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Abstract
We give a geometric account of the relative motion or the shape dynamics of
N point vortices on the sphere exploiting the SO(3)-symmetry of the system.
The main idea is to bypass the technical difficulty of the SO(3)-reduction by
first lifting the dynamics from S? to C2. We then perform the U(2)-reduction
using a dual pair to obtain a Lie—Poisson dynamics for the shape dynamics.
This Lie—Poisson structure helps us find a family of Casimirs for the shape
dynamics. We further reduce the system by TV~ !-symmetry to obtain a Pois-
son structure for the shape dynamics involving fewer shape variables than those
of the previous work by Borisov and Pavlov. As an application of the shape
dynamics, we prove that the tetrahedron relative equilibria are stable when all
of their circulations have the same sign, generalizing some existing results on
tetrahedron relative equilibria of identical vortices.

Keywords: point vortices, Hamiltonian dynamics, symplectic reduction,
Lie—Poisson equation
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(Some figures may appear in colour only in the online journal)
1. Introduction

1.1. Dynamics of point vortices on sphere

Consider N point vortices on the two-sphere S,ze  R3 with (fixed) radius R >0 centered at the
origin. Let {x; € S}V, be the positions of the point vortices with circulations {I';}¥_,. Then
the equations of motion of the point vortices are

1361-6544/23/+29$33.00 © 2022 IOP Publishing Ltd & London Mathematical Society Printed in the UK 1000


https://doi.org/10.1088/1361-6544/aca50e
https://orcid.org/0000-0001-9406-132X
mailto:tomoki@utdallas.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/aca50e&domain=pdf&date_stamp=2022-12-28

Nonlinearity 36 (2023) 1000 T Ohsawa

1 X; X X;
X — —— | 1
X 27TR]<Z]»<:N j|X[—Xj|2 (D
A

for i € {1,...,N}; see, e.g. Bogomolov [3], Kimura and Okamoto [17], and Newton [34,
chapter 4].

This system of equations is Hamiltonian in the following sense: Let 2; be the area form of
the ith copy of S% and define the following two-form on (S3)V:

N
* . 1
QS% = ZFiﬂ'i Qi with Qi (Xi) (V,‘,W,‘) = §X,‘ : (Vi X W,') (2)
i=1

where 7;: (S3) — S2 is the projection to the ith copy. The corresponding Poisson bracket on
(R3)N (see appendix B for details) is, for all smooth F,H: (R*)¥ — R,

N
R OF OH
{F,H}g: (x) := ; mX <5’x,~ X 6x,-> . 3)
Define the Hamiltonians on (S%)" and (R*)" as follows:
1 2
Hg (X1, Xy) == Z I In(2(R* —x;-x;)) (4a)
1<i<j<N
and
1
HR3(X1,~»-,XN) 22—471_7 Z I‘,»Fjln(\xi—xj\z). (4b)
1<i<jN

Note that the former is the restriction of the latter to (S)". Then we obtain (1) as a Hamilto-
nian system on (S%)" or (R*)" as follows:

iXQSzze = dHSIZQ or 5(,' = {X,‘,HRB}, (5)
where X is a vector field on (S3)V.

Remark 1.1. The Hamiltonians (4) have singularities at the collision points, i.e. x; = x; with
i #j. Following Kirwan [19, remark 1.1], we will ignore this issue for now because the con-
crete expression for the Hamiltonian does not affect the geometry of our problem as long as
it possesses the SO(3)-symmetry described below. Once we obtain the Hamiltonian for the
shape dynamics, we may remove the singularities by imposing conditions on the correspond-
ing variables accordingly. Alternatively, one may also introduce a regularization parameter to
remove the singularities from the outset; see, e.g. Vankerschaver and Leok [48].

The dynamics of point vortices on the sphere has been studied quite extensively because it
is not only interesting mathematically but also has geophysical and astrophysical applications.
For example, Dibattista and Polvani [7] and Kimura [16] studied the motion of a vortex pair
(N =2), and Kidambi and Newton [15] solved the equations of relative motion (see (6) below)
for N = 3. Borisov and Lebedev [5] and Sakajo [41] studied the integrable three-vortex motions
on the sphere; see also Sakajo [42] for an integrable four-vortex motion on sphere with zero
moment of vorticity, and Sakajo and Yagasaki [43, 44] for studies on chaotic motions of N
point vortices on the sphere.

One can also generalize the basic equation (1) to those vortices on a rotating sphere, and
their dynamics has been studied in, e.g. Jamaloodeen and Newton [14], Newton and Sakajo
[35], Newton and Shokraneh [36] and Laurent-Polz [23].
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Stability of fixed and relative equilibria of point vortices on the sphere is one of the major
topics of research as well. The linear stability of rings of identical vortices was studied by
Polvani and Dritschel [40], and its nonlinear stability by Boatto and Cabral [2] (see also
Laurent-Polz et al [24]). Lim et al [26] proved the existence of a number of relative equilibria
of identical vortices, and Laurent-Polz et al [24] studied nonlinear stability of many different
types of relative equilibria involving one or two ring of vortices—each consisting of identical
vortices—with and without one or two polar vortices; see also Laurent-Polz [22] and Boatto
and Sim¢ [1]. See also Garcia-Azpeitia and Garcia-Naranjo [9] for the existence of periodic
orbits of N identical vortices and small nonlinear oscillations near the Platonic solid equilibria,
and also Montaldi and Tokieda [32] for the bifurcation of the heptagon equilibrium with the
Gaussian curvature being the parameter.

1.2. Relative motion and shape dynamics

The focus of this paper is the relative motion or the shape dynamics of the point vortices,
i.e. we are interested in the set of equations that governs the evolution of the ‘shape’ or relative
positions of the point vortices—regardless of where the vortices are located on the sphere. For
example, for N =3, it is the dynamics of the shape of the triangle formed by the three point
vortices, regardless of its position and orientation on the sphere.

Defining the inter-vortex (Euclidean) distance

E,’j = |Xl' —Xj‘
fori,j € {1,...,N} with i # and the (signed) volume
Vijie 1= Xi - (Xj X X)

of the parallelepiped formed by vectors X;,X;, X for i,j,k € {1,...,N} with i # j # k, we can
derive the equations of relative motion

N

d 1 1 1

ij [/ 2 2

dt TR 1Sy G U
kiR

from (1); see, e.g. Newton [34, section 4.2].

1.3. Hamiltonian formulation of shape dynamics

Given that the original equation (1) is a Hamiltonian system, a natural question to ask is
whether the equation (6) of relative motion or shape dynamics are also a Hamiltonian system.
In fact, Borisov and Pavlov [6] derived the Poisson bracket for the above ‘internal’ variables
{lih<icign U{ Vi h1<icj<in in a direct manner from the Poisson bracket (3) for the original
dynamics (1).

A more geometric perspective of this question is the following: Intuitively, it is clear that
the dynamics of N point vortices governed by (1) would have SO(3)-symmetry under the
rotational action

SO(3) x (SN — (S3); (A, (X1,...,xy)) = (AXq, ..., AXy).

