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Abstract Stratospheric aerosol injection (SAI) of reflective sulfate aerosols has been proposed to
temporarily reduce the impacts of global warming. In this study, we compare two SAI simulations which inject
at different altitudes to provide the same amount of cooling, finding that lower-altitude SAI requires 64% more
injection. SAI at higher altitudes cools the surface more efficiently per unit injection than lower-altitude SAI
through two primary mechanisms: the longer lifetimes of SO, and SO, at higher altitudes, and the water vapor
feedback, in which lower-altitude SAI causes more heating in the tropical cold point tropopause region, thereby
increasing water vapor transport into the stratosphere and trapping more terrestrial infrared radiation that
offsets some of the direct aerosol-induced cooling. We isolate these individual mechanisms and find that the
contribution of lifetime effects to differences in cooling efficiency is approximately five to six times larger than
the contribution of the water vapor feedback.

Plain Language Summary Stratospheric aerosol injection (SAI)—the artificial introduction of
reflective droplets, called aerosols, into the middle atmosphere—could reflect a small portion of sunlight and
cool the planet in order to temporarily reduce the impacts from global warming. Injecting the aerosols at higher
altitudes would be more expensive, but it would also be more efficient because the aerosols would last longer
before falling out of the atmosphere. Additionally, injecting at a lower altitude would cause more water vapor to
enter the middle atmosphere; since water vapor is a greenhouse gas, this would increase the greenhouse effect,
meaning more aerosols would be needed to cool the surface to a desired temperature. In this study, we directly
compare high-altitude SAI to low-altitude SAI to determine how much more efficient it is to inject at a higher
altitude, and we break down the different factors that effect efficiency to see which has the biggest effect.

1. Introduction

Stratospheric aerosol injection (SAI) is a proposed method of climate intervention in which aerosols are intro-
duced into the stratosphere to reflect sunlight. Alongside emissions cuts and carbon dioxide removal, SAI could
cool the surface and mitigate or prevent some impacts of global warming. In 2021, the National Academies
recommended that a research agenda be established to investigate the efficacy, feasibility, and risks of SAI and
other methods of solar geoengineering, with the ultimate purpose of informing future decision making (National
Academies of Sciences, Engineering, and Medicine, 2021). The effects of SAI on the surface climate and atmos-
pheric circulation would depend on the quantity, latitude, seasonality, and altitude of SO, injection (Bednarz,
Butler, et al., 2023; Bednarz, Visioni, et al., 2023; Visioni et al., 2023; Zhang et al., 2023). The choice of injection
altitude can affect the impacts of SAI through various mechanisms (Tilmes, Richter, Mills, et al., 2018), which
we divide into two broad categories:

¢ Lifetime and size effects, which affect aerosol optical depth (AOD) produced per unit SO, injection: a higher
injection altitude places aerosols deeper into the upper branch of the Brewer-Dobson circulation (BDC),
resulting in longer aerosol lifetime against sedimentation (Niemeier et al., 2011) and thus more forcing per
unit injection. SO, injected at lower altitudes can also leave the stratosphere before oxidizing; we do not distin-
guish between these processes. Niemeier et al. (2011), Aquila et al. (2014), and Tilmes et al. (2017) all report
higher simulated aerosol burdens in the upper stratosphere for higher-altitude injection than for lower-altitude
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injection. However, longer aerosol lifetime also results in aerosol growth due to coagulation; aerosols larger
than the optimal effective radius to reflect sunlight (Dykema et al., 2016) cool less efficiently and also deposit
faster, which acts to offset the effects of longer sulfur lifetime. Different studies report different findings on
the relative magnitudes of the lifetime and coagulation effects: Using the Community Earth System Model
(CESM1), Tilmes et al. (2017) reported a smaller AOD per unit sulfate burden for higher-altitude SAIL, but
higher-altitude SAI still achieved a higher AOD per unit injection, indicating the larger aerosol size did
not fully negate the increased AOD of the longer lifetime. However, in a different model (LMDZ-S3A),
Kleinschmitt et al. (2018) found that particle growth was sufficient to cancel out the benefit of a higher sulfur
lifetime, and that same-quantity injections at different altitudes produced comparable radiative forcing. The
relative importance of these processes may also depend on the latitude of injection; Kleinschmitt et al. injected
at the equator, while Tilmes et al. (2017) considered injections at several latitudes. The latter reported that
the incremental increase with altitude of AOD per unit injection is smallest at the equator and increases as
injection location moves further from the equator; this is because, as mentioned above, placing aerosols into
a lower-altitude branch of the BDC causes them to be removed from the stratosphere more quickly, and this
effect is stronger at higher latitudes. Finally, a lower-altitude aerosol layer can also see increased aerosol size
due to hygroscopic growth (K. Krishnamohan et al., 2020) as lower-stratospheric heating increases water
vapor transport into the lower stratosphere (see radiative feedbacks below), which could increase or decrease
AOD per unit SO, injection depending on the resultant aerosol size.

