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Abstract. We prove that the recently developed semiexplicit symplectic integrators for nonsepa-
rable Hamiltonian systems preserve any linear and quadratic invariants possessed by the Hamiltonian
systems. This is in addition to being symmetric and symplectic as shown in our previous work; hence,
it shares the crucial structure-preserving properties with some of the well-known symplectic Runge—
Kutta methods such as the Gauss—Legendre methods. The proof follows two steps: First we show
how the extended Hamiltonian system proposed by Pihajoki inherits linear and quadratic invariants
in the extended phase space from the original Hamiltonian system. Then we show that this inher-
itance in turn implies that our integrator preserves the original linear and quadratic invariants in
the original phase space. We also analyze preservation/nonpreservation of these invariants by Tao’s
extended Hamiltonian system and the extended phase space integrators of Pihajoki and Tao. The
paper concludes with numerical demonstrations of our results using a simple test case and a system
of point vortices.
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1. Introduction.

1.1. Extended phase space integrators. Consider the initial value problem
of the Hamiltonian system

1=D2H(q,p),
(1.1) iIDH(:) o 497D2H@P)
p=—D1H(q,p)
with Hamiltonian H : T*R? — R and the initial condition z(0) = (¢(0),p(0)) = (g0, po),
where
N R
J= [—Id 0] ’

and D stands for the Jacobian (gradient in this case) and D; stands for the partial
derivative with respect to the ith set of variables.

We would like to numerically solve the initial value problem efficiently and accu-
rately. For efficiency, one would prefer explicit methods, whereas for accuracy, one
prefers to use those integrators that preserve the underlying geometric structures of
the system (1.1), such as the symplecticity of its flow and its invariants or conserved
quantities.

It turns out that achieving both efficiency and accuracy in the above sense is quite
challenging for general nonseparable Hamiltonians, i.e., those H(g,p) that cannot be
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written as K(p)+ V(g) with some functions K and V. While there exist some explicit
symplectic integrators for certain classes of nonseparable Hamiltonian systems [1,
3, 16, 22, 24, 26, 27, 28, 29, 30, 31], the choice of symplectic integrators for other
nonseparable systems has been mostly limited to symplectic (partitioned) Runge—
Kutta methods, which are known to be implicit in general.

The recent development of extended phase space integrators is an attempt to
change this landscape. Specifically, instead of solving (1.1) directly, Pihajoki [19]
proposed to solve

q:D2H(‘Iap)7 pszlH(Qay%

(1.2) =Dy H(q,y), y=—DiH(z,p)

with the initial condition

(¢(0),2(0),p(0),4(0)) = (90, 90, Po, P0)-

Notice that (1.2) is a Hamiltonian system defined on the extended phase space
TR = {(4,2,p.4)/(¢,7) €R¥, (p,y) € T, , R* 2R} =R

with the extended Hamiltonian

(1.3) H:T'R* R, H(q,2,p,y):=H(q,y) + H(z,p).

Its solution satisfies (¢(t),p(t)) = (z(t),y(t)) for any ¢ € R (assuming that the solution
exists and is unique), and t — (q(¢),p(t)) coincides with the solution of the initial
value problem of the original Hamiltonian system (1.1). Geometrically speaking, the
subspace

(1.4) N::{(q,q,p,p) e T"R*|(q,p) ET*Rd} C T*R*

is an invariant submanifold of (1.2), and the system (1.2) restricted to AN gives two
copies of the original system (1.1).
Let us write

¢=(gz,p,y), n=I(qy), E=(z,p).

We note in passing that, throughout this paper, vectors are usually column vectors,
but we often write column vectors as tuples to save space just like we did above.
Then, we may write the extended Hamiltonian (1.3) as

H(C)=H(n)+ H(S),

and then write (1.2) as follows:
(1.5) §=JDH(),  =IDH(&).

This form is reminiscent of what happens to the original Hamiltonian system (1.1)
when H is separable:

¢=DK(p), p=-DV(g).
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One can then show that the Stormer—Verlet integrator is actually a Strang splitting
[21] consisting of the following two flows:

{qzo, i {quK(m,

p=0.
Pihajoki [19] proposed to do the same with (1.5): Let 4, &7 be the flows of

n=0, n=JDH(E),
. and .
¢E=JDH(n) £=0,

respectively, that is,

(1L6) &1 (O~ (E+tIDH(m) and F: (9,€) = (n+tIDH(E),8).
Then the Strang splitting

(1.7) Dppi= &)gt/Q ° (i)ﬁt ° (i)gt/Q

gives a 2nd-order explicit integrator with time step At for the extended Hamiltonian
system (1.2).

1.2. Semiexplicit integrator with symmetric projection. Unfortunately,
Pihajoki’s integrator (1.7) has some issues: (i) the numerical solution does not stay
in the subspace A/ and, even worse, the defect (z — g,y — p) in the phase space copies
(¢,p) and (z,y) tends to grow in time numerically; (ii) the method is symplectic in
the extended phase space T*R?? but not in the original phase space T*RY.

Various modifications of the extended phase space integrator have been proposed
to mitigate the first issue, most notably by Tao [25] (see also Appendix B); see also
[13, 14, 15, 18, 33] for relativistic dynamics with astrophysical applications. However,
none of them fully resolves both issues.

In the recent work [11], we proposed to address the first issue using the symmetric
projection (see, e.g., Hairer, Lubich, and Wanner [10, section V.4.1]) to the subspace
N: First notice that the subspace N defined in (1.4) is written as

(1.8) N =kerA with A:= [(;l 70111 fpd f}d )
Then, using Pihajoki’s extended phase space integrator ®a; from (1.7), we defined
our semiexplicit integrator as follows (see also Figure 1 below): Given z, = (¢,pn) €
T*RY,
. Cn::(Q'MQnapnvpn); .
. Find p e R?? such that ®a.(Cy +ATp) + ATpeN;
. gn =Cn :" ATA,U;
. Cn-i—l ::(I)At(Cn); .
- Cnt1 = (@15 Gt P15 Pt 1) := Cugr + AT g
6. An+1:= (Qn—i-hpn—i-l)-
Note that steps 2-5 combined are equivalent to solving the nonlinear equations

U W N~

— Dpy(Cn+ AT p) — ATy

0
ACn—i—l

FAt(Cn+1,M) = Cn-i—l
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F1G. 1. Extended phase space integrator with symmetric projection [11].

for (Cnt1,p) € R%? x T*R?*¢, or eliminating (1, the following nonlinear equation for
1%

far(p) = A((i)At(Cn +ATp) + ATM) =0.

