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SEMIEXPLICIT SYMPLECTIC INTEGRATORS
FOR NON-SEPARABLE HAMILTONIAN SYSTEMS

BUDDHIKA JAYAWARDANA AND TOMOKI OHSAWA

ABSTRACT. We construct a symplectic integrator for non-separable Hamilton-
ian systems combining an extended phase space approach of Pihajoki and
the symmetric projection method. The resulting method is semiexplicit in
the sense that the main time evolution step is explicit whereas the symmet-
ric projection step is implicit. The symmetric projection binds potentially
diverging copies of solutions, thereby remedying the main drawback of the ex-
tended phase space approach. Moreover, our semiexplicit method is symplec-
tic in the original phase space. This is in contrast to existing extended phase
space integrators, which are symplectic only in the extended phase space. We
demonstrate that our method exhibits an excellent long-time preservation of
invariants, and also that it tends to be as fast as and can be faster than Tao’s
explicit modified extended phase space integrator particularly for small enough
time steps and with higher-order implementations and for higher-dimensional
problems.

1. INTRODUCTION

1.1. Non-Separable Hamiltonian Systems. Consider a Hamiltonian system

(1) ¢=D>H(q,p),  p=—D1H(qp).
with Hamiltonian H: T*R¢ — R, where D; stands for the partial derivative with
respect to the it set of variables. Its underlying symplectic structure on the cotan-
gent bundle T*R? is
d

(2) Q:= dq/\dp:qui/\dpi.

i=1
Throughout the paper, we shall use shorthands like above suppressing the summa-
tion symbol and indices when writing 2-forms.

The Hamiltonian H and the Hamiltonian system (1) are said to be separable if
H can be written as H(q,p) = K(p)+V(¢) with some functions K and V', and non-
separable otherwise. The separability is a crucial concept for the development of
symplectic integrators for Hamiltonian systems because the separability sometimes
turns implicit methods into explicit ones, and also makes the splitting method
more amenable due to the fact that those flows of (1) with H(q,p) = K(p) and
H(q,p) = V(q) are both exactly solvable; see, e.g., Sanz-Serna and Calvo [22],
Leimkuhler and Reich [12], and Hairer et al. [11].
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On the other hand, developing an efficient symplectic integrator for non-separable
Hamiltonian systems is a challenge. Although one can obtain explicit integrators
for certain classes of non-separable Hamiltonian systems [1, 3, 17, 24, 26, 28-32],
these methods are specialized for their respective specific forms of Hamiltonians,
and do not seem to generalize to arbitrary non-separable Hamiltonians in a simple
manner.

1.2. Extended Phase Space Approach. To our knowledge, the first explicit in-
tegrator for general non-separable Hamiltonian systems was developed by Pihajoki
[21]. Specifically, in order to find an explicit integrator for non-separable Hamilton-
ian systems (1), Pihajoki proposed to solve the following extended system instead:

(3) q:DZH(xvp)a p: _DlH(qu)a
i = DyH(q,y), y=—D1H(z,p).

One sees that if we impose the initial condition

(¢(0),2(0),p(0),5(0)) = (90 90, Po, Po),

then the solution satisfies (q(¢),p(t)) = (z(t),y(t)) for any ¢ € R (assuming that
the solution exists and is unique), and ¢ — (q(t), p(t)) coincides with the solution
of the original system (1) with (¢(0), p(0)) = (go, po). In other words, the subspace

(4) N :={(¢,0,p,p) € T'R* | (¢,p) € T*R*} C T*R*

is an invariant submanifold of (3), and the system (3) restricted to this subspace
gives two copies of the original system (1).
Notice also that (3) is a Hamiltonian system defined on the extended phase space

T*R* = {(q,ﬂmp, y) ERY | (q,x) € R, (p,y) € T},  R* = RQd}-

More specifically, the extended system (3) is a Hamiltonian system on T*R?? with
the extended Hamiltonian

H:T'R* —R;  H(q,2,p,y) = H(q,y) + H(z,p)
and the following standard symplectic form on T*R2?:
(5) Q:=dgAndp+dzAdy.

Let us give a more geometric and intuitive interpretation; see also Figure 1. Let
X be the vector field on T*R?¢ for the extended system (3):

X(q,x,p,y) = (D2H(x,p), D2H(q,y), —D1H(q,y), —D1H(x,p)).

If we restrict X to the subspace A, then X (¢,q,p,p) consists of two copies of the
Hamiltonian vector field

X(q,p) = (DQH(Q7P)7 _DlH(qap))

on the original phase space T*R?. Therefore, the dynamics in A defined by X is
two copies of the Hamiltonian dynamics defined by X on T*R¢. Hence they are
essentially the same dynamics.
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T*R%* — N
X(q.9,p.p) /
/ (¢:4,p,D), /
X(q,%,p,y)
./ (q'/xap'/y)
X(q,
(4,p) -
(¢,p)

FIGURE 1. Hamiltonian vector field X on extended phase space
T*R?? restricted to N gives two copies of Hamiltonian vector field
X on T*R<.

1.3. Extended Phase Space Integrators. The salient feature of the above ap-
proach by Pihajoki [21] is that the Hamiltonian is now separable: Defining

HA((Lzapa y) = H(Qa y)7 HB((Lzapa y) = H(’I),p),
we have
ﬁ(qax7p7 y) = ﬁA(qax7p7 y) + IA{B(qamapv y) = H(ny) + H(Q]‘,p)

Furthermore, the flows CthA, éf: T*R2?? — T*R2?¢ corresponding to the Hamiltoni-
ans H4 and Hp are exactly solvable for any ¢ € R. Indeed, with H 4, we have

q:()v p:_DlH(qu)a
&= DyH(q,y), y=0.

and so
‘i)f(QO,ilfo,Po,yo) = (qo, w0 +t D2H(q0,%0), po —t D1H (q0,%0), Yo),
whereas, with H B, wWe have

q:DZH(l'vp)a p=0,
z =0, y=—D1H(x,p).
and so

@ (o, w0, o, o) = (go + t DoH (20, p0), To, Po, Yo — t D1H (x0,po)).

One can therefore construct a 2"%-order explicit integrator by using the Strang
splitting [23]:

(6) dpy = (i)gt/z o ®8 o (i)gt/Q: T*R?* — T*R?¢

with time step At.
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1.4. Issues of Extended Phase Space Integrators. As ingenious as the above
idea is, there are some issues to be addressed for such extended phase space inte-
grators.

Perhaps the most significant issue is that the defect (x—g, y—p) in the phase space
copies (¢,p) and (z,y) tends to grow in time numerically. This can be detrimental
in the long run because the solution of the extended system (3) may diverge from
that of the original system (1) when (z,y) # (¢,p). We shall demonstrate it in
Figure 4 in Section 4.4 below.

As a remedy for this drawback, Tao [27] suggested to solve an alternative ex-
tended system

4= DyH(z,p) +w(p — ), p=—-D1H(q,y) —w(q—x),
&= DyH(q,y) +w(y —p), y=—DiH(x,p) —w(z —q)

with some w € R. Note that the above system (7) is also a Hamiltonian system on
the extended phase space T*R2¢ with the Hamiltonian

(7)

ﬁA(vavpa y) + ﬁB(vavpa y) + ﬁC(qvxap» y)v

where

Holg.w.p,y) = 5 (@ =) + (y = p)?)-
Also, the subspace N' C T*R?? (defined in (4)) is again an invariant manifold of
(7) as well.

The flow corresponding to He is also exactly solvable, and so one can construct
symplectic integrators using splitting methods based on the three flows correspond-
ing to the three Hamiltonians. For example, Tao [27] constructed the following
27d_order integrator:

(8) égt/Q °© (i)ﬁt/z o (i)gt o (i)gt/2 ° égt/Q: T*R* — T*R*.

It is demonstrated numerically in [27] (see also Figure 4 in Section 4.4 below)
that the insertion of the C-step effectively suppresses the growth of the defect
(x — q,y — p). We note however that the defect is far from negligible as we shall
address later.

