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Abstract
We give a geometric account of the relative motion or the shape dynamics of
N point vortices on the sphere exploiting the SO(3)-symmetry of the system.
The main idea is to bypass the technical difficulty of the SO(3)-reduction by
first lifting the dynamics from S2 to C2. We then perform the U(2)-reduction
using a dual pair to obtain a Lie–Poisson dynamics for the shape dynamics.
This Lie–Poisson structure helps us find a family of Casimirs for the shape
dynamics. We further reduce the system by TN−1-symmetry to obtain a Pois-
son structure for the shape dynamics involving fewer shape variables than those
of the previous work by Borisov and Pavlov. As an application of the shape
dynamics, we prove that the tetrahedron relative equilibria are stable when all
of their circulations have the same sign, generalizing some existing results on
tetrahedron relative equilibria of identical vortices.
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1. Introduction

1.1. Dynamics of point vortices on sphere

Consider N point vortices on the two-sphere S2
R ⊂ R3 with (fixed) radius R> 0 centered at the

origin. Let {xi ∈ S2
R}Ni=1 be the positions of the point vortices with circulations {Γi}Ni=1. Then

the equations of motion of the point vortices are
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ẋi =
1

2πR

∑
1⩽j⩽N
j̸=i

Γj
xj× xi
|xi− xj|2

(1)

for i ∈ {1, . . . ,N}; see, e.g. Bogomolov [3], Kimura and Okamoto [17], and Newton [34,
chapter 4].

This system of equations is Hamiltonian in the following sense: Let Ωi be the area form of
the ith copy of S2

R and define the following two-form on (S2
R)

N:

ΩS2
R
:=

N∑
i=1

Γiπ
∗
i Ωi with Ωi (xi)(vi,wi) :=

1
R
xi · (vi×wi) (2)

where πi : (S2
R)

N→ S2
R is the projection to the ith copy. The corresponding Poisson bracket on

(R3)N (see appendix B for details) is, for all smooth F,H : (R3)N→ R,

{F,H}R3 (x) :=
N∑
i=1

R
Γi
xi ·
(
∂F
∂xi
× ∂H

∂xi

)
. (3)

Define the Hamiltonians on (S2
R)

N and (R3)N as follows:

HS2
R
(x1, . . . ,xN) :=−

1
4πR2

∑
1⩽i<j⩽N

ΓiΓj ln
(
2(R2− xi · xj)

)
, (4a)

and

HR3(x1, . . . ,xN) :=−
1

4πR2

∑
1⩽i<j⩽N

ΓiΓj ln
(
|xi− xj|2

)
. (4b)

Note that the former is the restriction of the latter to (S2
R)

N. Then we obtain (1) as a Hamilto-
nian system on (S2

R)
N or (R3)N as follows:

iXΩS2
R
= dHS2

R
or ẋi = {xi,HR3} , (5)

where X is a vector field on (S2
R)

N.

Remark 1.1. The Hamiltonians (4) have singularities at the collision points, i.e. xi = xj with
i 6= j. Following Kirwan [19, remark 1.1], we will ignore this issue for now because the con-
crete expression for the Hamiltonian does not affect the geometry of our problem as long as
it possesses the SO(3)-symmetry described below. Once we obtain the Hamiltonian for the
shape dynamics, we may remove the singularities by imposing conditions on the correspond-
ing variables accordingly. Alternatively, one may also introduce a regularization parameter to
remove the singularities from the outset; see, e.g. Vankerschaver and Leok [48].

The dynamics of point vortices on the sphere has been studied quite extensively because it
is not only interesting mathematically but also has geophysical and astrophysical applications.
For example, Dibattista and Polvani [7] and Kimura [16] studied the motion of a vortex pair
(N= 2), and Kidambi and Newton [15] solved the equations of relative motion (see (6) below)
forN= 3. Borisov and Lebedev [5] and Sakajo [41] studied the integrable three-vortexmotions
on the sphere; see also Sakajo [42] for an integrable four-vortex motion on sphere with zero
moment of vorticity, and Sakajo and Yagasaki [43, 44] for studies on chaotic motions of N
point vortices on the sphere.

One can also generalize the basic equation (1) to those vortices on a rotating sphere, and
their dynamics has been studied in, e.g. Jamaloodeen and Newton [14], Newton and Sakajo
[35], Newton and Shokraneh [36] and Laurent-Polz [23].

1001



Nonlinearity 36 (2023) 1000 T Ohsawa

Stability of fixed and relative equilibria of point vortices on the sphere is one of the major
topics of research as well. The linear stability of rings of identical vortices was studied by
Polvani and Dritschel [40], and its nonlinear stability by Boatto and Cabral [2] (see also
Laurent-Polz et al [24]). Lim et al [26] proved the existence of a number of relative equilibria
of identical vortices, and Laurent-Polz et al [24] studied nonlinear stability of many different
types of relative equilibria involving one or two ring of vortices—each consisting of identical
vortices—with and without one or two polar vortices; see also Laurent-Polz [22] and Boatto
and Simó [1]. See also García-Azpeitia and García-Naranjo [9] for the existence of periodic
orbits ofN identical vortices and small nonlinear oscillations near the Platonic solid equilibria,
and also Montaldi and Tokieda [32] for the bifurcation of the heptagon equilibrium with the
Gaussian curvature being the parameter.

1.2. Relative motion and shape dynamics

The focus of this paper is the relative motion or the shape dynamics of the point vortices,
i.e. we are interested in the set of equations that governs the evolution of the ‘shape’ or relative
positions of the point vortices—regardless of where the vortices are located on the sphere. For
example, for N= 3, it is the dynamics of the shape of the triangle formed by the three point
vortices, regardless of its position and orientation on the sphere.

Defining the inter-vortex (Euclidean) distance

ℓij := |xi− xj|

for i, j ∈ {1, . . . ,N} with i 6= j and the (signed) volume

Vijk := xi · (xj× xk)

of the parallelepiped formed by vectors xi,xj,xk for i, j,k ∈ {1, . . . ,N} with i 6= j 6= k, we can
derive the equations of relative motion

d
dt
ℓ2ij =

1
πR

N∑
1⩽k⩽N
k̸=i̸=j

ΓkVijk

(
1
ℓ2jk
− 1

ℓ2ki

)
(6)

from (1); see, e.g. Newton [34, section 4.2].

1.3. Hamiltonian formulation of shape dynamics

Given that the original equation (1) is a Hamiltonian system, a natural question to ask is
whether the equation (6) of relative motion or shape dynamics are also a Hamiltonian system.
In fact, Borisov and Pavlov [6] derived the Poisson bracket for the above ‘internal’ variables
{ℓij}1⩽i<j⩽N ∪{Vijk}1⩽i<j<k⩽N in a direct manner from the Poisson bracket (3) for the original
dynamics (1).

A more geometric perspective of this question is the following: Intuitively, it is clear that
the dynamics of N point vortices governed by (1) would have SO(3)-symmetry under the
rotational action

SO(3)× (S2
R)

N→ (S2
R)

N; (A,(x1, . . . ,xN)) 7→ (Ax1, . . . ,AxN).

This action is clearly symplectic with respect to the symplectic form (2) because the volume
form of each sphere is invariant under the rotational action. One also sees that the Hamilto-
nian (4a) is SO(3)-invariant as well. Taking the quotient by SO(3), we identify all the con-
figurations of the vortices that are congruent to each other as a single ‘shape’. So if we could
perform the symplectic reduction (see Marsden and Weinstein [29] and [30, sections 1.1 and
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1.2]) of (1) by the SO(3)-symmetry, then the resulting reduced dynamics would be essentially
the equation (6) of relative motion. Such a geometric picture of shape dynamics has been also
applied to the N-body problem of classical mechanics (see, e.g. Iwai [13], Montgomery [33],
and references therein) and also point vortices on the plane; see, e.g. [4, 20, 37].

Unfortunately, the reduction by SO(3)-symmetry is quite intricate. The momentum map
associated with the above SO(3)-action gives the following well-known invariant:

I : (S2
R)

N→ so(3)∗ ∼= R3; I(x1, . . . ,xN) :=
1
R

N∑
i=1

Γixi.

The difficulty is that the reduced space or the Marsden–Weinstein quotient I−1(c)/SO(3)c
with c ∈ R3 is tricky to work with when describing the reduced dynamics, where SO(3)c
stands for the isotropy group {A ∈ SO(3) | Ac= c}. While Kirwan [19] found some topolo-
gical invariants of the reduced space, the focus was rather on the topology of the space than
the dynamics. Indeed, it is difficult to find coordinates for the reduced space in general, and
concrete treatments of the reduced dynamics are limited to some special cases; see Pekarsky
and Marsden [39] for the corresponding Poisson reduction in the special case with N= 3 and
Lim [27] for an explicit treatment of the reduction for N= 4.