This action is clearly symplectic with respect to the symplectic form (2) because the volume
form of each sphere is invariant under the rotational action. One also sees that the Hamilto-
nian (4a) is SO(3)-invariant as well. Taking the quotient by SO(3), we identify all the con-
figurations of the vortices that are congruent to each other as a single ‘shape’. So if we could
perform the symplectic reduction (see Marsden and Weinstein [29] and [30, sections 1.1 and
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1.2]) of (1) by the SO(3)-symmetry, then the resulting reduced dynamics would be essentially
the equation (6) of relative motion. Such a geometric picture of shape dynamics has been also
applied to the N-body problem of classical mechanics (see, e.g. Iwai [13], Montgomery [33],
and references therein) and also point vortices on the plane; see, e.g. [4, 20, 37].
Unfortunately, the reduction by SO(3)-symmetry is quite intricate. The momentum map
associated with the above SO(3)-action gives the following well-known invariant:

N
N 1
I (S2)N = s0(3)* =R%  I(xq,...,xy) = E;F,-xi.

The difficulty is that the reduced space or the Marsden-Weinstein quotient I ~!(¢)/SO(3),
with ¢ € R? is tricky to work with when describing the reduced dynamics, where SO(3).
stands for the isotropy group {A € SO(3) | Ac = ¢}. While Kirwan [19] found some topolo-
gical invariants of the reduced space, the focus was rather on the topology of the space than
the dynamics. Indeed, it is difficult to find coordinates for the reduced space in general, and
concrete treatments of the reduced dynamics are limited to some special cases; see Pekarsky
and Marsden [39] for the corresponding Poisson reduction in the special case with N =3 and
Lim [27] for an explicit treatment of the reduction for N =4.

1.4. Main results and outline

Our main contribution is the geometric treatment of the shape dynamics exploiting the SO(3)-
symmetry mentioned above. Specifically, we proceed as follows to sidestep the difficulty of
the SO(3)-reduction; see also figure 1.

(a) We first lift the dynamics of vortices from S,ze to C2 in section 2. For N vortices, the lifted
dynamics is then in (C?)V, which is identified with the space C**V of 2 x N complex
matrices. The lifted dynamics possesses a TV :=S! x --- x S! (N copies)-symmetry, and
the symplectic reduction by the symmetry recovers the vortex dynamics on the sphere; see
proposition 2.1.

(b) In section 3, we perform a U(2)-reduction of the lifted dynamics using a dual pair of
Skerritt and Vizman [46] defined on C>*V. This essentially corresponds to the SO(3)-
reduction of the original dynamics because its SU(2) subgroup symmetry gives the SO(3)-
symmetry of the original dynamics on the sphere. The use of the dual pair facilitates the
reduction, because the dual pair essentially allows one to embed the reduced space to the
dual of a Lie algebra, yielding a Lie—Poisson equation for the reduced dynamics; see,
e.g. Weinstein [49], Libermann and Marle [25, section IV.7], and Ortega and Ratiu [38,
chapter 11]. In other words, instead of having the reduced dynamics in a complicated quo-
tient manifold, the reduced dynamics is given by an ordinary differential equation (ODE)
on a vector space. It also helps us find a family of Casimirs associated with the Lie—Poisson
structure; see proposition 3.6.

(c) In section 4, we further reduce the Lie—Poisson dynamics using the TV ~!-symmetry to get
rid of the extra symmetry picked up by the lifting!. The resulting Poisson structure gives
a Hamiltonian formulation of the shape dynamics; see theorem 4.3.

! The reason why we have TV~ !-symmetry as opposed to T is that one copy of S! is taken care of in the U(2)-
reduction in the previous step.
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(CQ)N o~ CZXN
Reduction by TV

Reduction by U(2
(Section 2.3) eduction by U(2)

(Section 3)

Lifting
(Section 2.1)

2 \N
(Sk) O Cu(Dr)*
Reduction by SO(3) \\\ Reduction by TN ~!
Sy (Section 4)

shape space

Figure 1. Instead of reducing the dynamics on (S3)" by SO(3) directly, first lift it
to (C?)N (which picks up T"-symmetry) and then apply reduction by U(2) (which is
facilitated by a dual pair); this results in a Lie-Poisson dynamics in a coadjoint orbit
O C u(Dr)*. We may then further reduce the system by TV~ !'-symmetry to get rid of
the extra symmetry picked up in the lifting process.

This geometric treatment results in fewer variables for the shape dynamics compared to
those ‘internal’ variables of Borisov and Pavlov [6]. In fact, our shape dynamics is described
using (N — 1)? variables, but it turns out that (N — 1)(N — 2)/2 of those implicitly depend on
the rest; hence N(N — 1) /2 variables essentially. On the other hand, the number of the ‘internal’
variables of [6] is N(N* — 1) /6.

Another advantage of our formulation is that we can find a family of Casimirs exploiting
the underlying algebraic structure of the Lie—Poisson bracket on O. This is not easy with the
Poisson bracket of [6] because they obtained it ‘by hand’, i.e. the algebraic structure of their
Poisson bracket is not clear.

Note that our parametrization does not in general give actual coordinate charts for the shape
space. Indeed, since the original dynamics is 2 N-dimensional, the shape space after the SO(3)-
reduction would not have dimensions such as (N — 1)2. Instead, we sidestep the difficulty of
directly dealing with the shape space by describing the shape dynamics using the (N —1)?
coordinates for the ambient space for the shape space. The reason for the increase in the num-
ber of variables is that the U(2)-reduced dynamics in the coadjoint orbit O (see figure 1) is
described in terms of the coordinates for u(Dr)*; note that this is generally the case with
Lie—Poisson dynamics.

Although this redundancy of shape variables is certainly a drawback, the resulting shape
dynamics provides a means to analyze the stability of relative equilibria (i.e. the stability of
the shape formed by the vortices). To demonstrate this idea, we apply the energy—Casimir
method to our shape dynamics with N =4 and find a sufficient condition for the stability of
tetrahedron relative equilibria in section 5. Our result concerns the non-identical case, i.e.
I') #1', #1'5 # T4, and generalizes those results of Kurakin [21] and Meleshko et al [31]
for the identical case with I'; =I', = I'; = I'y. We also mention in passing that Pekarsky and
Marsden [39] used the energy—momentum method to find a sufficient condition for stability
of non-identical equilateral triangle relative equilibria, i.e. N =3 with I'; # I'; # I'5. So our
result is also an extension of theirs to N =4 as well.
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2. Lifted vortex dynamics in C?

We would like to first lift the vortex dynamics from S} to C2. This idea is inspired by
Vankerschaver and Leok [48], where they lift the dynamics from S3 to S3 Via the Hopf fibra-

tion 83 7 S%. We shall show that our approach naturally gives rise to the Hopf fibration by
1dent1fy1ng the reduced space S3 = \/ﬁ /S! as a Marsden-Weinstein quotient.