e Radiative feedbacks, which affect the amount of surface cooling produced per unit of AOD. First, a sulfate
aerosol layer closer to the tropopause heats the tropical tropopause layer, allowing more water vapor to trans-
port into the stratosphere. The increase in lower stratospheric water vapor results in a net increase of trapped
terrestrial infrared radiation, requiring additional SO, injection to compensate and decreasing the efficacy of
SAI as a whole (Bednarz, Butler, et al., 2023; Bednarz, Visioni, et al., 2023; Heckendorn et al., 2009; K.-P.
S.-P. Krishnamohan et al., 2019; Visioni et al., 2017; Quaglia et al., 2022). Second, a decrease in the vertical
temperature gradient in the upper troposphere can result in a thinning of high cirrus clouds which trap outgo-
ing terrestrial radiation, increasing the overall cooling effect of SAI (Visioni et al., 2018). Lastly, the reduction
in solar radiation reaching the troposphere under SAI could also reduce OH concentrations and thus increase
methane lifetime, strengthening the greenhouse effect further (Visioni et al., 2017). However, this effect is not
present in CESM1 because stratospheric aerosols are not coupled to the photolysis scheme.

In this study, we directly compare higher-altitude and lower-altitude injection using an Earth system model to
examine how efficiently they can meet the same surface temperature target (i.e., how much SO, is required to
provide a certain amount of cooling), and we isolate and quantify the relative contributions of lifetime and size
effects and radiative feedbacks in these simulations.

2. Climate Model and Simulations

The simulations considered in this study use Version 1 of the fully-coupled Community Earth System Model
(CESM1), with the Whole Atmosphere Community Climate Model (WACCM) as the atmospheric component
(Hurrell et al., 2013). The model is run at a horizontal resolution of 0.9° latitude by 1.25° longitude with 70
vertical layers reaching up to approximately 140 km (10~ hPa). Aerosols are simulated using the Modal Aerosol
Module (MAM3), which is coupled to chemistry and radiation and describes the aerosol distribution using three
modes: Aitken, accumulation, and coarse (Liu et al., 2012; Mills et al., 2017).