1.4. Main results and outline

Our main contribution is the geometric treatment of the shape dynamics exploiting the SO(3)-
symmetry mentioned above. Specifically, we proceed as follows to sidestep the difficulty of
the SO(3)-reduction; see also figure 1.

(a) We first lift the dynamics of vortices from S2
R to C2 in section 2. For N vortices, the lifted

dynamics is then in (C2)N, which is identified with the space C2×N of 2×N complex
matrices. The lifted dynamics possesses a TN := S1× ·· ·× S1 (N copies)-symmetry, and
the symplectic reduction by the symmetry recovers the vortex dynamics on the sphere; see
proposition 2.1.

(b) In section 3, we perform a U(2)-reduction of the lifted dynamics using a dual pair of
Skerritt and Vizman [46] defined on C2×N. This essentially corresponds to the SO(3)-
reduction of the original dynamics because itsSU(2) subgroup symmetry gives theSO(3)-
symmetry of the original dynamics on the sphere. The use of the dual pair facilitates the
reduction, because the dual pair essentially allows one to embed the reduced space to the
dual of a Lie algebra, yielding a Lie–Poisson equation for the reduced dynamics; see,
e.g. Weinstein [49], Libermann and Marle [25, section IV.7], and Ortega and Ratiu [38,
chapter 11]. In other words, instead of having the reduced dynamics in a complicated quo-
tient manifold, the reduced dynamics is given by an ordinary differential equation (ODE)
on a vector space. It also helps us find a family of Casimirs associated with the Lie–Poisson
structure; see proposition 3.6.

(c) In section 4, we further reduce the Lie–Poisson dynamics using the TN−1-symmetry to get
rid of the extra symmetry picked up by the lifting1. The resulting Poisson structure gives
a Hamiltonian formulation of the shape dynamics; see theorem 4.3.

1 The reason why we have TN−1-symmetry as opposed to TN is that one copy of S1 is taken care of in the U(2)-
reduction in the previous step.
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Figure 1. Instead of reducing the dynamics on (S2
R)

N by SO(3) directly, first lift it
to (C2)N (which picks up TN-symmetry) and then apply reduction by U(2) (which is
facilitated by a dual pair); this results in a Lie–Poisson dynamics in a coadjoint orbit
O ⊂ u(DΓ)

∗. We may then further reduce the system by TN−1-symmetry to get rid of
the extra symmetry picked up in the lifting process.

This geometric treatment results in fewer variables for the shape dynamics compared to
those ‘internal’ variables of Borisov and Pavlov [6]. In fact, our shape dynamics is described
using (N− 1)2 variables, but it turns out that (N− 1)(N− 2)/2 of those implicitly depend on
the rest; henceN(N− 1)/2 variables essentially. On the other hand, the number of the ‘internal’
variables of [6] is N(N2− 1)/6.

Another advantage of our formulation is that we can find a family of Casimirs exploiting
the underlying algebraic structure of the Lie–Poisson bracket on O. This is not easy with the
Poisson bracket of [6] because they obtained it ‘by hand’, i.e. the algebraic structure of their
Poisson bracket is not clear.

Note that our parametrization does not in general give actual coordinate charts for the shape
space. Indeed, since the original dynamics is 2N-dimensional, the shape space after theSO(3)-
reduction would not have dimensions such as (N− 1)2. Instead, we sidestep the difficulty of
directly dealing with the shape space by describing the shape dynamics using the (N− 1)2

coordinates for the ambient space for the shape space. The reason for the increase in the num-
ber of variables is that the U(2)-reduced dynamics in the coadjoint orbit O (see figure 1) is
described in terms of the coordinates for u(DΓ)

∗; note that this is generally the case with
Lie–Poisson dynamics.

Although this redundancy of shape variables is certainly a drawback, the resulting shape
dynamics provides a means to analyze the stability of relative equilibria (i.e. the stability of
the shape formed by the vortices). To demonstrate this idea, we apply the energy–Casimir
method to our shape dynamics with N= 4 and find a sufficient condition for the stability of
tetrahedron relative equilibria in section 5. Our result concerns the non-identical case, i.e.
Γ1 6= Γ2 6= Γ3 6= Γ4, and generalizes those results of Kurakin [21] and Meleshko et al [31]
for the identical case with Γ1 = Γ2 = Γ3 = Γ4. We also mention in passing that Pekarsky and
Marsden [39] used the energy–momentum method to find a sufficient condition for stability
of non-identical equilateral triangle relative equilibria, i.e. N= 3 with Γ1 6= Γ2 6= Γ3. So our
result is also an extension of theirs to N= 4 as well.
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2. Lifted vortex dynamics in C2

We would like to first lift the vortex dynamics from S2
R to C2. This idea is inspired by

Vankerschaver and Leok [48], where they lift the dynamics from S2
R to S3√

R
via the Hopf fibra-

tion S3√
R
→ S2

R. We shall show that our approach naturally gives rise to the Hopf fibration by

identifying the reduced space S2
R = S3√

R
/S1 as a Marsden–Weinstein quotient.

2.1. Vortex equations in C2

Let us show how the lifting from figure 1 works. Since the Hopf fibration map gives rise to
a map from C2 to R3, one may relate the distance in C2 with that in R3 as shown in (D.2)
of appendix D.2. Replacing the inter-vortex distance in R3 in the Hamiltonian (4b) by the
corresponding distance in C2 using (D.2), we define a Hamiltonian H : (C2)N→ R as

H(φ) :=− 1
4πR2

∑
1⩽i<j⩽N

ΓiΓj ln

[(
‖φi‖2 + ‖φj‖2

)2
− 4|φ∗

i φj|2
]
, (7)

where we used the shorthand

φ= (φ1, . . . ,φN) ∈ (C2)N,

and defined the norm ‖φ‖ :=
√
φ∗φ induced by the natural inner product on C2. We also

write

φi =

[
zi
ui

]
with zi,ui ∈ C ∀i ∈ {1, . . . ,N}.

We define a symplectic form Ω on (C2)N as follows:

Ω :=− 2
R

N∑
i=1

Γi Im(dφ∗
i ∧ dφi) ,

or Ω=−dΘ with

Θ :=− 2
R

N∑
i=1

Γi Im(φ∗
i dφi) . (8)

Then the Hamiltonian vector field (‘c.c.’ stands for the complex conjugate of the preceding
term)

X= φ̇i
∂

∂φi
+ c.c.

defined by the Hamiltonian system iXΩ= dH gives the following Schrödinger-like lifted vor-
tex equation on C2 for i= 1, . . . ,N:

Γiφ̇i =−
i
2
∂H
∂φ∗

i
. (9)

2.2. TN-symmetry and momentum map

The above lifted vortex equation (9) possesses a symmetry under the natural action of the torus

TN = (S1)N =
{
eiθ := (eiθ1 , . . . ,eiθN) | θi ∈ [0,2π)for i= 1, . . . ,N

}
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defined as

TN× (C2)N→ (C2)N; (eiθ,φ) 7→
(
eiθ1φ1, . . . ,e

iθNφN
)
=:eiθ ·φ.

Indeed, one easily sees that the one-form (8) and the Hamiltonian (7) are invariant under the
action. Let ω ∈ (T1S1)N ∼= RN. Its corresponding infinitesimal generator is

ω(φ) =
d
ds
eisω ·φ

∣∣∣∣
s=0

= i(ω1φ1, . . . ,ωNφN).

Hence the associated momentum map J : (C2)N→ (RN)∗ ∼= RN satisfies

J(φ) ·ω =Θ(φ) ·ω(φ)

=− 2
R

N∑
i=1

Γi Im(iωiφ
∗
i φi)

=− 2
R

N∑
i=1

Γiωi‖φi‖2

=− 2
R

(
Γ1‖φ1‖2, . . . ,ΓN‖φN‖2

)
·ω.

As a result, we obtain

J(φ) =− 2
R

(
Γ1‖φ1‖2, . . . ,ΓN‖φN‖2

)
.

2.3. S1-reduction

Now let us explain the TN-reduction part from figure 1. Since the Hamiltonian (7) is invariant
under the above TN-action, its associated momentum map J is an invariant of (9). Therefore,
setting Γ := (Γ1, . . . ,ΓN) ∈ RN, the level set

J−1(−2Γ) = S3√
R
× ·· ·× S3√

R
=
(
S3√

R

)N
is an invariant manifold of the dynamics. In fact, one can show the following:

Proposition 2.1. The symplectic reduction of (C2)N by the above TN-symmetry yields the
Marsden–Weinstein quotient

J−1(−2Γ)/TN =
(
S3√

R
/S1
)
× ·· ·×

(
S3√

R
/S1
)
=
(
S2
R

)N
.