2.1. Vortex equations in C2

Let us show how the lifting from figure 1 works. Since the Hopf fibration map gives rise to
a map from C? to R?, one may relate the distance in C> with that in R* as shown in (D.2)
of appendix D.2. Replacing the inter-vortex distance in R* in the Hamiltonian (4b) by the
corresponding distance in C? using (D.2), we define a Hamiltonian H: (C?)V — R as

He) =z > OO (Il +lol?) —setol], O
I<i<jEN
where we used the shorthand
Y= (41017""%01\’) € ((Cz)Na
and defined the norm ||| := \/p*¢ induced by the natural inner product on C2. We also

write

90[:|:Zi:| with Z,‘,M[EC Vle{l,,N}

i

We define a symplectic form 2 on (C?) as follows:

N
2 *
Q.= _E é l F,Im(d@l /\d<,01)7

or {) = —dO with

:_721“1111 fdy;). ®)

Then the Hamiltonian vector field (‘c.c.” stands for the complex conjugate of the preceding
term)

0
X= gbia—(p_ +c.c.

defined by the Hamiltonian system ix{2 = dH gives the following Schrodinger-like lifted vor-
tex equation on C? fori=1,...,N:

i OH
Ty = —— —— . 9
P D €)
2.2. TN-symmetry and momentum map
The above lifted vortex equation (9) possesses a symmetry under the natural action of the torus

TV = (S")V = {€ := (e",...,¢") | 6; € [0,27)for i = 1,...,N}
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defined as
TN x ((CZ)N — ((Cz)N7 (eiea "P) = (ei91 Pls--s eieNQON) ::eig TP

Indeed, one easily sees that the one-form (8) and the Hamiltonian (7) are invariant under the

action. Let w € (T;S")N = RV, Its corresponding infinitesimal generator is

_d

ds

isw_so :i(wlgal,...,chpN).
s=0

w(p)

Hence the associated momentum map J: (C?)¥ — (RV)* = R¥ satisfies

J(p) w=06(p) w(p)

) N

i=1

R s
=% > Tl
i1
2 2 2
= —= (TullerlP o Tullonl) - .
As a result, we obtain

2 2 2
3@) === (Tillerl Twllend)

2.3. S'-reduction

Now let us explain the TV-reduction part from figure 1. Since the Hamiltonian (7) is invariant
under the above TV-action, its associated momentum map J is an invariant of (9). Therefore,
setting T' := (T'y,...,Ty) € RY, the level set

N
-1 _ Q3 3 _ (3
J (—ZF)_S\/EX---XS\/E—(S\/Q
is an invariant manifold of the dynamics. In fact, one can show the following:

Proposition 2.1. The symplectic reduction of (C*)N by the above TN-symmetry yields the
Marsden—Weinstein quotient

-1 3 1 3 1 2\N
J72T) TV = (S /8") x - x (S1/81) = (83)"
In addition, the lifted dynamics (9) is reduced to the point vortex dynamics (1) on (Sﬁ)N.

Proof. See appendix B. O

3. U(2)-reduction of N-vortex dynamics in C>

This section corresponds to the U(2)-reduction part in figure 1. The lifted dynamics turns out
to possess a U(2)-symmetry, and its SU(2) subgroup symmetry corresponds to the SO(3)-
symmetry of the original system on S%. The advantage of the lifted dynamics is that the cor-
responding U(2)-action on C? is much more tractable compared to the SO(3)-action on S%
when it comes to the symplectic reduction. We exploit the dual pair of Skerritt and Vizman
[46] to show that the U(2)-reduced dynamics is a Lie-Poisson dynamics.
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The upshot of this section is that we have a pair of momentum maps on (C2)V = C2*¥:
u(2)* - CN Ly (g

We shall explain the notation and the details along the way, but the dual pair implies that the
reduction by U(2)-symmetry of the lifted dynamics (9) in C**¥ yields a Lie—Poisson dynamics
in u(N)f.

3.1. U(2)-symmetry of lifted N-vortex dynamics
Let us first identify (C?)V with the space of 2 x N complex matrices as follows:

(CN = CNy = (1o)== [01. ]

Then we may rewrite the canonical one-form (8) as

O(P) = —%Im(tr(DFCI)*dfb)), (10)
where we defined
Ti 0:oeeee 0
Drp = diag(Ty, ..., T'x) = 0F2 . an

Now consider the (left) U(2)-action on C>*V defined as
U(2) x C2*N — C?*V, (Y,®) s Y. (12)

It is clear that this action leaves © invariant, and hence is a canonical action with respect to the
symplectic form 2 = —d©. It is also easy to see that the Hamiltonian (7) is invariant under
the action as well; hence U(2) is a symmetry group of the lifted dynamics (9).

Remark 3.1. As is well known, it is not the U(2)-action but the SU(2)-action on C? that
gives rise to the natural SO(3)-action on R3. So the above U(2)-symmetry does not exactly
correspond to the rotational symmetry of the point vortices dynamics on S2. In fact, the above
U(2)-symmetry combines the global phase symmetry (see remark 4.1 below) and the rotational
symmetry of the system. We perform the U(2)-reduction here because the dual pair to be
employed below is readily available with this setting, whereas it is unknown with SU(2).

Lemma 3.2. The momentum map K: C*>N — u(2)* associated with the above U(2)-
action (12) is

K(®) — LoDt — LS ot — L5, [l5? il 13
(#) = —g@Dre" = =23 Tl == 3 0|2 el (9
i=1

i=1 i=

Proof. We equip u(2) with the inner product

(&,m) :=2t(E%n), (14)

and identify the dual u(2)* with u(2) via this inner product. Since the infinitesimal generator
of an arbitrary element £ € u(2) is

f(csz((I)) = f(b,
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the associated momentum map K: C?*¥ — 1(2)* satisfies

(K(®),£) = O(P) - Eaxn (D)
= —%Im(tr(Dr(I’*ﬁq)))

= —%Im(tr(@Dpé*g))
= %itr(@Dqu*g)

= %u((—@ppcp*)*g)

(Lomarc),

Hence the expression (13) follows. O

3.2. Lie group U(Dr) and Lie algebras u(Dr) and u(N)r
Using Dr defined in (11), let us also define a Lie group
U(Dr) :={UeC"™" | UDrU* =Dr},
and its (right) action on C**V:
U(Dr) x C*N — ¢V, (U,®) — OU.
Again, it is clear that this action leaves © invariant as well; see (10).
The Lie algebra of U(Dr) is given by
u(Dr) = {C € CV | {Dp + Dl =0}
Then we have the following vector space isomorphism between u(Dr) and the Lie algebra
u(N) of the unitary group U(N):
u(Dr) — u(N); ¢ (Dr=:(.

Note that this is not a Lie algebra isomorphism. However, we may equip u(N) with the modified
Lie bracket

[¢,n]r :=¢Dp 'n— D '€ (15)

to define a Lie algebra u(N)r. Then the above vector space isomorphism becomes a Lie algebra
isomorphism between u(Dr) (with the standard commutator) and u(N)r with the modified Lie
bracket (15).

Let us equip u(N)r with the inner product in the same form as in (14), and identify the dual
u(N)¥ with u(N)r via this inner product; hence we may identify u(Dr)* with u(N)r as well.
Under this identification, the adjoint and coadjoint representations of U(Dr) on u(N)r and
u(N)f: are

Ady & = UELU™, Adj; A = UM, (16)
and also the corresponding 1 (Dr )-representations are

aden=[¢nlr,  adiA=XDp' —DpléA (17)
for every U € U(Dr), £, € u(N)r, and A € u(N)f.
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Lemma 3.3. The momentum map L: C**N — u(N)} associated with the above U(Dr)-action
is

H@1||2 (pﬂf(]pz ............. (pT@N
1 . 2 0.‘. :
R T o I N I R S IR
’ ! c A '907\7—1802N
(p}"\,gpl ......... @7\7(/)]\7—1 .. ||QONH

Proof. The infinitesimal generator of an arbitrary element ¢ € u(Dr) is
(eonn (D) = BC = BCDL
Hence the associated momentum map L: C2*V — u(N)7 satisfies

(L(®),¢) = O(P) - {axn (P)
= —%Im(tr(qu’*q)CDr_l))

2
= ——Im(tr(®*P())
R
2
= —itr(®*P
~itr(®"®0)
= 2 ((—i079)"C)
"R
i
=(—=0"
([-hred)
where we used the fact that tr(®* ®() is pure imaginary. Hence the expression (18) follows. [J

3.3. U(2)-reduction via a dual pair

Proposition 3.4. The Hamiltonian reduction of the lifted dynamics (9) by the U(2)-symmetry
vields the Lie—Poisson dynamics

