients sequences) predict the same
class label, we discard this input. If a unique combination of
clients predicts an unseen label, we include the input in the test
suite. This process is repeated until we collect a user-defined,
κ, number of test inputs.
Differential Execution of Clients Models. In the absence of
correct labels of generated test inputs, FEDDEBUG adapts
differential testing to find behavioral differences and sim-
ilarities among clients’ models, as shown in Figure 3-B.
FEDDEBUG profiles the contributions of individual neurons
during model inference on an input and uses these neurons

Algorithm 2: Faulty Client Localization using Differ-
ential Testing

Input: clients: a list of clients participated in the given FL round.
Input: x: a random input belongs to X .
Input: na t: a threshold to profile neuron activations.
Output: faulty client: the faulty client who has abnormal behavior.

1 all clients combinations = nChooseK(clients, 1)
2 benign clients = set()
3 max common activations = −1
4 for t clients ∈ all clients combinations do
5 neuron ids = ActivatedNeurons(t clients, x, na t)
6 t clients common neurons = intersection(neuron ids)
7 temp n = length(t clients common neurons)
8 if temp n > max common activations then
9 max common activations = temp n

10 benign clients = t clients

11 faulty client = clients− benign clients
12 return faulty client

activations to identify models with common behavior. Note
that clients’ models in FL are comparable due to having a
similar architecture. Algorithm 2 describes the faulty client
localization process. For a selected test input, FEDDEBUG
exhaustively iterates all possible combinations of potentially
non-faulty clients (i.e.,

(︁
n
1

)︁
combinations). For each combina-

tion, Algorithm 2 performs model inference on the test input
and captures its neuron profiles. FEDDEBUG aims to find one
combination of clients that has the highest overlap in behavior,
representing the true n − 1 benign clients and consequently
isolating the precise faulty client. This is a lightweight process
due to the negligible model inference time and the iterations’
linear time (O(n)) complexity.

Our insight is that among all possible combinations of
clients, only one represents true benign clients’ subset. The
remaining combinations contain the faulty client with abnor-
mal neuron activations, reducing the model behavior overlap
within that set. In summary, at a given ill-performing round in
FL, FEDDEBUG takes in all participating clients’ models as the
only input. It automatically generates test inputs and employs
differential testing on clients’ models to monitor abnormal
behavior to precisely identify a faulty client.

V. EVALUATION

We evaluate FEDDEBUG on (1) runtime performance over-
head, (2) debugging time, (3) fault localizability, and (4) scal-
ability. Our evaluation aims to answer the following research
questions:

• RQ1. What impact does FEDDEBUG have on the baseline
FL framework’s performance?

• RQ2. How accurate is FEDDEBUG in identifying a faulty
client?

• RQ3. Can FEDDEBUG identify multiple faulty clients?
• RQ4. Can FEDDEBUG scale to large number of clients

and find a faulty client efficiently?
Datasets, Models, and FL Framework. We evaluate FEDDE-
BUG on CIFAR-10 and FEMNIST datasets. Both are consid-
ered as gold standard to evaluate FL experimental settings [9,