In addition, the lifted dynamics (9) is reduced to the point vortex dynamics (1) on
(
S2
R

)N
.

Proof. See appendix B.

3. U(2)-reduction of N-vortex dynamics in C2

This section corresponds to the U(2)-reduction part in figure 1. The lifted dynamics turns out
to possess a U(2)-symmetry, and its SU(2) subgroup symmetry corresponds to the SO(3)-
symmetry of the original system on S2

R. The advantage of the lifted dynamics is that the cor-
responding U(2)-action on C2 is much more tractable compared to the SO(3)-action on S2

R
when it comes to the symplectic reduction. We exploit the dual pair of Skerritt and Vizman
[46] to show that the U(2)-reduced dynamics is a Lie–Poisson dynamics.
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The upshot of this section is that we have a pair of momentum maps on (C2)N ∼= C2×N:

u(2)∗
K←−C2×N L−→u(N)∗Γ.

We shall explain the notation and the details along the way, but the dual pair implies that the
reduction byU(2)-symmetry of the lifted dynamics (9) inC2×N yields a Lie–Poisson dynamics
in u(N)∗Γ.

3.1. U(2)-symmetry of lifted N-vortex dynamics

Let us first identify (C2)N with the space of 2×N complex matrices as follows:

(C2)N→ C2×N; φ= (φ1, . . . ,φN) 7→ Φ= [φ1 . . .φN].

Then we may rewrite the canonical one-form (8) as

Θ(Φ) =− 2
R
Im(tr(DΓΦ

∗dΦ)) , (10)

where we defined

(11)

Now consider the (left) U(2)-action on C2×N defined as

U(2)×C2×N→ C2×N; (Y,Φ) 7→ YΦ. (12)

It is clear that this action leavesΘ invariant, and hence is a canonical action with respect to the
symplectic form Ω=−dΘ. It is also easy to see that the Hamiltonian (7) is invariant under
the action as well; hence U(2) is a symmetry group of the lifted dynamics (9).

Remark 3.1. As is well known, it is not the U(2)-action but the SU(2)-action on C2 that
gives rise to the natural SO(3)-action on R3. So the above U(2)-symmetry does not exactly
correspond to the rotational symmetry of the point vortices dynamics on S2

R. In fact, the above
U(2)-symmetry combines the global phase symmetry (see remark 4.1 below) and the rotational
symmetry of the system. We perform the U(2)-reduction here because the dual pair to be
employed below is readily available with this setting, whereas it is unknown with SU(2).

Lemma 3.2. The momentum map K : C2×N→ u(2)∗ associated with the above U(2)-
action (12) is

K(Φ) =− i
R
ΦDΓΦ

∗ =− i
R

N∑
i=1

Γiφiφ
∗
i =−

i
R

N∑
i=1

Γi

[
|zi|2 ziūi
z̄iui |ui|2

]
. (13)

Proof. We equip u(2) with the inner product

〈ξ,η〉 := 2tr(ξ∗η), (14)

and identify the dual u(2)∗ with u(2) via this inner product. Since the infinitesimal generator
of an arbitrary element ξ ∈ u(2) is

ξC2×N(Φ) = ξΦ,
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the associated momentum map K : C2×N→ u(2)∗ satisfies

〈K(Φ), ξ〉=Θ(Φ) · ξC2×N(Φ)

=− 2
R
Im(tr(DΓΦ

∗ξΦ))

=− 2
R
Im(tr(ΦDΓΦ

∗ξ))

=
2
R
i tr(ΦDΓΦ

∗ξ)

=
2
R
tr((−iΦDΓΦ

∗)∗ξ)

=

〈
− i
R
ΦDΓΦ

∗, ξ

〉
.

Hence the expression (13) follows.

3.2. Lie group U(DΓ) and Lie algebras u(DΓ) and u(N)Γ

Using DΓ defined in (11), let us also define a Lie group

U(DΓ) :=
{
U ∈ CN×N | UDΓU

∗ = DΓ

}
,

and its (right) action on C2×N:

U(DΓ)×C2×N→ C2×N; (U,Φ) 7→ ΦU.

Again, it is clear that this action leaves Θ invariant as well; see (10).
The Lie algebra of U(DΓ) is given by

u(DΓ) :=
{
ζ̃ ∈ CN×N | ζ̃DΓ +DΓζ̃

∗ = 0
}
.

Then we have the following vector space isomorphism between u(DΓ) and the Lie algebra
u(N) of the unitary group U(N):

u(DΓ)→ u(N); ζ̃ 7→ ζ̃DΓ=:ζ.

Note that this is not a Lie algebra isomorphism.However, wemay equip u(N)with themodified
Lie bracket

[ξ,η]Γ := ξD−1
Γ η− ηD−1

Γ ξ (15)

to define a Lie algebra u(N)Γ. Then the above vector space isomorphism becomes a Lie algebra
isomorphism between u(DΓ) (with the standard commutator) and u(N)Γ with the modified Lie
bracket (15).

Let us equip u(N)Γ with the inner product in the same form as in (14), and identify the dual
u(N)∗Γ with u(N)Γ via this inner product; hence we may identify u(DΓ)

∗ with u(N)Γ as well.
Under this identification, the adjoint and coadjoint representations of U(DΓ) on u(N)Γ and
u(N)∗Γ are

AdU ξ = UξU∗, Ad∗Uλ= U∗λU, (16)

and also the corresponding u(DΓ)-representations are

adξ η = [ξ,η]Γ, ad∗ξ λ= λξD−1
Γ −D

−1
Γ ξλ (17)

for every U ∈ U(DΓ), ξ,η ∈ u(N)Γ, and λ ∈ u(N)∗Γ.
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Lemma 3.3. The momentummapL : C2×N→ u(N)∗Γ associated with the aboveU(DΓ)-action
is

(18)

Proof. The infinitesimal generator of an arbitrary element ζ̃ ∈ u(DΓ) is

ζ̃C2×N(Φ) = Φζ̃ =ΦζD−1
Γ .

Hence the associated momentum map L : C2×N→ u(N)∗Γ satisfies

〈L(Φ), ζ〉=Θ(Φ) · ζ̃C2×N(Φ)

=− 2
R
Im
(
tr
(
DΓΦ

∗ΦζD−1
Γ

))
=− 2

R
Im(tr(Φ∗Φζ))

=
2
R
i tr(Φ∗Φζ)

=
2
R
tr((−iΦ∗Φ)∗ζ)

=

〈
− i
R
Φ∗Φ, ζ

〉
,

wherewe used the fact that tr(Φ∗Φζ) is pure imaginary. Hence the expression (18) follows.

3.3. U(2)-reduction via a dual pair

Proposition 3.4. The Hamiltonian reduction of the lifted dynamics (9) by the U(2)-symmetry
yields the Lie–Poisson dynamics

λ̇= ad∗δh/δλλ (19)

in u(N)∗Γ, where h : u(N)
∗
Γ→ R is defined as

h(λ) :=− 1
4πR2

∑
1⩽i<j⩽N

ΓiΓj ln

(
R2

(
1
2
(λi+λj)

2− |λij|2
))

. (20)

Proof. As alluded at the beginning of the section, the pair of momentum maps K and L form
a dual pair in the sense of Weinstein [49]; see also [25, section IV.7] and [38, chapter 11].
Specifically, the above U(2)- and U(DΓ)-actions along with the associated momentum maps
K and L define so-called mutually transitive actions on C2×N (see Skerritt [45] and Skerritt
and Vizman [46]) in the following sense: (a) TheU(2)-action and theU(DΓ)-action commute;
(b) they are symplectic actions; (c) the momentummapsK andL are equivariant; (d) each level
set of K is a U(DΓ)-orbit, and each level set of L is an U(2)-orbit. In fact, this is essentially a
special case of Skerritt and Vizman [46, section 3].
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This implies the following (see, e.g. [46, proposition 2.8]): For every Φ0 ∈ C2×N, let κ0 :=
K(Φ0) and λ0 := L(Φ0); then the Marsden–Weinstein quotient K−1(κ0)/U(2)κ0 is symplec-
tomorphic to the coadjoint orbit Oλ0 passing through λ0 ∈ u(N)∗Γ, where Oλ0 is equipped
with the (−)-Kirillov–Kostant–Souriau (KKS) symplectic structure (see, e.g. Kirillov [18,
chapter 1] and Marsden and Ratiu [28, chapter 14] and references therein; note that the
U(DΓ)-action is a right action, and hence it is (−)-KKS): For every λ ∈ Oλ0 ⊂ u(N)∗Γ and
ξ,η ∈ u(N)Γ,

ΩOλ0
(λ)
(
−ad∗ξ λ,−ad∗η λ

)
:=−〈λ, [ξ,η]Γ〉. (21)

This motivates us to set

(22)

or in view of (18),

λi =

√
2
R
‖φi‖2 for i= 1, . . . ,N, λij =

2
R
φ∗
i φj for 1⩽ i< j⩽ N. (23)

We also define a collective Hamiltonian [11] h so that h ◦L= H (see (7) for an expression
of H). Then, the reduced dynamics in the Marsden–Weinstein quotient K−1(κ0)/U(2)κ0 is
equivalent to the Lie–Poisson dynamics (19) in u(N)∗Γ.