)\:adgh/(;)\)\ (19)
inu(N)§, where h: u(N)§ — R is defined as
_ 1 2 (1 2 2
h(X) := IR Z I'TIn (R (2 AN+ X)) =N >> . (20)
1<i<j<N

Proof. As alluded at the beginning of the section, the pair of momentum maps K and L form
a dual pair in the sense of Weinstein [49]; see also [25, section IV.7] and [38, chapter 11].
Specifically, the above U(2)- and U(Dr)-actions along with the associated momentum maps
K and L define so-called mutually transitive actions on C>*V (see Skerritt [45] and Skerritt
and Vizman [46]) in the following sense: (a) The U(2)-action and the U(Dr)-action commute;
(b) they are symplectic actions; (c) the momentum maps K and L are equivariant; (d) each level
set of K is a U(Dr)-orbit, and each level set of L is an U(2)-orbit. In fact, this is essentially a
special case of Skerritt and Vizman [46, section 3].
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This implies the following (see, e.g. [46, proposition 2.8]): For every ®; € C**V | let k¢ :=
K(®) and \g := L(®); then the Marsden—Weinstein quotient K ~! (k) /U(2),, is symplec-
tomorphic to the coadjoint orbit O, passing through Ao € u(N)}, where O,, is equipped
with the (—)-Kirillov—Kostant-Souriau (KKS) symplectic structure (see, e.g. Kirillov [18,
chapter 1] and Marsden and Ratiu [28, chapter 14] and references therein; note that the
U(Dr)-action is a right action, and hence it is (—)-KKS): For every A € Oy, C u(N)} and
fa ne U(N)F,

Qo,, (A (—adg A, —ady \) :== —(\, [, 7)) [©2))

This motivates us to set

\/iAl )\12 ............ )\1N
= e VR e, 22)
- ' AN—1,N
>\1N .......... )‘N—lN \/§AN

or in view of (18),

V2 2

2 2
)\i:?ng,- for i=1,...,N, )\,-j:Ego;‘gpj for 1<i<j<N (23)

We also define a collective Hamiltonian [11] % so that ho L = H (see (7) for an expression
of H). Then, the reduced dynamics in the Marsden—-Weinstein quotient K ~!(r¢)/U(2), is
equivalent to the Lie-Poisson dynamics (19) in u(N)}. O

3.4. Lie-Poisson bracket on u(N)7

One may also write the Lie—Poisson equation (19) as
A={\nh},

where the Poisson bracket is the (—)-Lie—Poisson bracket on u(N)}. corresponding to the above
symplectic form (21), i.e.

b= =0 555 ) 9

for all smooth f,4: u(N)} — R. In this subsection, we would like to find a concrete expression
for the bracket.

To that end, let us first define an orthonormal basis for u(N)r. Let e; € RY be the unit vector
whose ith component is 1, and define
! eiel = fidiag(ei) for ie{l,...,N},

Di=———
V2l V2
i 1
Sij::f%(e,-ef+ejelr), ]-',-j-::i(eieijejeiT) for ije{l,...,N}.

Note that £; = v/2D; and F;; = 0 fori € {1,...,N}. One then sees that
(DY U, Fihsicisn
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forms a basis for u(N)r. Hence we may write an arbitrary element £ € u(N)r as follows:

fz(513”'75N1€123"'3£N—1N)
_Z@DJF > ((Re&ij)&ij + (Im &) Fiy)

1<i<j<N
V26 Eapeees Ein (25
_ 1 5}2_. \/552_..." :
20 e "-...'SN'lN
EIN o CEnon V26N
So we may identify u(N)p with RY x RVN¥=1) = RV a5 a vector space.

It is then straightforward calculations to see that the Lie bracket (15) on u(N)r satisfies the
following for all i,j,k,l € {1,...,N}:
—1 —1

=Lt aF), DT =
\/i( i/ ik k ]) [ ]k]F \/E

1/ ._ —
(€5, Eulr = —5 (Fi (0T + 0uFu) + T (GuFu + 5/1}-17()) ;

[D;, Ei]r (6;€i — &),

1
[Fij, Fulr = —5 (Ffl (0T — 0uFi) — ;7 (0 Fi — 5jl-7'—ik)) )

1/ _
(€5, Fulr = 5 (Fi (G — Gu&je) + T (Gin — Jflgik)) :

where we did not assume Einstein’s summation convention. Note that the first two are in fact
special cases of the third and the last ones, respectively, because D; = &;/v/2.

Using the coordinates for u(N)}. 2 u(N)r with respect to the above basis, we may write an
arbitrary element \ € u(N)}. using the coordinates (A, ..., Ay, Ai2,..., Av—1n) just as we did
in (25) for £ € u(N)r. Then we may express the Lie—Poisson bracket (24) as follows: For all
i,j,k,le{l,....N},

!
{AAE =0 {A i =i %(&y/\ik = GiAji) 26)
Doy =i(T7 8ahg =T uha)

Remark 3.5. As one can see in (25), we do not use entries \; with i 2> j explicitly as coordin-
ates in u(N)r or u(N)f, but such entries may appear in the above Poisson bracket formulas.
However, one may define \;j := (\,&;) +i(\, F;) even if i > j. Then it follows that A;j = \j;
if i>j as well as that \; = V2 2\;. So we may rewrite the above Poisson bracket formulas in
terms of the coordinates for u(N);..

The above Lie—Poisson bracket has the following family of Casimirs:
Proposition 3.6. (a) For every j € N, the function Cj: u(N)}. — R defined by
Ci(\) := tr((iDrAY)

is a Casimir function for the Lie—Poisson bracket (26).
(b) Those Casimirs C; with j > N can be expressed in terms of {C; ;V:jl
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Proof. See appendix C. O

4. Further reduction by TVN—'-symmetry
Let us now move on to the TV~ !-reduction part in figure 1. Recall from section 2 that the lifted

dynamics picked up TV-symmetry. We would like to get rid of this extra symmetry.

4.1. TV "-symmetry
Consider the action
TV ! x u(N)j — u(N)}

defined by

((eigl, o 6191\/71)1 )\) N Adz,ia N = i )ei0

V21 ei(”l’02))\12:: ,,,,,,,,,,,,,,,,,,,,,,,, ei(ul’”:‘\f—l))\LN71 le_)\lN
i 270, V2o 27
N0 G elON—1=ON2) X S N . V2AN-1 NN N
ETIIN N e e 2 )\y o N e N=IAN 1 N V2An

where
- diag(ew‘,...,ew”*‘,l) e U(Dr).

Note that this action restricts to the coadjoint orbits because it is a coadjoint action by elements
in U(Dr); see (16).

Remark 4.1. Why do we consider the TV~ !-action instead of the more natural T"-action?
It is because the above U(2)-symmetry took into account an S'-symmetry out of the T"-
symmetry already. This is the ‘global’ S'-phase symmetry alluded in remark 3.1: A part of
the TV-symmetry is the invariance under the S'-action that changes the phase of the entire
system by the same amount ® — ¢!%®, but this is an S! subgroup action of (12). The above
TVN—!-action takes care of the rest of the TV-symmetry the lifted dynamics picked up.