We also mention in passing that various modifications of extended phase space
integrators are proposed, especially for relativistic dynamics with astrophysical ap-
plications [13-15, 20, 34].

Another issue is that, while these integrators are symplectic in the extended
phase space T*R?¢, it is not clear how that is related to the symplecticity of the orig-
inal system (1) in T*R9. More specifically, given a discrete flow {(qn, Zn, Pn, Yn) }n>0
on T*R?? constructed by one of the above extended phase space integrators, one
easily sees that the extended symplectic form Q) defined in (5) is preserved, but it is
not clear if the projected dynamics {(gn, pn) }n>0 on T*R? preserves the symplectic
form  defined in (2). In fact, such a projected dynamics on T*R? is not well-
defined because the time evolution (g, pn) — (¢n+1,Pn+1) depends on (z,,yn) as
well.

1.5. Main Result and Outline. We propose to combine the above extended
phase space approach of Pihajoki [21] with the symmetric projection method (see,
e.g., [11, Section V.4.1]) to construct a symplectic integrator for non-separable
Hamiltonian systems (1).
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The resulting method is semiexplicit in the sense that the main time evolution
step is explicit whereas the symmetric projection step is implicit. We will describe
the details of the method in Section 2.1 below, but let us give an overview of the
method here. Given an initial point (qo, po), we construct discrete dynamics {z, =
(@n,Pn) }n>1 as follows: For any known z, = (gy, pn), we define 2,41 = (gn+1, Pn+1)
following these steps:

® (= (Qru%mpnapn) € T*RQd;
® (n= ((jmjmpm@n) = Cn +&ns

° én+1 =d At(é‘n) using an explicit extended phase space integrator d Ay such
as (6);

® (1= (Qn-l-laqn-i-lvpn-i-l,pn-i-l) = (o1 +én € N§

® Zpt1 = (Gn+1,Pnt1),
where &, € T*R?? is a function of z, and At determined by solving nonlinear
equations so that én+1 is projected to (,y1 in N this is the main part of the
symmetric projection step and is implicit.

The proposed method resolves those issues of the extended phase space integra-
tors raised in the previous subsection. First, the projection step ensures (@, yn) =
(gn, pn) for any n > O—eliminating the problematic defect (z,, —gn, yn —Dn). As we
shall show in Section 2.2, this also implies that our method defines a discrete flow
DAy 2y — Zp4 in the original phase space T*R?. We will also show in Section 2.3
that our method is symmetric assuming that P is symmetric.

Our main result is that the resulting method ® is symplectic in the original
phase space T*R? given that the extended phase space integrator P is symplectic
in the extended one T*R2¢. We will prove this in Section 3 along with a geometric
interpretation of the integrator.

Finally, in Section 4, we will show the implementation of the method as well
as some numerical results. We will demonstrate that our method has desired or-
ders of accuracy as well as that it preserves invariants in long-time simulations.
Since the Newton-type iterations required in the projection step is very simple, the
method tends to be much faster than implicit symplectic methods of the same or-
der. The symmetric projection step being implicit, our method tends to be slower
than the explicit method of Tao [27] mentioned above for low-dimensional problems.
However, for higher-order methods and higher-dimensional problems, our method
becomes as fast as Tao’s. This demonstrates that our method resolves the issues of
extended phase space integrators without sacrificing the computational efficiency
for practical problems.

2. EXTENDED PHASE SPACE INTEGRATORS WITH SYMMETRIC PROJECTION
2.1. Definition of the Method. Let us define a linear map
A: TR =RY 5 R A(g,2,p,y) = (¢ —2,p — y),
or in the matrix representation

Iy —I; 0O 0

(9) A=19 9 I, —I4°

We see that
ker A= {(q,q,p,p) € T"R* 2R | ¢,p e R} = W,
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where NV is defined in (4).
Then, a more detailed description of our method is the following (see also Figure 2
below):

Definition 1 (Extended phase space integrator with symmetric projection). Given
an extended phase space integrator ®a;: T*R24 — T*R24 and z, = (qn,pn) €
T*R¢,
Cn 2= (Gns Gn, P> Pn) )
Find p € R?? such that ®a¢(¢, + ATp) + ATp e N
G i= Gu+ ATp
Cnt1 = Pae(Cn) )
Cn-‘rl = (Qn-i-la Qn-‘rlypn-i-l,pn-i-l) = Cn-‘rl + ATM
6. znt1 = (¢nt1,Pn+1)
Note that Steps 2-5 combined are equivalent to solving the nonlinear equations

(10) <n+1 = (i)At(Cn + AT,U) + AT,LL and ACn+1 =0
for (p1, Got1) € R* x T*R?.

SARESIE O

° T*R¢
20 21 22

FiGURE 2. Extended phase space integrator with symmetric pro-
jection.

2.2. Existence of Integrator. Let us show that the above method gives rise to
an integrator ®a,: T*R? — T*R? for small enough At > 0. To that end, let us
first define

v TR = N CT'R*; (¢,p) = (4,4, D),

and also, for an arbitrary A € R??,
poxa: TPR2 — TR, Cr ¢+ AT

In order to show that the discrete flow ®a;: 2, — 2,41 exists, we need to show
that, for a given ¢, € NV, there exist (41 € N and p € R?¢ (a particular choice of
A from above) satisfying (10), i.e.,

10 Dar(za) = py 0 Bar o pu o i),
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or equivalently, the diagram below commutes, where Wa; will be defined in the
proof of Proposition 2 to follow.

N A A A Dy 2 N . . N
Cn = (quxn»pvan) —= Cn+1 = (Qn+1axn+lapn+17yn+1)

Pui ipu
1 v
Cn = (Qnaqnvpnapn) CnJrl = (Qn+laQn+1apn+1apn+1)
I
[ \IIAt /”//’// [
. - L
k///,,
Zn = (qn;pn) Fommm=o SV 7 Znyl = (qn+17pn+1)

Proposition 2 (Existence of discrete flow ®). Let Ci)(,): R x T*R?4 — T*R?4 pe
the discrete flow defined by an integrator for the extended Hamiltonian system (3).
For any z, € T*R?, there exist

e a neighborhood U of Z, in T*RY;
e c>0;
® L.yt (—6,5) x U — R2? and (13() (—5,6) x U — T*R¢
such that, for any At € (—¢,¢) and any z, € U,
Lo @ar(zn) = Par(t(zn) + AT par(zn)) + AT pae(zn).
Proof. Let us define
F: (R x T*R?) x (T*R* x R*) — T*R?*¢ x R*

F((h 2), () o= |& 7 Brlizn) +ATA) = ATA

AC
Then the Jacobian
oF _ _ _ [Ig —2AT
s (e = 5 A

is invertible because A—defined in (9)—is full-rank. Therefore, by the Implicit
Function Theorem, there exist a neighborhood U C T*R? of %,, a positive number
€ >0, and

Uy (—e,) x U — T*R*, p(.y: (—e,e) x U — R
such that, for any (At, z,) € (—¢,e) x U,
F((At, zn), (Yai(zn), pai(zn))) = 0,
that is,
Uar(zn) = Pae(t(zn) + ATpn(zn)) + ATpac(zn),  AWa(2n) = 0.
However, since the second equality says ¥a:(z,) € N, there exists

Ppr: U= T'RY such that  Way(2z,) =10 Pay(zn). 0
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2.3. Symmetry and Order of ®. We can also show that our method & is sym-
metric assuming that the extended phase space integrator ® is symmetric:

Proposition 3 (Symmetry and order of ®). If the extended phase space integrator
D is symmetric, then the integrator ® defined in Proposition 2 is symmetric, i.e.,
;= Py for any At € (—¢,€) with € > 0 defined in Proposition 2. Moreover,
® has the same order of accuracy as P.