30]. FEMNIST is a modified version of MNIST presented in
the FL LEAF Benchmark [7] and the Non-IID Bench [30].
The FEMNIST dataset includes more than 340K training and
40K testing grayscale images, each with a resolution of 28x28
pixels, representing ten distinct class labels. CIFAR-10 con-
tains 50K training 32x32 RGB images that span ten different
classes and 10K instances for testing. We adopt popular CNN
models, namely ResNet [16], VGG [43], and DenseNet [18]
architectures. We set the learning rate between 0.0001 and
0.001, the number of epochs between 10 and 25, the batch
size from 512 to 2048, and the weight decay to 0.0001. We
realize FEDDEBUG’s design in the IBMFL library [33] due
to its ease of use, open documentation, and publicly available
codebase. These techniques should be equally applicable to
other FL frameworks.
Evaluation Environment Specifications. We run our experi-
ments on an AMD 16-core processor with 128 GB RAM and
an NVIDIA Tesla T4 GPU. To measure the performance of
FEDDEBUG in terms of runtime and debugging overhead, we
simulate IBMFL framework deployment on a MacBook Pro
with a Quad-core Intel Core i5 processor and 16 GB RAM.
Federated Learning Experimental Settings. Prior FL litera-
ture [7, 30] establishes two data distribution strategies among
FL clients: IID (independent and identically distributed data)
and Non-IID (non-independent and identically distributed
data). For Non-IID, we use the quantity base imbalance [30]
where clients have an unequal quantity of data, and the class
distribution is random. In IID, the clients receive the same
quantity of data. None of the clients share the same data points
in both settings. We simulate FL with a varying number of
clients, ranging from 10 to 400 clients, in each FL training
round. In practice, even with millions of clients, only a subset
(in the order of hundreds) is selected in a round. Therefore,
our experiment settings are representative of real-world FL
deployments [1, 5, 24, 30, 37, 48].
Fault Injection. Since there is no existing FL benchmark
with faulty clients, FEDDEBUG adopts a standard noisy labels
approach from prior machine learning literature to inject a
faulty client in our experiments [10, 17, 20, 29, 53]. Similar
to prior work [11, 27, 36], we arbitrarily add noise by changing
training data labels (e.g., changing label “bird” to “cat”). When
such a client’s model is merged with the global model, the
global model’s performance (e.g., accuracy) deteriorates. We
define different strengths of a fault with a noise rate that
controls the number of labels modified in a faulty client. Noise
rate is defined as a ratio between changed labels and original
labels (changed-labels/original-labels).

Figure 4 shows the impact of different noise rates on the
global model’s accuracy, with one faulty client and nine benign
clients. Low noise rates, ranging from 0.2 to 0.7, barely affect
the global model performance. With a 0.7 noise rate, the
accuracy is lowered by 4.8% and 5.5% in CIFAR-10 and
FEMNIST, respectively. A noise rate of 0.9 incurs a 16.2%
and 9.9% reduction in the global model accuracy in both
settings. Thus, to have a measurable impact on the global
model’s performance, we select a noise rate of one for a faulty
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Fig. 4: Global model (ResNet-34) prediction accuracy in the
presence of a faulty client with different noise rates. Lower
noise rates hardly degrade global model performance.

client. Still, we perform sensitivity analysis in Section V-B
(Figure 7) by measuring the impact of varying noise rates on
FEDDEBUG’s fault localizability.
Neuron Activation Threshold. We adopt the method from
Harel-Canada et al. [13] to profile neuron activations. We
empirically find 0.003 as the optimal value for the default
activation threshold (see Section V-C). A neuron is considered
active when its value crosses this threshold.
Faulty Client Localization Accuracy. We calculate faulty
client localization accuracy as the ratio between (a) the number
of test inputs on which faulty clients are correctly identified
and (b) the total number of test inputs. For instance, if
FEDDEBUG identifies the correct set of faulty clients on four
out of ten test inputs generated by Algorithm 1, we report 40%
fault localization accuracy.

A. FedDebug’s Performance

Capturing telemetry data in realtime may slow down the
performance of an FL application’s aggregator. In this subsec-
tion, we present the evaluation results of FEDDEBUG’s runtime
overhead and the fault localization time. These experiment
settings employ ResNet-18 with CIFAR-10.
Runtime Overhead (RQ1). To evaluate the impact on the
FL application’s performance, we measure the slowdown in
the running time that FEDDEBUG incurs. We compare the
cumulative processing time of the vanilla IBMFL’s aggregator
(baseline) against that of the FEDDEBUG-enabled aggregator
on a variety of client combinations, ranging from 5 clients
to 100 clients. The aggregation time varies with the model’s
architecture and the number of clients participating in a
round, but it is completely independent of the models’ quality.
Therefore, we create up to 100 pre-trained ResNet-18 models
and perform the aggregation.