Clearly the symplectic structure (21) and the collective Hamiltonian (20) are invariant under
the above TV~ !-action, and thus the U(2)-reduced dynamics (19) has the TV~ !-symmetry. Let
us find the associated momentum map. Let

w=(wi,...,wy—1,0) € (TISI)N_1 ~ RN-1
and define

wr = (Twi,y...,Iy—1wn—1,0)
so that

Dw = dlag(w] y e s WN—1 30)7
Dwr = diag(Flwl, e ,FNflefl ,0) = DFDw = DwDF.
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Then the infinitesimal generator corresponding to w is
d .
Wu(N)5; ()‘) = ds Ad, i A
= [iDy, A]
= [\, —iD,]
= A\(—iD,)DrDy ' — Dy ' Dp(—iD,) A
= A<_tiF)DITl - DITl(_tiF))‘

_ *
= ad_tiF A,

s=0

where we used the expression for ad” in (17). Then we see that wy, (v (A) = ad§prw /53 A With
N u(N); — R defined by

N—1
N9A) = (A, =Dy, ) = =2itr(A" D) = V2 ) “Tidiwr.

i=1

The associated momentum map N: u(N); — (RV=1)* = RV~! then satisfies N*(\) = N()) -
wr, and thus we obtain

N(A) = V2(Ti A1, Ty Av_1).
These turn out to be trivial invariants in our setting because, in view of (23) and using ¢; € Sf/ﬁ,

we have \; = /2 for every i € {1,...,N}.
Note that the action (27) is not free. However, if we restrict the action to the open subset

U(N)p :={Aeu(N) | A\j #O0foralli,je{l,...,N} with i #},

then the action becomes free. Its geometric interpretation is the following: If, for example,
A1z = 0 then ¢}, = 0, and this along with (D.3) implies |x; — X»| = 2R, i.e. vortices 1 and 2
are in the antipodal points. In this case, there is no well-defined geodesic connecting the two
vortices on the sphere, and hence the ‘shape’ of the vortices on the sphere is not well-defined.

4.2. Reduction by TN="-symmetry
Let us define
pi = Ajhide € C - with € := C\{0},
and, also as a shorthand,
= fugn = NjAiv Ay = A € C (28)

foralli,j € {1,...,N— 1} with i <. These variables provide an alternative parametrization of
the entries {\; }1<i<jcn—1 Of A, i.e. those (N — 1)(N — 2)/2 entries of X in (22) that are above
the main diagonal except those in the last column.

Therefore, we may parametrize A € u(N)}. as follows:

A= ()\17~ . -7)‘N7)\1N7' "a)‘Nfl,N7u127' . '7/1/N72,N71) € RN X @N_l X @(N—l)(N—Z)/Z.

Then the TV~ !-action (27) becomes trivial on the variables {1 }1<icj<n—1, and hence we have
4(N): /TN = RN x ((":Nfl/TNfl) « CIV-D(V=2)/2
— RV x R]«Vk_l « CN-1)(N=2)/2
={(A1,-- -, Ay [ A1l o5 [AN—1 v, 12y s piv—av—1) } -

1013



Nonlinearity 36 (2023) 1000 T Ohsawa

Then the Poisson bracket on 1(N);. drops to the quotient by the standard Poisson reduction;
see, e.g. Marsden and Ratiu [28, theorem 10.5.1]. However, we may disregard (A,...,\y)
from the variables because

2
)\i:%ﬂw,ﬂz:ﬁ for i=1,...,N.
Also, since we have |\;|> = 4 — (¢;;/R)?, we impose
0</lj<2R <= 0<|N\j| <2

to avoid collisions and having vortices at antipodal points. As a result, we have the following
parametrization for the shape dynamics of N point vortices:

Sy i= (0,28 x GO-DW=2)/2
={(Awls-- - [Av=1.n]s 125 - - piv—2v—1)=:C},

Note that the dimension of this manifold is (N — 1)?, whereas the number of the ‘internal’
variables {£; }1<i<j<n U {Vii }1<i<j<k<y in Borisov and Pavlov [6] is N(N*> — 1) /6.
One can also show that

Reu,-jk = Re()\,-j)\ki)\jk)

= o Re((07 ) (000 (2} 1))

4 * 2 * 2 * 2
= ﬁ(ls@i oil” + ekl +|of e —Rz)
= [N 4 [Nl + [ — 4,
and
2 ,
Imﬂl]k = ﬁ‘llﬂ‘ with ‘/l]k =X;- (Xj X Xk)~
Thus, using (28),

(Re 1) + (Im )
| Ain|? [ A |?

Reu,-j = Reuiﬂv = —+ |)\iN|2 —+ |)\jN|2 — 4, (29)

and hence Re p;; implicitly depends on |Aay|, | Ajv|, and Im z;;. Therefore, our shape dynamics
is effectively defined on the N(N — 1)/2-dimensional manifold
(0,2)N ! x RNDW=2/2 = {(|\ gy, PAv— il Im o, . Impoy—o v—1) -

However, practically speaking, it is simpler to retain {Re /s }1<i<j<ny—1 as independent vari-

ables and impose (29) as constraints instead. In other words, we may define functions

(Re p1y)* + (Im 1)
| Aiv [ A [

fit Sv—= Ry fi(Q) :==Repy — — Al = Al +4 (30

with 1 <i<j<N— 1. Then the shape dynamics is on the level set () ¢; ;<1 ij_] (0).

4.3. Shape variables

How do the variables for Sy determine the ‘shape’ formed by the vortices? In view of (D.3),
(D.4), and (23), we may relate our variables with the inter-vortex distances ¢; := |x; —X;| and
the signed volume Vi = X; - (X; X Xi) as follows:
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0
G=4(R—|pfgll’) =R (A —|N) <= NI =4—-—

R R 31
Vige = 4Im (] ) (e i) (9] 91)) = 5 Tm pie <= Tm e = =3 Vi

Therefore, | \i| and |Aj| specify the lengths £; and ¢j of two edges of the triangle formed by
the vortices {i,j,k}, whereas Im y; specifies the angle between the edges, thereby determining
the triangle formed by the vortices {i,j, k}. Note also that the above equations in (31) give the
relationship between our variables and the following ‘internal’ variables of [6]:

2 -
{Mj; == Ch<icjan U { Ak = Vighi<icjcrsn-

Using the Lie—Poisson bracket (26), we find the Poisson structure on the space of our shape

variables as follows: For 1 <i,j,k,I<N—1,
(5,’1 (sz
I  Impy )
(F,- I M Ak

6.
(I Ml —z(( L

Oi
- ) Tm 15 +
J
This along with (31) recovers (2.11) of Borisov and Pavlov [6].% In terms of our variables, we

I, T;
have, again using (26),

2
{Iav I Av*} = F—Imﬂ,-k for 1<i<k<N-—1. (32a)
N
We also have, again using (26), what correspond to (2.13) and (2.14) of [6] as follows:
{IAl?, b }
A al? vl A 1 1 ; ;
— =2 — — = | i kandi=1I,
1<FN)\ZN|2 T, Ty T, il i#kandi
= (32b)
. Mkl i ik . .
i— — i#kandi#l,
(o ) 7 handi7
as well as
{/’Lijmullm}

1

|im |15 | pim

1
il =N 2 im )\m 2 ij
1<Fi(| JN| 2 | N‘ :uj) +FN|)\1‘N|2

(

) i-tism

[ A |? | Aiv|2

(1 1 Py | .
=il = (A 2 i— |\ 20 =+ < J A L' J i#£1j=m,
(FJ (| ZN| lu] | N‘ :U/lj) PN|)\jN|2 |)\[N|2 |)\lN|2 7é J
. U1\ mytm Al Wi fim ) .
i(2 = — — | b IM S i<j=Il<m.
((rj FN> Y TP A2 /
(32¢)