Proof. Let us first prove the symmetry. It is proved in Hairer et al. [11, p. 163]
that a symmetric method combined with the symmetric projection method yields
a symmetric method. In our setting, this implies that ¢a;: NV — N defined by
Cn > Cnt1 (see the diagram below) is symmetric, i.e., ¢p_ar = d)g%.

dat
Cn == (Qn,qnapnapn) — Cn+1 - (qn+17qn+1,pn+1;pn+1)

/[ Sar=P—At /[
®a

Zn = ((Impn) p 3 ! Znt1 = (qn+1apn+1)
At

However, ¢ and ® are essentially the same map because one may identify ¢, and
Cn+1 with 2z, and z,41, respectively, as shown in the diagram. In other words, the
above diagram commutes. Thus the symmetry of ¢ implies that of .

For the order of accuracy, again a result from [11, p. 163] applied to our setting
implies that ¢ solves the extended system (3) on A with the same order of accuracy
as . However, as we have discussed in Section 1.2, the extended system (3) on
N is two identical copies of the original system (1). Therefore, this implies that ®
solves (1) with the same order of accuracy as well. (]

2.4. Is ®a; Symplectic? Here we shall perform some calculations to show that

dQn-i-l A dpn+1 = dQn A dpn

One may consider the calculations to follow as a proof of symplecticity. However,
the argument to follow hardly reveals the geometry behind it because it is somewhat
intricate. Therefore, in Section 3.2 below, we shall present the underlying geometry
of the method, and give a more geometrically sound proof of the symplecticity than
what follows.
Let us write = (1, po) € R24 with p1, us € R Then we have
(11)
Cnt1 = (Gns1s @nt 1, Pnt 1, Prt1) = (Gnat + 1, Tngr = p1, Pug1 + M2, Yni1 — p2),

and so

Gnt1 = Q1 = M1 = Tni1 — Quil, DPrntl = Prntl = M2 = Uni1 — Pnyl-

Therefore,

1 . . 1. . .
n+1 = §(Qn+1 + In+1)a Pn+1 = §(pn+1 + yn+1)-
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and thus
(12)

(dGns1 A dprs1 + dE g1 Adfnsa

=

dQnJrl A dpn+1 =
+ qunJrl A dgn+1 + d‘%nJrl A dﬁnJrl)
1
(13) = Z(dQn A dﬁn + djjn A dgn + qun—i-l A dgn+1 + dj:n-i—l A dﬁn-}-l)a
where we also used the symplecticity of Day: fn — €n+1 on the extended phase
space T*R?? i.e.,
(14) dgni1 ANdppy1 + dZp1 A dYprr = dgn A dpy, + d, A dgy,.
Now, from (11), we also have
Tpt1 = Gnt1 = (@1 + 1) = (Gn1 — 1) = 21,
Unt1 = Pnt1 = (Pns1 + p12) — (Pna1 — p2) = 2p2.
On the other hand, recall that we also have
(15) CAn = ((jmfcnv]anagn) = (Qn + w1, n — 1, Pn + H2, Pn — ,LLQ),
and so, similarly,
Gn = @0 = (@n +p1) = (gn — 1) =201, Pn = Gn = (Pn + p2) — (Pn — p2) = 2p2.
Therefore, we obtain
Zpt1 — Gnt1 = Gn — Tn, Un+1 — Pnt1 = Pn — Un,

and so

d(fcn—i-l - (jn—i-l) A d(@n—i—l - ﬁn+l) = d(qAn - in) A d(ﬁn - gn)
Subtracting (14) from this identity,

dgn+1 Adynt1 +dZpp1 Adppr = dgn A dyy, + dz, A dpy,.

Therefore, (12) now gives
1
dgni1 Adppy1 = Z(dcjn Adpy, + dE, A dy, + dg, A dy, + diy, A dpy,),

On the other hand, (15) also gives

1,. . 1., .
qn = i(CIn + l'n)a Pn = §(pn ern)v

and thus
dg, AN dp, = i(dqn Adpy, + di, A dg, + dg, A dgy, + diE, A dpy).
As a result, we obtain
dgn+1 A dppy1 = dgn A dpy.
3. GEOMETRY OF INTEGRATOR AND SYMPLECTICITY

As mentioned at the beginning of Section 2.4, the calculations performed above
hardly reveals the geometry involved in the method in proving the symplecticity
of the method. In this section, we first provide a geometric interpretation of the
method. This will help us construct a more natural proof of symplecticity.
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3.1. Geometry of Integrator ®a;. Building on Proposition 2, we first would like
to write our integrator ®a; as a composition of some maps.
Let us first consider the step

(16) C?’L — én = Cn + AT,U’
We can show that én is in a certain submanifold of T*R2:

Lemma 4. Define
(17) M= {g e TR | Ao da(¢) = —Ag},

where &, is written in terms of the coordinates (q,z,p,y). Then:
(i) For a small enough |At| > 0, M is a 2d-dimensional submanifold of
T*R? = R4,
(ii) € M.
Proof. (i) Define
G: TR =R 5 R¥M. G(C) = Ao dar(C) + AC.
Then M = G~1(0). So it suffices to show that the following differential of G is

full-rank: R R
DG(¢) = Ao DOp(C) + A= A(DPa:(C) + Lua).

Since D®o = I44, for a small enough |At| > 0, Di’m(()—i-hd is invertible. However,
since A is full-rank, this implies that DG(() is full-rank for any ¢ € T*R2? as well.
(ii) In view of Definition 1 and (10), (, satisfies

Cn—i—l = (i)At (Cfn) + AT,u and ACTH—l =0.
However, since (16) gives ATy = o — Cn, we have
Cnt1 = (i)At (CAn) + é-n —(n and ACn+1 = 0.
Multiplying A from the left to the first equality and noting that (,,(py1 € N =
ker A, we obtain R R
0=A0dx; (Cn) + AGy,
that is, én e M. O

As a result, using the map p(.y: (—¢,6) x U — T*R?? introduced in Proposi-

tion 2, this step is described by the map
oac: N =M (4,4,0,0) = (a,4,p,p) + AT par(a, p)-
We shall also need the following embedding later:
im: M= T*R%*,
Let us next look at the step
ot P Cog1 = G + AT,
or
(Gn+1sTnt1s Pt 1, Unt1) = (Gt + f1, Tyt — p1, Doyt + B2, Gnt1 — H2)-

Notice that, since (,+1 € N, we may equate the first two terms as well as the last
two on the right-hand side to have

1

. . 1, . "
H1 = §(In+1 - qn+1) H2 = i(yn-‘rl *Pn+1)-



SEMIEXPLICIT SYMPLECTIC INTEGRATORS 11

Therefore, one may rewrite this step as

(Ljn-i-lv in+17ﬁn+17 gn-&-l)
Gnt1 + Zng1 Gnyt +ZTng1 Pl T Unt1 Png1 + Ungt
~ 2 ’ 2 ' 2 ’ 2 ’

This motivates us to define the map

k: T*R* 5 N C T*R??; (q,z,p,y) — <Q+I ¢tz pty p—l—y).

2 7 2 7 2 7 2
so that

Cnt1 = K(Cn)

Finally, in order to describe the last step

Cn+1 = (CIan,Pn,pn) = Zp = (qnvpn)v

let us define

@: N = TR, (q,4,p,p) = (¢,p)-
Putting all of the maps together, we have the diagram below for our integrator
d.
T*de L} T*RQd ((jrm i‘naﬁna ?]n) _— ((jn-i-lv jn+17pn+17 ﬂn+1)
iM
M K ((jmi'naﬁna?;n)
OAt
L(U) cN N (an Qnypnapn) (Qn+la qn+17pn+17pn+1)
L W
U T T*R¢ (qvupn) ¥ (Qn+1apn+1)

In other words, we may write the integrator ®A; as follows:
(18) @At:wono(i)AtoiMoaAtOL.
3.2. Symplecticity of ®x;. Now we are ready to prove our main result:
Theorem 5 (Symplecticity of ®a¢). The integrator ®a;: T*RY — T*R? is sym-
plectic, i.e.,
PN =Q.
Let us first prove the following lemma:
Lemma 6. Let us define the following 2-form on T*R2?:
Z2:=dgAdy+dz Adp.
Then

(19) K Q=
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and

(20) iMPALE = I E.