This study considers three sets of simulations: RCP8.5, iHIGH, and iLOW. RCP8.5 is a high-emissions global
warming scenario (Meinshausen et al., 2011), and the iHIGH and iLOW SAI strategies, which both branch
from RCP8.5, simulate “high-altitude” (23-25 km) and “low-altitude” (19-20 km) SAI, respectively, to offset
the warming from RCP8.5. RCP8.5 begins in 2015, the SAI simulations branch from RCP8.5 in 2020, and all
three simulations run until 2100. iHIGH is described by Tilmes, Richter, Kravitz, et al. (2018) as the Geoengi-
neering Large Ensemble (GLENS), using the four-latitude injection approach described by Kravitz et al. (2017),
and iLOW is described by Tilmes et al. (2021) as the “Low” experiment. Both iHIGH and iLOW simulate SO,
injection into the stratosphere at 30°N, 15°N, 15°S, and 30°S to maintain the global mean temperature at the
2010-2030 RCP8.5 average while also preserving the 2010-2030 interhemispheric and equator-to-pole tempera-
ture gradients. The amount of SO, needed each year at each of the four injection latitudes to meet these targets is
computed by a feedback algorithm (MacMartin et al., 2017). iHIGH injects approximately 7 km above the mean
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tropopause (25 km for 15°N/S and 23 km for 30°N/S), and iLOW injects approximately 2 km above the mean
tropopause (20 km for 15°N/S and 19 km for 30°N/S). iHIGH has 20 ensemble members, iLOW has 3 ensemble
members, and RCP8.5 has 20 ensemble members for the 2010-2030 period and 3 for the 2030-2098 period.

3. Results
3.1. Injection Rate, Surface Response, and Stratospheric Response

Figure 1 presents SO, injection rates for iHIGH and iLOW as determined by the feedback algorithm, and changes
to surface temperature. The RCP8.5 ensemble has an average temperature of 15.08°C during the 2010-2029
period (henceforth “reference period”), increasing by approximately 3.7°C by the 2070-2089 period (henceforth
“experimental period”). iHIGH and iLOW aim to offset this warming; both iHIGH and iLOW match the RCP8.5
reference period temperature during the experimental period to within 0.1°C. iLOW requires approximately 64%
more total injection than iHIGH to meet this goal (1a), with 38.2 Tg/yr of SO, for iHIGH and 62.6 Tg/yr for
iLOW during the experimental period. The distributions of SO, injection across the four injection latitudes in the
two SAI experiments are similar (1b-c), with most of the injection occurring at 30°N and 30°S and the injection
at 15°S decreasing to zero as the algorithm converges (i.e., as the feedback algorithm adjusts injection rates over
time to drive surface temperature toward the target state). Both strategies inject about 45% of the total injection to
30°N by the end of the century; the remainder is split between 30°S and 15°N. iLOW injects a little more to the
southern hemisphere (about 40% compared to 35% in iHIGH). The patterns of surface cooling produced by the
two strategies are similar (Figures le—1g); the differences in the Northern Hemisphere mid-to high latitudes are
likely due to a stronger polar vortex response in iLOW, which merits further investigation. Changes to precipita-
tion are also similar between the two simulations (see Figure S1 in Supporting Information S1).

3.2. Lifetime and Size Effects

Figure 2 plots stratospheric sulfate burden and AOD produced per unit SO, injection. Despite higher total injec-
tion rates in iLOW, iHIGH has higher concentrations of SO, spread over a larger region (2a-b). This is due
to differences in sulfur lifetime; sulfur lifetime is approximately 56% longer for iHIGH than for iLOW (2c).
The longer lifetime and resultant higher sulfur concentrations for iHIGH allow for more aerosol growth due to
coagulation (Pierce et al. (2010); Niemeier and Timmreck (2015) - see Figure S2 in Supporting Information S1
for plots of aerosol size), and the larger particles reflect slightly less efficiently. This slightly reduces AOD per
unit injection, which is about 51% higher for iHIGH relative to iLOW (Figure 2d; see Table S1 in Supporting
Information S1 for calculations). However, this is only slightly smaller than the ratio of lifetimes, indicating that
differences in AOD per unit injection are mainly due to differences in lifetime, and radiative changes from differ-
ences in aerosol size are a second-order effect.

3.3. Radiative Feedbacks

Figure 3 shows the vertical profiles of temperature for iHIGH and iLOW, as well changes to the tropopause.
Both SAI strategies heat the lower stratosphere; the strongest heating is near the SO, injection sites, with iLOW
showing more concentrated heating than iHIGH. This lower stratospheric heating, alongside the reduction in
upper tropospheric temperatures, pushes the tropopause downward. iLOW, which has stronger heating closer
to the bottom of the stratosphere, causes a larger shift in tropopause height. SAl-induced changes in tropical
upper troposphere temperatures are similar for iLOW and iHIGH, indicating that changes to high cirrus clouds
and their radiative impacts will be similar (Visioni et al., 2018); changes to upper troposphere cloud ice content
are included in the Supporting Information S1 (Figure S3).