One may construct a higher-order method by replacing ) by a higher-order com-
position of the 2nd-order method (1.7), such as the the triple jump, Suzuki’s, and
Yoshida’s compositions [7, 8, 23, 32]; see also our previous work [11, section 4.1] for
details.

It turns out that the above semiexplicit integrator not only eliminates the defect
(z — ¢,y — p), but also is symplectic in the original phase space T*R? [11], hence
resolving the second issue mentioned above as well. Additionally, it is also symmetric
by construction. Moreover, by using a simplified Newton’s method or the quasi-
Newton method of Broyden [2] and a small enough time step At, the implicit step of
solving a nonlinear equation tends to be fast; as a result, our method is comparable
in speed to and sometimes faster than the fully explicit method of Tao [25] and the
symplectic Runge—Kutta methods, especially for higher-order implementations; see
Appendix A for numerical results on efficiency.

1.3. Main result. This paper addresses the preservation of linear and quadratic
invariants by our semiexplicit integrator—yet another desired property for structure-
preserving integrators in addition to symmetry and symplecticity.

It is well known that the Stormer—Verlet method is a special case of the partitioned
Runge-Kutta method with the 2-stage Lobatto IIIA-IIIB pair applied to a separable
Hamiltonian; see, e.g., Sanz-Serna and Calvo [20, section 8.5.3], Leimkuhler and Reich
[12, section 6.3.2], Hairer, Lubich, and Wanner [10, section II1.2.1], and also Geng [9].
Such methods applied to (1.1) are known to preserve linear and quadratic invariants
of the form a”z and ¢7 Wp, respectively, with a € R?? and W e RdXd; see, e.g., [12,
section 6.3.2] and [10, Theorems IV.2.3].

Given that the time evolution part of our method is the extended-phase-space ana-
logue (1.7) of the Stormer—Verlet method, one may expect that the best we can hope
for with our integrator would be to preserve quadratic invariants of the form ¢ Wp
but not a general quadratic invariant of the form z7 ¥z with symmetric ¥ € R24x2d
Such a limitation is not desirable for an integrator for nonseparable Hamiltonian sys-
tems because they often possess invariants of the form g7 M ¢+ p” Np with symmetric
M,N e R4,
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Quadratic invariant Q of §4.1 Quadratic invariant @ of

extended system (1.2) Pihajoki integrator (1.7)

Proposition 3.3/ §3.3 Lemma 4.1 §4.2
Ilizzra]lrtzilt:’in:r: §2.2 Quadratic invariant @ of \_ Quadratic invariant @ of
- e—= L c===s=== L
symmetry of H Hamiltonian system (1.1) [Theorem 1.1 semiexplicit integrator

F1G. 2. Overview of our results on quadratic invariants. A similar picture applies to linear
invariants although we do not discuss the corresponding symmetry.

Our main result is that our integrator preserves any linear and quadratic invari-
ants of the original Hamiltonian system (1.1) without such a limitation.

THEOREM 1.1. The semiexplicit integrator [11] defined in subsection 1.2 preserves
any linear and quadratic invariants of the original Hamiltonian system (1.1).

Remark 1.2. The same statement holds for any higher-order semiexplicit method
constructed by replacing the 2nd-order integrator (1.7) by its higher-order variant
using the triple jump composition (see [7, 8, 23, 32] and [10, Example I1.4.2]) or those
of Suzuki [23] and Yoshida [32] (see also [10, Example I1.4.3, section V.3.2]). These
higher-order integrators are tested in [11] as well.

Remark 1.3. As we shall discuss later, neither Pihajoki’s nor Tao’s [25] integrator
has the property described in the above theorem for quadratic invariants in a strict
sense.

To our knowledge, the only integrators for general nonseparable Hamiltonian
systems that are symmetric, symplectic in the original phase space T*R?, and preserve
any linear and quadratic invariants are symplectic Runge-Kutta methods, such as the
Gauss—Legendre methods; see Cooper [6] and also [12, section 6.3.1] and [10, Theorems
IV.2.1 and IV.2.2].

1.4. Outline. We shall show Theorem 1.1 in the rest of the paper. Figure 2
provides an overview of our argument for quadratic invariants; a similar picture applies
to linear invariants.

Since the main focus is on quadratic invariants, we first give, in section 2, a
review of the relationship between the symmetry by linear actions and quadratic in-
variants of the original Hamiltonian system (1.1). In section 3, we show how such
symmetry and linear and quadratic invariants are inherited by the extended Hamil-
tonian system (1.2). In section 4, we give a proof of Theorem 1.1 after discussing
a conservation law of Pihajoki’s integrator (1.7) as a key lemma. Finally, in section
5, we first discuss and summarize conservation and nonconservation of these invari-
ants for those extended phase space integrators of Pihajoki, Tao, and ours. We then
test these three integrators numerically to demonstrate these properties including
Theorem 1.1.

2. Symmetry and quadratic invariants of Hamiltonian systems. This
section gives a review of symmetry and conservation laws in Hamiltonian systems
focusing on linear and quadratic invariants. We do not discuss symmetry behind linear
invariants here, because it is more straightforward to focus on the linear invariants
themselves without delving into the (translational) symmetries behind them.
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However, we shall discuss in detail the relationship between the symmetry under
linear actions and quadratic invariants, because the underlying algebraic structure
gives a better idea of how quadratic invariants are inherited by the extended system,
as we shall see in section 3. The upshot is that an infinitesimal symmetry under a
linear action implies a quadratic invariant, and vice versa.

2.1. Symmetry under linear action. Let us define the symplectic group
Sp(2d, R) i= {5 € R**2!| §T J5 = I}

or, equivalently, written as block matrices consisting of d x d submatrices,

(2.1) Sp(2d,R):={{é g} e R*24 | ATC=CTA, BTD =D”B, ATD—CTB:Id}.