Proof. Let us first prove (19). We may write

g+z p+ y)

won(qw,p,y):( 5 g

So the pull-back of 2 by this map yields

—~

K'w*Q = (wok)

(dg + dz) A (dp + dy)

(dg Adp + dx Ady + dg Ady + dz A dp)

(Q+2).

N N I N

Let us next prove (20). It suffices to show that, for any ¢ € M and any tangent
vectors v, w € T M,

(‘i)*AtEk(u w) = EC(”? w)

Let us identify v, w € T¢ M with vectors in R*? written in terms of the coordi-

nates
9] 9 9
dq|.’ O ¢ 9yl

for T, (T*R?%) 2 R4, In view of the definition (17) of the submanifold M, one sees
that v, w € T, M = R4 satisfy

9
¢ Op

Ao D(i)At(C)U = —Av, Ao D(i)m(g)w = — Aw.

Now, we may write, using the definition of =,

0 0 0 Iy
- T . 10 0 I; O
Ec(v,w) =v'Xw with X:= 0 —I, 0 0
-I; 0 0 0
Let us set, for any d € N,
10 I
JZd T |:_Id 0:| .

Then it is a straightforward calculation to see that

0o 0 I, -

0 0 -I; I,
~I; I, 0 0
I, —-I; 0 0

ATJo0A = =T —X <= X =7J4— ATJo4A.

Notice also that &, : T*R2% — T*R24 is symplectic, i.e.,

Dy ()T J4aDPAL(C) = Jaa-
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Therefore, we have
(PaE)c (v, w) = (DPa(Q)v)TX(DPaL(C)w)
=0T DPpL(C) T T4 DPpt(Ow — (VT DDA ()T AT Tog A(DD A (C)w)
= 0T J4qw — (Ao DB (O)0) T Taq(A 0 DB AL (C)w)
= vl Jyqw — (—Av) T Jog(— Aw)
=0T Jpqw — vT AT Jog Aw
= v Jyqw — 0T (Jyq — X)w
=o' Xw

Eg(v,w).

Now we are ready to prove the main result.
Proof of Theorem 5. Since we may write
imooatoug,p) =g+, q— 1, p+p2, p—p2),
we have
VoA (Q+ E) = (dg + dpr) A (dp + dps) + (dg — dy) A (dp — dpa)
+ (dg+dp1) A (dp — dpz) + (dg — dpa) A (dp + dpo)

=4dg Adp
= 4Q.

Therefore, using the definition (18), the equalities (19) and (20) from Lemma 6,
the symplecticity of ®a; with respect to €2, and the above equality, we have

DA, = L oh iy Ph K w0
1 * _x ok BF (A =
=1 oAt PaL (2 + E)
1 oA
= ZL*UZtZM(Q +5)
= Q' |:|

4. IMPLEMENTATION AND NUMERICAL RESULTS

4.1. Implementation. Our base 2"d-order method uses the extended phase space
integrator (6) of Pihajoki [21] using the Strang splitting. We can construct higher-
order extended phase space integrators from (6) using the symmetric Triple Jump
composition (see [7, 9, 25, 33]; also Hairer et al. [11, Example 11.4.2]). For example,

denoting the above 2"d-order method in (6) by @gt), we recursively construct an
n*-order (n being even) method as follows:

2 (n 2 (n—2 z(n—2 2 (n—2
(21) ‘I)(At) = ‘I’(%At) ° q)(ngt) ° (bEﬂAt)’
where
1 21/(n—1)

Y1 =793 = 9 _ 21/(7171) ) Y2 = _2 — 21/(,”(71) .

This results in a 3"/2-stage method of order n. For example, the 4" order Triple
Jump composition is a 9-stage method, whereas the 6*"-order method has 27 stages.
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Another composition technique we have considered is the fractals method of
Suzuki [25] (see also [11, Example I1.4.3]), i.e., instead of (21),

z(n 2 (n—2 2 (n—2 z(n—2 z(n—2 z(n—2
(22) (I)(At) = (I)(%At) ° (I)(MAt) 0 ¢’(73At) °© (I)’(‘/zAt) ° (I)EuAt)
with
1 41/(n—=1)

Y1 =72 =Y4 = V5= V3=

4 — 41/(n—1)" B VICE

We also used Yoshida’s method [33] (see also [11, Section V.3.2]), which is a 6*-
order symmetric composition technique with 7 stages.

For the symmetric projection step, recall that we need to solve the nonlinear
equations

Cnt1 = Par(Gn + ATp) — ATM] _ 0
A<7L+1

for (¢n+1,4). However, one may eliminate (,41 to have the following nonlinear
equation for p:

(23) Farl) = A(ai(Gn + ATpr) + ATp) =0,

FAt(CnJrlv/’L) = |:

Its Jacobian is
D far(p) = AD(i)At(Cn + AT,U) AT + AATa
and becomes very simple for At = 0: Noting that AAT = 2[4, we have

Df()(p,) = QAAT = 4-[2d~

As suggested by Hairer et al. [11, Section V.4.1], we exploit this simple structure
of the Jacobian to construct the simplified Newton approximation

_ 1
(24) H(kﬂ) = N(k) — (Do) lfAt (H(k)) = H(k) - ZfAt (M(k)),

where we start with ©(®) = 0. As we shall see in Section 4.5, these simplified
Newton iterations tend to converge quickly with a reasonable tolerance € imposed
so it stops after NV iterations

(25) a4 — ]| < e,
and we set p = pV).

4.2. Broyden’s Method. While the above simplified Newton method (24) is com-
putationally efficient and works well in most of the examples we shall show below,
it is not clear if one can prove that such a method indeed converges to an actual
solution of the nonlinear equations. In fact, as we shall see in Appendix A.3 (Ta-
ble 6), the method seems to occasionally fail to converge after a reasonable number
of iterations (N < 100 in our simulations) depending on the problem and the values
of At and e.

Therefore, one may instead use the following quasi-Newton method called Broy-
den’s method [2]:

(26a) M(’CH) — M(k) _ Jk_lfAt (M(k)),
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where {Ji }x>0 are approximations to {D fa;(u*))}r>0 defined by the initial guess
Jo := Dfo(p?)) = 41,4 and the updates

AF® — J_ Ap®

AT for k>1
HAN(k)HQ ( K ) or =

Jy = Jp—1 +

with Af®) = f(u®) — f(u*=D) and Ap® = p*) — +=1 This guarantees a
g-quadratic convergence to an actual solution g, in our setting, assuming that z(%)
and Jo = Dfo(u(?) are close enough to g, and D fa,(p.), respectively; see, e.g.,
Gay [10] and Mannel [16] for details. This condition is satisfied if At is taken small
enough. Indeed, notice that setting At = 0 yields p, = 0 and also that p, depends
smoothly on At (assuming that the Hamiltonian H is smooth). Therefore, if At is
taken small enough, then g, ~ u(©) and so D fa, () = Dfo(u'?) as well.

As Broyden [2] suggested, it is computationally efficient to calculate the inverse
Ji _:1 directly from J, ! using the Sherman-Morrison formula as follows:

Apk) — J;lef(k)
(8n) I A0

(26Db) JT =T+ (AT
The update (26a) along with (26b) is the well-known good Broyden’s method.

As we shall show in Appendix A, Broyden’s method offers an improvement in
convergence and works well even for those cases where the simplified method (24)
seems to fail to converge in a reasonable number of iterations.

4.3. Order of Method. As proved in Proposition 3, our method ® has the same
order of accuracy as the extended integrator $ used. We would like to numer-
ically demonstrate this result using the following simple example: Consider the
Hamiltonian system (1) on T*R with the Hamiltonian

(27) H(g.p) = 5(¢ +1) (7 +1)
with initial condition (¢(0),p(0)) = (—3,0); this is exact solvable as shown in Tao
[27].