3.4. Lie–Poisson bracket on u(N)∗Γ

One may also write the Lie–Poisson equation (19) as

λ̇= {λ,h} ,

where the Poisson bracket is the (−)-Lie–Poisson bracket on u(N)∗Γ corresponding to the above
symplectic form (21), i.e.

{f,h}(λ) :=−
〈
λ,

[
δf
δλ

,
δh
δλ

]
Γ

〉
(24)

for all smooth f,h : u(N)∗Γ→ R. In this subsection, we would like to find a concrete expression
for the bracket.

To that end, let us first define an orthonormal basis for u(N)Γ. Let ei ∈ RN be the unit vector
whose ith component is 1, and define

Di :=−
i√
2
eie

T
i =−

i√
2
diag(ei) for i ∈ {1, . . . ,N},

Eij :=−
i
2

(
eie

T
j + eje

T
i

)
, Fij :=

1
2

(
eie

T
j − ejeTi

)
for i, j ∈ {1, . . . ,N}.

Note that Eii =
√
2Di and Fii = 0 for i ∈ {1, . . . ,N}. One then sees that

{Di}Ni=1 ∪{Eij, Fij}1⩽i<j⩽N
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forms a basis for u(N)Γ. Hence we may write an arbitrary element ξ ∈ u(N)Γ as follows:

So we may identify u(N)Γ with RN×RN(N−1) = RN2
as a vector space.

It is then straightforward calculations to see that the Lie bracket (15) on u(N)Γ satisfies the
following for all i, j,k, l ∈ {1, . . . ,N}:

[Di,Ejk]Γ =−Γ−1
i√
2
(δijFik+ δikFij), [Di,Fjk]Γ =

Γ−1
i√
2
(δijEik− δikEij),

[Eij,Ekl]Γ =−1
2

(
Γ−1
i (δikFjl+ δilFjk)+Γ−1

j (δjkFil+ δjlFik)
)
,

[Fij,Fkl]Γ =−1
2

(
Γ−1
i (δikFjl− δilFjk)−Γ−1

j (δjkFil− δjlFik)
)
,

[Eij,Fkl]Γ =
1
2

(
Γ−1
i (δikEjl− δilEjk)+Γ−1

j (δjkEil− δjlEik)
)
,

where we did not assume Einstein’s summation convention. Note that the first two are in fact
special cases of the third and the last ones, respectively, because Di = Eii/

√
2.

Using the coordinates for u(N)∗Γ ∼= u(N)Γ with respect to the above basis, we may write an
arbitrary element λ ∈ u(N)∗Γ using the coordinates (λ1, . . . ,λN,λ12, . . . ,λN−1,N) just as we did
in (25) for ξ ∈ u(N)Γ. Then we may express the Lie–Poisson bracket (24) as follows: For all
i, j,k, l ∈ {1, . . . ,N},

{λi,λj}= 0, {λi,λjk}=−i
Γ−1
i√
2
(δijλik− δikλji),

{λij,λkl}= i
(
Γ−1
i δilλkj−Γ−1

j δjkλil

)
.

(26)

Remark 3.5. As one can see in (25), we do not use entries λij with i⩾ j explicitly as coordin-
ates in u(N)Γ or u(N)∗Γ, but such entries may appear in the above Poisson bracket formulas.
However, one may define λij := 〈λ,Eij〉+ i〈λ,Fij〉 even if i⩾ j. Then it follows that λij = λ̄ji
if i> j as well as that λii =

√
2λi. So we may rewrite the above Poisson bracket formulas in

terms of the coordinates for u(N)∗Γ.

The above Lie–Poisson bracket has the following family of Casimirs:

Proposition 3.6. (a) For every j ∈ N, the function Cj : u(N)∗Γ→ R defined by

Cj(λ) := tr
(
(iDΓλ)

j
)

is a Casimir function for the Lie–Poisson bracket (26).
(b) Those Casimirs Cj with j⩾ N can be expressed in terms of {Cj}N−1

j=1 .
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Proof. See appendix C.

4. Further reduction by TN−1-symmetry

Let us now move on to the TN−1-reduction part in figure 1. Recall from section 2 that the lifted
dynamics picked up TN-symmetry. We would like to get rid of this extra symmetry.

4.1. TN−1-symmetry

Consider the action

TN−1× u(N)∗Γ→ u(N)∗Γ

defined by

(27)

where

eiθ̃ := diag
(
eiθ1 , . . . ,eiθN−1 ,1

)
∈ U(DΓ).

Note that this action restricts to the coadjoint orbits because it is a coadjoint action by elements
in U(DΓ); see (16).

Remark 4.1. Why do we consider the TN−1-action instead of the more natural TN-action?
It is because the above U(2)-symmetry took into account an S1-symmetry out of the TN-
symmetry already. This is the ‘global’ S1-phase symmetry alluded in remark 3.1: A part of
the TN-symmetry is the invariance under the S1-action that changes the phase of the entire
system by the same amount Φ 7→ eiθΦ, but this is an S1 subgroup action of (12). The above
TN−1-action takes care of the rest of the TN-symmetry the lifted dynamics picked up.

Clearly the symplectic structure (21) and the collective Hamiltonian (20) are invariant under
the above TN−1-action, and thus theU(2)-reduced dynamics (19) has the TN−1-symmetry. Let
us find the associated momentum map. Let

ω = (ω1, . . . ,ωN−1,0) ∈ (T1S1)N−1 ∼= RN−1,

and define

ωΓ := (Γ1ω1, . . . ,ΓN−1ωN−1,0)

so that

Dω = diag(ω1, . . . ,ωN−1,0),

DωΓ = diag(Γ1ω1, . . . ,ΓN−1ωN−1,0) = DΓDω = DωDΓ.
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Then the infinitesimal generator corresponding to ω is

ωu(N)∗Γ
(λ) =

d
ds

Ad∗e−isω λ

∣∣∣∣
s=0

= [iDω,λ]

= [λ,−iDω]

= λ(−iDω)DΓD
−1
Γ −D

−1
Γ DΓ(−iDω)λ

= λ(−iDωΓ)D
−1
Γ −D

−1
Γ (−iDωΓ)λ

= ad∗−iDωΓ
λ,

where we used the expression for ad∗ in (17). Then we see that ωu(N)∗Γ
(λ) = ad∗δNω/δλλ with

Nω : u(N)∗Γ→ R defined by

Nω(λ) = 〈λ,−iDωΓ〉=−2i tr(λ∗DωΓ) =
√
2
N−1∑
i=1

Γiλiωi.

The associated momentum map N : u(N)∗Γ→ (RN−1)∗ ∼= RN−1 then satisfies Nω(λ) = N(λ) ·
ωΓ, and thus we obtain

N(λ) =
√
2(Γ1λ1, . . . ,ΓN−1λN−1).

These turn out to be trivial invariants in our setting because, in view of (23) and usingφi ∈ S3√
R
,

we have λi =
√
2 for every i ∈ {1, . . . ,N}.

Note that the action (27) is not free. However, if we restrict the action to the open subset

ů(N)∗Γ := {λ ∈ u(N)∗Γ | λij 6= 0 for all i, j ∈ {1, . . . ,N} with i 6= j} ,

then the action becomes free. Its geometric interpretation is the following: If, for example,
λ12 = 0 then φ∗

1φ2 = 0, and this along with (D.3) implies |x1− x2|= 2R, i.e. vortices 1 and 2
are in the antipodal points. In this case, there is no well-defined geodesic connecting the two
vortices on the sphere, and hence the ‘shape’ of the vortices on the sphere is not well-defined.

4.2. Reduction by TN−1-symmetry

Let us define

µijk := λijλkiλjk ∈ C̊ with C̊ := C\{0},

and, also as a shorthand,

µij := µijN = λijλ̄iNλjN = λijλNiλjN ∈ C̊ (28)

for all i, j ∈ {1, . . . ,N− 1}with i< j. These variables provide an alternative parametrization of
the entries {λij}1⩽i<j⩽N−1 of λ, i.e. those (N− 1)(N− 2)/2 entries of λ in (22) that are above
the main diagonal except those in the last column.

Therefore, we may parametrize λ ∈ ů(N)∗Γ as follows:

λ= (λ1, . . . ,λN,λ1N, . . . ,λN−1,N,µ12, . . . ,µN−2,N−1) ∈ RN× C̊N−1× C̊(N−1)(N−2)/2.