Let G be a matrix Lie subgroup of Sp(2d,R), and consider the standard action of
G on T*R? by matrix-vector multiplication:

U: G x T*R = T*RY, (S,z [ZD 5 Sz =:Ug(2).
Then the action is symplectic because

(DUHTIDUg=] < ST]S =] < SeSp(2d,R),

where D denotes the Jacobian.
The Hamiltonian H: T*R? — R of the original system (1.1) is said to have G-
symmetry if

(2.2) HoWg=H < H(S2)=H(z) YS€G VzeT*R%
We also say that G is a symmetry group of the Hamiltonian H or the Hamiltonian
system (1.1) if the above is satisfied.

Ezample 2.1 (finite-dimensional NLS). As a finite-dimensional approximation to
the nonlinear Schrodinger equation (NLS), Colliander et al. [5] (see also Tao [25]) gave
the Hamiltonian system (1.1) with d = N and the following nonseparable Hamiltonian:

(2.3)
1 N ) N
H(q,p) =7 ;(qf +p3) ;(pfflp? + 471G — G AP — PG+ APi-1Didi-1Gi)-

Consider the subgroup

([t ] exees)

It is essentially SO(2), and in fact defines a homomorphism from SO(2) to Sp(2d,R)
and hence a subgroup G of Sp(2d, R). Then we see that the Hamiltonian (2.3) possesses
G-symmetry in the sense that (2.2) holds. One may certainly take G = SO(2) and
define a group action ¥ accordingly, but we would rather like to have G as a subgroup
of Sp(2d,R) because it gives a unified approach on quadratic invariants as we shall
see in a moment.
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2.2. Infinitesimal symmetry and quadratic invariants. Let sp(2d,R) be
the Lie algebra of Sp(2d,R), i.e.,

5p(2d,R) == {%e R | Ty 4 [ = 0} .

Instead of working directly with elements in sp(2d,R), it is often more convenient to
work with the space

sym(2d,R) := {H e R¥x2d | T — m}
of real symmetric 2d x 2d matrices via the following identification:
(2.4)

_|R11 K12| _ 4T _ _ KJ{Q K22
sym(2d,R) <> sp(2d,R), k=| 1 =l"xerx=]lk= ,
Kia K22 —KR11  —KR12
where k12 is a d x d real (not necessarily symmetric) matrix, and k11, K22 € sym(d, R).
Now, let g be the Lie algebra of the symmetry group G C Sp(2d,R) of the Hamil-
tonian H. Then g is a subalgebra of sp(2d,R), which can be identified with the
subspace

(2.5) Osym =JTg= {fi =] € sym(2d,R) | » € g} C sym(2d,R).

Then, for any s = Jk € sp(2d,R), we may define a vector field called the infinitesimal
generator as follows:

d kisq + Kaap
2.6 Kxpd(2):= — exp(sx)z =xuz=Jkz= 12 .
(26) 7o (2) ds p(s2) S—0 l:—lillq—l'iup

Intuitively, this gives the infinitesimal symmetry direction of the Hamiltonian H.
Indeed, since exp(ss) € G for any s € R and any » € g, (2.2) implies H (exp(sx)z) =
H(z), and taking the derivative of both sides with respect to s at s =0, we have

(2.7) fpega(2)TDH(2) =0 VK€ goym Vz€T*RY,

showing the infinitesimal invariance of H in the directions defined by kp.pa. Hence
we shall refer to it as an infinitesimal symmetry (or g-symmetry) of H. This is what
the lower left box in Figure 2 signifies.

What is the associated Noether invariant? For any s € geym, define

1 1 1
(2.8) Qx(2) 1:§ZT’€Z = §(ZT"€11Q +q" k1ap+ §PT522P
so that one has
fipepa(2) =JDQu(2) VzeT*R%
Then, taking the Poisson bracket of Q, and H,
{Qn, H}(2) = DQ,(2)"IDH (2)
=—(JDQx(2))" DH(2)
= —kpepa(2)T DH(2).

Therefore, the infinitesimal symmetry (2.7) implies that Q, is an invariant of Hamil-
tonian system (1.1) for any x € geym.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/04/23 to 129.110.242.50 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1300 TOMOKI OHSAWA

Conversely, suppose that (1.1) possesses a quadratic invariant. One can find
k € sym(2d,R) so that the invariant is written as @, as in (2.8). Then {Q., H}(z) =0
for any z € T*Rd, and thus the above equality implies the infinitesimal symmetry
(2.7) for that particular .

For a family of quadratic invariants {Z;}%_,, one may find {x;}*_, C sym(2d,R) so
that Q,, =Z; for i € {1,...,k}. Then, setting gsym = span{x;}¥_;, the corresponding
9 = Jgsym C sp(2d,R) gives the symmetry Lie algebra, i.e., the Hamiltonian H satisfies
g-symmetry (2.7).

Example 2.2. Consider again the NLS from Example 2.1. The Lie algebra g here is

0 -1y
g=spanq g := I, 0 ,

Jsym = Span {JT%O = —Igd} .

and thus

Therefore, setting k = 2154, the associated quadratic invariant is

(29) Qulz) = 527wz =Y (a2 + #2)

which is essentially the “total mass” of the NLS [5].

3. Linear and quadratic invariants in extended system. Now we would
like to address the following question: If a Hamiltonian system (1.1) possesses lin-
ear and/or quadratic invariants, then does the corresponding extended system (1.2)
inherit such invariants?

We first discuss linear invariants in subsection 3.1, and then in subsections 3.2
and 3.3, we build on the previous section to discuss how linear action symmetries and
quadratic invariants are inherited by the extended system (1.2).

3.1. Linear invariants of an extended system.
PROPOSITION 3.1 (inheritance of linear invariants). The function
(3.1) Lo(2):=a"2 with a=(aga,) €R** and a4 a,cR?
is a linear invariant of the original Hamiltonian system (1.1) if and only if
(3.2) )
ia(C)::a’Tg with C:(q7gj7p7y) ET*R2ng4d and a= 5(0’1170‘%&1070‘17) €R4d

is a linear invariant of the extended Hamiltonian system (1.2).

Proof of Proposition 3.1. Notice that

(3.1) is an invariant of (1.1) <= {L,,H}(z)=0 VzeT*R?