We implemented our proposed semiexplicit method of orders 2, 4, and 6 using
the Triple Jump (21) as well as 4*"- and 6*"-order methods using Suzuki’s compo-
sition (22) and Yoshida’s 6'"-order composition mentioned above.

For comparison, we also used the 2"d- and 4*'-order Gauss-Legendre meth-
ods (see, e.g., Hairer et al. [11, Section II.1.3] and Leimkuhler and Reich [12,
Table 6.4 on p. 154]); its 2"d-order method is commonly known as the Implicit
Midpoint method, whereas we refer to the 4*"-order method as the IRK4 for short
here. We note that these methods are known to be symplectic; see, e.g., [11, The-
orem VI.4.2] and [12, Section 6.3.1].

Figure 3 shows how the maximum relative error in the Hamiltonian depends on
the time step for our method along with Tao’s method [27] of the same orders, as
well as the Gauss—Legendre methods. We observe that our semiexplicit method
exhibits the desired orders of accuracy. Note that the errors of the 6*"-order meth-
ods for smaller time steps seem to be affected by the errors in the projection step,
where the tolerance is € = 1075 here. Notice also that our method is consistently
more accurate than Tao’s of the same order.
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10°

—4£—Tao 2
—4A— semiexplicit 2
—4— Midpoint
—%—Tao 4
semiexplicit 4
—%— semiexplicit-S 4
—«—IRK4
—&—Tao 6
semiexplicit 6
—o— semiexplicit-S 6
>— semiexplicit-Y 6

T T LA |

1073 1072 107

FIGURE 3. Maximum relative error in Hamiltonian (27) (com-
pared to initial value Hy) for different time steps with various
methods: Tao [27] (see (8)) with w = 20 using Triple Jump (21);
proposed semiexplicit method with Triple Jump, Suzuki’s and
Yoshida’s compositions; 2"d-order Implicit Midpoint and the 4t-
order Gauss—Legendre method (IRK4). Simulations with terminal
time T = 100 and with a tolerance of ¢ = 107'® for the projection
step were taken to calculate the maximum absolute relative error
of Hamiltonian H for time steps At € [0.001,0.1].

4.4. Preservation of Invariants. Next we would like to address the long-time
preservation of invariants of the system. Before getting into the comparison of
our method with Tao’s [27], let us first mention the main factor that affects the
preservation of invariants. As mentioned in Section 1.4, the main issue of the
original extended phase space integrator of Pihajoki [21] is the growth of the defect
(r — q,y — p). Tao’s modification seems to suppress this growth. However, as we
shall see below, the defect seems to affect the error of the the invariants.

Let us numerically demonstrate the behavior of the defect with an example. Con-
sider the following finite-dimensional approximation to the nonlinear Schrédinger
equation (NLS) equation (see Colliander et al. [5]) used in Tao [27]. It is a Hamil-
tonian system (1) with d = N and the non-separable Hamiltonian
(28)

1 N
0p) =7 Z @ +p2)" =Y (PP 0+ P 1P — GP P — PP 1R ADiaDiGi-14i)-
i=1 =2
We note that this system has another invariant
N
(29) I(g,p) =Y (¢ + 1)

i=1
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called the total mass. Following Tao [27], we set N = 5, w = 100, and ¢(0) =
(3,0.01,0.01,0.01,0.01) and p(0) = (1,0,0,0,0). Figure 4 shows how the Euclidean
norm ||(g,p) — (z,y)| of the defect changes with time. Note that higher-order
methods of Tao (8) are constructed by the Tripe Jump composition (21) as well.
One can see that, compared to Pihajoki’s integrator (6), Tao’s middle step is able
to successfully suppress the defect into small oscillations.

(g, p) = (=, y)ll

— Tao 2
— Extended Phase 2

O e LA e e B L B e ey s e

0 0.1 0.2 0.3 0.4 0.5
time

—Tao 4
— Extended Phase 4

0 0.2 0.4 0.6 0.8 1 1.2
time

—Tao 6
— Extended Phase 6

AN

AR

R o s e e e e N B B e e s B L e e |

0 0.2 0.4 0.6 0.8 1 1.2
time

FIGURE 4. Defect ||(¢,p) — (z,y)| in phase space copies with Pi-
hajoki’s original extended phase space integrator (6) and Tao’s
modified method (8) when solving NLS with N = 5. Note that the
defect for our semiexplicit method (not plotted) would be the same
order as the tolerance e (1071% or 107'?) used in the symmetric
projection step, and are negligibly small compared to theirs.

However, this defect (z — ¢,y — p), albeit small, seems to affect the accuracy of
preserving invariants. In order to demonstrate it, we solved the above NLS system
using our semiexplicit method to compare the results with those of Tao’s method.
We chose the time step as At = 1073 because this system exhibits weak turbulence
(see Dyachenko et al. [8]), and also used a relaxed tolerance of € = 10719 for the
simplified Newton iterations (24) for faster computations.

Figure 5 shows the time evolution of two invariants of the system—Hamiltonian
and total mass I—for the semiexplicit method and Tao’s method both with the
Triple Jump composition technique. While both methods preserve the invariants
well without drifts, one clearly sees that our method has a much better accuracy. In
fact, the results seem to indicate that Tao’s method picks up errors in the invariants
roughly proportional to the defect (x — ¢,y — p); compare with Figure 4.
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— Tao 2
— semiexplicit 2

- T T T T T 1 —o7T T T T T 1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
time time

— Tao 4
— semiexplicit 4
=1 T T T T 1 =5 T T T T 1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
time time

— Tao 6
— semiexplicit 6

LA L B B R R R B L R L | Bl e e B L A B S e |
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
time time

FIGURE 5. Comparison of preservation of two invariants (H and I;
see (28) and (29)) between Tao’s method (w = 100) and proposed
semiexplicit method (¢ = 1071%) for NLS system with N = 5 and
time step At = 1073, higher-order methods for both methods are
constructed using Triple Jump technique (21). The subscript (- )o
signifies the initial value.

For a further demonstration, Figure 6 shows a comparison of our method with
the 2" and 4*-order Gauss-Legendre methods, for the same NLS problem as
above but using a smaller tolerance of ¢ = 1073 for both the semiexplicit and
implicit methods. We also used Suzuki’s and Yoshida’s methods for higher-order
methods in addition to the Triple Jump method.

Notice that, for the Implicit Midpoint (or the 2"4-order Gauss-Legendre) method
one observes a drift in the total mass. Since the Gauss—Legendre methods preserve
quadratic invariants exactly (see Cooper [6] and Hairer et al. [11, Theorems IV.2.1
and 1V.2.2]), the culprit for the drift would be the accumulated error from the
nonlinear solver (Newton’s method here); the tolerance here is e = 107!3. Notice
that our method exhibits no such drift, despite using the same tolerance with a
simplified Newton method.

We also observe that Suzuki’s composition has a better accuracy than the Triple
Jump, especially in preserving the Hamiltonian for the 4*-order methods, and also
that Yoshida’s 6*"-order method performs as well as Suzuki’s, despite having much
fewer stages and hence much faster as we shall see below.

As the third demonstration using another example, consider the motion of N
point vortices in R? with circulations {T'; € R\{0}}Y; (see, e.g., Newton [18,

)
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I-1I
-10 5
x10 Iy
07
o
4]
6]

0/ B B B S B S B B B B | LN B S B B B B R B |
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
time time

x107° x107 12

2 — semiexplicit 4
— semiexplicit-S 4
IRK4

o T o o '
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
time time

— semiexplicit 6
— semiexplicit-S 6

semiexplicit-Y 6
-6 T T T T 1 -1+ T T T T 1

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
time time

FIGURE 6. Comparison of same invariants from Figure 5 with
more strict tolerance of ¢ = 10713, time step At = 1072 and
different methods: Higher-order semiexplicit methods with Triple
Jump and Suzuki’s and Yoshida’s compositions (with labels “S”
and “Y” respectively), as well as the 2"d- and 4'"-order Gauss—
Legendre methods (referred to as midpoint and IRK).