Figure 5 compares the baseline’s aggregation time with the
FEDDEBUG enabled aggregation time. The X-axis represents
the number of clients ranging from 5 to 100 clients, and
the Y-axis represents the average time across two FL rounds.
For instance, with 30 clients, FEDDEBUG takes 3.9 seconds
compared to the 2.5 seconds for the baseline to aggregate
30 trained models into a global model. Overall, FEDDEBUG
takes approximately 48% additional aggregation time across
all experiments. However, in an end-to-end round, the training
phase on the clients’ end occupies the majority (up to 97.8% in
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Fig. 5: FEDDEBUG’s runtime overhead as a comparison be-
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BUG enabled FL aggregation.
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Fig. 6: FEDDEBUG’s debugging time contains input generation
time and faulty client detection time and is compared against
a round’s training time.

our experiments) of the round’s time. Compared to the training
time of a round, the aggregation time is almost negligible, as
low as 1.2% in our experiments.

Summary: Considering the training and aggregation time
of each FL round, FEDDEBUG’s runtime overhead is a very
small fraction, 1.2%, of the training time. Hence, capturing
telemetry data for replay debugging does not impede the FL
application’s runtime performance.

Debugging Time (RQ1). To assess the localizability of FED-
DEBUG, we design experiments to measure FEDDEBUG’s
debugging time, the time it takes to localize a faulty client.
We then compare this time with the training time of that
round. Since there is no comparable approach to localize a
faulty client, we use training time as a baseline to provide a
meaningful scale for the cost of debugging.

Figure 6 shows the results of these experiments. The X-
axis represents the number of clients, and the Y-axis shows
the debugging time in seconds on a logarithmic scale. For 30
clients, FEDDEBUG’s input generation and selection takes 0.2
seconds to find high-quality test input, and its fault localization
takes approximately 0.5 seconds to localize a faulty client. In a
ten clients setting, input selection takes longer due to constraint
η = 4 for criteria 1 in Figure 3. η = 4 means that at least
four previously unseen clients should predict the same label
on newly selected test input.

TABLE I: FEDDEBUG’s debugging time and accuracy when
localizing a faulty client in 36 different FL settings with 100
test inputs.

Clients Dataset Architecture Accuracy
% (IID)

Accuracy
% (Non-

IID)

Avg.
Input

Time (s)

Avg. Lo-
calization
Time (s)

10 CIFAR10 DenseNet-121 100 100 2.41 0.44
10 CIFAR10 ResNet-50 100 100 2.40 0.22
10 CIFAR10 VGG-16 100 100 2.40 0.21
30 CIFAR10 DenseNet-121 100 100 2.42 1.29
30 CIFAR10 ResNet-50 100 100 1.18 0.70
30 CIFAR10 VGG-16 100 100 2.41 0.47
50 CIFAR10 DenseNet-121 100 100 2.42 3.26
50 CIFAR10 ResNet-50 100 100 1.37 1.24
50 CIFAR10 VGG-16 100 100 2.43 0.91
10 FEMNIST DenseNet-121 100 100 2.40 0.47
10 FEMNIST ResNet-50 100 100 2.40 0.25
10 FEMNIST VGG-16 100 100 2.40 0.18
30 FEMNIST DenseNet-121 100 100 2.41 1.37
30 FEMNIST ResNet-50 100 100 0.91 0.68
30 FEMNIST VGG-16 100 100 2.41 0.55
50 FEMNIST DenseNet-121 100 100 2.24 2.44
50 FEMNIST ResNet-50 100 100 1.42 1.24
50 FEMNIST VGG-16 100 100 2.40 1.25

Overall, our results show an increasing debugging time
when the number of clients increases, which is expected as
increasing the number of clients increases the search space.
Note that the debugging time is still in the order of seconds,
even for 50 clients. This is because 1) for n clients, the search
space has at most n possible combinations of potentially
benign n-1 clients, representing linear complexity, and 2) on a
given input, FEDDEBUG only profiles neuron activations once
while iterating over the n combinations.