3.3
3.3) «— a"JDH(z)=0 VzeT*R%

On the other hand, for the extended system, let us define, using the Kronecker
product ®,
j._{ 0 IQd]_|: 0 L® Iy

—Ihg 0] |-L®Iy 0

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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and also the extended Poisson bracket

{F,GYexa(€):=(DF ()" I DG(Q).
Then we have

(3.2) is an invariant of (1.2)
= {Lo, H}ext(()=0 V(TR
(34) — a"IDH(()=0 VY(eT*R*

1
= 5(a"IDH(g,y) +a" IDH(x,p)) =0 ¥(g,y), (z,p) € T*R.

Clearly (3.3) implies (3.4). On the other hand, (3.4) for the particular case of (z,p) =
(4,y) gives

a"IDH(q,y)=0 ¥(q.y)€T*RY,

which implies (3.3). Hence the claimed equivalence follows. o

Remark 3.2. The extended system of Tao [25] (see (B.1) in Appendix B) enjoys
the same property; see Appendix B.2.

3.2. Actions on an extended phase space. Just as in the last section, let G
be a subgroup of Sp(2d,R), and consider the following action of G on the extended
phase space T*R?? =~ R4d,

U: G x T*R?*? — TR,

(35) q Aq + By
3.5 [A Bl . |z Az +Bp| & -
S_[C D]’C_ P Cx+Dp =8¢ =¥s(¢),
Y Cq+ Dy

where we defined, again using the Kronecker product ®,

A

S:=

[LeA PeB] .. o1
[P@C 12®D} with P'[1 o}

oNXro
o O wo
Qoo™

0
0
C

Then it is a straightforward computation to show that STJS =17, ie., S € Sp(4d,R).
Likewise, for any s = Jx € sp(2d,R) (see (2.4)), we may define

., k1, (C)F 0 K22
a1 e A ] [ A E
—K11 0 0 —K12
Then 3 = J# with
0 ki1 K12 O
60 sy Lon o) T2 o 0 | eomeam)

0 5?2 K99 0
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Accordingly, we may define the infinitesimal generator in the extended phase space as

K1aq + K22y
nﬁx + Ko22p
—R11Z — K12p
—R114 — K12y

(3.7) Fopagza () = 3¢ = Ji¢ = %

3.3. Symmetry and quadratic invariants of an extended system. Now
we are ready to state how the extended Hamiltonian system (1.2) inherits symmetry
and quadratic invariants from the original one (1.1).

PROPOSITION 3.3 (inheritance of symmetry and quadratic invariants). Let
H: T*R? = R be a smooth Hamiltonian and H: T*R®*? — R be its associated ex-
tended Hamiltonian defined as in (1.3). Suppose that G is a matriz Lie subgroup of
Sp(2d,R), and let g C sp(2d,R) be its Lie algebra, and gsymA::JTg C sym(2d,R).

(i) If H has G-symmetry in the sense of (2.2), then H inherits G-symmetry via

the action U defined in (3.5):

HoWg(¢)=H() VSeG V(eT*R*.

As a result, for any Kk € geym, the quadratic function

1 1 1
(2.8) Qr(z):= §ZTHZ = iqTﬁ'nq + ¢ Kiap + imeQp

is an invariant of the original Hamiltonian system (1.1), and

A 1 . 1
(3.8) Qx(C):= §CTHC =5 (CITHMCU +q" k12p + 2" K12y + nyfzzp)7

is an invariant of the extended Hamiltonian system (1.2).

(ii) For any k € sym(2d,R), (2.8) is a quadratic invariant of the original Hamil-
tonian system (1.1) if and only if (3.8) is a quadratic invariant of the extended
Hamiltonian system (1.2).

Remark 3.4. Every quadratic function on T*R¢ may be written as in (2.8) for an
appropriate k € sym(2d,R), whereas not every quadratic function on T*R?? may be
written as in (3.8).

Remark 3.5. The extended system of Tao [25] (see (B.1)) does not inherit qua-
dratic invariants in general; see subsection B.2.

Proof of Proposition 3.3.
(i) The G-symmetry of H follows from a straightforward computation: For any
S = [’é g] € G and any ¢ = (¢, z,p,y) € T*R*,
HoWs(q,2,p,y) = H(Aq+ By, Cq + Dy) + H(Az + Bp, Cx + Dp)
=(sfi]) +m(s[3])
) p
= H(q,y) + H(z,p)
=H(q,z,p,y),

where the third equality follows from (2.2).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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As discussed in subsection 2.2, the G-symmetry of H implies its g-symmetry,
and it in turn implies that (2.8) is an invariant of the original Hamiltonian sys-
tem (1.1). Similarly, the G-symmetry of H implies the following g-symmetry
of H:
(3.9) fpgea (O)TDH(C) =0 VK € geym V¢ € TR
However, in view of (3.7) and (3.8), we have
Fpepaa(() =J DQx(C) V¢ ET'R™,
and so we have, for any ¢ € T*R??,
{Qm ﬁ}ext Q)= DQ%(OTJ] D]:](O
— —fiegsa ()T DH(C)
=0.
Hence Q,. is an invariant of the extended system (1.2).
(ii) Let k € sym(2d,R) be arbitrary. Recall from subsection 2.2 that
(3.10)
(2.8) is an invariant of (1.1) <= {Q., H}(z)=0 VzeT*R?
— kppa(2)TDH(2)=0 VzeT*R%
On the other hand, using (3.7), we also have
(3.11)
(3.8) is an invariant of (1.2) <= {Qu, H}ext(¢) =0 V¢ e T*R*?
= fipeg2a(O)TDH() =0 V¢ eT*R*.
However, notice that we have the following equality:

(3.12)
n%q—i—mzy Dy H(
) N 1| Kiox + Koop DH
ez (TDH(Q) =5 | D2 T2 D;HE
—K11q — K12y DQH(

1 1
= iﬂT*Rd(q, y)"DH(q,y) + iﬁT*Rd(m,P)TDH(SU’p)-

Suppose that the left-hand side vanishes for any ¢ € T*R??. Then, setting
(x,p) =0 yields

kpepa(q,y) " DH(q,y) =0 V(q,y) € T*RY,

which is clearly equivalent to (3.10). Conversely, if (3.10) holds then it clearly
implies (3.11) in view of (3.12). Therefore, (3.10) and (3.11) are equivalent. O

Ezample 3.6 (quadratic invariant of an extended NLS system). As we have seen
in Example 2.2, the NLS possesses the quadratic invariant @, shown in (2.9) with
k = 2154. Hence we have

0 I; 0 O

. I, 0 0 O

R =
0 0 0 Igf’
0 0 Ig O
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and so the corresponding extended system possesses the quadratic invariant
A L. T T T
Qu(Q)=5C RC=q z+y p=1¢

Notice that, while the original invariant Q,(z) = 3%, (¢2 +p?) had no “mixed term”
like ¢7p, the invariant QN(C ) for the extended system consists only of the mixed term
nT€¢. We shall see in the next section that this generalizes to any quadratic invariant
of (1.1) and is one of the key observations towards the proof of our main result.