Section 2.1] and Chorin and Marsden [4, Section 2.1]). Interactions of them make
their centers {2; := (24, ;) € R} move according to the equations

; 1 Li(y; — i) o1 Ti(z; — ;)
sz—;z %:2_2 2 '

T 1<i<N HZZ _ZJ”Q 7 1<i<N |ZZ _Z]”2
i#] 1#]
Taking the interaction energy of the vortex system given by
1
(30) H(w,y) i= = > Tiljlog [l2i — 2]l
1#]

as the Hamiltonian, this system can be represented as a canonical Hamiltonian
system (1) with d = N by a simple coordinate transformation:

g =/ ILilxi,  pi = /[Ti] sgn(l) vi,
where sgn(z) is 1 if > 0 and —1 otherwise. Note that the Hamiltonian is again
non-separable. This system has three invariants in addition to the Hamiltonian:

N N N
=1 =1 =1
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where (@, P) is called the linear impulse, and [ is called the angular impulse.
Our test case has 10 vortices (N = 10) with the following initial condition and
circulations:

1‘(0) = (3a —10, 67 97 07 7a _87 57 9a 7))
(32) y(O) = (_53 _67 07 _2’ 07 10, 27 9, Oa _1)7
1

—(-5,3,6,7,—-2,-8,-9,-3,7,—6).
10( sy Yy by ) ) ) s by )

r

ﬁ
&
X
5
9
§
x
s
=
x
5
E

x10

Q-
—Tao 2 o 2 2 2
— semiexplicit 2 f
2

0 0 0 0
-2
-4 -2

0 5000 10000 0 5000 10000 0 5000 10000 0 5000 10000
time time time time

x10” x107° . x107® X107

—Tao 4 2 5 7 4
— semiexplicit 4 2
0

0 5000 10000 0 5000 10000 0 5000 10000 0 5000 0000
time time time time

“Tao 6 P B 5 '
— semiexplicit 6

0 5000 10000 0 5000 10000 0 5000 10000 0 5000 10000
time time time time

FIGURE 7. Comparison of preservation of four invariants (H, @,
P, and I; see (30) and (31)) between Tao’s method (w = 7) and
proposed semiexplicit method (e = 1071%) for the 10-vortex system
with time step At = 0.1. higher-order methods for both methods
are constructed using Triple Jump technique (21). The subscript
(+)o signifies the initial value.

Figure 7 shows the results from solving this system using Tao’s and our semiex-
plicit methods; the time step is At = 0.1 and the tolerance is ¢ = 1071%. Again we
observe that our semiexplicit method outperforms Tao’s method in preserving the
four invariants.

Figure 8 shows further comparisons with other methods including the Gauss—
Legendre methods with a more strict tolerance of € = 10713 for both the semiexplicit
and implicit methods. We see that the proposed semiexplicit method is comparable
to the Gauss—Legendre methods in preserving all the four invariants. Given that
the Gauss—Legendre methods are known to preserve quadratic invariants exactly
(see Cooper [6] and Hairer et al. [11, Theorems 2.1 and 2.2]), this result demon-
strates that our method exhibits an excellent long-time behavior in preserving the
invariants.

Also compare the errors of Tao’s method in the invariants @), P, and I from
Figure 7 and those of ours from Figure 8. The errors are significantly smaller
with our method, indicating that the defect (z — ¢,y — p) (and possibly also the
symplecticity in the original phase space) affects the errors in the invariants. This
observation underscores the importance of our symmetric projection step.
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FiGureE 8. Comparison of same invariants from Figure 7 with
more strict tolerance of € = 107!, time step At = 0.1 and vari-
ous other methods: Higher-order semiexplicit methods with Triple
Jump and Suzuki’s and Yoshida’s compositions (with labels “S”
and “Y” respectively), as well as the 2" and 4'"-order Gauss-
Legendre methods (referred to as midpoint and IRK).

4.5. Computational Efficiency. Now that we have seen that our method exhibits
desirable accuracies and long-time behaviors, a natural question to ask is whether
it is as fast as Tao’s explicit method, or at least faster than those implicit Gauss—
Legendre methods. So we would like to compare the computation times of those
methods discussed above when applied to the NLS and the vortex problems using
the same initial values and time steps from above.

Table 1 compares the computation times and average number of iterations of
various methods applied to the NLS problem; see the caption for details.

The columns labeled by NW_itr shows the average number of iterations required
in the implicit part of each method. We see that our semiexplicit method requires
fewer iterations than the Gauss—Legendre methods (Midpoint and IRK4). One may
attribute the slowness of these implicit methods to full Newton’s method used by
them, but switching to quasi-Newton methods such as Broyden’s method would not
make these methods faster than ours because it is unlikely to curtail the disparity in
the number of iterations. We note that the number of iterations is a good measure
of how these methods compare because the implicit methods and our methods solve
nonlinear equations for the same number of unknowns: (g,p) € R?? for the implicit
methods and p € R?? for ours. Now, one may explain the disparity in the number
of iterations as follows: Both use 0 as the initial guess, but the implicit methods
need to solve for the O(At) difference between (¢, prn) and (¢n41, Pnt1), whereas
ours needs to solve for p, which is essentially the defect after a single step; one may
estimate it to be proportional to the local error of the explicit integrator employed,
i.e., O((At)"*1) for an n-th order method, because the defect is a quantity that
vanishes for the exact solution. This also explains why our method requires less
iterations for higher-order methods.



22 BUDDHIKA JAYAWARDANA AND TOMOKI OHSAWA

TABLE 1. Comparison of computation times of various methods
when solving NLS system with N = 5 from Section 4.4 with time
step At = 1073 and terminal time 7' = 1000. Tao’s method
uses w = 100; its higher-order versions (Tao 4 and Tao 6) use
the Triple Jump technique, and so does our standard semiexplicit
method (semiexplicit 4 and semiexplicit 6). Those referred to as
semiexplicit-S and semiexplicit-Y are our semiexplicit methods us-
ing Suzuki’s and Yoshida’s compositions, respectively. Time is
the computation time in seconds averaged over 10 simulations,
whereas NW_itr is the average number of Newton-type iterations
used per step for both the simplified Newton (24) and Broyden’s
method (26). For the Midpoint and IRK4, the full Newton itera-
tion is used. Computations were performed using MATLAB on a
computer with Intel Core i7-8565U processor running at 1.80GHz.

e=10"19 Simplified (24) | Broyden (26)
method Time NW_itr | Time NW_itr
Tao 2 7.03 7.03
semiexplicit 2 33.24  3.37 42.12  3.40
Midpoint 11594 599 | 11594 5.99
Tao 4 17.10 17.10
semiexplicit 4 32.50  1.94 36.97  1.94
semiexplicit-S 4 26.95 1.09 26.96  1.09
IRK4 235.30 521 ]235.30 5.21
Tao 6 44.775 44.75
semiexplicit 6 37.90 1.00 36.98  1.00
semiexplicit-S 6 90.19  1.00 88.83  1.00
semiexplicit-Y 6 | 31.65 1.00 30.68  1.00

e=10"13 Simplified (24) | Broyden (26)
method Time NW_itr | Time NW_itr
Tao 2 7.03 7.03
semiexplicit 2 44.71 5 59.48  4.90
Midpoint 145.74  7.89 |145.74 7.89
Tao 4 17.10 17.10
semiexplicit 4 46.37 3 56.23 3
semiexplicit-S 4 50.13  2.28 55.34  2.29
IRK4 299.09 6.98 |299.09 6.98
Tao 6 44.75 44.75
semiexplicit 6 67.37 1.98 72.34  1.98
semiexplicit-S 6 86.30  1.00 84.04  1.00
semiexplicit-Y 6 | 31.46 1.02 29.37  1.02

Notice also that, although our 2"d-order method is much slower than Tao’s, it
catches up with Tao’s as the order of the method increases. Particularly our 6*h-
method with a relaxed tolerance of € = 10719 is faster than Tao’s of the same order.
Moreover, recall from the last row of Figure 5 (plots from the same problem) shows
that our 6*P-order method is much more accurate than Tao’s. It is also notable
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that the semiexplicit method with Yoshida’s composition is much faster than Tao’s
6*"-order method with Triple Jump thanks to the fewer steps involved in Yoshida’s
composition.