In Figure 4, we present the relationships between injection rate, global mean AOD, and changes to stratospheric
water vapor content (relative to the reference period; the negative anomalies in Panel 4a represent changes in
tropopause pressure in the first 10 years of SAI while injection rate is still small) for iHIGH and iLOW, and how
these differences affect the longwave and shortwave forcing. Under comparable injection rates, iLOW results in
approximately 10%—20% more stratospheric water vapor than iHIGH (Figure 4a) as the stratospheric warming
occurs closer to the tropical tropopause layer. Examining the top-of-atmosphere radiation budget (Figure 4b), both
strategies produce approximately 1 W/m? of net cooling, consistent with the similarity between the associated
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Figure 1. SO, injection rates and surface temperature. Panel (a) plots the total injection rates necessary in each year to maintain the desired temperature goals; faint
lines denote individual ensemble members, while thick lines denote ensemble averages. Panels (b and c) plot how the total quantity injected each year is distributed
across the four injection latitudes (30°N, 15°N, 15°S, and 30°S) for iLOW and iHIGH ensemble averages, respectively. Panel (d) plots annually-averaged, global
mean surface temperature for iHIGH, iLOW, and RCP8.5; thick lines denote ensemble averages, while thin lines denote individual ensemble members. Panels (e and
g) plot differences in surface temperature for iHIGH (2070-2089), iLOW (2070-2089), and the reference period (RCP8.5, 2010-2030); panel e plots iLOW minus
the reference period, panel (f) plots iHIGH minus the reference period, and panel g plots iHIGH minus iLOW. Shading denotes regions with no significant difference
according to the two-sample #-test at the 95% confidence level.

global mean surface temperature changes (Figure 1). However, iLOW has about 10% more trapped LW, primarily
as the result of stronger stratospheric moistening, and must compensate with additional SO, injection to increase
the reduction in SW by about 10%. This feedback can also be seen in the associated AOD changes (Figure 4c),
which average about 10% higher globally for iLOW than for iHIGH. See Figure S4 in Supporting Information S1
for changes to radiative forcing are broken down into total, aerosol, and cloud forcing (in particular, we note that
differences in cloud forcing between iLOW and iHIGH are the same order of magnitude (10%) as changes to
aerosol and total forcing, indicating that differences in cloud forcing can be ruled out as a significant contributor
to differences in cooling per AOD between iLOW and iHIGH).
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Figure 2. Sulfate burden and aerosol optical depth (AOD) per unit injection. Panels (a and b) plot changes to atmospheric SO, mixing ratio for iHIGH and iLOW
(2070-2089), respectively, relative to the reference period (RCP8.5, 2010-2030). Black dots denote injection locations; the solid black line denotes the location of
the tropopause in that simulation. Panel (c) plots changes to globally integrated sulfur column burden (iHIGH and iLOW 2070-2089 minus RCP8.5 2070-2089) as a
function of injected sulfur; each point is 1 year of data. Black lines denote lines of best fit constrained through the origin; the slope of the line denotes sulfur lifetime
in years, displayed as text next to each line. Panel (d) plots zonal mean day-night stratospheric 550 nm AOD divided by SO, injection rate for iHIGH and iLOW

(2070-2089); shading denotes ensemble spread.