4. Conservation laws in extended phase space integrators.

4.1. Pihajoki’s integrator. Recall from subsection 1.1 that, writing 1 = (q,y)
and & = (z,p), we may write the extended system (1.2) as follows:

(1.5) n=IDH(), §=IDH(n),

and that Pihajoki’s integrator (1.7) is the extended-phase-space analogue of the
Stormer—Verlet method. This implies the following lemma on the invariants inherited
by Pihajoki’s integrator.

LEMMA 4.1 (linear and quadratic invariants of Pihajoki’s integrator). Let At >0
and fo e T*R*? be arbitrary and set fl ::i)m(éo), where & is Pihajoki’s integrator
(1.7). Then,

(i) if the Hamiltonian system (1.1) possesses a linear invariant of the form (3.1)

in T*R? with a € R*?, then Pihajoki’s extended phase space integrator (1.7)
preserves the linear invariant of the form (3.2) in T*R* j.e.,

(i) if the Hamiltonian system (1.1) possesses a quadratic invariant of the form
(2.8) in T*RY with k € sym(2d,R), then Pihajoki’s extended phase space inte-
grator (1.7) preserves a quadratic invariant of the form (3.8) in T*R* j.e.,

QAK(CAO) = Qn(él)

Remark 4.2. Unfortunately, this lemma does not imply that Pihajoki’s integrator
(1.7) preserves a linear and quadratic invariant of the original Hamiltonian system
(1.1) in T*R?. In other words, it is a conservation law that holds only in the extended
phase space T*R??. We shall discuss this issue in subsection 5.1 below.

Proof of Lemma 4.1.

(i) By the assumption and Proposition 3.1, the linear function (3.2) is an in-
variant of the extended Hamiltonian system (1.2). The Stormer—Verlet-
type splitting (1.7) is the partitioned Runge-Kutta method with the 2-stage
Lobatto IITA-TIIIB pair applied to (1.5), and is known to preserve any linear
invariant of the system; see Hairer, Lubich, and Wanner [10, section 11.2.1
and Theorems IV.1.5].

(ii) By the assumption and Proposition 3.3(ii), the quadratic function (3.8) is an
invariant of the extended Hamiltonian system (1.2). Now, notice that we may
rewrite (3.8) as follows:
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A 1
Qx(¢)= 5 (¢" k117 + " k1op + y" Kz + Yy Kaop)
_ Lo o |En k2| |
2 [q y ] |::‘i{2 K22 p
L
—577 KE.

It is well known that the Stormer—Verlet-type splitting (1.7) for systems of the
form (1.5) preserves quadratic invariants of the form n” M¢ with M € R2dx2d.
see, e.g., [10, section II.2 and Theorems IV.2.3]. d

€

4.2. Semiexplicit integrator: Proof of Theorem 1.1. Let zy = (qo,p0)
T*R? be arbitrary and At > 0 be chosen such that z1 :=®a¢(2¢) is defined, where ®
is the discrete flow of the semiexplicit integrator defined in subsection 1.2.

Before getting into the details of the proof, let us recall from subsection 1.2 how
the semiexplicit method works. Given z9 = (go, o), set Co = (go,40,P0,P0) €N (i-e.,
(z0,90) = (g0, P0)), and the symmetric projection determines p € R?? 50 that

(4.1) Gi=C+ATpe N =ker 4,
where
(4.2) (i=®ae(o) with (oi=Co+ATp

using Pihajoki’s integrator ® from (1.7). This means that ¢; = (q1,21,p1,y1) satisfies
(z1,y1) = (q1,p1), and thus one sets 21 = (q1,p1) = Pas(z0). We also note that one
can write g in terms of {y or (1: Since (o, (1 € ker A and AAT = 21,4 (sce (1.8)), we
see from (4.1) and (4.2) that

(4.3) p=—g AG =L AG,

Suppose that the original Hamiltonian system (1.1) possesses a linear invariant
of the form

with @ € R?? as well as a quadratic invariant of the form

1 1 1
(2.8) Qr(z):= iszfZ = iqulq + ¢ K1ap + §PTH22P

with x € sym(2d,R). We would like to prove that L,(z0) = La(z1) and Q.(20) =
Q1 (z1). Tt suffices to show that

La(21) = La(20) = La(C1) = La(lo)  and  Qu(21) — Qu(20) = Qu(G1) — Qe (o),
because Lemma 4.1 says that the right-hand side of each of these equations vanishes.

4.2.1. Linear case. First observe that
La(21) — La(20) = a” (21 — z0) = a" (¢1 — Go)

using the definition (3.2) of & and also (z;,vy;) = (gi,p;) for { = (¢i,xi,pi,y;) for
i=0,1.
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On the other hand,

La($1) — La(Co) =T (& — o)
=a" (G —Go) —2a" ATy
=a’(¢G - G),

where we used (4.1) and (4.2) for the second equality; the last equality follows because
a € ker A; see (1.8) and (3.2). Hence we have

La(21) = La(20) = La(C1) = La(0)-

4.2.2. Quadratic case. The key observation is the following: Defining

k11 0 0  Ki2

1 |L®kn P®ki2| 1|0 ki ki2

T PorT, L®ks 2|0 kL kw0 € sym(4d,R)
K{Q 0 0 K22

and

1 1 1
Qr(¢):= §CT’%C = (qTﬁnq + l”TKJnI) +§ (qTKJle + xT/ilzp)—FZ (pT/€22p + yTHQQy)7