Table 2 shows the same comparison for the 10-vortex system. We show results
only with the simplified Newton method (24) here for the reason stated in the
caption. Note that the 10-vortex system is 20-dimensional whereas the NLS with
N = 5 from above is 10-dimensional. We observe that our 4*'- and 6'"-order
methods are faster than Tao’s of the same orders even with ¢ = 10713,

TABLE 2. Comparison of computation times of various methods
when solving the 10-vortex system from Section 4.4 with time step
At = 0.1 and terminal time 7" = 1000. We show results only with
the simplified Newton method (24) because Broyden’s method (26)
gives more or less the same result. This is because the average
number of iterations NW_itr is usually very close to 1 here: these
two methods share exactly the same first iteration step and so there
is almost no difference between them when NW_itr == 1. The other
details are the same as Table 1 except w = 7 for Tao’s method.

e=10"10 e=10"13
method Time NW_itr || Time NW_itr
Tao 2 1.82 1.82
semiexplicit 2 3.00 2 4.29 3
Midpoint 18.17  4.18 22.77  5.42
Tao 4 5.32 5.32
semiexplicit 4 4.10  1.00 4.25  1.05
semiexplicit-S 4 6.59 1 6.76 1.01
IRK4 4599 4.01 57.05  4.99
Tao 6 15.63 15.63
semiexplicit 6 11.92 1 12.03  1.00
semiexplicit-S 6 | 32.29 1 3248  1.00
semiexplicit-Y 6 | 9.23 1 9.49 1.00

A possible explanation of why our method can be faster than Tao’s for higher-
order methods and higher-dimensional problems is the following: Recall that Tao’s
27d_order method (8) is a composition of 5 flows, whereas our explicit part (6)
is a composition of 3 flows. Therefore, for the 4*"-order method using the Triple
Jump (21), Tao’s involves 15 stages whereas ours involves 9 stages, and for the
6t-order method, Tao’s 45 stages whereas ours 27 stages. Now, notice in Tables 1
and 2 that the number of Newton-type iterations, NW_itr, gets smaller for higher-
order methods and higher-dimensional problems, eventually becoming close to 1
in Table 2. This means that only one step of Newton-type iteration is performed
in the projection step most of the time. In other words, in the simplified Newton
iteration (24), M(O) or p™M is usually taken as 1, but then since u(o) = 0, we have,
using (23) and (24),

1 -
N(l) - _ZA éAt(Cn)

Note that (i)At(Cn) 18 already computed in the explicit part of the method, and so
computing 1Y) does not involve extra stages of discrete time evolutions (which would
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be required to compute p®) for k > 2). Therefore, if NW_itr ~ 1, the projection
step becomes very simple and hence may require fewer computations compared to
the extra stages in Tao’s method.

Moreover, as the dimension of the problem increases, each stage becomes compu-
tationally more expensive, and so the computational advantage due to the difference
in the number of stages would be amplified.

See Appendix A for a further numerical study of the projection step. The results
from above and Appendix A suggest the following:

e The projection step requires very few iterations when the time step At is
small enough compared to the scale of the problem.

e Increasing At may result in a significant increase in the number of iterations,
and hence a slowdown of our method; see Table 3 in Appendix A.

e The simplified Newton method (24) occasionally fails to converge within
a reasonable number of iterations, but works well in many cases. Hence
the convergence issue is not detrimental in the long run; see Table 6 in
Appendix A.

e Broyden’s method (26) tends to reduce the number of required iterations
slightly, and seems as fast as the simplified Newton method. It also resolves
the convergence issue of the simplified Newton method mentioned above;
see Table 6 in Appendix A.

In conclusion, using a small enough At seems to be the key to an efficient imple-
mentation of our semiexplicit method. Also, higher-order methods tend to require
less iterations in the projection step. The reason seems to be that smaller At and
higher-order methods produce smaller defects in the explicit time evolution, hence
less iterations in the projection step to eliminate the defects produced.

APPENDIX A. NUMERICAL STUDY OF PROJECTION STEP

A.1. Effect of Time Step and Parameters? This appendix gives a further nu-
merical study of the simplified Newton method (Section 4.1) and Broyden’s method
(Section 4.2) in the projection step. The purpose of this appendix is to numerically
investigate the following questions: (i) How are these nonlinear solvers affected by
a change in the time step as well as a change in the parameters of the problems?
(ii) Does Broyden’s method offer a significant improvement of the simplified Newton
method?

A.2. NLS Problem with Larger Time Step. Let us first see how the time step
affects the nonlinear solvers by changing At from 1073 to 10~2 in the NLS problem.

Compare Table 3 (At = 1072) with Table 1 (At = 10~2). We observe that the
change in At results in significantly more numbers of iterations to achieve conver-
gence in the projection step, and hence a significant slowdown of our integrator. It
also shows that, even with the increased number of iterations, Broyden’s method
is as fast as the simplified Newton method. We also notice that Broyden’s method
tends to require less iterations.

Table 4 makes a further comparison of the average numbers of iterations for a
longer time interval 0 < t < 10* along with the maximum errors in the projection
step and the resulting maximum defects. Again, Broyden’s method requires less
iterations in the long run too, as one might expect from the theory mentioned in
Section 4.2.
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TABLE 3. Comparison of computation times of various methods when
solving the NLS system with N = 5 from Section 4.4 with time step At =
1072 and terminal time T' = 10% using both the simplified Newton (24)
and Broyden’s method (26). The other details are the same as Table 1.

e=10"" e=10""

Simplified (24) | Broyden (26) || Simplified (24) | Broyden (26)
method Time NW_itr | Time NW_itr || Time NW_itr | Time NW_itr
Tao 2 0.76 0.76 0.76 0.76
semiex 2 7.72 8.54 8.71 6.90 10.27  11.55 | 11.04  8.88
Midpoint 2577 1287 | 25.77 1287 || 33.60 16.66 | 33.60 16.66
Tao 4 1.85 1.85 1.85 1.85
semiex 4 10.72 6.79 11.47  5.78 15.11 9.88 15.13 7.85
semiex-S 4 | 12.53 550 | 13.07 4.98 1895 856 | 1846  6.95
IRK4 48.60 10.65 | 48.60 10.65 || 60.50 13.49 | 60.50 13.49
Tao 6 4.82 4.82 4.82 4.82
semiex 6 20.91 5.93 19.44 5.00 31.02 8.92 28.24 7.06
semiex-S 6 | 15.69 1.78 16.49 1.78 41.12 4.69 39.84 4.30
semiex-Y 6 | 11.30  3.91 | 13.39  3.93 19.88  6.91 |19.29 5.99

TABLE 4. Comparison of convergence and errors of various methods
when solving the NLS system with N = 5 from Section 4.4 with time
step At = 0.01 and terminal time 7' = 10* using both the simplified
Newton (24) and Broyden’s method (26). Max_Error denotes the maxi-

mum of Hu(NH) —p H (see (25)) among all projection steps (hence is

approximately €) whereas Max_Defect denotes the maximum of defects
(g, p) — (z,y)]| in each solution. The other details are the same as Ta-

25

ble 1.
e=10"13
Simplified (24) Broyden (26)

method NW_itr Max_Error Max Defect | NW_.itr Max_Error Max Defect
Tao 2 0.025191 0.025191
semiex 2 11.55 le-13 4e-13 8.88 le-13 4.39e-13
Midpoint 16.66 le-13 16.66 le-13

Tao 4 0.016279 0.016279
semiex 4 9.87 le-13 4e-13 7.85 9.99¢-14 4.21e-13
semiex-S 4 8.56 le-13 4e-13 6.95 le-13 4.39¢e-13
IRK4 13.50 le-13 13.50 le-13

Tao 6 0.006048 0.006048
semiex 6 8.93 9.99e-14 4e-13 7.06 le-13 4.28e-13
semiex-S 6 4.69 le-13 4e-13 4.31 le-13 4.22e-13
semiex-Y 6 6.91 le-13 4e-13 5.99 9.99e-14 4.17e-13

Notice in the Max_Defect columns that the projection step suppresses the phase
space defect ||(q,p) — (z,y)]|| to the order of the tolerance e = 10~ '3—significantly
smaller than Tao’s. These defects seem to affect the errors of the solutions: Fig-
ures 9 and 10 show the time evolution of two invariants (using Broyden’s method)
of the system with At = 1072 just as we did in Figures 5 and 6, respectively with
At = 1073. What is particularly notable is that, as At increases, the error in the
total mass I increased significantly for Tao’s whereas it stays very small for ours.
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Therefore, our method, although our method is now much slower than Tao’s, still
gives much more accurate results than Tao’s.