Rewriting the collective Hamiltonian (20) in terms of our variables, we have the Hamilto-

nian H: Sy — R defined as

2 Note that our Poisson bracket (3) for the original dynamics is R times their bracket and hence the difference by the

factor R? carries over here as well.
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1 |:ulf'|2
H(C) =1 ( > F"Fjln<R2 (4_ m

1<i<j<N—1

+Ty Y Tiln(R*(4- |)\,»N|2))> : (33)

1<i<N—1

Remark 4.2. The terms inside the logarithmic functions in the above Hamiltonian are positive
if we exclude collisions and antipodal configurations. In fact, using the definition (28) of p;;,

|
[ Aivl [ i
because we impose |A;| € (0,2) to avoid collisions and antipodal configurations of vortices i

and j. So | ;| cannot take an arbitrary value in C. However, we retain the definition of Sy as
is for simplicity.

il = Mg Al IAN] < 2| Aiv] [Av] <= <2

Let us summarize our main result as follows:

Theorem 4.3. (a) The shape dynamics of N point vortices on the sphere is the Hamiltonian
dynamics on

Sy = (0,2)N1 x CW-DWN=2)/2 ={(IMinls- - [AN=1n]s 125 - =2 n—1) =:C}

with respect to the Poisson bracket (32) and the Hamiltonian (33).
(b) The level set ﬂ fi ! (0) with f;; defined in (30) is an invariant manifold of the shape
1<i<j<N-1
dynamics.
(c) The Casimirs {C;}jen from proposition 3.6 are invariants of the shape dynamics.

Example 4.4. The 3-vortex case: N =3
The shape variables are given by

8= (0.2 x € = {(husl, sl ) =:).

Here the shape of the vortices is given by a single triangle. As one can see from (31), the
variables |A;3| and | \p3] specify the lengths ¢13 and £»3 of the two edges at the vertex given by
vortex 3, and Im 11, specifies the angle between the edges, hence determining the shape of the
triangle.

Therefore, Re (1), is redundant as a shape variable. Indeed it is implicitly defined in terms
of (|A13],|A\23,Im jz12) because the level set f;,' (0) with

(Repi2)* + (Impupp)?
[A13]2| A2]?

is an invariant manifold of the shape dynamics.
The Poisson bracket is given by

fi2(¢) :=Repin — — A3 = [Aas]? + 4 (34)

2
{|>\13|2,\)\23|2} =

T3
A2l | Aas)? 11
{A13|27N12}—< < s T -2 ﬁ_ﬁ M2 |,

2 B of sl Pl iii
{3 12} = |< T 2 5T ,

1016
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and the collective Hamiltonian (33) is

1 1112
=——— | D\TL,In(R*(4— r T In( A\il?
H(C) IR 112 n( < |)\13|2|)\23|2>> +13 Z n — sl ))

1<i2

The shape dynamics is then described as the Hamiltonian dynamics using the above Poisson
bracket and this Hamiltonian.
Let us find expressions for the Casimirs from proposition 3.6. The first Casimir

1 3 3
—=>ra=3r

is a trivial one, and the second one
é
e me R fsz S ( )
1<i<j<3 1<i<j<3
is essentially the well-known invariant (see, e.g. Newton [34, equation (4.2.6)])
2
Z Ny
1<i<j<3

Note that proposition 3.6(b) implies that those Casimirs C; with j > 3 are not independent of
C 1 and Cz

5. Application

5.1. Tetrahedron relative equilibria

Let us consider the special case with N =4. The shape variables in this case are

{¢ = (aals Poals [Naal, pa2s s, o)} € Sa = (0,2) x €.

We are particularly interested in the stability of the tetrahedron relative equilibrium as shown
in figure 2.
Using our shape variables, let us set

2 8 .
\)\14|=|)\24|=|>\34|=%7 M12=—M13=M23=ﬁ1-

Notice that Im )3 is the negative of Im 1, and Im pip3 because the orientation of the triangle

formed by (x1,X3,X4) is the opposite of those by (X;,X»,X4) and (x2,X3,X4) as one can see
(from the origin) in figure 2. It is easy to check that we then have

2
bip =113 ="014 =03 =l = {34 = 2\/;R~

5.2. Stability of tetrahedron relative equilibria

We would like to find a sufficient condition for stability of the tetrahedron relative equilibria. To
our knowledge, existing stability results for tetrahedron equilibria are limited to some special
cases: (a) Identical vortices, i.e. I'y = I', = I'; = I'4; see Kurakin [21] and Meleshko ef al [31].
(b) Linear stability condition with I'y =T'y = —I'3 = —I'4; see Laurent-Polz [22, theorem 4.6].
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Figure 2. Tetrahedron relative equilibrium on the sphere. One may take, e.g.

X1 = (2v/2,0,1), x2 = (=v2,v6,-1), x3 = (=v2,—v6,—1), x4 = (0,0,3) with

(c) Lyapunov stability for I'y = k #20 and I', =['; =I'y = 1 with x>0 and linear instability
with k < 0; see Laurent-Polz et al [24, Discussion of the case n =3 on p 465].

We would like to generalize some of these results to the non-identical case with N =4 as
follows:

Proposition 5.1. The tetrahedron configuration of four point vortices on the sphere is a stable
equilibrium of the shape dynamics if all the circulations {Fi}?zl have the same sign.

Proof. First recall from theorem 4.3(b) that the variables {Re uij} 1<i<j<3 depend on the rest
of the variables implicitly as

[Aav[? [ w2

£i(¢) :=Rep; — — P = AP +4=0 with 1<i<j<3.

The Hamiltonian for the shape dynamics is
1 | | 2
HC) =~ Z FiFjln(Rz (4— ) ) + T4 Z Tin(R? (4 — | Aul?)) |,
4rR 1<i<<3 | Al Ava 1<i<3

and, recall from theorem 4.3(c) (see also proposition 3.6) that the shape dynamics possesses a
family of Casimirs. Particularly, we have

|/’I’l F4 2
Zrz+f > rF,IA IZTA B IPWAES
1<i<j<3 A 1<i<3

We would like to use the energy—Casimir method using {f;; } 1 <i<j<3 as additional invariants
as well. Specifically, let us write the tetrahedron (relative) equilibrium as

P M
(S \/g?\/g?\/g’3\/§7 3\/§33\/§ i
and seek a Lyapunov function of the form

£(6) = HIO)+ —p (§RCa(O) ~ Cal) + 5 V(O fs(€)()) )
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with some smooth functions ®: R — R and ¥: R3 — R, where C,|. := C5((.). Then £ is an
invariant of the shape dynamics because H, C;, and {fij}lgi<j<3 are all invariants.
It is then a straightforward computation to show that the gradient DE((,) vanishes if

3
2 3
In order to show that (. is stable, it suffices to show that there exist ® and ¥ such that (35)
holds and also the Hessian D> ((, ) is positive definite. To that end, set

3'(0) = — DY(0) =0. 35)

A= ?WRZDZE(CS),

and let D; ¥ denote the second derivative D;D;¥ with i,j € {1,2,3}. Assuming that &'/(0) = 0
and Dl-zj\I/(O) = 0 for i # j, the leading principal minors {d;};_, of A satisfy

di =T (I, +T3+Ty), dy =T (F3 4 Ty) (T + T + T3 + 1),
dy =T 1ol (DT 4+ Ta(Ta 4+ T3 + Ty)* 4+ 20 (g (T3 + Ty) + T2 (215 +Tw)))

and
;i: _ %D%I\I;(o), % — [ TT5Ty D2, 0(0), Z—i = %Dﬁz‘lf(O),
T (O D) D), E = Iptw),
d:;gdl =T [,150y D33 9(0).