RNy -

we have
Qn(2:) =Qn(¢) for i=0,1

because (; = (q;,%i,pi,yi) €N, i.e., (wi,9:) = (q;,p;) for i =0,1. Hence it suffices to
show that

QulG) = QulG0) = Qul&r) = Qu(o)-
To that end, observe that, using (4.1) and (4.2),
QulC) = Qu(Co) = @G+ ATp) = Qu (G — ATp)
= SCTRG+ CTRAT 4 SuT ARAT j— S CE Rl
+ (TRAT — %,FA&A%
— 5CTRGy + {TRAT = R + (T RATy
= SR — AT A — SR (T~ AT A)Go,

where we used (4.3) for the last equality.
Now, using the definition (1.8) of A, we see

Iy, —-I; O 0

-1, I 0 0| |P®Iy 0

0 0 1 -1 - |: 0 P®Id:| ’
0o 0 —I, I

Iig— ATA=1Iy —
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and so, noting that P? = I,

_ 1 I ®/{11 P®I{,12 P®Id O
Lig— ATA) == |2
F(lua )= Q[P@mlTQ In @ koo 0 Pel,
1 P®r11 Iz ® K12
2 I2®/{12 P®’<}22
=R

in view of (3.6). Therefore, we have

Qn(6) ~ QulCo) = 5 CThG — 58 o = Qullr) — Qullo).
This completes the proof of Theorem 1.1.

5. Discussion and numerical results.

5.1. Discussion: Conservation and nonconservation. As we have men-
tioned in Remark 4.2, Lemma 4.1 does not imply that Pihajoki’s integrator (1.7)
preserves the linear and quadratic invariant of the original Hamiltonian system (1.1)
in T7*R?. This is because the existence of an invariant of the integrator (1.7) in the ex-
tended phase space T*R%¢ does not imply the existence of an invariant in the original
phase space T*R?. More specifically, note that Cl = (41,21,P1,91) does not satisty
(#1,91) = (q1,p1) in general even if o = (Go, 0,0, fo) satisfies (Z0,50) = (do.Po)-
Therefore, even if L,((y) is written in terms of (do,po) and is an invariant of the
integrator (1.7), one has L, (1) in terms of (q1,%1,P1,91) with (Z1,91) # (¢1,P1) in
the next step. Hence it is impossible to interpret L, as an invariant on the original
phase space T*R? in terms of (¢,p). The same goes with the quadratic invariant Q,/v

Tao’s integrator (B.3) also has the same issue along with an additional issue for
quadratic invariants: Tao’s extended system (B.1) lacks the inheritance of quadratic
invariants; see Appendix B.2. So even if the original Hamiltonian system (1.1) pos-
sesses a quadratic invariant in T*R?, Tao’s extended system (B.1) may not have a
corresponding invariant even in the extended phase space T*R?? due to the addi-
tional step (see (B.3)) added to prevent the defect from growing, as we shall discuss
in Appendix B.

One can also see these issues more explicitly in terms of the defect

02p = ((Sqn, 5pn) = (j:n - Qru gn - ﬁn>

at the nth step of the numerical solution. For a linear invariant, Lemma 4.1 implies
that, for any n € N,

LalC) = LalCo) =t => Lalinn) = fo+ 3 La(020).

Hence the deviation of the original invariant L, from the constant value ¢y is propor-
tional to the defect. Since the defect dz,, often tends to grow for Pihajoki’s integrator,
L, may also grow as well. For Tao’s integrator, dz, tends to oscillate without drift,
and so L,(z,) also oscillates in a similar way as we shall see in a moment. We shall
numerically demonstrate these issues in the next subsection.

Interestingly, however, Pihajoki’s integrator preserves those linear invariants in
terms of ¢ or p only, i.e., of the form aqTq and agp with ag,a, € R?. This follows from
a straightforward calculation based on the definition of the integrator. On the other
hand, Tao’s integrator does not possess the same property again due to the additional
step.
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TABLE 1
Preservation/nonpreservation of linear and quadratic invariants by three extended phase space
integrators, where z = (q,p) € R??, a € R??, aq,ap € R?, and k € sym(2d,R). The check mark (\/)
indicates that the integrator preserves the invariant of the original Hamiltonian system (1.1) of the
given form exactly in general, whereas the cross mark ( X) indicates that the integrator does not
preserve it exactly in general.

Invariant
aTz agq or az;p 2Tkz/2
Pihajoki [19] X v X
Tao [25] X X X
Semiexplicit [11] v v v

Table 1 gives a summary of which integrator preserves what types of invariants
exactly.

5.2. Numerical results. In order to numerically demonstrate the results in
Table 1, let us first devise a simple test case that possesses both linear and quadratic
invariants.

Ezample 5.1 (test case with d =2). Consider the Hamiltonian system (1.1) with
the following nonseparable Hamiltonian on T*R?:

H(q,p) = exp(f(q1,p1))sin(g(gz,p2)),

fla,y)= 1%(296 -3y),  glz,y):= i(ﬂﬂ +2y%),

where ¢ = (¢1,42),p = (p1,p2) € R?; here, the subscripts stand for components not the
time steps.

It is straightforward to show that L(q,p):= f(q1,p1) is a linear invariant of the
system; this implies that Q(q,p):=¢g(g2,p2) is a quadratic invariant of the system
because the Hamiltonian H(g,p) is an invariant. As a result, the trajectories are very
simple: a straight line f(q1,p1) = const. on the g;-p; plane and an ellipse g(ga2,p2) =
const. on the go-ps plane.

Figure 3 shows the time evolutions of the norm |(z — ¢,y — p)| of the defect
and the relative errors of the invariants L and @ using Pihajoki’s, Tao’s, and our
semiexplicit integrators with the initial condition ¢(0) = (—1,2) and p(0) = (1,—-1)
and the time step At =0.1.

We observe that, despite the simplicity of the solution behavior, Pihajoki’s and
Tao’s integrators preserve neither of the linear and quadratic invariants L and @ ex-
actly. On the other hand, our semiexplicit integrator preserves both invariants roughly
up to the tolerance € = 107! used in the nonlinear solver for p (the simplified New-
ton method discussed in [11, section 4.1]). This demonstrates the exact preservation
stated in Theorem 1.1. One also observes that, for Pihajoki’s and Tao’s integrators,
the fluctuation of the invariants is roughly proportional to the norm of the defect
(x —q,y — p) as discussed above.