Then theTN−1-action (27) becomes trivial on the variables {µij}1⩽i<j⩽N−1, and hence we have

ů(N)∗Γ/TN−1 = RN×
(
C̊N−1/TN−1

)
× C̊(N−1)(N−2)/2

= RN×RN−1
+ × C̊(N−1)(N−2)/2

={(λ1, . . . ,λN, |λ1N|, . . . , |λN−1,N|,µ12, . . . ,µN−2,N−1)} .
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Then the Poisson bracket on ů(N)∗Γ drops to the quotient by the standard Poisson reduction;
see, e.g. Marsden and Ratiu [28, theorem 10.5.1]. However, we may disregard (λ1, . . . ,λN)
from the variables because

λi =

√
2
R
‖φi‖2 =

√
2 for i= 1, . . . ,N.

Also, since we have |λij|2 = 4− (ℓij/R)2, we impose

0< ℓij < 2R ⇐⇒ 0< |λij|< 2

to avoid collisions and having vortices at antipodal points. As a result, we have the following
parametrization for the shape dynamics of N point vortices:

SN := (0,2)N−1× C̊(N−1)(N−2)/2

= {(|λ1N|, . . . , |λN−1,N|,µ12, . . . ,µN−2,N−1)=:ζ},

Note that the dimension of this manifold is (N− 1)2, whereas the number of the ‘internal’
variables {ℓij}1⩽i<j⩽N ∪{Vijk}1⩽i<j<k⩽N in Borisov and Pavlov [6] is N(N2− 1)/6.

One can also show that

Reµijk = Re(λijλkiλjk)

=
8
R3

Re
(
(φ∗

i φj)(φ
∗
kφi)(φ

∗
j φk)

)
=

4
R2

(
|φ∗

i φj|
2
+ |φ∗

kφi|
2
+
∣∣φ∗

j φk
∣∣2−R2

)
= |λij|2 + |λki|2 + |λjk|2− 4,

and

Imµijk =
2
R3
Vijk with Vijk := xi · (xj× xk).

Thus, using (28),

Reµij = ReµijN =
(Reµij)2 +(Imµij)

2

|λiN|2|λjN|2
+ |λiN|2 + |λjN|2− 4, (29)

and hence Reµij implicitly depends on |λiN|, |λjN|, and Imµij. Therefore, our shape dynamics
is effectively defined on the N(N− 1)/2-dimensional manifold

(0,2)N−1×R(N−1)(N−2)/2 = {(|λ1N|, . . . , |λN−1,N|, Imµ12, . . . , ImµN−2,N−1)}.

However, practically speaking, it is simpler to retain {Reµij}1⩽i<j⩽N−1 as independent vari-
ables and impose (29) as constraints instead. In other words, we may define functions

fij : SN→ R; fij(ζ) := Reµij−
(Reµij)2 +(Imµij)

2

|λiN|2|λjN|2
− |λiN|2− |λjN|2 + 4 (30)

with 1⩽ i< j⩽ N− 1. Then the shape dynamics is on the level set
⋂

1⩽i<j⩽N−1 f
−1
ij (0).

4.3. Shape variables

How do the variables for SN determine the ‘shape’ formed by the vortices? In view of (D.3),
(D.4), and (23), we may relate our variables with the inter-vortex distances ℓij := |xi− xj| and
the signed volume Vijk = xi · (xj× xk) as follows:
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ℓ2ij = 4
(
R2− |φ∗

i φj|2
)
= R2(4− |λij|2) ⇐⇒ |λij|2 = 4−

ℓ2ij
R2

,

Vijk = 4Im
(
(φ∗

i φj)(φ
∗
kφi)(φ

∗
j φk)

)
=
R3

2
Imµijk ⇐⇒ Imµijk =

2
R3
Vijk.

(31)

Therefore, |λik| and |λjk| specify the lengths ℓik and ℓjk of two edges of the triangle formed by
the vortices {i, j,k}, whereas Imµijk specifies the angle between the edges, thereby determining
the triangle formed by the vortices {i, j,k}. Note also that the above equations in (31) give the
relationship between our variables and the following ‘internal’ variables of [6]:

{Mij := ℓ2ij}1⩽i<j⩽N ∪{∆ijk := Vijk}1⩽i<j<k⩽N.

Using the Lie–Poisson bracket (26), we find the Poisson structure on the space of our shape
variables as follows: For 1⩽ i, j,k, l⩽ N− 1,{

|λij|2, |λkl|2
}
= 2

((
δik
Γi
−

δjk
Γj

)
Imµijl+

(
δil
Γi
−

δjl
Γj

)
Imµijk

)
.

This along with (31) recovers (2.11) of Borisov and Pavlov [6].2 In terms of our variables, we
have, again using (26),{

|λiN|2, |λkN|2
}
=

2
ΓN

Imµik for 1⩽ i< k⩽ N− 1. (32a)

We also have, again using (26), what correspond to (2.13) and (2.14) of [6] as follows:{
|λiN|2,µkl

}

=


i

(
|µil|2

ΓN|λlN|2
− |λiN|

2|λlN|2

Γi
− 2

(
1
ΓN
− 1

Γi

)
µil

)
i 6= k and i= l,

i
µkl
ΓN

(
µli
|λlN|2

− µik
|λkN|2

)
i 6= k and i 6= l,

(32b)

as well as

{µij,µlm}

=



i

(
1
Γi

(
|λjN|2µim− |λmN|2µij

)
+

1
ΓN|λiN|2

(
|µim|2µij
|λmN|2

−
|µij|2µim
|λjN|2

))
i= l, j 6= m,

i

(
1
Γj

(
|λlN|2µij− |λiN|2µlj

)
+

1
ΓN|λjN|2

(
|µij|2µlj
|λiN|2

−
|µjl|2µij
|λlN|2

))
i 6= l, j= m,

i

(
2

(
1
Γj
− 1

ΓN

)
µijµjm
|λjN|2

−
|λjN|2

Γj
µim−

µijµmiµjm
ΓN|λiN|2|λmN|2

)
i< j= l< m.

(32c)

Rewriting the collective Hamiltonian (20) in terms of our variables, we have the Hamilto-
nianH : SN→ R defined as

2 Note that our Poisson bracket (3) for the original dynamics is R2 times their bracket and hence the difference by the
factor R2 carries over here as well.
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H(ζ) :=− 1
4πR2

( ∑
1⩽i<j⩽N−1

ΓiΓj ln

(
R2

(
4−

|µij|2

|λiN|2|λjN|2

))

+ΓN
∑

1⩽i⩽N−1

Γi ln
(
R2
(
4− |λiN|2

)))
. (33)

Remark 4.2. The terms inside the logarithmic functions in the above Hamiltonian are positive
if we exclude collisions and antipodal configurations. In fact, using the definition (28) of µij,

|µij|= |λij| |λiN| |λjN|< 2|λiN| |λjN| ⇐⇒
|µij|

|λiN||λjN|
< 2

because we impose |λij| ∈ (0,2) to avoid collisions and antipodal configurations of vortices i
and j. So |µij| cannot take an arbitrary value in C̊. However, we retain the definition of SN as
is for simplicity.

Let us summarize our main result as follows:

Theorem 4.3. (a) The shape dynamics of N point vortices on the sphere is the Hamiltonian
dynamics on

SN := (0,2)N−1× C̊(N−1)(N−2)/2 ={(|λ1N|, . . . , |λN−1,N|,µ12, . . . ,µN−2,N−1)=:ζ}

with respect to the Poisson bracket (32) and the Hamiltonian (33).
(b) The level set

⋂
1⩽i<j⩽N−1

f−1
ij (0) with fij defined in (30) is an invariant manifold of the shape

dynamics.
(c) The Casimirs {Cj}j∈N from proposition 3.6 are invariants of the shape dynamics.

Example 4.4. The 3-vortex case: N= 3
The shape variables are given by

S3 := (0,2)2× C̊= {(|λ13|, |λ23|,µ12)=:ζ}.

Here the shape of the vortices is given by a single triangle. As one can see from (31), the
variables |λ13| and |λ23| specify the lengths ℓ13 and ℓ23 of the two edges at the vertex given by
vortex 3, and Imµ12 specifies the angle between the edges, hence determining the shape of the
triangle.