Summary: On average, FEDDEBUG can efficiently identify
a faulty client in 2.1% of the total training time of a round.

B. Localization of Faulty Client(s)

To answer RQ2, we measure how accurate FEDDEBUG is
in localizing a faulty client. We inject a faulty client that
is representative of a real-world scenario and can cause a
measurable change in the global model’s performance. By
varying the number of clients, datasets, models, and data
distributions (IID and Non-IID), we create 36 different FL
configurations for FEDDEBUG’s evaluation.

Column 4 and 5 of Table I show the accuracy of FEDDEBUG
in the IID and Non-IID settings, respectively. We repeat each
experiment on 100 generated test inputs and take the average
of each metric to generalize the results. FEDDEBUG correctly
identifies a faulty client with 100% accuracy in both IID and
Non-IID settings.
Varying Noise Rate. Figure 4 shows the impact of different
noise rates on the global model prediction accuracy. We
observe that a faulty client has a measurable impact on the
global model with a noise rate of > 0.8. The global model’s
accuracy merely drops from 73.8% to 71.1% when the faulty
client has a 0.6 noise rate, and drops to 57% when the noise
rate is close to one. FEDDEBUG localizes faulty client(s) with
low noise rates, showing its robustness. Figure 7 shows the
evaluations on varying noise rates in 10 clients FL settings
with ResNet and DenseNet architectures. The X-axis shows
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Fig. 7: FEDDEBUG localization performance when a faulty
client has varying fault strength (i.e., low noise rate).

the faulty client’s noise rate, and the Y-axis represents the
average fault localization accuracy on the CIFAR-10 and
FEMNIST datasets. The results, as seen in Figure 7, indicate
that FEDDEBUG has the capability to identify low noise
faults—it successfully localizes a faulty client with 0.4 noise
rate with approximately 58% and 87.5% accuracy in DenseNet
and ResNet settings, respectively.

Summary: FEDDEBUG achieves 100% fault localization
accuracy on average on a total of 3600 test inputs when
the faulty client significantly deteriorates the global model
performance in both IID and Non-IID settings. It also
accurately localizes a faulty client with low noise rates.

Detecting Multiple Faulty Clients (RQ3). We evaluate FED-
DEBUG’s ability to identify multiple faulty clients. To this
end, we inject up to seven faulty clients in the following
experiment settings. We train ResNet-50 and DenseNet-121 on
the CIFAR-10 and FEMNIST datasets in 30 and 50 clients FL
settings. Each setting is evaluated on 10 test inputs. By default,
FEDDEBUG’s fault localization technique finds a single faulty
client. We apply FEDDEBUG in an iterative manner to find
multiple faulty clients by removing one faulty client on each
iteration, similar to traditional bug repair process, where one
bug is fixed first before the next one is investigated.

Table II presents the results of finding multiple faulty clients
in 32 FL configurations. For instance, when 7 out of 30
clients are faulty and the model is ResNet-50, FEDDEBUG
finds all seven faulty clients with 100% accuracy on CIFAR-
10 and 97.1% accuracy on FEMNIST. Compared to ResNet,
FEDDEBUG performs relatively better with DenseNet. This
behavior is expected because, compared to ResNet, DenseNet
learns better features due to dense concatenation among its
layers, resulting in better performance [58]. Thus, FEDDEBUG
performs well in localizing multiple faults with DenseNet with
an average accuracy of 99.7% on both datasets compared to
ResNet’s 80.8%.

Table II also reveals that, generally, FEDDEBUG’s local-
ization performance is positively correlated to the number of
training data points per client. Large, high-quality training
data promotes better feature learning among neurons and,
thus, yields better performance. Since the number of data
points in FEMNIST (340K) is large compared to CIFAR-
10 (40K), clients in the FEMNIST settings have significantly

TABLE II: FEDDEBUG’s fault localization in 32 FL configu-
rations with multiple faulty clients, ranging from two to seven.