Let us next consider a more practical example that possesses both linear and
quadratic invariants.

Example 5.2 (point vortices). We consider the dynamics of N point vortices in R?
with circulations {T'; € R\{0}}~,. The motion of the centers {x; = (x;,y;) € R*}N,
of the vortices is governed by

Xi:—i Z FLyj”Q, yi:i Z A R

J J 2
2T S k=X 21, S Ik =yl

J#i J#i
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Pihajoki =~ - Tao —— Semiexplicit

109

Itz =g,y —p)l

10—12 4

L(t) - L(O)‘
L(0)

Q) — Q0)
Q(0)

t

F1G. 3. Time evolutions of norm ||[(z — q,y — p)|| of defect and relative errors of linear and
quadratic invariants L and P for test case in Example 5.1 with At = 0.1. Tao’s integrator uses
w = 10, and the tolerance for the nonlinear solver in the semiexplicit integrator is e = 10714, We
defined L(t) := L(q(t),p(t)) and similarly for Q. Those points that give O for vertical values are
removed from the plots.

for i € {1,...,N}; see, e.g., Newton [17, section 2.1] and Chorin and Marsden [4,
section 2.1]. It is known to be a Hamiltonian system with the Hamiltonian

1
H(Xl,...,XN):: _E Z FiFjln”Xi_xj”2a
1<i<j<N

but not in the canonical sense. However, one may rewrite the system in canonical
form (1.1) upon the change of coordinates

(Xi,yi) (\/ﬂxiv \/ngn(n)yi) =:(qi, pi)s

where sgn(z) is 1 if # > 0 and —1 otherwise. So we have d = N here, and the
Hamiltonian is again nonseparable.
This system has three invariants in addition to the Hamiltonian,

N N N N
(5.1) La(2):=> Toxi=Y ITilsen(Ti)gi,  Ly(z):=> Tiyi=>_ /ITilps,
i=1 i=1 i=1 =1

N N
Qn(2):=Y Tillxi|* = sen(I)(q} + )
=1 =1
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with

( [Ty |sgn(Ty),. .,\/|1"N|sgn(I‘N),0,...,O) e RV,
(0, ,0,+/T4],.- .,\/|1“N|) e RV,
2

[O O]€sym(2N R) with o:=diag(sgn(T'1),...,sgn(l'y)).

The pair (Lg, Lp) is called the linear impulse, and @, is called the angular impulse.
We consider the case with four vortices (N =d =4) with circulations

(Fla FZa F37 F4) = (43 _37 _27 7)
Figure 4 shows the time evolutions of the norm ||(x — ¢,y — p)|| of the defect and the

relative errors of the linear and quadratic invariants (L., L) and Q, using Pihajoki’s,
Tao’s, and our semiexplicit integrators with the initial positions of the vortices at

,,,,,,,,,, Pihajoki ~ - Tao = —— Semiexplicit

107 —— —_——— “r

1077

10713 T PTG W TR TRRP v FAF7y ETFTTT TV
FTW'-( bk ihasd Lt i Lok ind Atk e e bl L

Iz —q,y—Dp)

(0) ‘

Ly(0)

Ly(t) — Ly

1071

0 200 400 600 800 1000

Fi1G. 4. Time evolutions of norm ||[(z — q,y — p)|| of defect and relative errors of linear and
quadratic invariants (La,Ly) and Q for the 4-vortex problem from Ezample 5.2 with At = 0.05.
The rest of the details are the same as in Figure 3.
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4

{(Xi(o)vyi(o))}izl = {(1’2)’ (_3/27 1)’ (_3a _1)7 (271/2)}7

and with time step At = 0.05; the tolerance for the nonlinear solver in the semiexplicit
integrator is again € = 10714,

We observe that Pihajoki’s integrator preserves the linear invariants (L, L) al-
most exactly despite a problematic growth of the defect. This is because these linear
invariants are the kind that are exactly preserved by Pihajoki’s integrator; see Table
1 and (5.1). On the other hand, the relative error in the quadratic invariant @ is
growing even to the scale of 10 to 100. One also sees that the growth is roughly
proportional to the defect, again as discussed in subsection 5.1.

Tao’s integrator exhibits good preservation of the linear and quadratic invariants.
However, note that Tao’s integrator does not preserve any of the invariants exactly
as shown in Table 1. Indeed, one again sees that the errors are roughly proportional
to the defect as discussed in subsection 5.1.

On the other hand, our semiexplicit integrator preserves all three linear and qua-
dratic invariants roughly up to the tolerance e = 1014, This result again demonstrates
the exact preservation stated in Theorem 1.1 and Table 1.

Appendix A. Numerical results on efficiency.

A.1. Semiexplicit versus Gauss—Legendre. As pointed out by one of the re-
viewers of the present paper, our implementation of the Gauss-Legendre (GL) meth-
ods in our previous work [11] using the full Newton’s method was very inefficient, and
resulted in inflating the computational costs for the GL methods.

Following a suggestion from the reviewer, we implemented the GL methods using
fixed point iterations instead, and performed a numerical study on the computational
costs using the same examples from [11]. The results, as we shall show in the sub-
sections to follow, suggest that the semiexplicit integrator and the GL methods are
comparable in computational efficiency. While the 2nd- and 4th-order GL methods
are faster than the semiexplicit ones of the same orders, the 6th-order method of the
latter can be faster than the former of the same order.

The computational cost of these methods is a trade-off between the number of
evaluations of the vector field per single iteration and the number of iterations. In
general, the semiexplicit integrator requires more evaluations of the vector field com-
pared to the GL method of the same order per single iteration for solving the nonlinear
equation. However, the vector p (see subsection 1.2) in the semiexplicit method is
typically very small especially for higher-order methods, because p is a quantity that
vanishes for the exact solutions. On the other hand, the GL methods need to solve
for unknowns of O(At) in general. Therefore, as we shall see in the results to follow,
the semiexplicit method usually requires fewer iterations especially with higher-order
methods, while the GL methods tend to require more or less the same number of
iterations for all orders.