Therefore, Reµ12 is redundant as a shape variable. Indeed it is implicitly defined in terms
of (|λ13|, |λ23|, Imµ12) because the level set f−1

12 (0) with

f12(ζ) := Reµ12−
(Reµ12)

2 +(Imµ12)
2

|λ13|2|λ23|2
− |λ13|2− |λ23|2 + 4 (34)

is an invariant manifold of the shape dynamics.
The Poisson bracket is given by{

|λ13|2, |λ23|2
}

=
2
Γ3

Imµ12,{
|λ13|2,µ12

}
= i

(
|λ13|2

(
|λ12|2

Γ3
− |λ23|2

Γ1

)
− 2

(
1
Γ3
− 1

Γ1

)
µ12

)
,

{
|λ23|2,µ12

}
= i

(
|λ23|2

(
|λ13|2

Γ2
− |λ12|2

Γ3

)
− 2

(
1
Γ2
− 1

Γ3

)
µ12

)
,
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and the collective Hamiltonian (33) is

H(ζ) =− 1
4πR2

Γ1Γ2 ln

(
R2

(
4− |µ12|2

|λ13|2|λ23|2

))
+Γ3

∑
1⩽i⩽2

Γi ln
(
R2
(
4− |λi3|2

)).
The shape dynamics is then described as the Hamiltonian dynamics using the above Poisson
bracket and this Hamiltonian.

Let us find expressions for the Casimirs from proposition 3.6. The first Casimir

C1 =
1√
2

3∑
i=1

Γiλi =
3∑
i=1

Γi

is a trivial one, and the second one

C2 =
3∑
i=1

Γ2
i +

1
2

∑
1⩽i<j⩽3

ΓiΓj |λij|2 =
3∑
i=1

Γ2
i +

1
2

∑
1⩽i<j⩽3

ΓiΓj

(
4−

ℓ2ij
R2

)
is essentially the well-known invariant (see, e.g. Newton [34, equation (4.2.6)])∑

1⩽i<j⩽3

ΓiΓj ℓ
2
ij.

Note that proposition 3.6(b) implies that those Casimirs Cj with j⩾ 3 are not independent of
C1 and C2.

5. Application

5.1. Tetrahedron relative equilibria

Let us consider the special case with N= 4. The shape variables in this case are

{ζ = (|λ14|, |λ24|, |λ34|,µ12,µ13,µ23)} ∈ S4 = (0,2)3× C̊3.

We are particularly interested in the stability of the tetrahedron relative equilibrium as shown
in figure 2.

Using our shape variables, let us set

|λ14|= |λ24|= |λ34|=
2√
3
, µ12 =−µ13 = µ23 =

8

3
√
3
i.

Notice that Imµ13 is the negative of Imµ12 and Imµ23 because the orientation of the triangle
formed by (x1,x3,x4) is the opposite of those by (x1,x2,x4) and (x2,x3,x4) as one can see
(from the origin) in figure 2. It is easy to check that we then have

ℓ12 = ℓ13 = ℓ14 = ℓ23 = ℓ24 = ℓ34 = 2

√
2
3
R.

5.2. Stability of tetrahedron relative equilibria

Wewould like to find a sufficient condition for stability of the tetrahedron relative equilibria. To
our knowledge, existing stability results for tetrahedron equilibria are limited to some special
cases: (a) Identical vortices, i.e. Γ1 = Γ2 = Γ3 = Γ4; see Kurakin [21] andMeleshko et al [31].
(b) Linear stability condition withΓ1 = Γ2 =−Γ3 =−Γ4; see Laurent-Polz [22, theorem 4.6].
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Figure 2. Tetrahedron relative equilibrium on the sphere. One may take, e.g.
x1 = (2

√
2,0,1), x2 = (−

√
2,
√
6,−1), x3 = (−

√
2,−

√
6,−1), x4 = (0,0,3) with

R= 3.

(c) Lyapunov stability for Γ1 = κ 6= 0 and Γ2 = Γ3 = Γ4 = 1 with κ> 0 and linear instability
with κ< 0; see Laurent-Polz et al [24, Discussion of the case n= 3 on p 465].

We would like to generalize some of these results to the non-identical case with N= 4 as
follows:

Proposition 5.1. The tetrahedron configuration of four point vortices on the sphere is a stable
equilibrium of the shape dynamics if all the circulations {Γi}4i=1 have the same sign.

Proof. First recall from theorem 4.3(b) that the variables {Reµij}1⩽i<j⩽3 depend on the rest
of the variables implicitly as

fij(ζ) := Reµij−
(Reµij)2 +(Imµij)

2

|λiN|2|λjN|2
− |λiN|2− |λjN|2 + 4= 0 with 1⩽ i< j⩽ 3.

The Hamiltonian for the shape dynamics is

H(ζ) :=− 1
4πR2

 ∑
1⩽i<j⩽3

ΓiΓj ln

(
R2

(
4−

|µij|2

|λi4|2|λj4|2

))
+Γ4

∑
1⩽i⩽3

Γi ln
(
R2
(
4− |λi4|2

)),
and, recall from theorem 4.3(c) (see also proposition 3.6) that the shape dynamics possesses a
family of Casimirs. Particularly, we have

C2(ζ) :=
4∑
i=1

Γ2
i +

1
2

∑
1⩽i<j⩽3

ΓiΓj
|µij|2

|λi4|2|λj4|2
+

Γ4

2

∑
1⩽i⩽3

Γi |λi4|2 .

Wewould like to use the energy–Casimir method using {fij}1⩽i<j⩽3 as additional invariants
as well. Specifically, let us write the tetrahedron (relative) equilibrium as

ζe :=

(
2√
3
,

2√
3
,

2√
3
,

8

3
√
3
i,− 8

3
√
3
i,

8

3
√
3
i

)
,

and seek a Lyapunov function of the form

E(ζ) :=H(ζ)+ 1
πR2

(
1
8
Φ(C2(ζ)−C2|e)+

3
256

Ψ(f12(ζ), f13(ζ), f23(ζ))

)
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with some smooth functions Φ: R→ R and Ψ: R3→ R, where C2|e := C2(ζe). Then E is an
invariant of the shape dynamics becauseH, C2, and {fij}1⩽i<j⩽3 are all invariants.

It is then a straightforward computation to show that the gradient DE(ζe) vanishes if

Φ ′(0) =−3
2
, DΨ(0) = 0. (35)

In order to show that ζe is stable, it suffices to show that there exist Φ and Ψ such that (35)
holds and also the Hessian D2E(ζe) is positive definite. To that end, set

A :=
256
9

πR2D2E(ζe),

and letD2
ijΨ denote the second derivativeDiDjΨwith i, j ∈ {1,2,3}. Assuming thatΦ ′ ′(0) = 0

and D2
ijΨ(0) = 0 for i 6= j, the leading principal minors {di}9i=1 of A satisfy

d1 = Γ1(Γ2 +Γ3 +Γ4), d2 = Γ1Γ2(Γ3 +Γ4)(Γ1 +Γ2 +Γ3 +Γ4),

d3 = Γ1Γ2Γ3
(
Γ2

1Γ4 +Γ4(Γ2 +Γ3 +Γ4)
2 + 2Γ1(Γ4(Γ3 +Γ4)+Γ2(2Γ3 +Γ4))

)
,

and

d4
d3

=
1
3
D2

11Ψ(0),
d5
d2

= Γ1Γ2Γ3Γ4D
2
11Ψ(0),

d6
d5

=
1
3
D2

22Ψ(0),

d7
d1

=(Γ1Γ2Γ3Γ4)
2D2

11Ψ(0)D2
22Ψ(0),

d8
d7

=
1
3
D2

33Ψ(0),

d9
d7/d1

= Γ1Γ2Γ3Γ4D
2
33Ψ(0).

Therefore, if Γi > 0 (or Γi < 0) for every i ∈ {1,2,3,4}, then dk > 0 for k ∈ {1, . . . ,9}, and
hence A is positive definite, provided thatD2

iiΨ(0)> 0 for every i ∈ {1,2,3}; for example, one
may take

Φ(x) =−3
2
x, Ψ(y1,y2,y3) = y21 + y22 + y23

to satisfy the conditions we impose.

6. Conclusion and outlook

6.1. Conclusion

We found the Hamiltonian formulation for the shape dynamics of N point vortices on the
sphere by first lifting the dynamics from S2

R to C2 and then applying U(2)-reduction followed
by TN−1-reduction, as opposed to performing the (direct) SO(3)-reduction.

The U(2)-reduction was facilitated by a dual pair found by Skerritt and Vizman [46] and
yields a Lie–Poisson dynamics on the dual of the Lie algebra u(N)Γ defined in section 3.2,
whereas the TN−1-reduction was a standard Poisson reduction. The resulting shape variables
give a parametrization of an ambient space of the (SO(3)-reduced) shape space that is hard
to parametrize directly. As a result, our approach yields a concrete expression for the shape
dynamics that is difficult to obtain by the SO(3)-reduction.

We also found a family of Casimirs for the shape dynamics exploiting the Lie–Poisson
structure.
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As an application, we applied our formulation to the tetrahedron relative equilibrium of
non-identical vortices, and proved that it is a stable equilibrium of the shape dynamics if all
the circulations have the same sign, generalizing some of existing works on the problem.