Faulty
Clients

Total
Clients

Architecture Accuracy %
(CIFAR-10)

Accuracy %
(FEMNIST)

2 30 ResNet-50 100 100
3 30 ResNet-50 100 100
5 30 ResNet-50 100 98
7 30 ResNet-50 100 97.1
2 30 DenseNet-121 100 100
3 30 DenseNet-121 100 100
5 30 DenseNet-121 100 100
7 30 DenseNet-121 100 100
2 50 ResNet-50 50 80
3 50 ResNet-50 66.7 66.7
5 50 ResNet-50 54 60
7 50 ResNet-50 57.1 62.9
2 50 DenseNet-121 100 100
3 50 DenseNet-121 100 100
5 50 DenseNet-121 100 100
7 50 DenseNet-121 100 95.7
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Fig. 8: FEDDEBUG finds multiple faulty clients in a linear
time. Total clients are 50 in each graph.

larger training data than clients in the CIFAR-10 settings. As a
result, FEDDEBUG average localization accuracy is 78.5% in
the ResNet-CIFAR experiment, while it has 83.1% localization
accuracy in the ResNet-FEMNIST experiment. FEDDEBUG
finds multiple faults with linear time complexity, as shown
in Figure 8 with 50 clients. The input generation time is
almost constant, as the number of clients is fixed. However,
the localization time increases as we increase the number of
faults from 2 to 7. For instance, it localizes two faulty clients
in 3.6 seconds and five faulty clients in 4 seconds.
Scalability (RQ4). Our findings also show that FEDDEBUG
scales to larger datasets and an increasing number of clients
in FL. Figure 9 summarizes the impact on FEDDEBUG’s
ability to identify a faulty client when the number of clients
changes from 25 to 400 and the training data size per client
changes. We perform this experiment with two faulty clients
in the FEMNIST-DenseNet configuration. Figure 9-(a) verifies
that FEDDEBUG’s fault localization accuracy only reduces
to 75% even when the number of clients increases to 400.
FEDDEBUG’s debugging time increases linearly as the number
of clients increases, consistent with the scale-up properties
of general distributed systems, as shown in Figure 9-(b).
When the number of clients increases, less data is used to
train a client’s model, which may reduce the accuracy of
clients’ models. Figure 9-(c) also shows that FEDDEBUG’s
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Fig. 9: FEDDEBUG retains scalability on a large number of
clients.

fault localizability also increases when the number of data
points per client increases, and it is also robust against low
performing client models. For instance, when the number of
data points increases from 850 to 1700, FEDDEBUG’s local-
ization accuracy also changes from 75% to 85%, respectively.

Summary: Our experiment results provide concrete evi-
dence that FEDDEBUG preserves scalability properties both
in terms of time overhead and in the presence of multiple
faults. It successfully identifies multiple faulty clients in
32 different FL configurations with an average accuracy of
90.3%.

C. Neuron Activation Threshold

There is no standard threshold of neuron activations [40]
and prior work uses experiential value for different use
cases [13]. We evaluate the impact of different activation
thresholds on FEDDEBUG’s faulty client localizability. We
take 30 clients including five faulty clients, and train ResNet-
50 and DenseNet-121 on both the CIFAR-10 and FEMNIST
datasets. We repeat each experiment on 10 different inputs
generated by Algorithm 1.

Figure 10 shows the result of these experiments. The X-
axis represents the neuron activation thresholds, ranging from
0 to 0.9. The Y-axis shows the FEDDEBUG’s localization
accuracy in a given experiment setting. For instance, at the
0.003 threshold, the average localization accuracy across four
settings is 100%. On the other hand, at 0.5 threshold, the
average accuracy decreases significantly to 73.5% across these
configurations. Specifically, for DenseNet-121 and FEMNIST
experiment in Figure 10-(d), the localization drops to 64%
at the 0.5 neuron activation threshold. We observe that FED-
DEBUG performs better at lower thresholds (< 0.01) across
different models and datasets. This behavior is expected be-
cause lower thresholds increase the sensitivity of FEDDEBUG’s
localization approach. It starts monitoring most of the neurons’
compared to a higher threshold, where FEDDEBUG profiles
only a few neurons crossing the threshold.