3.4. Quantifying the Relative Contribution of Different Factors

To determine the relative importance of lifetime and size effects and the water vapor feedback, we decompose the

relationship between injection rate and surface cooling as follows:

i
Cooling = injection rate X — AQD coong ¢))
injection rate AOD
Evaluating Equation 1 for each iHIGH and iLOW, and taking the ratio:
Cooling (HIGH) _ inj.rate (HIGH) _ AOD perinj. i(HIGH)  °C per AOD (iHIGH) 5
Cooling iILOW) - inj.rate iILOW)  AOD perinj. iLOW)  °Cper AOD (iLOW) 2)

Since iHIGH and iLOW provide nearly identical global mean cooling, the left side of Equation 2 is unity, and we
move the ratio of injection rates to the left side:
inj. rate iILOW)  AOD per inj. iHIGH)
inj. rate (iIHIGH) ~ AOD perinj. iLOW)

°Cper AOD (iHIGH)
°C per AOD (iLOW)

3

Neglecting differences in the spatial patterns of AOD, which are small, differences in the ratios of AOD per
injection rate for iLOW and iHIGH are determined by the net sum of lifetime and size effects (Figure 5a),
and the differences in cooling per unit AOD are determined by radiative feedbacks (Figure 5b). Since the
methane lifetime feedback is not simulated in CESM1, and differences in temperature gradients and cloud ice
in the tropical upper troposphere are small between iHIGH and iLOW, the differences seen in Figure 5b are
dominated by the water vapor feedback. During the experimental period, the ratio of AOD to SO, injection
(lifetime and size factors) is approximately 51% higher for iHIGH compared to iLOW, and the ratio of cooling
per unit AOD (the water vapor feedback) is approximately 9% higher. Therefore, Equation 3 simplifies to
1.64 ~ 1.51 x 1.09 (the two sides are not perfectly equal due to rounding; more detailed calculations can be
found in Table S1 in Supporting Information S1), and the net contribution of lifetime and size factors (51%
higher for iHIGH) is approximately 5-6 times higher than the contribution of the water vapor feedback (9%
higher for iHIGH) to the increased injection rate for iLOW. This ratio is not perfectly uniform over time
(Figure 5c); most prominently, AOD per unit SO, injection decreases over time for iHIGH (Figure 5a), which
we attribute primarily to aerosol coagulation.
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Figure 3. Air temperature and the tropopause. Panels (a and b) plot differences in zonally-averaged air temperature for iHIGH and iLOW (2070-2089), respectively,
relative to the reference period (RCP8.5 2010-2030). Shading indicates regions with no significant difference according to the two-sample #-test at the 95% confidence
level; the solid black line denotes the ensemble mean tropopause. Panel (c) plots average, area-weighted air temperature between 20°N and 20°S as a function of altitude
for iHIGH and iLOW (2070-2089) and the RCP8.5 reference period (2010-2030). Panels (d and e) plot tropopause pressure altitude and cold-point temperature,
respectively (area-weighted between 20°N and 20°S) over time for the ensemble averages of iHIGH, iLOW, and RCP8.5; faint lines denote individual ensemble
members, and thick lines denote ensemble averages.