6.2. Outlook

There are several topics to explore for future work that are suggested by the reviewers.
It is interesting to see if our shape variables facilitate explicit integration for those integrable

cases, particularly N= 3.
In order to better understand the geometry of the shape dynamics, we need to know the

geometry of the coadjoint orbitO ⊂ u(N)∗Γ. This is fairly simple if all the circulations have the
same sign—in which caseU(DΓ) is isomorphic toU(N) (and compact), and soO is essentially
the coadjoint orbit in u(N)∗. However, the general case requires a classification of the coadjoint
orbits of the (non-compact) indefinite unitary group U(p,q) with signature (p, q). Also, given
the compactness of the shape space, this suggests that the momentum map N is proper, giving
an insight into the structure of O.

The linear instability of the tetrahedron relative equilibrium for the special case Γ1 = κ < 0
and Γ2 = Γ3 = Γ4 = 1 from [24] also suggests the possibility that the sufficient condition for
stability from proposition 5.1 may be also necessary.

It is also an interesting future work to extend our result on the tetrahedron to other Platonic
solids with non-identical vortices in order to generalize the results from [21] and [31].

Our lifting of the dynamics to C2 and the S1-bundle structure is reminiscent of the ‘post-
classical’ formalism of Tuynman [47]. It is interesting to see if there is any relationship between
such a lifting and geometric (pre-)quantization.
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Appendix A. Identification of su(2) with R3

A.1. Isomorphism between su(2) and R3

We define a basis {τi}3i=1 for su(2) by setting

τ1 :=−
i
2

[
0 1
1 0

]
, τ2 :=−

i
2

[
0 −i
i 0

]
, τ3 :=−

i
2

[
1 0
0 −1

]
so that [τi, τj] = τk for every even permutation (i, j,k) of (1,2,3). We may then identify su(2)
with R3 via the map

f : R3→ su(2); ξ = (ξ1, ξ2, ξ3) 7→
3∑
j=1

ξjτj =−
i
2

[
ξ3 ξ1− iξ2

ξ1 + iξ2 −ξ3

]
. (A.1)

The inner product on su(2) is inherited from u(2):

〈ξ,η〉 := 2tr(ξ∗η) = ξ ·η, (A.2)

i.e. it is compatible with the standard dot product in R3 under the above identification.
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It is also straightforward to see that the commutator in su(2) is compatible with the cross
product in R3 in the sense that, for all ξ,η ∈ R3,

f(ξ×η) = [ f(ξ), f(η)]. (A.3)

That is, f gives a Lie algebra isomorphism between R3 and su(2).

A.2. The ad and ad∗ operators in su(2) and R3

The property (A.3) indicates that

f(ξ×η) = [ξ,η] = adξ η.

Hence for every µ ∈ su(2)∗, we have〈
ad∗ξ µ,η

〉
= 〈µ,adξ η〉= µ · (ξ×η) = (µ× ξ) ·η.

So we have

ad∗ξ µ= µ× ξ

under the above identification of su(2) and su(2)∗ with R3.

Appendix B. Recovering original dynamics from lifted dynamics

This appendix gives a proof of proposition 2.1. The main idea is to use a dual pair to find a
natural parametrization of the Hopf fibration S3√

R
→ S2

R.

B.1. Symplectic reduction via dual pair

Since the reduction is performed for each copy of C2 in (C2)N separately, we first perform
the reduction for a single copy of C2. Hence the momentum map J is, dropping the subscripts
for φ,

J : C2→ R; J(φ) =− 2
R
Γ‖φ‖2.

In order to construct a dual pair, we also define an action of SU(2) on C2 as follows:

SU(2)×C2→ C2; (U,φ) 7→ Uφ.

For every ξ ∈ su(2), its corresponding infinitesimal generator is

ξC2(φ) = ξφ.

We identify su(2)∗ with su(2) via the inner product (A.2) from appendix A. Then the associ-
ated momentum map M : C2→ su(2)∗ satisfies

〈M(φ), ξ〉=Θ(φ) · ξC2(φ)

=− 2
R
Γ Im(φ∗ξφ)

=
2
R
iΓφ∗ξφ

=
2
R
iΓ tr(φφ∗ξ)

=
2
R
tr((−iΓφφ∗)∗ξ)

=

〈
− i
R
Γφφ∗, ξ

〉
.
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However, since M takes values in su(2)∗ ∼= su(2), we have

M(φ) =− i
R
Γ

(
φφ∗− 1

2
tr(φφ∗)I

)
=− i

R
Γ

(
φφ∗− 1

2
‖φ‖2I

)
=− i

2R
Γ

[
|z|2− |u|2 2zū

2z̄u |u|2− |z|2
]

=
Γ

R

(
2Re(z̄u), 2Im(z̄u), |z|2− |u|2

)
, (B.1)

where we used the identification (A.1) of su(2) with R3 from appendix A. Notice that the
above expression for M essentially gives the Hopf fibration.

As a result, we have a pair of momentum maps defined on C2:

R J←−C2 M−→su(2)∗.

This pair of momentum maps is known to constitute a dual pair; see Golubitsky et al [10] and
Holm and Vizman [12]. This implies that the Marsden–Weinstein quotient J−1(−2Γ)/S1 is
symplectomorphic to a coadjoint orbitO in su(2)∗. More specifically, the momentum mapM
restricted to the level set J−1(−2Γ) gives rise to the symplectomorphismM : J−1(−2Γ)/S1→
O, where O is equipped with the (+)-Kirillov–Kostant–Souriau (KKS) symplectic structure
(see, e.g. Kirillov [18, chapter 1] and Marsden and Ratiu [28, chapter 14] and references
therein): For every µ ∈ O and ξ,η ∈ su(2),

ΩO(µ)
(
ad∗ξ µ,ad

∗
η µ
)
:= 〈µ, [ξ,η]〉,

or using the identification between su(2)∗ ∼= su(2) with R3 in (A.1),

ΩO(µ)(µ× ξ,µ×η) = µ · (ξ×η) or ΩO(µ)(v,w) =
µ

|µ|2
· (v×w)

In other words, the collectivization by M coincides with the symplectic reduction by S1.
It is well known that O is a two-dimensional sphere as well. One can also see it from the

expression (B.1) that if φ ∈ J−1(−2Γ), then ‖φ‖=
√
R, and so M(φ), as a vector in R3, is in

the sphere with radius Γ centered at the origin. Hence J−1(−2Γ)/S1 is a sphere as well.
In order to show that the reduced dynamics is indeed the point vortex dynamics on S2

R, we
identify J−1(−2Γ)/S1 with S2

R via

M : J−1(−2Γ)/S1 ∼= S2
R→O∼= S2

Γ; x 7→ Γ

R
x.

In other words, we are setting Γ
R x=M(φ). Then, in view of (B.1), we have

x=
(
2Re(z̄u), 2Im(z̄u), |z|2− |u|2

)
,

that is, φ and x are related via the Hopf fibration as in [48].
Pulling back ΩO to S2

R by M, we obtain

M
∗
ΩO(x)(v,w) =

Γ

R
x · (v×w), (B.2)

which is the area form on S2
R multiplied by Γ. The corresponding Poisson bracket is, for all

smooth F,H : R3→ R,

{F,H}R3 (x) =
R
Γ
x ·
(
∂F
∂x
× ∂H

∂x

)
.
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B.2. Vortex dynamics on S2R and Lie–Poisson equation

Now let us come back to the lifted dynamics of N vortices in (C2)N. The above argument
applies to each copy of C2, and so we have the momentum map

M : (C2)N→ (su(2)∗)N ∼= (R3)N; (φ1, . . . ,φN) 7→
1
R
(Γ1x1, . . . ,ΓNxN),

where, for each i ∈ {1, . . . ,N},

xi :=
(
2Re(z̄iui), 2Im(z̄iui), |zi|2− |ui|2

)
∈ R3. (B.3)

Since each copy of S2
R is equipped with the symplectic form (B.2), this gives rise to the sym-

plectic form (2) on (S2
R)

N. The corresponding Poisson bracket on (R3)N is then (3).
One then sees thatHR3 : (R3)N→ R from (4b) is the collective Hamiltonian, i.e. H̄ ◦M= H

where H is defined in (7). As a result, the reduced dynamics is the Hamiltonian system (5).
This completes the proof of proposition 2.1.

Appendix C. Proof of proposition 3.6

(a) Let j ∈ N be arbitrary. Let us first show that Cj is indeed a real-valued function: For every
λ ∈ u(N)∗Γ, we have

Cj(λ) = tr
(
(−iDΓλ)

j
)

= tr
[(
(−iDΓλ)

T
)j]

= tr
(
(−iλ∗DΓ)

j
)

= tr
(
(iλDΓ)

j
)

= tr
(
(iDΓλ)

j
)
= Cj(λ).