D. Threats to Validity

To alleviate threats to external validity, we use established
state-of-the-art FL experimental models (ResNet-18, ResNet-
34, ResNet-50, DenseNet-121, and VGG-16), two standard-
ized datasets from FL benchmarks, two real-world data dis-
tributions, and an industrial scale FL framework. Similarly,
we remove bias in fault injection using standard noisy labels
technique from the ML literature, to make a fault reflective
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Fig. 10: FEDDEBUG performance at neuron activation thresh-
old on 30 clients, including five faulty clients.

of real-world scenarios. We also experiment with varying
noise rates for better evaluations, transparency, and fairness.
Another source of external threats to validity is randomness
in FEDDEBUG’s input selection method. We minimize such
randomness by evaluating each configuration on at least 10
and 100 test inputs and reporting the average results.

VI. RELATED WORK

Debugging ML models has been extensively explored in
recent works [6, 12, 38, 40, 47, 49, 51]. The primary objectives
of these approaches are interpretability, generating new test
cases by carefully perturbing the real-world training inputs to
improve performance and to find bugs and corner cases in the
given model. These approaches require access to the training
and testing data, and some are limited to testing a single neural
network; hence, such approaches cannot be directly imported
into FL. Lack of access to client data and resources in FL
settings makes testing and debugging FL more challenging. If
applied to FL, these testing approaches will find every client’s
model defective. Clients’ models are architecturally similar
but trained on local clients’ data, and thus their models are
semantically different from each other. Identifying defects in
an isolated model is not practical either. Every client’s model
has weaknesses that will surface on carefully selected test
data. FEDDEBUG overcomes these problems by focusing on
the commonality of models instead of differences.

Most relevant work to FEDDEBUG primarily focuses on
finding clients’ contributions to a global model without expos-
ing the private data to a central server [56]. In practice, indi-
vidual clients report information about training, such as dataset
size and performance metrics, to the central aggregator [23,
25, 42, 54, 57]. Existing approaches use prior information
e.g., previous task performance and data quality obtained
via third-party services, to evaluate clients’ models [46].
Other approaches recommend cross-validating clients’ mod-



els on another client’s local dataset [35]. Another alternate
is maintaining a validation dataset at the central server to
evaluate clients’ models [8, 34]. A major limitation of the
above FL-related approaches is that the aggregator server
depends entirely on the client's reported information or test
data to evaluate clients’ models. The aggregator also assumes
that all clients are trustworthy about their performance in
these approaches, which attracts adversarial clients like the
ones in targeted poisoning attacks [39]. Cross-validation is
also prohibited due to limited computing resources for edge
devices such as smart home sensors. FEDDEBUG overcomes
the limitations of debugging faulty clients with interactive and
automated approaches that preserve privacy.

VII. CONCLUSION

Federated learning promotes collaborative model training
across millions of clients—the type of learning that was
previously impossible due to privacy concerns related to
user data. However, FL poses unprecedented challenges in
debugging a faulty client responsible for deterring global
training. With minimal information about the training process
and non-existent debugging techniques, such issues are often
left untreated. FEDDEBUG enables interactive and automated
fault localization in FL. It adapts conventional debugging
practices in FL with its breakpoint and fix and replay feature.
It offers a novel differential testing technique to automatically
identify the precise faulty clients. We demonstrate that FED-
DEBUG identifies a faulty client with 100% accuracy within
2.1% of a round’s training time, advocating for FEDDEBUG’s
efficacy and efficiency. With FEDDEBUG, we pave the way
for advanced software debugging techniques to be adapted
in the emerging area of federated learning and the broader
community of machine learning practitioners.
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