4. Discussion

Fully understanding possible trade-offs of using different injection altitudes, and the physical mechanisms which
govern them, is necessary to inform future decision-making for SAI, as the high altitude required for tropical
injection represents a significant practical barrier to implementation. Many Earth System Model simulations of
SAI have assumed injection altitudes on the order of a few kilometers above the tropopause, ranging from 21
to 25 km for injection at 15°N/S and 21-23 km for injection at 30°N/S (Kravitz et al., 2017; Lee et al., 2020;
MacMartin et al., 2022; Richter et al., 2022; Tilmes, Richter, Kravitz, et al., 2018; Visioni et al., 2019, 2021),
but injection altitudes could range from just above the tropopause (e.g., injection altitudes of 18—19 km in the
tropics) to 25 km or higher. The estimated cost of deployment increases rapidly with injection altitude (McClellan
et al., 2012; Smith et al., 2022); existing commercial and military aircraft are not capable of lofting payloads
of the required size to even 15 km altitude (Smith & Wagner, 2018), a deployment at 20 km would require the
development of a novel aircraft (Bingaman et al., 2020), and injections at or above 25 km would likely have
substantially increased cost, complexity, and risk relative to lower-altitude injections (Smith et al., 2022). While
injecting less SO, overall could decrease the risk of hazards to humans and ecosystems, the increasing cost per
unit injection of deployment with altitude is likely nonlinear and contains discontinuities (as any given tech-
nology will have a maximum operating altitude, deployment above which would require developing a different
technology). This study considered only two sets of injection altitudes, meaning that more work is needed to fully
map trade-offs (both climatological and logistical) between injections at different altitudes. For example, iLOW
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Figure 4. Changes to stratospheric water vapor, top-of-atmosphere (TOA) shortwave (SW) and longwave (LW) forcing, and
aerosol optical depth (AOD). Panel (a) plots monthly changes to stratospheric water vapor for iHIGH (circles) and iLOW
(triangles), relative to the reference period ensemble mean, against global mean AOD. Stratospheric water vapor is computed
as the integral of all water vapor above the tropopause. Each data point represents one monthly mean. Color scale indicates
the quantity of SO, injected that year; black lines denote lines of best fit for each simulation for data with AH,0(v) > 0. Panel
(b) plots global mean TOA SW and LW changes for iHIGH and iLOW (2070-2089) relative to the reference period; error
bars represent ensemble spread. Forcing is shown positive downward (i.e., negative for cooling and positive for warming).
Panel (c) plots zonal mean stratospheric day-night 550 nm AOD for iHIGH and iLOW (2070-2089); shading denotes
ensemble spread.
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Figure 5. Differences in aerosol optical depth (AOD) per Tg SO, injection (a) and cooling per unit 0.1 AOD (b), which contribute to increased injection for iLOW
relative to iHIGH. Shading denotes ensemble spread. Panel (c) shows the relative sizes of the increased AOD per Tg SO, injection (green) and increased cooling per 0.1
AOD (yellow) for iHIGH relative to iLOW.
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causes smaller decreases in southern hemisphere column ozone than iHIGH, despite the higher injection rate (see
Tilmes et al. (2021), Figure 4).

This study is also limited by the consideration of only one injection strategy and only one climate model. The
relationship between injection quantity and AOD varies with injection latitude (Tilmes et al., 2017; Visioni
et al., 2023; Zhang et al., 2023); therefore, the efficiency as a function of altitude, and the relative contributions
of the different factors, could change for strategies which inject at latitudes other than 15° or 30°N or S, or which
inject at substantially different ratios at these latitudes. Aerosol representation also remains an important source of
uncertainty in climate model projections of SAI impacts, and considering similar studies across multiple models
would help bound and quantify uncertainty as to how different factors and feedbacks affect SAI efficiency, and
why. For instance, while we find that the longer net lifetime of high-altitude aerosols is not offset by the reduced
lifetime due to coagulation (and that the net sum of these opposing effects on total injection rate is still much larger
than the sum of radiative feedbacks), not all studies agree; Kleinschmitt et al. (2018), who injected at the equator
using a different model, reported that these two effects were comparable enough to cancel out, with AOD per
unit injection approximately constant with injection altitude. This may be due to SAI locking the quasi-biennial
oscillation (QBO) into a permanent easterly shear under equatorial SAI, resulting in greater tropical confinement
of aerosols (Aquila et al., 2014; Niemeier et al., 2020). Lastly, we note that while we use two broad categories—
lifetime and size factors, and radiative feedbacks—based on whether they affect AOD per unit injection rate or
cooling per unit AOD, respectively, other factors and feedbacks not considered here could be important in other
models or in a real-world deployment scenario. For example, we neglect the methane feedback because aerosols
are not coupled to the photolysis scheme in our model, but in another study with a different model the contribu-
tion of the methane feedback was found to be larger than that of the water vapor feedback (Visioni et al., 2017).

Data Availability Statement

Computing and data storage resources, including the Cheyenne supercomputer (https://doi.org/10.5065/
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