We also see that Cj is Ad∗-invariant: For every U ∈ U(DΓ), we have

Cj(Ad∗Uλ) = tr
(
(iDΓU

∗λU)j
)

= tr
(
(iUDΓU

∗λ)j
)

= tr
(
(iDΓλ)

j
)
= Cj(λ).

Since any Ad∗-invariant differentiable function is a Casimir (see, e.g. Marsden and Ratiu
[28, corollary 14.4.3]), this implies that Cj is a Casimir function for the Lie–Poisson
bracket (26).

(b) Let us set A := iDΓλ so that we have Cj(λ) = tr
(
Aj
)
. By the Cayley–Hamilton theorem,

we have p(A) = 0, where p is the characteristic polynomial of A:

p(x) := det(xI−A) = xN− c1xN−1− c2xN−2− ·· ·− cN,
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where the coefficients {ck(λ)}Nk=1 are determined by the Faddeev–LeVerrier algorithm
(see, e.g. Gantmacher [8, p 87]):

A1 := A, c1 = tr(A1), B1 := A1− c1I,
A2 := AB1, c2 = 1

2 tr(A2), B2 := A2− c2I,
...

AN := ABN−1, cN = 1
N tr(AN).

Specifically, this implies that each cj with j ∈ {1, . . . ,N} depends on A as a smooth function

of
{
tr
(
Ak
)}j

k=1
. We also obtain the expression

cN =
1
N

tr(AN)+ . . . ,

where the remaining terms do not contain tr(AN). Now, taking the trace of

p(A) = AN− c1AN−1− c2AN−2− ·· ·−AN = 0,

we have

tr
(
AN
)
− c1 tr

(
AN−1

)
− c2 tr

(
AN−2

)
− ·· ·− cN = 0.

Since each cj with j ∈ {1, . . . ,N− 1} depends on A as a smooth function of
{
tr
(
Ak
)}j

k=1
,

and cN takes the form shown above, tr(AN) can be expressed in terms of
{
tr
(
Aj
)}N−1

j=1
. It

implies that CN(λ) can be expressed in terms of {Cj(λ)}N−1
j=1 . This argument extends to

Cj(λ) for j⩾ N+ 1 recursively.

Appendix D. Vector identities in C2 and R3

Since we use the lifted vortex dynamics in C2 to describe the dynamics in S2
R ⊂ R3, we make

use of some identities that hold between vectors in C2 and those in R3 via the map (B.3). This
appendix presents detailed derivations of these identities, because the derivations are, although
straightforward, quite cumbersome and non-trivial, and also because there does not seem to
be proper references on these identities.

D.1. Vectors in C2 and R3

Recall that, for i ∈ {1, . . . ,N}, we let φi = (zi,ui) ∈ C2 and set

xi :=
(
2Re(z̄iui), 2Im(z̄iui), |zi|2− |ui|2

)
∈ R3. (B.3)

We would like to derive those formulas for vectors in C2 that give some familiar objects in
vector algebra in R3.

D.2. Inner product in C2 and dot product in R3

The dot product in R3 is related to the inner product in C2 as follows:
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x1 · x2 = 4(Re(z̄1u1)Re(z̄2u2)+ Im(z̄1u1) Im(z̄2u2))+
(
|z1|2− |u1|2

)(
|z2|2− |u2|2

)
= 4Re(z̄1u1z2ū2)+

(
|z1|2− |u1|2

)(
|z2|2− |u2|2

)
= 2(z̄1u1z2ū2 + z1ū1z̄2u2)+

(
|z1|2− |u1|2

)(
|z2|2− |u2|2

)
= 2
(
z̄1u1z2ū2 + z1ū1z̄2u2 + |z1|2|z2|2 + |u1|2|u2|2

)
−
(
|z1|2 + |u1|2

)(
|z2|2 + |u2|2

)
= 2(z̄1z2 + ū1u2)(z1z̄2 + u1ū2)−

(
|z1|2 + |u1|2

)(
|z2|2 + |u2|2

)
= 2|̄z1z2 + ū1u2|2−

(
|z1|2 + |u1|2

)(
|z2|2 + |u2|2

)
= 2|φ∗

1φ2|2−‖φ1‖2‖φ2‖2. (D.1)

Hence we have

|x1|2 = ‖φ1‖4.

This implies that that the three sphere with radius
√
R is mapped to the two-sphere with radius

R (both centered at the origin) under the map (B.3).
We also have

|x1− x2|2 = |x1|2 + |x2|2− 2x1 · x2
= ‖φ1‖4 + ‖φ2‖4− 4|φ∗

1φ2|2 + 2‖φ1‖2‖φ2‖2

=
(
‖φ1‖2 + ‖φ2‖2

)2
− 4|φ∗

1φ2|2, (D.2)

and so, if φ1,φ2 ∈ S3√
R
, then x1,x2 ∈ S2

R, and

|x1− x2|2 = 4
(
R2− |φ∗

1φ2|2
)
. (D.3)

D.3. Triple product in R3

We have

(φ∗
1φ2)(φ

∗
3φ1)(φ

∗
2φ3) = (z̄1z2 + ū1u2)(z̄3z1 + ū3u1)(z̄2z3 + ū2u3)

= |z1|2|z2|2|z3|2 + |u1|2|u2|2|u3|2

+
∑

(i,j,k)∈Z3

(
|zi|2zjz̄kūjuk+ |ui|2z̄jzkujūk

)
,

whereZ3 is the set of all cyclic permutations of (1,2,3), i.e.Z3 := {(1,2,3),(2,3,1),(3,1,2)}.
However,

|z1|2|z2|2|z3|2 + |u1|2|u2|2|u3|2

=
3∏
i=1

(
1
2
(|zi|2 + |ui|2)+

1
2
(|zi|2− |ui|2)

)
+

3∏
i=1

(
1
2
(|zi|2 + |ui|2)−

1
2
(|zi|2− |ui|2)

)

=
1
4

 3∏
i=1

(|zi|2 + |ui|2)+
∑

(i,j,k)∈Z3

(|zi|2 + |ui|2)(|zj|2− |uj|2)(|zk|2− |uk|2)


=

1
4

|x1||x2||x3|+ ∑
(i,j,k)∈Z3

|xi|x3j x3k

 .
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We also have

Re(zjz̄kūjuk) = Re(z̄jujz̄kuk)

= Re(z̄juj)Re(z̄kuk)+ Im(z̄juj) Im(z̄kuk)

=
1
4

(
x1j x

1
k + x2j x

2
k

)
=

1
4

(
xj · xk− x3j x3k

)
and

Im(zjz̄kūjuk) = Im(z̄jujz̄kuk)

= Re(z̄juj) Im(z̄kuk)− Im(z̄juj)Re(z̄kuk)

=
1
4

(
x1j x

2
k − x2j x1k

)
=

1
4
(xj× xk)

3
,

where we wrote the components of xi as (x1i ,x
2
i ,x

3
i ), and (xj× xk)3 signifies the third compon-

ent of xj× xk.
As a result, we obtain

Re((φ∗
1φ2)(φ

∗
3φ1)(φ

∗
2φ3)) =

1
4

|x1||x2||x3|+ ∑
(i,j,k)∈Z3

|xi|x3j x3k


+

1
4

∑
(i,j,k)∈Z3

(
|zi|2 + |ui|2

)
(xj · xk− x3j x3k)

=
1
4

|x1||x2||x3|+ ∑
(i,j,k)∈Z3

|xi|xj · xk


and

Im((φ∗
1φ2)(φ

∗
3φ1)(φ

∗
2φ3)) =

1
4

(
|z1|2− |u1|2

)
(x2× x3)3 +

1
4

(
|z2|2− |u2|2

)
(x3× x1)3

+
1
4

(
|z3|2− |u3|2

)
(x1× x2)3

=
1
4

[
x31(x2× x3)3 + x32(x3× x1)3 + x33(x1× x2)3

]
=

1
4
det[x1 x2 x3]

=
1
4
x1 · (x2× x3).

(D.4)

Particularly, if xi ∈ S2
R then φi ∈ S3√

R
for i ∈ {1,2,3}, and so (D.1) gives, for all i, j ∈

{1,2,3},

xi · xj = 2|φ∗
i φj|2−R2.
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So we have

Re((φ∗
1φ2)(φ

∗
3φ1)(φ

∗
2φ3)) =

R
4

(
R2 + x1 · x2 + x3 · x1 + x2 · x3

)
=
R
2

(
|φ∗

1φ2|2 + |φ∗
3φ1|2 + |φ∗

2φ3|2−R2
)
.

(D.5)
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