Therefore, if I'; > 0 (or I'; < 0) forevery i € {1,2,3,4}, thend;, > 0 fork € {1,...,9}, and
hence A is positive definite, provided that D2 (0) > 0 for every i € {1,2,3}; for example, one
may take

3
@(X)Z—E.L \I’()’h)’z»)’3):)’%+)’%+)’§
to satisfy the conditions we impose. O

6. Conclusion and outlook

6.1. Conclusion

We found the Hamiltonian formulation for the shape dynamics of N point vortices on the
sphere by first lifting the dynamics from S3 to C? and then applying U(2)-reduction followed
by TV~ !-reduction, as opposed to performing the (direct) SO(3)-reduction.

The U(2)-reduction was facilitated by a dual pair found by Skerritt and Vizman [46] and
yields a Lie-Poisson dynamics on the dual of the Lie algebra u(N)r defined in section 3.2,
whereas the TV~ !-reduction was a standard Poisson reduction. The resulting shape variables
give a parametrization of an ambient space of the (SO(3)-reduced) shape space that is hard
to parametrize directly. As a result, our approach yields a concrete expression for the shape
dynamics that is difficult to obtain by the SO(3)-reduction.

We also found a family of Casimirs for the shape dynamics exploiting the Lie—Poisson
structure.
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As an application, we applied our formulation to the tetrahedron relative equilibrium of
non-identical vortices, and proved that it is a stable equilibrium of the shape dynamics if all
the circulations have the same sign, generalizing some of existing works on the problem.

6.2. Outlook

There are several topics to explore for future work that are suggested by the reviewers.

Itis interesting to see if our shape variables facilitate explicit integration for those integrable
cases, particularly N = 3.

In order to better understand the geometry of the shape dynamics, we need to know the
geometry of the coadjoint orbit O C u(N)F. This is fairly simple if all the circulations have the
same sign—in which case U(Dr) is isomorphic to U(N) (and compact), and so O is essentially
the coadjoint orbit in u(N)*. However, the general case requires a classification of the coadjoint
orbits of the (non-compact) indefinite unitary group U(p,¢) with signature (p, g). Also, given
the compactness of the shape space, this suggests that the momentum map N is proper, giving
an insight into the structure of O.

The linear instability of the tetrahedron relative equilibrium for the special case I') = k < 0
and I'; =T'; =Ty = 1 from [24] also suggests the possibility that the sufficient condition for
stability from proposition 5.1 may be also necessary.

It is also an interesting future work to extend our result on the tetrahedron to other Platonic
solids with non-identical vortices in order to generalize the results from [21] and [31].

Our lifting of the dynamics to C? and the S'-bundle structure is reminiscent of the ‘post-
classical’ formalism of Tuynman [47]. Itis interesting to see if there is any relationship between
such a lifting and geometric (pre-)quantization.
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Appendix A. Identification of su(2) with R’

A.1. Isomorphism between su(2) and R®

We define a basis {7;};_, for su(2) by setting

__1jo 1 __ifo i it
T — 3 1 0 5 Ty ‘= 3 i 0 s T3 i\ — 3 0 -1

so that [1;, 7] = 7 for every even permutation (i,j,k) of (1,2,3). We may then identify su(2)
with R? via the map

3 .
3 i _ R B S &1 —1&
iR = su(2); s(sl,sz,@w;m > [&H& & ] (A1)

The inner product on su(2) is inherited from u(2):

(€m) =2u(n) =&, (A.2)

i.e. it is compatible with the standard dot product in R* under the above identification.
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It is also straightforward to see that the commutator in su(2) is compatible with the cross
product in R? in the sense that, for all £, € R3,

& xn) =[f(€).f(n)]. (A3)
That is, f gives a Lie algebra isomorphism between R* and su(2).
A.2. The ad and ad* operators in su(2) and R®

The property (A.3) indicates that
fi&xm)=[&n] =aden.

Hence for every p € su(2)*, we have

(adg p1,n) = (padgn) = p- (€ xm) = (ux &) 1.
So we have

adg pp=p x &
under the above identification of su(2) and su(2)* with R3.

Appendix B. Recovering original dynamics from lifted dynamics

This appendix gives a proof of proposition 2.1. The main idea is to use a dual pair to find a
natural parametrization of the Hopf fibration Sf/ﬁ — Si.
B.1. Symplectic reduction via dual pair

Since the reduction is performed for each copy of C2 in (C?)" separately, we first perform
the reduction for a single copy of C?. Hence the momentum map J is, dropping the subscripts
for ¢,

SR Je)= STl
In order to construct a dual pair, we also define an action of SU(2) on C? as follows:
SU(2) x C* = C?% (U,p) — Ugp.
For every £ € su(2), its corresponding infinitesimal generator is

e () = &
We identify su(2)* with su(2) via the inner product (A.2) from appendix A. Then the associ-
ated momentum map M: C? — su(2)* satisfies

(M(e),&) = @(zw) Le2 ()
= —plIm(¢7Ey)
= I%ifw*fso
= %il“tr(soso*f)
= 2u((~iTpy")E)

i *
= <RFs0s0 ,€>-
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However, since M takes values in su(2)* 2 su(2), we have

M@ﬂ=—;FGw*—;H@wﬂO

i 1,
=T o — =01
R Gw QWI)

i pflEP -l 2
2R 2z fuf =z

Z%@%@mﬂmwMﬁ—Wﬁ, (B.1)

where we used the identification (A.1) of su(2) with R? from appendix A. Notice that the
above expression for M essentially gives the Hopf fibration.
As a result, we have a pair of momentum maps defined on C:

R C2 ﬂ>5u(2)*.
This pair of momentum maps is known to constitute a dual pair; see Golubitsky et al [10] and
Holm and Vizman [12]. This implies that the Marsden—Weinstein quotient J ~!(—2T")/S! is
symplectomorphic to a coadjoint orbit O in su(2)*. More specifically, the momentum map M
restricted to the level set J ~! (—2T") gives rise to the symplectomorphism M: J ~!(—2T)/S! —
O, where O is equipped with the (+)-Kirillov—Kostant-Souriau (KKS) symplectic structure

(see, e.g. Kirillov [18, chapter 1] and Marsden and Ratiu [28, chapter 14] and references
therein): For every € O and £, 7 € su(2),

Qo (1) (adg p,ad) 1) := (1, [€,m]),
or using the identification between su(2)* 2 su(2) with R? in (A.1),
o (1) (1 x &y x ) = - (Ex1) o Qo(W)0sw) = s (% w)

In other words, the collectivization by M coincides with the symplectic reduction by S'.

It is well known that O is a two-dimensional sphere as well. One can also see it from the
expression (B.1) that if ¢ € J~!(—2I"), then ||| = V/R, and so M(¢), as a vector in R3, is in
the sphere with radius I" centered at the origin. Hence J ~'(—2I")/S! is a sphere as well.