H-H,

H,

— Tao 2
— semiexplicit 2

-0.02r T T T T 1 =5 T T T T 1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
time time

— Tao 4
— semiexplicit 4

T T T 1 T T T T T 1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
time time

x107°

T T T T T 1 T T T T T 1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
time time

FIGURE 9. Same plots as Figure 5 except with a larger time step At =
1072 instead of At = 1073,

A.3. 10-Vortex Problem with Disparate Circulations. Let us modify the
10-vortex problem with the following initial conditions and circulations to create a
problem that requires more Newton-type iterations in the projection step.

z(0) = (0.5,3.5, —1.5, —0.5, —4.5, —3.5, 1.5, =2, 4, —4),
(33) y(0) = (5,0.5,2,5,—2,—1,—0.5,3,3.5, —4),
I'=(-14.8,-18.8,17.6, -8, —8.2, —6.8, —1.4,6, — 11, 13.8).

Compare this to the previous parameters (32) where —1 <T'; < 1for¢=1,...,10.
The circulations now have more disparities among the vortices. This means that
vortices move in different time scales, making the problem more challenging in
selecting the time step. Accordingly, we have chosen a smaller time step At = 0.01
here.

Table 5 shows the average computation times as well as the average number of
iterations for this problem just as in Table 2 for 0 < ¢ < 100. We observe an increase
in the average number of iterations and hence a slight slowdown of our method. As
a result, our method is slightly slower than Tao’s with € = 1073, although with
e = 10710, the our 6""-order method is still faster than Tao’s.

Table 6 shows the average numbers of iterations along with the maximum errors
in the projection step and the resulting maximum defects computed for the longer
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FIGURE 10. Same plots as Figure 6 except with a larger time step

At = 1072 instead of At = 1073.

TABLE 5. Comparison of computation times of various methods when
solving the 10-vortex system with parameters (33) in place of (32) and
time step At = 0.01 and terminal time 7" = 100 using both the simplified
Newton (24) and Broyden’s method (26). The other details are the same

as Table 2.
e=10"1° e=10""3

Simplified (24) | Broyden (26) || Simplified (24) | Broyden (26)
method Time NW_itr | Time NW_itr || Time NW_itr | Time NW_itr
Tao 2 2.05 2.05 2.05 2.05
semiex 2 5.04 3 5.01 3 8.12 5 7.68 4.55
Midpoint 24.50 4.62 24.50 4.62 31.12 5.77 31.12 5.77
Tao 4 5.96 5.96 5.96 5.96
semiex 4 8.44 1.85 8.89 1.85 13.96 3 14.05 3
semiex-S 4 8.08 1.08 8.43 1.08 17.19 2.29 17.86  2.28
IRK4 58.71 4.30 58.71  4.30 73.88 5.25 73.88  5.25
Tao 6 17.67 17.67 17.67 17.67
semiex 6 13.35 1.00 13.61 1.00 24.36 1.80 25.28 1.80
semiex-S 6 | 37.15 1.00 37.15 1.00 40.60 1.08 40.58 1.08
semiex-Y 6 | 10.51 1 10.42 1 11.01 1.03 11.09 1.03

27
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TABLE 6. Comparison of convergence and errors of various methods
when solving the challenging 10-vortex system with time step At = 0.01
and a longer terminal time 7" = 1000 using both the simplified New-
ton (24) and Broyden’s method (26). Max_Err denotes the maximum
of )
approximately ¢) whereas Max Def denotes the maximum of defects
l[(g,p) — (z,v)|| in each solution. The star * indicates that the Newton
iteration was stopped at N = 100 before it converged, hence resulting
in Max_Err larger than e. The other details are the same as Table 2.

pNHD f,u(mH (see (25)) among all projection steps (hence is

e=10"13
Simplified (24) Broyden (26)

method NW_itr Max Err MaxDef | NW.itr Max Err Max Def
Tao 2 0.00376 0.00376
semiex 2 5.27°  1.67e-13 6.66e-13 | 4.46 9.99e-14 6.57e-13
Midpoint 5.71 9.99e-14 5.71 9.99¢-14

Tao 4 8.38e-06 8.38e-06
semiex 4 3.59"  1.62e-13 6.47e-13 | 3.05 9.99e-14 7.32e-13
semiex-S 4 2.64* 1.6le-13 6.44e-13 | 2.45 le-13 7.11e-13
IRK4 5.58  1.18e-13 5.58"  1.18e-13

Tao 6 2.09e-07 2.09e-07
semiex 6 1.97%  1.42e-13 5.69e-13 | 1.90 9.99e-14 7.15e-13
semiex-S 6 1.40* 1.16e-13 4.62e-13 | 1.41 9.99e-14 7.84e-13
semiex-Y 6 | 1.14 le-13 4e-13 1.14 9.99e-14 5.41e-13

interval 0 < ¢ < 1000. Overall, there is a slight increase in the average number
of iterations for every method. Particularly, notice those numbers marked with
star * in the NW_itr first column. These are the instances where the simplified
Newton method did not converge to the desired value y with € = 10712 within 100
steps at some point in the simulation. However, the only slight increases in NW_itr
compared to those in Table 5 suggest that these are rather rare instances. Notice
also that this issue of convergence is resolved by using Broyden’s method.

Figures 11 and 12 show the time evolution of the invariants (using Broyden’s
method) just as we did in Figures 7 and 8 with different parameters. Notice that,
although Tao’s method is faster in most cases, its errors in some invariants increased
whereas ours either stayed in the same level or became smaller. It is also worth
mentioning that, the last row of Figure 11 is the instance where our method is
faster than Tao’s, and ours is much more accurate than Tao’s.

A.4. Conclusion of Numerical Study. The above numerical experiments sug-
gest first that the time step and the parameters of the problem affect the number
of iterations in the projection step considerably. Particularly, the NLS example in
Appendix A.2 shows that increasing the time step may result in a significant in-
crease in the number of iterations. The 10-vortex example in Appendix A.3 shows
that the change in the parameters also affects the convergence of the projection
step too, but can be compensated by selecting an appropriate time step At, again
underscoring the importance of selecting a small enough At.

The results also show that Broyden’s method is as fast as the simplified Newton
method, and is more robust in the sense that it does not experience the conver-
gence issue that the simplified Newton method occasionally did. However, the
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FIGURE 11. Same plots as Figure 7 except with parameters (33) and
At = 0.01 instead of (32) and At =0.1.
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FIGURE 12. Same plots as Figure 8 except with parameters (33) and
At = 0.01 instead of (32) and At =0.1.

convergence issue is rather minor, and the overall difference between the two meth-
ods is fairly small, suggesting that the simplified Newton method is quite effective
despite its simplicity.
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Note added in Proof. The numerical results suggest that our semiexplicit in-
tegrator preserves both the total mass I (see (29) of the NLS problem and the
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angular impulse I (see (31)) of the vortex problem—both quadratic invariants. In
fact, our semiexplicit integrator preserves any quadratic invariant of the original
Hamiltonian system (1). We shall report on this in the forthcoming paper [19].
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