Another reason why the semiexplicit method can compensate for the disadvan-
tage with higher-order methods is the following: While the semiexplicit method solves
for p € R regardless of the order and the number of stages, the GL methods
vvith2 sd stages (s = 2,3 for the 4th- and 6th-order methods) solves for unknowns
in R“*%.
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TABLE 2
Comparison of computation times of various methods when solving NLS (2.3) with time step
At = 1073 and terminal time T = 103. Time is the computation time in seconds averaged over 5
simulations. Itr is the average number of iterations used per step in the simplified Newton and
fized point iterations for the semiexplicit and the GL methods, respectively. VF_eval is the average
number of evaluations of the vector field. Computations were performed using Julia on a computer
with an Apple M1 Pro processor.

e=10"10 e=10"13

Method Time Itr VF_eval Time Itr VF_eval
Tao 2 9.23 4 9.23 4
Semiexplicit 2 23.00 3.385 10.16 32.47 5.000 15.00
GL2 15.03 5.999 5.999 17.31 7.000 7.000
Tao 4 22.99 12 22.99 12
Semiexplicit 4 31.96 1.948 17.53 47.47 3.000 27
GL4 26.08 5.000 10.00 31.35 6.320 12.64
Tao-Y 6 50.86 28 50.86 28
Semiexplicit-Y 6 35.29 1.002 21.04 35.39 1.017 21.36
GL6 39.64 5.000 15.00 48.50 6.234 18.70

A.2. Finite-dimensional NLS. As the first test case, we consider the finite-
dimensional NLS from Example 2.1. Following Tao [25], we have d =5, w =100, and
q(0) = (3,0.01,0.01,0.01,0.01) and p(0) =(1,0,0,0,0).

See Table 2 for the results. The 4th-order and 6th-order versions (Tao4 and
Tao-Y 6) of Tao’s method use the triple jump composition (see [7, 8, 23, 32]; also
[10, Example 11.4.2]) and the composition of Yoshida [32], respectively. The same
goes with the 4th- and 6th-order semiexplicit methods (semiexplicit 4 and semiexplicit-
Y 6). The GL n stands for the nth-order GL method; see, e.g., [10, section II.1.3]
and [12, Table 6.4 on p. 154] implemented with fixed point iterations [10, section
VIIL6).

A.3. Point vortices. As the second test case, consider the vortex dynamics
from Example 5.2 with 10 vortices (N =10) of circulations

1
(A.1) (T1,.-.T10) = 75(~5,3,6,7,~2,-8,-9,-3,7, ~6)

and the initial condition

az GOy} = {(3,-9), (-10.-6), (6,0). (9, -2), (0,0),

(7,10), (-8,2), (5,9), (9,0), (7,—1)}.
See Table 3 for the results.
Appendix B. Limitation of inheritance by Tao’s extended system.

B.1. Tao’s extended phase space integrator. In order to suppress the defect
(x — g,y — p) that often grows with Pihajoki’s integrator (1.7), Tao [25] proposed to
solve the extended system

q:DZH(‘T7p)+w(p7y)a pszlH((Ly)*w(q*x)a

(B-1) &= DoH(q,y) +w(y —p), y=—D1H(x,p) —w(x—q)
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TABLE 3
Comparison of computation times of various methods when solving the 10-vortex system with
the parameters given in (A.1) and (A.2), and time step At = 0.1 and terminal time T = 103. The
other details are the same as Table 2 except w="T for Tao’s method.

e=10"10 e=10"13

Method Time Itr VF_eval Time Itr VF_eval
Tao 2 5.66 4 5.66 4
Semiexplicit 2 8.43 2.014 6.042 13.26 3.045 9.135
GL2 5.63 4.023 4.023 8.65 5.997 5.997
Tao 4 17.02 12 17.02 12
Semiexplicit 4 12.52 1.001 9.009 20.47 1.588 14.29
GL4 10.99 4.000 8.000 14.29 5.000 10.00
Tao-Y 6 39.23 28 39.23 28
Semiexplicit-Y 6 28.76 1.000 21.00 30.06 1.001 21.02
GL6 16.47 4.000 12.00 21.45 5.000 15.00

with some w € R\{0} instead of Pihajoki’s extended system (1.2). Note that the
above system (B.1) is also a Hamiltonian system on the extended phase space T*R??
with the Hamiltonian

(B2)  He(Q=HQ+Hc() with Hold)=3((w—a)?+y-p)?),

where H is the extended Hamiltonian (1.3) for Pihajoki’s system (1.2). The Strang
splitting [21] then yields the following 2nd-order integrator:

(B.3) (I)ﬁt/2 °© q)gt/2 ° (I)gt ° q)gt/z ° q)it/Qv

where &4 and @BA are defined in (1.6) and ®¢ is the (extended) Hamiltonian flow
corresponding to H¢.

B.2. Inheritance and noninheritance of linear and quadratic invariants.
It turns out that, while the extended system (B.1) enjoys a similar inheritance prop-
erty as in Proposition 3.1 for linear invariants, it does not for quadratic ones as in
Proposition 3.3.

To see this for linear invariants, note that

{La, HoYexe Q) =aTIDH(C) =0 V¢ e T*R*.

Hence the additional term H¢ in the Hamiltonian does not interfere with the preser-
vation of L, by Tao’s extended system (B.1). Note however that this does not imply
that Tao’s integrator (B.3) preserves the original linear invariant L, for the same
reason discussed in subsection 5.1 for Pihajoki’s integrator.

On the other hand, for quadratic invariants,

{Qr: HoYext (C) = fipegza ()" DHe (C)

zazT[””” _"””“] 5z with 6z:= [x‘q].
—Ka2 K12 Yy—>

Hence we have

Sy *2d ’{irz = —Kiz,
{QKaHC}ext(C):O VCGT R <
K22 = —HK11.
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Therefore, a quadratic invariant QN of Pihajoki’s extended system (1.2) is also an
invariant of Tao’s extended system (B.1) if and only if x € sym(2d,R) takes the form

_ [ K11 K12
R =

with k11 € sym(d, R), H{Q = —K12.
—Ki12 —Ki11

However, this is rather restrictive. Indeed, none of the quadratic invariants from
Examples 2.2, 5.1, and 5.2 satisfy this condition.

Acknowledgments. I would like to thank Buddhika Jayawardana for helpful
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