In order to show that the reduced dynamics is indeed the point vortex dynamics on S, we
identify J ~!(—2I")/S! with S% via

M T
M:J'(-2I)/S' =S - O =Sh; x— 7x

In other words, we are setting %x = M(¢). Then, in view of (B.1), we have
x = (2Re(zu), 21m(zu), 2 ~ [uf?),

that is, ¢ and x are related via the Hopf fibration as in [48].
Pulling back 0 to S by M, we obtain

M Qo (x)(v,w) = %x (vxw), (B.2)

which is the area form on S3 multiplied by I'. The corresponding Poisson bracket is, for all
smooth F.H: R? = R,

R OF OH
{F,H}Rg (X) = fX' (ax X ax) .
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B.2. Vortex dynamics on S% and Lie-Poisson equation

Now let us come back to the lifted dynamics of N vortices in (C?)V. The above argument
applies to each copy of C2, and so we have the momentum map

M: (€)Y 5 (a2 )V = R (... 0x) %(I‘lxl,...,FNxNL

where, for eachi € {1,...,N},
X; = (ZRC(Z’M[), ZIm(Ziui), |Zi|2 — |u;\2) c RS. (B3)

Since each copy of S is equipped with the symplectic form (B.2), this gives rise to the sym-
plectic form (2) on (S%)V. The corresponding Poisson bracket on (R*)" is then (3).

One then sees that Hys : (R*)Y — R from (4b) is the collective Hamiltonian, i.e. Ho M = H
where H is defined in (7). As a result, the reduced dynamics is the Hamiltonian system (5).
This completes the proof of proposition 2.1.

Appendix C. Proof of proposition 3.6

(a) Letj € N be arbitrary. Let us first show that C; is indeed a real-valued function: For every
A € u(N)§, we have

We also see that C; is Ad”*-invariant: For every U € U(Dr), we have

Ci(Adj\) = tr((iDrU*AUY)
=tr((iUDrU*\))
=tr((iDrAY) = Gi(N).

Since any Ad*-invariant differentiable function is a Casimir (see, e.g. Marsden and Ratiu
[28, corollary 14.4.3]), this implies that C; is a Casimir function for the Lie-Poisson
bracket (26).

(b) Let us set A :=iDr A so that we have C;(\) = tr(Aj ) By the Cayley—Hamilton theorem,
we have p(A) = 0, where p is the characteristic polynomial of A:

p(x):=det(xl —A) =x" —c; XN — el E - ¢y,
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where the coefficients {cy(A\)}Y_, are determined by the Faddeev-LeVerrier algorithm

(see, e.g. Gantmacher [8, p 87]):
A=A, clztr(Al), B, :=A; —cl,
Ay :=ABy, Cy) = %tr(Az), By, :=A, — o,
o 1
Ay:=ABy_i|, cy= ﬁtr(AN)~
Specifically, this implies that each ¢; withj € {1,...,N} depends on A as a smooth function

of {tr(A¥) },_ . We also obtain the expression

1
CN:Ntr(AN)+...,

where the remaining terms do not contain tr(A"). Now, taking the trace of
p(A) =AN — e AN AN T2 Ay =0,

we have
tr(AN) —ci tr(ANfl) — cztr(AN*Z) —-—cy=0.

J

i
-1t
implies that Cy(X) can be expressed in terms of {Cj()\)};\’;ll. This argument extends to

Cj(X) forj > N+ 1 recursively.

Since each ¢; with j € {1,...,N— 1} depends on A as a smooth function of {tr(Ak)

and cy takes the form shown above, tr(A") can be expressed in terms of {tr (Aj )}

Appendix D. Vector identities in C? and R3

Since we use the lifted vortex dynamics in C? to describe the dynamics in S3 C R?, we make
use of some identities that hold between vectors in C? and those in R? via the map (B.3). This
appendix presents detailed derivations of these identities, because the derivations are, although
straightforward, quite cumbersome and non-trivial, and also because there does not seem to
be proper references on these identities.

D.1. Vectors in C? and R®
Recall that, for i € {1,...,N}, we let ¢; = (z;,u;) € C* and set
X; = (ZRC(Z’M[), ZIm(Ziui), |Zi|2 — |u;\2) c RS. (B3)

We would like to derive those formulas for vectors in C? that give some familiar objects in
vector algebra in R>.

D.2. Inner product in C? and dot product in R3

The dot product in R is related to the inner product in C? as follows:
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X1 - Xy = 4(Re(z1u1) Re(Zou2) + Im(Zyu1) Im(Zou2)) + (|21 > — [ ]?) (|22 — [u2])
= 4Re(zim i) + (1] — [ [*) (|2 — [ua]?)
=2z iy + 21 Z2u2) + (|21 * = |1 ]?) (|22)* = |u2|?)
=2(2umziy + 2zt + |21 Pz + | [Plual?) = (|21 * + |1 [7) (|2 + |2 ]?)
=222+ ) (1122 + wina) — (|z1)* + s ) (|22 + [u2]?)
=212+ i up|* — (|Z| |2 + |uy |2) (|Zz|2 + |u2|2)
=2lpiea* = llor ¥l 2. (D.1)
Hence we have
xi 2 = [l |*.

This implies that that the three sphere with radius v/R is mapped to the two-sphere with radius
R (both centered at the origin) under the map (B.3).
We also have

X1 —%o|* =[x+ [x* — 2% - x,
4 4 * 2 2
= et + lleall* = 4t el + 2lier Pl |
2
2 2 *
= (o1l +lleal?)” = 4leieal? (2)

and so, if 1,p; € S then X1,Xp € SR, and

x| —x2|2 =4(R* — |¢jeal?). (D.3)

D.3. Triple product in R®
We have
(T e2)(w301)(p303) = (Ziza +ituz) (Zaz1 + iz ) (2223 + ipu3)
= 2122zl + fur [P *us |

+ Z (|Zi|2ZjZkﬁjuk+|Mi|22jZijﬁk)a
(iy,k) €25

where Z; is the set of all cyclic permutations of (1,2,3),1.e. Z5 := {(1,2,3),(2,3,1),(3,1,2)}.
However,

|21 %22 |23) + o1 |* w2 |3 |

:HG (|2 + i) + (Iz, — >+H< (2l + ] >—;<zi2—lui|2))

3

1

=7 LT +laly + D el + ) Uzl = ) (Jal* = )
i=1 (ij,k) €23

1 3.3

=7 | millxflxs] + > Ixilxx

(iy,k) €23
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We also have

Re(ijkﬁjuk) = Re(%ﬁuk)

and

Im(g;Zettjuy) = Tm(Zju;Zeuk)

e(Zjuy) Im(Zgux) — Im (Zju;) Re (Zeuag )

(2~ 2+

— = X

= Z (Xl X Xk)37

where we wrote the components of X; as (x],x7,x7), and (x; x X;)* signifies the third compon-
ent of X; X Xg.

As a result, we obtain

* * * 1
Re((¢192)(0391)(02003)) = 7 | [xal[xa[xs] + > il
(iJ.h)€ 2

1
+ 1 Z (|zi|2 + |u,-|2) (Xj - X —x;xi)
(ij,k)E€Z3

1
= 7 | Pallxellxs| + > il ex

(iJ,k) €23
and
Im((p192) (2301)(393)) = 7 (a1 = | ) (32 x x3)" + 7 (J2af” = o) (%3 x 1)
1

+7 (Iz3]” = |us*) (x1 x x2)°
1

=1 [ (%2 x x3)° + 23 (x3 x x1)? + 13 (%1 X X2)°]
1

= —det
1 et[x; X2 X3]

= 1X (%2 X X3)

= 7% (%2 X Xs).

(D.4)

Particularly, if x; € S3 then ¢, € Sf/ﬁ for i € {1,2,3}, and so (D.1) gives, for all i,j €
{1,2,3},

xi-X; =2lp o> — R
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So we have
* * * I? 2
Re((¢192)(@301)(p303)) = Z(R +X] X3+ X3 X +X;-X3)
R s ) , D.5)
=3 (Ieteal +lgsen + loses - R).
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